
Answering Tree Pattern Queries Using Views: a Revisit

Junhu Wang
Griffith University, Gold Coast

Campus, Australia
J.Wang@griffith.edu.au

Jiang Li
Griffith University, Gold Coast

Campus, Australia
Jiang.Li@griffithuni.edu.au

Jeffrey Xu Yu
Chinese University of Hong

Kong, China

yu@se.cuhk.edu.hk

ABSTRACT
We revisit the problem of answering tree pattern queries us-
ing views. We first show that, for queries and views that do
not have nodes labeled with the wildcard *, there is an alter-
native to the approach of query rewriting which does not re-
quire us to find any rewritings explicitly yet which produces
the same answers as the maximal contained rewriting. Then,
using the new approach, we give a simple criterion and a
corresponding algorithm for identifying redundant view an-
swers, which are view answers that can be ignored when
evaluating the maximal contained rewriting. Finally, for
queries and views that do have nodes labeled *, we pro-
vide a method to find the maximal contained rewriting and
show how to answer the query using views without explicitly
finding the rewritings.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

General Terms
Theory, Algorithms

Keywords
XML, XPath, tree pattern, view, containment, rewriting

1. INTRODUCTION
Answering queries using views has been studied extensively
for relational databases and found applications in fields such
as query optimization, data integration, and query answer-
ing when the original data is inaccessible, e.g., in a network
environment. Motivated by similar potential applications,
the problem of answering tree pattern queries using views
has recently attracted attention from many researchers.

A main approach for answering tree pattern queries using
views exploits the technique of query rewriting, which trans-
forms a query Q into a set of new queries, and then evaluates
these new queries over the materialized answers to the view

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

[15, 9, 8, 4, 6]. In the literature, there are two types of
rewritings, equivalent rewritings and contained rewritings.
An equivalent rewriting will produce all answers to the orig-
inal query, and a contained rewriting may produce only part
of the answers. This work is about/closely related to con-
tained rewritings. Previously [8] gave a method to find the
maximal contained rewriting (MCR) (i.e., the union of all
contained rewritings) when both the view and query are in

P {/,//,[]} (i.e., they do not have nodes labeled with the wild-
card *), and [11] gave a method for finding the maximal

contained rewriting for views in P {/,//,∗,[]} and queries that
have no *-nodes connected to a //-edge and no leaf node
u such that u and the parent of u are both labeled *. To
actually find the answers to a new query Q, we need to eval-
uate the rewritings over the materialized view answers. A
question arises as to whether it is possible to answer a new
query without finding the rewritings. Furthermore, all pre-
vious works require us to materialize all answers to the view
and evaluate the MCR over all such answers. Since an an-
swer to a tree pattern is a subtree of the original data tree,
and some answers may be subtrees of other answers, it is
likely that we do not need to evaluate the MCR over all of
the view answers. In other words some view answers may
be redundant in that any answers that can be found by eval-
uating the MCR over them can also be found by evaluating
the MCR over other view answers. In our experiments we
found that on average 36.91% of view answers for the dataset
XMark are redundant, 73.67% percent of view answers for
the BIOML dataset are redundant, and up to 69.48% of view
answers can be redundant for the dataset Treebank (See Sec-
tion 4.3). Identifying view answers which do not contribute
to the answering of new queries will help us minimize view
maintenance and speed-up query evaluation. In this paper,
we study these issues and make the following contributions:

1. For query Q and view V in P {/,//,[]} we show there is
an alternative approach for answering Q using V which
does not require us to find the MCR of Q using V
explicitly, yet which produces the same set of answers
to Q as can be found by the MCR.

2. For Q and V in P {/,//,[]}, we provide a simple crite-
ria for identifying redundant view answers which are
view answers that can be ignored when evaluating the
MCR. We also provide two procedures to find the
redundant view answers, one is fast but incomplete,
the other is less efficient but complete. We conducted
experiments about redundant view answers which in-

153



dicate that for some real XML datasets and randomly
generated views, there can be a large percentage of re-
dundant view answers, and most of the redundant view
answers can be removed using the fast procedure.

3. We show how the above results can be extended to
cases where V, Q are in P {/,//,∗,[]}, but Q does not
have /-edges, or Q does not have *-nodes connected to
//-edges or leaf *-nodes.

4. For the more general case where both Q and V can be
any pattern in P {/,//,∗,[]}, we present a method to find
the MCR of Q using V , and show how to answer Q
using answers to V without finding explicit rewritings.

The rest of paper is organized as follows. Section 2 gives
the preliminaries. Section 3 presents the new approach for
answering tree patterns queries using views when the view
and query are both in P {/,//,[]}. Based on the new approach,
Section 4 provides the condition and an algorithm for finding
redundant view answers. In Section 5 we study queries and
views in P {/,//,∗,[]}. We first give a method for finding the
MCR, then show how to answer Q using V without rewrit-
ing, and then discuss removing redundant view answers with
respect to other classes of patterns than P {/,//,[]}. Section 6
compares our work with some closely related work. We con-
clude the paper in Section 7.

2. PRELIMINARIES

2.1 XML data tree and tree patterns
Let Σ be an infinite set of tags which does not contain the
symbol *. An XML data tree, or simply a data tree, is a tree
in which every node is labeled with a tag in Σ. A tree pattern
(TP), or simply a pattern, in P {/,//,∗,[]} is a tree in which
every node is labeled with a symbol in Σ ∪ {∗}, every edge
is labeled with either / or //, and there is a unique selection
node. The path from the root to the selection node is called
the selection path. Figure 1 shows some example TPs, where
single and double lines are used to represent /-edges and
//-edges respectively, and a circle is used to indicate the
selection node. A TP corresponds to an XPath expression.
The TPs in Figure 1 (a) and (b) correspond to the XPath
expressions a[c]//b[//d] and a[c]//b[x]/y respectively.

Let P be a TP. We will use sn(P), and sp(P) to denote the
selection node and the selection path of P respectively. For
any tree T , we will use N(T ), E(T ) and rt(T ) to denote the
node set, the edge set, and the root of T respectively. We
will also use label(v) to denote the label of node v, and call
a node labeled x an x-node. In addition, if (u, v) is a /-edge
(resp. //-edge), we say v is a /-child (resp. //-child) of u.

A matching of TP P in a data tree t is a mapping δ from
N(P ) to N(t) that is (1) root-preserving: δ(rt(P )) = rt(t),
(2) label-preserving: ∀v ∈ N(P ), label(v) = label(δ(v)) or
label(v) = ∗, and (3) structure-preserving: for every /-edge
(x, y) in P , δ(y) is a child of δ(x); for //-edge (x, y), δ(y) is
a descendant of δ(x). Each matching δ produces a subtree
of t rooted at δ(sn(P)), which is known as an answer to the
TP. We use P (t) to denote the set of all answers of P over
t. For a set S of data trees, we define P (S) = ∪t∈SP (t).

a

c b

d
(a) V

a

c b

x y

(b) Q

b

x y

(c) Q′

b

y

b

x

(d) Q′′

Figure 1: View V , Query Q, and two CRs Q′ and Q′′

Let P1, . . . , Pn be TPs. We use P1 ∪ · · · ∪ Pn and P1 ∩
· · ·∩Pn to represent the union and intersection of P1, . . . , Pn

respectively. The meaning of union and intersection is as
usual: for any set of data trees S,
(P1 ∪ · · · ∪ Pn)(S) = P1(S) ∪ · · · ∪ Pn(S), and
(P1 ∩ · · · ∩ Pn)(S) = P1(S) ∩ · · · ∩ Pn(S).

2.2 Tree pattern containment and containment

mapping
Let P and Q be TPs. P is said to be contained in Q, denoted
P ⊆ Q, if for every data tree t, P (t) ⊆ Q(t). A containment
mapping (CM) from Q to P is a mapping δ from N(Q) to
N(P ) that is label-preserving, root-preserving as discussed
above, structure-preserving (which now means for any /-
edge (x, y) in Q, (δ(x), δ(y)) is a /-edge in P , and for any
//-edge (x, y), there is a path from δ(x) to δ(y) in P ) and is
output-preserving, which means δ(sn(Q)) = sn(P).

Several subsets of P {/,//,∗,[]} are of special interest to us:

P {/,//,[]} is the set of TPs that do not have *-nodes; P̂ {/,//,[ ],∗}

is the set of TPs in which all *-nodes are incident only to
/-edges and are non-leaf; , P {//,[ ],∗} is the set of TPs that

do not have /-edges, and P {/,[ ],∗} is the set of TPs that

do not have //-edges. Let P, Q be TPs in P {/,//,∗,[]}. It
is well known that, in general, P ⊆ Q if but not only if
there is a CM from Q to P . However, if P ∈ P {/,[ ],∗} or

Q ∈ P̂ {/,//,[ ],∗}, then P ⊆ Q iff there is a CM from Q to P

[10, 14]. Note that P {/,//,[]} is a subset of P̂ {/,//,[ ],∗}.

2.3 Contained rewritings of tree pattern queries

using views
A view is an existing TP. Let V be a view and Q be a TP.
In this paper we will implicitly assume that label(rt(Q)) =
label(rt(V )) 6= ∗. A contained rewriting (CR) of Q using
V is a TP Q′ such that (1) for any data tree t, Q′(V (t)) ⊆
Q(t); (2) there exists a data tree t such that Q′(V (t)) 6= ∅;
Figure 1 shows a view V , a TP Q, and two CRs, Q′ and Q′′,
of Q using V . The maximal contained rewriting (MCR) of
Q using V , denoted MCR(Q, V ), is defined to be the union
of all CRs of Q using V .

Let Q′ be a CR of Q using V . It is clear that label(rt(Q′)) =
label(sn(V)) or at least one of label(rt(Q′)) and label(sn(V))
will be *. We use Q′ ◦ V to represent the TP obtained by
merging rt(Q′) and sn(V). The merged node will be labeled
with label(rt(Q′)) if label(rt(Q′)) 6= ∗, otherwise it will be
labeled with label(sn(V)). The selection node of Q′ ◦ V is
that of Q′. Note that condition (1) in the definition of CR
is equivalent to Q′ ◦ V ⊆ Q.

Given TP Q and view V in P {/,//,[]} , [8] shows that the
existence of a CR of Q using V can be characterized by the

154



existence of a useful embedding from Q to V . In brief, a use-
ful embedding from Q to V is a partial mapping f from N(Q)
to N(V ) that is root-preserving, label-preserving, structure-
preserving as defined in a containment mapping (except that
they are required only for the nodes of Q on which the func-
tion f is defined), and that satisfies the following conditions.
(1) If f(x) is defined, then f is defined on parent(x) (the
parent of x). (2) For every node x on the selection path
sp(Q), if f(x) is defined, then f(x) ∈ sp(V), and if f(sn(Q))
is defined, then f(sn(Q)) = sn(V). (3) For every path p ∈ Q,
either p is fully embedded, i.e., f is defined on every node
in p, or if x is the last node in p such that f(x) is defined
and f(x) ∈ sp(P), and y the child of x on p (call y the an-
chor node), then either f(x) = sn(V), or the edge (x, y) is a
//-edge.

Given a useful embedding f from Q to V , a Clip-Away Tree
(CAT), denoted CATf , can be constructed as follows. (i)
Construct the root of CATf and label it with label(sn(V)).
(ii) For each path p ∈ Q that is not fully embedded, find
the anchor node y and attach the subtree of Q rooted at
y (denoted Qy) under rt(CATf ) by connecting rt(Qy) and
rt(CATf ) with the same type of edge as that between y
and its parent. The selection node of CATf is the node
corresponding to sn(Q). For example, in Figure 1 the query
Q has two useful embeddings to V , both of them map the
a-node and c-node in Q to the a-node and c-node in V ,
and one also maps the b-node in Q to the b-node in V , but
the other does not. The corresponding CATs are shown in
Figure 1 (c) and (d) respectively. Each CAT is a CR of Q
using V , and every CR of Q using V is contained in one of
these CATs. Thus if h1, . . . , hk are all the useful embeddings
from Q to V , then MCR(Q,V ) =

⋃
i∈[1,k] CAThi

.

3. EVALUATING TPS OVER ANNOTATED

VIEW ANSWERS - AN ALTERNATIVE

TO QUERY REWRITING
Given view V , new query Q, the rewriting approach finds
a set of new queries (i.e., the rewritings) and evaluates the
rewritings over the materialized view answers in order to
find answers to Q. In this section, we present an alterna-
tive approach for answering Q using only the answers to V .
The new approach does not require us to find any explicit
rewritings, instead, it evaluates Q over a set of annotated
view answers. We will show that the new approach pro-
duces the same set of answers as evaluating the MCR over
the original view answers in V (t). We focus on queries and

views in P {/,//,[]} in this section and will deal with queries
and views in P {/,//,∗,[]} in Section 5.

Definition 3.1: (annotated view answer) Let V ∈ P {/,//,[]}

be a view, t be a data tree, and ti be a view answer in V (t).
We construct a new tree from V and ti, denoted ti · V , by
merging the root of ti with the selection node of V . The
merged node will be labeled with label(rt(ti)). We call this
tree an annotated answer of V over t or an annotated view
answer when V and t are clear from context.

Figure 2 (a) shows a data tree t. There are two answers, t1
and t2, to the view V shown in Figure 1 (a), as indicated
by the surrounding boxes. The annotated view answers are

a

y

b

y

b

y dx

c

t1

t2

x

(a) t

xy

b

y dx

b

a

c

d

(b) t1 · V

y dx

b

a

c

d

(c) t2 · V

Figure 2: Data tree t and the annotated view an-

swers for the view V in Figure 1

shown in Figure 2 (b) and (c).

An annotated view answer will be treated like a data tree
and used to find answers to a query over the original data
tree t, hence it has no selection node. The evaluation of a
query over an annotated view answer is similar to that over
a normal data tree. Formally, for any query Q, we evaluate
Q over ti ·V by finding matchings of Q in ti ·V . A matching
of Q in ti · V is a mapping from N(Q) to N(ti · V ) which is
root-preserving, label-preserving, structure-preserving and
which maps the selection node of Q into a node in ti. If h is
such a matching, then the subtree of ti rooted at h(sn(Q)) is
called an answer of Q over ti ·V . We use Q(ti ·V ) to denote
the set of all answers of Q over ti · V .

The annotated view answers have the following properties.

Lemma 3.1: Let V ∈ P {/,//,[]} be a view, t be a data tree,
and ti ∈ V (t). Then ti ∈ V (ti · V ).

Proposition 3.1: Let V ∈ P {/,//,[]} be a view, t be a data
tree, and V (t) = {t1, . . . , tn}. Let Q ∈ P {/,//,[]} be a query.
If Q has no CR using V , then Q(ti · V ) = ∅ for all i ∈ [1, n].

The proof is straightforward because any matching of Q in
ti ·V implies a useful embedding from Q to V : if we restrict
the matching to those nodes of Q whose image is in the V -
part of ti ·V , the matching becomes a useful embedding from
Q to V .

Theorem 3.1: Let V ∈ P {/,//,[]} be a view, t be a data
tree, and V (t) = {t1, . . . , tn}. Let Q ∈ P {/,//,[]} be a query,
h1, . . . , hk (k ≥ 1) be all of the useful embeddings from Q
to V . Then

(1) Q(ti · V ) = CATh1
(ti) ∪ · · · ∪ CAThk

(ti),∀i ∈ [1, n].

(2) CATh1
(V (t)) ∪ · · · ∪ CAThk

(V (t)) = Q(t1 · V ) ∪ · · · ∪
Q(tn · V ).

Proof. Denote CAThj
by Qj for j = 1, . . . , k. (1) We

show Q1(ti)∪· · ·∪Qk(ti) ⊆ Q(ti ·V ) and Q(ti ·V ) ⊆ Q1(ti)∪

155



· · · ∪ Qk(ti). First, for every matching h of Qj in ti, we
can construct a matching h′ of Q in ti · V as follows: for
every node u ∈ Q, if u is mapped into the V -part of ti · V
by hj , then let h′(u) = hj(u). If u is not mapped into V
by hj , then it will be a node in CAThj

(= Qj), and we let
h′(u) = h(u). Clearly h′ is a matching of Q in ti · V , and
h(sn(Qj)) and h′(sn(Q)) are the same node in ti. Therefore,
Qj(ti) ⊆ Q(ti · V ). Thus Q1(ti) ∪ · · · ∪Qk(ti) ⊆ Q(ti · V ).

Conversely, for every matching δ of Q in ti · V , there is
useful embedding hj from Q to V , which is obtained by
restricting δ to those nodes of Q that are mapped into the
V -part of ti ·V by δ. The corresponding CAT CAThj

(= Qj)
has a matching in ti, which is obtained by restricting δ to
those nodes of Q that are mapped into the ti-part of ti · V .
This matching maps sn(Qj) to the same node as δ(sn(Q)).
Therefore, Q(ti · V ) ⊆ Q1(ti) ∪ · · · ∪Qk(ti).

(2)

Q1(V (t)) ∪ · · · ∪Qk(V (t))

= (Q1(t1) ∪ · · · ∪Q1(tn)) ∪ · · · ∪ (Qk(t1) ∪ · · · ∪Qk(tn))

= (Q1(t1) ∪ · · · ∪Qk(t1)) ∪ · · · ∪ (Q1(tn) ∪ · · · ∪Qk(tn))

= Q(t1 · V ) ∪ · · · ∪Q(tn · V ). / ∗ by (1)

Proposition 3.1 and Theorem 3.1 imply that, if Q and V
are both in P {/,//,[]}, then evaluating Q directly over the
annotated view answers (hereafter referred to as the anno-
tated view answer approach) will produce the same answers
that can be found by evaluating MCR(Q,V ) over the orig-
inal view answers, thus proving our claim at the beginning
of this section.

Variation of annotated view answer Let us use V U to
denote the pattern obtained from view V by removing all
nodes under sn(V), and V L to denote the pattern consisting
of sn(V) and all nodes and edges under sn(V). It is not
difficult to see that Proposition 3.1 and Theorem 3.1 still
hold if we replace ti · V with ti · V

U (for i = 1, . . . , n). This
is because ti is a tree in V (t), thus there is a matching of
V L in ti.

Discussion on evaluation and performance Assuming
naive algorithms for query evaluation for both the rewriting
approach and the annotated view answer approach, there
are extreme cases where one approach is faster than the
other. For instance, when the number of non-redundant
CATs is small and the number of view answers is large, the
rewriting approach appears faster. In particular, if there
are no useful embeddings from Q to V , then the rewriting
approach knows immediately that no answers to Q can be
obtained using the view answers (although it has the cost
to find out that there are no useful embeddings), but the
annotated view answer approach still has to evaluate Q over
each annotated view answer. On the other hand, in cases
where the number of non-redundant CRs is large and the
number of view answers is small, the annotated view answer
approach appears faster. We use the following example to
illustrate this point.

a

a

b

c

(a) V

a

a

b

c

d

a

b

c

e

a

b

c

f

a

b

c

g

a

b

c

h

(b) Q

a

a

b

c1

g hd

a

b b

c2 c3

d f e

t1

t2 t3

(c) t

a

a

b

c1

g hd

a

b b

c2 c3

d f e

(d) t1 · V

c

d
e f g h

(e) CAT1

c

d
f g ha

b

c

e

(f) CAT2

c

d
g he a

b

c

f

(g) CAT3

c

d
he a

b

c

f

a

b

c

g

(h) CAT4

c

e f a

b

c

f

g h

(i) CAT5

c

he a

b

c

f

a

b

c

g

a

b

c

d

(j) CAT6

c

he a

b

c

f

g
a

b

c

d

(k) CAT7

c

a

b

c

f

a

b

c

g

a

b

c

d

a

b

c

h

a

b

c

e

(l) CAT8

Figure 3: V , Q, t and t1 · V for Example 3.1

Example 3.1: Consider the query Q and view V in Fig-
ure 3. There are a total of 32 (=28) non-redundant CATs of
Q using V . Some example CATs are listed in Figure 3 (e)
to (l). Consider the data tree t shown in Figure 3 (c). It is
easy to verify that V (t) has three view answers t1, t2 and t3,
rooted at nodes c1, c2 and c3 respectively (we use subscripts
to indicate nodes with the same label), and t2 and t3 are
redundant (see next section for redundant view answers).
If we evaluate Q directly over the annotated view answer
t1 ·V (Figure 3 (d)), we will quickly obtain two answers, one
rooted at c1 and the other rooted at c2, and the evaluation
will take less time than evaluating all 32 CATs over t1.

In the above example, the better efficiency of the new ap-
proach comes from the fact that when evaluating Q directly
over t1 · V we only need to verify whether sn(Q) can be
matched to each of the c-nodes by some matching, and in
doing so, we can avoid many repeated computations that
are done when we evaluate all CATs over t1. Take c3 for
example, if we evaluate Q over t1 ·V , we find that if we map
sn(Q) to c3, then the d-node under sn(Q) cannot be mapped
to anywhere. Thus we know immediately that c3 is not in
Q(t1 ·V ). On the other hand, if we evaluate all of the CATs
over t1, we in effect have to repeat the same comparison 32
times. Similarly with c2, if we evaluate Q over t1 · V , once
we find a matching that maps sn(Q) to c2, we do not need to
consider other matchings that also map sn(Q) to c2. How-
ever, if we evaluate all of the CATs over t1, we in effect have

156



to find all matchings that produce c2.

A more careful comparison of performance requires us to
design better algorithms for both approaches and there are
obvious ways to do so. For instance, for the rewriting ap-
proach, for each view answer ti we can first find a set of
potential nodes which are the nodes with the same label as
sn(Q), and filter out those potential nodes u such that the
subtree of Q rooted at sn(Q) has no matching in the subtree
rooted at u. Then we check the remaining potential nodes,
and if one is found to be an answer to Q using one of the
CATs, then there is no need to check it using other CATs.
A more detailed discussion on the valuation of MCRs can be
found in [16]. For the annotated view answer approach, once
we have found a matching δ of Q in t1 · V , we can extract
the part δ′ of δ which maps the nodes in Q to the V -part,
and reuse it to find other matchings or when we evaluate Q
over t2 ·V . Since every matching of Q in an annotated view
answer implies a useful embedding, algorithms can be de-
signed for the annotated view answer approach that takes,
at most, the same amount of time as for finding the CATs
and evaluating the CATs over the view answers in V (t).

One application of the new approach is that it enables us to
find a simple condition to identify redundant view answers,
as will be discussed in the next section.

4. REDUNDANT VIEW ANSWERS
The previous section shows that to answer a new query Q
using answers to V , we can either evaluate the rewritings
over the original view answers in V (t), or evaluate Q over
the annotated view answers. In practice, V (t) may be a
large set and many view answers may be subtrees of other
view answers. Thus a natural question to ask is whether we
need to evaluate the rewritings over all of the view answers.
We will address this problem in this section.

Definition 4.1: (View answer subsumption and re-

dundancy) Let V be a view, and P be a class of TPs.
Suppose t1, . . . , tm ∈ V (t) are view answers. If for ev-
ery TP Q ∈ P , MCR(Q, V )(tm) ⊆ MCR(Q, V )(t1) ∪ · · · ∪
MCR(Q, V )(tm−1), then we say tm is subsumed by t1, . . . , tm−1

wrt P . A view answer is said to be redundant wrt P if it is
subsumed by some other view answers wrt P .

Intuitively, all answers that can be obtained by evaluating
MCR(Q, V ) (for all Q ∈ P) over the redundant view answers
can be obtained by evaluating MCR(Q,V ) over some other
view answers.

4.1 Conditions for subsumption
Next we investigate conditions under which tm is subsumed
by t1, · · · , tm−1. We limit our discussion to TPs in P {/,//,[]},
i.e, V ∈ P {/,//,[]} and P = P {/,//,[]}. In this case, due to
results in Section 3, tm is subsumed by t1, · · · , tm−1 if and
only if ∀Q ∈ P {/,//,[]}, Q(tm·V ) ⊆ Q(t1·V )∪· · ·∪Q(tm−1·V ).

We start with the case where m = 2. Obviously, if t2 is not a
subtree of t1, then it cannot be subsumed by t1. Therefore,
when looking for subsumed view answers we only need to
examine view answers which are subtrees of other view an-
swers. In what follows, we will use t2 ≺ t1 to denote t2 is a

a

b1

b2

b3

b4

b5

x

y

z

x

y

z

t1

t2

(a) t

a

b

b

b

x

y

z

(b) V

b3

b4

b5

zy

z

a

b

b

x

y

(c) t1 · V

b4

b5

a

b

b

x

y

z

(d) t2 · V

Figure 4: V (t2 · V ) * V (t1 · V ) although t2 ≺ t1

subtree of t1. The following example shows that, in general,
t2 ≺ t1 does not imply t2 is subsumed by t1.

Example 4.1: Consider the data tree t and view V shown
in Figure 4 (a) and (b) respectively. For convenience we
use subscripts to indicate different nodes labeled with the
same label. V (t) contains two subtrees of t, one rooted at
b3 (denoted t1) and the other rooted at b4 (denoted t2). t2
is a subtree of t1. Let Q be the same as V , then Q(t2 · V )
contains the subtree of t rooted at b4, but Q(t1 ·V ) does not.

We now prove the following theorem, which provides a nec-
essary and sufficient condition for t2 to be subsumed by t1.

Theorem 4.1: Let t1, t2 ∈ V (t) and t2 be a subtree of t1.
The following three conditions are equivalent:

(1) V (t2 · V ) ⊆ V (t1 · V )

(2) t2 ∈ V (t1 · V )

(3) ∀Q,Q(t2 · V ) ⊆ Q(t1 · V )

Proof. (1) → (2): By Lemma 3.1 t2 ∈ V (t2 · V ). Thus
if V (t2 · V ) ⊆ V (t1 · V ), then t2 ∈ V (t1 · V ).

(2) → (3): Suppose t2 ∈ V (t1 · V ). That is, there is a
matching h of V in t1 · V such that h(sn(V)) = rt(t2).
Let us extend h to a mapping from N(t2·V ) to N(t1·V )
by mapping every node in the t2-part of t2 · V to the
corresponding node in the t2-part of t1 · V . Now for
any query Q, suppose f is a matching of Q in t2 · V ,
then hf is a matching of Q in t1 · V . Furthermore,
f(sn(Q)) and hf(sn(Q)) correspond to the same node
in t2. Therefore, Q(t2 · V ) ⊆ Q(t1 · V ).

(3) → (1): if ∀Q,Q(t2 ·V ) ⊆ Q(t1 ·V ), then we can take V
as Q and obtain V (t2 · V ) ⊆ V (t1 · V ).

The above theorem indicates that to test whether one view
answer t2 is subsumed by another view answer t1, we only
need to test whether t2 is in V (t1 · V ). For example, for the

157



a

b

b

b

b

b

b

x

y

z

u

v

x

y

(a) V

a

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

x

y

z

u

v

x

y

z

u

v y

z

u

v

x

x

y

x

y

t1t2

t3

(b) t

a

b

b

b

b

b

x

y

z

u

v

x

y
b6

b7

b8

b9

b10

v y

z

u

v

x

y

(c) t1 · V

a

b

b

b

b

b

x

y

z

x

y

b7

b8

b9

b10

u

v

x

y

z

u

v

(d) t2 · V

Figure 5: t1, t2, t3 ∈ V (t), t3 ≺ t2 ≺ t1, and t3 ∈ V (t2 ·V ),
but t3 6∈ V (t1 · V )

view V and tree t in Figure 3, it is easy to verify that both
t2 and t3 are in V (t1 · V ), hence they are subsumed by t1.

Using the above theorem, we can show that tm is subsumed
by t1, . . . , tm−1 if and only if it is subsumed by one of the
them.

Corollary 4.1: Suppose t1, . . . , tm ∈ V (t), tm ≺ ti for i =
1, . . . m−1. If ∀Q,Q(tm ·V ) ⊆ Q(t1 ·V )∪· · ·∪Q(tm−1 ·V ),
then there exists i ∈ [1, m − 1] such that ∀Q,Q(tm · V ) ⊆
Q(ti · V ).

Proof. Suppose ∀Q, Q(tm ·V ) ⊆ Q(t1 ·V )∪· · ·∪Q(tm−1 ·
V ), then V (tm · V ) ⊆ V (t1 · V ) ∪ · · · ∪ V (tm−1 · V ), hence
tm ∈ V (t1 · V ) ∪ · · · ∪ V (tm−1 · V ). Therefore there exists
i ∈ [1, m − 1] such that tm ∈ V (ti · V ). By Theorem 4.1,
∀Q, Q(tm · V ) ⊆ Q(ti · V ).

Now suppose t1, t2, t3 ∈ V (t), and t3 ≺ t2 ≺ t1. If t3 ∈
V (t2 ·V ) and t2 ∈ V (t1 ·V ), then by Theorem 4.1, V (t2 ·V ) ⊆
V (t1 · V ), hence t3 ∈ V (t1 · V ). But the following examples
demonstrate that t3 ∈ V (t2 ·V ) does not imply t3 ∈ V (t1 ·V ),
and t2 ∈ V (t1 · V ) does not imply t3 ∈ V (t1 · V ). In other
words, t3 is subsumed by t2 or t2 is subsumed by t1 does not
imply t3 is subsumed by t1. This observation is useful when
we design the algorithm to find redundant view answers.

Example 4.2: Consider the example t and V in Figure 5.
For easy identification of the nodes, we use subscripts to
indicate distinct nodes with the same label, i.e., the nodes
b1, . . . , b10 are all labeled with b. It is easy to verify that
there are three subtrees of t in V (t), which are the sub-
trees rooted at b6, b7 and b10 respectively. We denote these
subtrees by t1, t2 and t3. Although t3 ≺ t2 ≺ t1 and t3 ∈
V (t2 · V ), t3 is not in V (t1 · V ).

Example 4.3: Consider the example t and V in Figure 6.
In the figure the nodes b1, . . . , b10 are all labeled with b. It is
easy to verify that there are three subtrees of t in V (t), which

a

b

b

b

b

b

b

x

y

z

u

v

x

y

(a) V

a

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

x

y

z

u

v

z y

z

u

v

x

x

y

x

y

x
u

vy

t1

t2

t3

(b) t

a

b

b

b

b

b

x

y

z

u

v

x

y
b6

b7

b8

b9

b10

z y

z

u

v

x

y

x
u

vy

(c) t1 · V

Figure 6: t1, t2, t3 ∈ V (t), t3 ≺ t2 ≺ t1 and t2 ∈ V (t1 ·V ),
but t3 6∈ V (t1 · V )

are the subtrees rooted at b6, b9 and b10 respectively. We
denote these subtrees by t1, t2 and t3. Although t3 ≺ t2 ≺ t1,
and t2 ∈ V (t1 · V ), t3 is not in V (t1 · V ).

Using Theorem 4.1 and the above observations, we can de-
sign an algorithm for finding all redundant view answers in
V (t): to see whether t2 ∈ V (t) is redundant, we only need
to test whether there exists t1 ∈ V (t) such that t2 ≺ t1
and t2 ∈ V (t1 · V ), and we may have to test t2 against
all view answers of which t2 is a subtree. However, test-
ing t2 ∈ V (t1 · V ) can sometimes be costly. Next we will
provide a more efficient (although incomplete) method for
identifying redundant view answers.

Suppose t1, t2 ∈ V and t2 is a subtree of t1. The corollary
below gives a sufficient condition under which t2 is subsumed
by t1.

Proposition 4.1: Let t1, t2 be in V (t), and t2 be a subtree
of t1. Let (x, y) be the last //-edge on sp(V) (counting from
rt(V )). If the length of the path from y to sn(V) is less or
equal to the length of the path from rt(t1) to rt(t2), then
t2 ∈ V (t1 · V ).

Proof sketch. Let f be the matching of V in t that
generates t2. Since the length of the path from y to sn(V) is
less or equal to the length of the path from rt(t1) to rt(t2),
and there are only /-edges on the path from y to sn(V), all
nodes from y to sn(V) will be mapped into t1, and the subtree
of V rooted at y, Vy, will be mapped into t1 by f . Therefore,
we can construct a mapping h from V to t1 · V such that
for every node u in Vy, h(u) = f(u), and for every other
node u′ ∈ N(V ) − N(Vy), h maps u′ to the corresponding
node in the V part of t1 · V . Since (x, y) is a //-edge, h is a
matching of V in t1 · V , and h(sn(V)) = rt(t2). Therefore
t2 ∈ V (t1 · V ).

Let us call the path from y to sn(V) in Proposition 4.1 the
last /-segment of V . Using the proposition and Therorem 4.1,

158



if the length of the last /-segment of V is not longer than
the path from rt(t1) to rt(t2), than t2 is subsumed by t1.
For example, for the view and data tree in Figure 3, the
last /-segment (i.e., the path from the second a-node to the
selection node) of V is shorter than the path from rt(t1)
to rt(t2). Therefore t2 is subsumed by t1. Similarly t3 is
subsumed by t1.

A special case of Proposition 4.1 is when the selection node
sn(V) is connected to its parent with a //-edge. In this case,
all view answers in V (t) that are subtrees of other view
answers are redundant.

4.2 The algorithm
Based on Theorem 4.1 and Proposition 4.1 we design an al-
gorithm to remove redundant view answers from V (t). Let
us use LV to denote the length of the last /-segment on
sp(V), and d(t1, t2) to denote the length of the path from
rt(t1) to rt(t2), if t2 is a subtree of t1. The removal of re-
dundant view answers is done by two scans. The first, called
FastScan, scans the view answers using Proposition 4.1 to
remove some redundant view answers in V (t) quickly, and
the second, called CompleteScan, uses Theorem 4.1 to re-
move the remaining redundant view answers. For easy ex-
position, we assume the view answers in V (t) have been ar-
ranged into lists where each list consists of the view answers
t1, . . . , tn such that tn ≺ tn−1 ≺ · · · ≺ t1. We associate each
ti with a Boolean variable ti.del which indicates whether ti

has been deleted. Initially ti.del =false for all i ∈ [1, n].
The input to each scan is such a list, and the output is the
same list with possibly modified ti.del values. The two
scans are listed in Algorithm 1.

Implementation and Complexity: To implement Algo-
rithm 1, we organize the view answers into disjoint subtrees
of t, two view answers are in the same subtree if and only
if one is a subtree of another or they are both subtrees of
another view answer. We use an attribute u.ans for each
node u to indicate whether u is the root of some view an-
swer in V (t). To apply FastScan, we check the nodes which
are roots of some view answers level by level and top-down.
If one view answer is found redundant, then all view an-
swers below it will also be redundant. In the worst case,
every view answer (except those which are not subtrees of
others) will be checked once. Thus FastScan is linear in the
number of view answers in V (t), that is, it takes O(|V (t)|).
Checking whether t2 is in V (t1 ·V ) can be done in |V ||t1 ·V |
using a variation of Algorithm 3 of [10], and CompleteScan

needs to make (m− 1)m/2 such tests. In the worst case the
roots of all view answers in V (t) are on the same path and
n = |V (t)|, and FastScan finds no redundant view answers
(thus m = |V (t)|) and we have to resort to CompleteS-

can. Therefore the worst-case complexity of Algorithm 1 is
O(|V (t)|2|V |(|t1|+ |V |)) where t1 is the largest view answer
(i.e., one with the largest number of nodes) in V (t).

4.3 Experiments
The purpose of our experiments is to get some insight on the
percentage of view answers which are redundant, and the
percentage of redundant view answers that can be found us-
ing FastScan, as well as the time required to find the redun-
dancies, for some real datasets. We implemented FastScan

Algorithm 1 Removing redundant view answers

INPUT: tn, . . . , t1 ∈ V (t) s. t. tn ≺ tn−1 ≺ · · · ≺ t1
/* FastScan

1: m← n
2: for i = 2 to n do

3: if LV ≤ d(t1, ti) then

4: ti.del, ti+1.del, . . . , tn.del← true

5: m← i− 1
6: go to CompleteScan

/* CompleteScan

7: for i = 1 to m− 1 do

8: if ti.del =false then

9: for j = i + 1 to m do

10: if tj .del =false and tj ∈ V (ti · V ) then

11: tj .del← true

and CompleteScan with C++, and all our experiments were
carried out on a Dell Latitude D430 laptop with Intel(R)
1.20GHz CPU and 2G RAM running Windows XP.

Datasets and view sets Obviously for there to be redun-
dant view answers in V (t) the data tree t must have recur-
sion (i.e., there must be root-to-leave paths which contain
multiple occurrences of the same label), and the view V
must have //-edges. The depth of t, the number of occur-
rences of label(sn(V)) in t, and the size of V will all impact
on the number of redundancies. In our experiments we used
three datasets, i.e., the benchmark dataset XMark [1], a
real dataset TreeBank [2], and a dataset generated from the
BIOML DTD [3] using IBM XML generator1. For XMark,
the dataset is around 111MB, contains more than 1.6 mil-
lion elements and has limited recursion. For TreeBank, the
data tree is deep and has a large number of recursive ele-
ments. The maximal depth is 36 and there are more than
2.4 million elements. For BIOML, the generated data tree is
around 344MB with a depth of 19 and contains more than
2.46 million elements. For TreeBank we randomly gener-
ated 40 views of depth between 2 and 10. For XMark we
randomly generated 30 views of depth between 2 and 5 in-
volving the recursive elements parlist and/or listitem on
the selection path, and for BIOML we generated 40 views of
depth between 3 and 7. A few example views are listed in
Table 1 (three views for each dataset Treebank, XMark and
BIOML).

Experimental result The result of our experiments is sum-
marized in Table 2. For TreeBank, on average 18.13% of the
view answers were found redundant, and 81.3% of the redun-
dancies were found by FastScan. For some views the per-
centage of redundant view answers can be as high as 69.48%.
For XMark and BIOML, on average 36.91% and 73.67% re-
spectively, of the view answers were found to be redundant,
and all of the redundancies were found by FastScan. We
also recorded the time taken by the two scans for the three
data sets. Table 2 show the total time spent on each set
of queries by FastScan, CompleteScan after FastScan, and
CompleteScan alone. Our experiment shows that using
FastScan before CompleteScan we can find the redundan-
cies in less than 100 milliseconds per view on average, and

1http://www.alphaworks.ibm.com/tech/xmlgenerator.

159



View No. of view No. of redundancies Total no. of
answers found by FastScan redundancies

file//s[//pp][//np]//vp 136710 71559 71559
file//s/vp/s[//np]/vp 11688 299 878
file//s[//vp]//np/pp/np/pp 7562 122 828
site//parlist/listitem 60481 22235 22235
site//asia/item[//name][//location]/
description//parlist/listitem 2661 985 985
site//regions/europe/item[name][shipping]//listitem 8035 2968 2968
chromosome//chromosome//[sts domain]//gene 80262 75838 75838
chromosome//sts domain//clone/locus/gene/dna/xxx 14042 4790 4790
chromosome//dna/xxx/clone/dna 66771 44927 44927

Table 1: Sample views and their redundancy rate for Treebank, XMark and BIOML

data set average maximum aver. percentage time (ms) time used by time used by
percentage of percentage of of redundancies used by CompleteScan CompleteScan

redundancies redundancies found by FastScan after without
FastScan FastScan FastScan

TreeBank 18.13 69.48 81.3 155 1453 99375
XMark 36.91 38.21 100 15 6 25734
BIOML 73.67 99.8 100 528 137 163053

Table 2: Percentage of redundancies and time used

it only takes a tiny fraction of the time required by Com-

pleteScan alone for all three sets of data and views.

5. QUERIES AND VIEWS IN P {/,//,∗,[]}

In this section, we consider answering TP queries using views
when the view V and the query Q are in P {/,//,∗,[]}. We
first present a method for finding the MCR, then we present
the annotated view answer approach and show it produces
the same answers as the MCR. Finally, we discuss extension
of the process for removing redundant view answers to some
special cases.

5.1 Finding the MCR
We make a slight modification to the definition of contained
rewriting: in addition to the conditions (1) and (2) in Sec-
tion 2.3, we add another condition: (3) If label(sn(V)) 6= ∗,
then label(rt(Q′)) 6= ∗. This modification does not change
the essence of MCR because, if Q′ is a CR of Q using V
and rt(Q′) is labeled *, then we can change the label of
rt(Q′) to label(sn(V)) to obtain another rewriting Q′′, and
Q′(V (t)) = Q′′(V (t)). The only purpose of this modification
is to make our presentation easier.

We also modify the definition of useful embeddings and
CATs in order to deal with the possibility that label(sn(V)) =
∗. The modification to useful embeddings is to relax the re-
quirement of label-preservation to weak label-preservation as
defined below.

Definition 5.1: A mapping h from N(Q) to N(V ) is weak
label-preserving if (1) for every v ∈ N(Q), either label(v) =
∗, or label(v) = label(h(v)), or h(v) = sn(V) and label(sn(V)) =
∗, (2) all non-* nodes that are mapped to sn(V) have the
identical label.

Correspondingly, if label(sn(V)) = ∗, and f is a useful em-
bedding from Q to V which maps some node u in Q to sn(V),
and label(u) 6= ∗, then the root of CATf will be labeled with
label(u).

Our main results in this subsection are summarized in The-
orems 5.1 and 5.2 below.

Theorem 5.1: Let V, Q be TPs in P {/,//,∗,[]}. If Q ∈

P {//,[ ],∗} ∪ P̂ {/,//,[ ],∗} or V ∈ P {/,[ ],∗}, then MCR(Q, V ) =
CATh1

∪ · · · ∪ CAThk
where h1, . . . , hk are all of the useful

embeddings from Q to V .

We outline the proof here and leave the formal proof to the
full version of this paper2. We need to consider two cases:

Case 1: Q ∈ P {//,[ ],∗} ∪ P̂ {/,//,[ ],∗}. We note that if

Q ∈ P̂ {/,//,[ ],∗} then for any P ∈ P {/,//,∗,[]}, P ⊆ Q iff
there is a CM from Q to P [14]. It can be shown that

the same property holds for Q ∈ P {//,[ ],∗}. Therefore, if

Q ∈ P {//,[ ],∗} ∪ P̂ {/,//,[ ],∗}, and Q′ is a CR of Q using V ,
then there is a CM from Q to Q′ ◦ V . This CM implies a
useful embedding from Q to V , and the corresponding CAT
contains Q′. Therefore, MCR(Q, V ) = CATh1

∪ · · · ∪CAThk
.

Case 2: V ∈ P {/,[ ],∗}. Although in this case V ⊆ Q iff
there is a CM from Q to V , generally there may not exist a
CM from Q to Q′ ◦ V for a CR Q′ of Q using V because Q′

may be a pattern in P {/,//,∗,[]}. Thus it is not straightfor-
ward to see whether the MCR can be found by finding the
useful embeddings and CATs. To prove the theorem for this

2http://www.cit.griffith.edu.au/∼jw/edbt11/full.pdf.

160



r

a

b

c

*

d

b

c

d

x

b

c

d

(a) V

r

a

b

c

*

d

b

c

d

x

y

(b) Q

Figure 7: V , Q in Example 5.1

case, we need some terms and notation3.

Let Q be a tree pattern, and u, v be any two nodes in Q. A
*-chain between u and v, denoted u  v, is a path from u
to v that has only /-edges and only *-nodes between u and
v. Note that u and v may be labeled with * or any tag in Σ.
The length of the *-chain, denoted |u  v|, is the number
of *-nodes between u and v (not including u and v), which
is equivalent to the number of edges between u and v minus
1. Note that a /-edge from u to v is a special *-chain of
length 0. The length of the longest *-chain in Q is called
the *-length of Q, denoted L∗

Q.

L∗
Q = max{|u v | u v is a *-chain in Q}

For example, the *-length of the pattern Q in Figure 7 (b)
is 0.

In the following, we will use modm(P ) to denote the set of
tree patterns obtained from P by replacing the i-th //-edge
(u, v) with a *-chain between u and v of length li, where
0 ≤ li ≤ m. Then we can prove the following lemma.

Lemma 5.1: Let P , P1, . . . , Pn be tree patterns in P {/,//,∗,[]}.
Let w = max{L∗

P1
, . . . , L∗

Pn
}. If every pattern in modw+1(P )

is contained in P1 ∪ · · · ∪ Pn, then P ⊆ P1 ∪ · · · ∪ Pn.

Using the above lemma, we can prove the next lemma which
implies that Theorem 5.1 holds in the case V ∈ P {/,[ ],∗}.

Lemma 5.2: If Q is in P {/,//,∗,[]} and V is in P {/,[ ],∗},
then for every CR Q′ of Q using V , there are useful embed-
dings h1, . . . , hk from Q to V such that Q′ ⊆ CATh1

∪ · · · ∪
CAThk

.

Proof sketch. Let w = L∗
Q, and modw+1(Q

′) be the set
{Q1, . . . , Qn}. We will show that for every Qi ∈ modw+1(Q

′),
there is a useful embedding hj from Q to V such that Qi ⊆
CAThj

, thus every Qi is contained in CATh1
∪ · · · ∪ CAThk

.
Clearly the *-length of CAThi

is no more than w. Hence by
Lemma 5.1, Q′ ⊆ CATh1

∪ · · · ∪ CAThk
.

The useful embedding hj can be found as follows. Since
Q′ ◦ V ⊆ Q, and Qi ⊆ Q′, we know Qi ◦ V ⊆ Q. Since
Qi ◦ V does not have //-edges, we know there is a CM δi

from Q to Qi ◦ V . This CM, if restricted to nodes of Q
whose image under δi is in the V -part of Qi ◦ V , is a useful
embedding from Q to V . Denote this useful embedding by
hj . It is not hard to verify Qi ⊆ CAThj

.

3Some of the terms are borrowed from [10].

This completes the proof outline of Theorem 5.1.

Before describing the next result we need more notations.

Let x, y ∈ Σ ∪ {∗} be two labels. Given TP Q ∈ P {/,//,∗,[]},
we define Q(x, y) to be the set of *-chains from an x-node
or *-node to a y-node or ∗-node:

Q(x, y) = {u v ∈ Q | label(u) ∈ {x, ∗}, label(v) ∈ {y, ∗}}

Define the function LQ(x, y) as follows:

LQ(x, y) =

{
−1 if Q(x, y) = ∅;
max{|u v| | u v ∈ Q(x, y)} otherwise.

For example, for the TP Q in Figure 7, LQ(a, b) = −1,
LQ(c, d) = 0, and LQ(∗, d) = −1.

Let V, Q be TPs in P {/,//,∗,[]}. We will use ModQ(V ) to
denote the set of TPs obtained from V by replacing each
//-edge e = (u, v) with a *-chain u  v of length le, where
le is an integer in [0, LQ(label(u), label(v)) + 1].

We can now describe our next main result as follows.

Theorem 5.2: Let V, Q be TPs in P {/,//,∗,[]}. Suppose
ModQ(V ) = {V1, . . . , Vn}. Then

(1) Q′ is a CR of Q using V iff it is a CR of Q using Vi for
all i = 1, . . . , n.

(2) MCR(Q,V ) = MCR(Q, V1) ∩ · · · ∩MCR(Q, Vn).

We discuss how to use the above theorem to find MCR(Q, V )
before outlining its proof.

Theorem 5.2 (2) implies a method for finding MCR(Q, V )
for the general case, which consists of the following steps:

1. Find the set ModQ(V ) of patterns (call them sub-views
of V );

2. Find the MCR of Q using each of the subviews in
ModQ(V ).

3. Intersect these MCRs to obtain MCR(Q,V ).

Example 5.1: Consider the view V , query Q shown in
Figure 7, where V and Q are modified from the examples
in [10]. It is easy to verify that x/y is a CR of Q using
V , but this rewriting cannot be found by finding all useful
embeddings from Q to V . However, the rewriting can be
found by first splitting the view into 2 subviews (the //-edge
(c, d) may be replaced with a *-chain of length 0 or 1, and
the other //-edges can be replaced with a /-edge) with /-
edges only, and then finding the CR x/y of Q using each of
the subviews, and finally intersecting the two identical CRs.

Complexity The above method for finding the MCR of
Q using V requires us to find the MCRs of Q using each
subview in ModQ(V ). We do not need to actually do the in-
tersection of the MCRs, i.e., to transform MCR(Q, V1)∩· · ·∩

161



MCR(Q, Vn) into a union of tree patterns. Instead, we can
take the intersection MCR(Q,V1)(V (t))∩· · ·∩MCR(Q,Vn)(V (t))
when evaluating it over V (t). The cost for finding each of
MCR(Q, Vi) has been discussed in [8]. The cost of find-
ing MCR(Q, V ) would be the total cost of finding all of
MCR(Q, V1), . . . , MCR(Q,Vn) (if we ignore the cost to find
ModQ(V ) which is negligible).

Since the subviews in ModQ(V ) have similar structures, it is
highly likely that we can design a more efficient algorithm
to find all of MCR(Q, V1), . . . , MCR(Q,Vn) altogether using
the ideas of match sets [10]. We leave it as future work.

Next we outline the proof of Theorem 5.2. The proof uses
Lemma 5.3 below and can be done as follows:

Proof of Theorem 5.2: (2) is a direct corollary of (1), so
we focus on the proof of (1).

Let Q′ be a CR of Q using V , that is, Q′ ◦ V ⊆ Q. Since
Vi ⊆ V , we know Q′ ◦ Vi ⊆ Q (for i ∈ [1, n]). Hence Q′ is a
CR of Q using Vi.

Conversely, suppose Q′ is a CR of Q using Vi (for all i =
1, . . . , n), then Q′ ◦ Vi ⊆ Q. Suppose Qj is a pattern in
ModQ(Q′). Then Qj ⊆ Q′, thus Qj ◦ Vi ⊆ Q. It is easy to
verify that ModQ(Q′ ◦ V ) = {Qj ◦ Vi | Qj ∈ ModQ(Q′), Vi ∈
ModQ(V )}. Therefore, by Lemma 5.3, Q′ ◦ V ⊆ Q. That is,
Q′ is a CR of Q using V .

Lemma 5.3: Let P , Q be TPs in P {/,//,∗,[]}. If every pat-
tern in ModQ(P ) is contained in Q, then P ⊆ Q.

To prove Lemma 5.3, we only need to prove Lemma 5.4 be-
low. This is because that the containment of tree patterns
in P {/,//,∗,[]} can be reduced to the containment of Boolean
patterns [10], which are tree patterns that do not have selec-
tion nodes, and which will return either true or false when
evaluated over a data tree t, depending on whether there is
a matching of the pattern in t. For Boolean patterns P and
Q, P ⊆ Q means ∀t, P (t)⇒ Q(t). We use mod(P ) to denote
the set of all data trees in which P has a matching, that is,
mod(P ) = {t | P (t) = true}.

Lemma 5.4: Let P , Q be Boolean patterns. Let z be a
label that is not present in Q. Let Mod

z
Q(P ) be the set of

data trees obtained from P by first replacing each //-edge
e = (u, v) with a *-chain u  v of length le where 0 ≤ le ≤
LQ(label(u), label(v)) + 1, and then replacing ∗ with z. If
Modz

Q(P ) ⊆ mod(Q), then P ⊆ Q.

To prove Lemma 5.4, we need Lemma 5.5 and Lemma 5.6
below.

Lemma 5.5: [10] Let e be a matching of P in t. There exists
a unique pattern P 0 obtained from P by replacing each //-
edge with a *-chain such that, there is a unique matching e′

of P 0 in t such that ∀v ∈ N(P ), e(v) = e′(v).

Lemma 5.6: Let t1 be a data tree and P ′ be a Boolean

rt(P')

ym+1

ym

ym-1

z=y1

z'

x0

x1

x2

xn-1

xn+1 xn+2

x0

x1

x2

xn-1

xn

xn+1 xn+2

e2

e2

e2

e2

e2

e1

e1

part of t2part of t1

Figure 8: Illustration of the proof of Lemma 5.6

pattern such that P ′(t1) =false. Let x0, x1, . . . , xn, xn+1 be
a path in t1 such that n > LP ′(label(x0), label(xn+1)) + 1
and xi+1 is the unique child of xi for i = 1, . . . , n − 1, and
none of the labels label(x1), . . . , label(xn) has appeared in
P ′. Let t2 be the tree obtained from t1 by deleting the node
xn and transforming all its children into children of xn−1.
Then P ′(t2) =false.

Proof. The proof is a modification to the proof of Lemma
4 in [10]. Let t1, P

′, t2 be as in the lemma. Assume that
P ′(t2) =true, and let e2 be a matching of P ′ in t2. We show
there is a matching of P ′ in t1, contradicting P ′(t1) =false.
Let x = label(x0), y = label(xn+1). First we consider the
special case where LP ′(x, y) = −1. In this case, there are no
/-edges from any x-node to any y-node, or from any *-node
to any y-node, or from any x-node to any *-node, or from one
*-node to another. Therefore, for any /-edge (u, v) in P ′, e2

cannot map u to x0 and v to x1. If n = 1 (= LP ′(x, y) + 2),
then in t2 the path x0, x1, . . . , xn−1, xn+1 is just a /-edge
(x0, x2). Since no /-edge can be mapped to (x0, x2), e2 is
also a matching of P ′ in t1. Now suppose n > 1. Since
the labels of x1, x2, . . . , xn are not present in P ′, only *-
nodes in P ′ can be mapped to the nodes x1, . . . , xn. If no
nodes in P ′ have been mapped into x1, . . . , xn−1 by e2, then
clearly e2 is also a matching of P ′ in t1; if there are *-nodes
u1, . . . , uk that are mapped into x1, . . . , xn−1 by e2, then
they must be connected with each other via //-edges, and
u1 is connected to its parent via a //-edge, uk is connected
to its children (if any) via //-edges. Therefore, e2 is also a
matching of P ′ in t1. This completes the proof for the spe-
cial case LP ′(x, y) = −1. Next we consider the case where
LP ′(x, y) ≥ 0. Denote C the set {x1, . . . , xn}, and define
the following two sets

S = {(z0, z1) | (z0, z1) is a //-edge in P ′, e2(z1) ∈ C}

C′ = {z | e2(z) ∈ C ∧ ∃(z0, z1) ∈ S

such that z = z1 or z is a descendant of z1}

Define the following mapping e1 from N(P ′) to N(t1):

e1(z) = xi+1 if z ∈ C′ and e2(z) = xi

e1(z) = e2(z) if z 6∈ C′

We show e1 is a matching of P ′ in t1. It is easy to see e1

is root-preserving and label-preserving. Next we show it is

162



structure-preserving. For any edge (z, z′) in P ′, the number
of edges between e1(z) and e1(z

′), denoted d(e1(z), e1(z
′)), is

either d(e2(z), e2(z
′)) or d(e2(z), e2(z

′))+1. This is because
e1(z

′) is either identical to e2(z
′) or one node below e2(z

′),
while if e1(z) is one node below e2(z), then either e1(z

′) is
one node below e2(z

′) as well or e2(z) = xn−1, e1(z) = xn

and e1(z
′) = e2(z

′). Therefore, e1(z
′) is always a descendant

of e1(z). We now only need to show if (z, z′) is a /-edge,
then e1(z

′) is a child of e1(z). The only possible case where
e1(z

′) is not a child of e1(z) is when e1(z) = e2(z) = xn−1

and e1(z
′) = e2(z

′) is a node below xn (Refer to Figure 8).
This happens only if z′ is not in C′, that is, z′ is not below a
//-edge whose end node is mapped to C. Consider the path
in P ′ from z to rt(P ′): y1 = z, y2, . . . , yk = rt(P ′). Let m be
the largest number such that e2(ym) ∈ C, hence e2(ym+1) 6∈
C (there exists such m since e2(rt(P

′)) 6∈ C). Consider the
path ym, ym−1, . . . , y1 in P ′. All the nodes in it are mapped
to C hence they are all labeled *. Furthermore, all edges
(yi+1, yi) (for i ∈ [1, m]) are /-edges, since otherwise z = y1

would be in C′, while we already know z 6∈ C′. So the path
from ym+1 to z′ is a *-chain. Hence its length m is less
or equal to LP ′(label(ym+1), label(z′)). On the other hand,
since all edges are /-edges, the images of ym, . . . , y1 under
e2 must include all nodes x1, . . . , xn−1, thus m = n − 1.
This implies n− 1 ≤ LP ′(label(ym+1), label(z′)), which is a
contradiction to the assumption.

Proof of lemma 5.4 We are now ready to prove Lemma 5.4.
The proof is similar to that of Proposition 3 of [10]. It is a
proof by contradiction. The idea is to show that if P * Q,
then there is t1 ∈ modz

m(P ) (note: modz
m(P ) denotes the

set of data trees obtained from the patterns in modm(P ) by
replacing the wildcard * with z) for some sufficiently large
integer m, such that Q(t1) =false (Step 1). From t1, we
can construct t′ ∈ Modz

Q(P ) such that Q(t′) =false, contra-
dicting the assumption Mod

z
Q(P ) ⊆ mod(Q) (Step 2).

Step 1 of the proof is similar to that of Proposition 3 of
[10]. Step 2 can be completed using Lemma 5.6 as follows.
If t1 ∈ Modz

Q(P ) then the proof is complete. Suppose t1 is
not in Modz

Q(P ). That is, there is //-edge (u, v) in P such
that in t1 the number of nodes between u and v is larger
than LQ(x, y) + 1, where x = label(u), y = label(v). Then
we can apply Lemma 5.6 repeatedly to reduce the length of
the path until the number of nodes between u and v is less
or equal to LQ(x, y) + 1. This process can be repeated for
every //-edge in P until we find t′ ∈ Mod

z
Q(P ).

5.2 The alternative approach
We show how to answer Q using V without explicitly finding
the MCR in this section.

Let Q, V ∈ P {/,//,∗,[]} be TPs. Let t′ be any data tree such
that label(rt(t′)) = label(sn(V)) or label(sn(V)) = ∗. We
use t′ ⋄ V to denote the tree obtained from t′ and V by
merging rt(t′) and sn(V), where the merged node is labeled
with label(rt(t′)). Let V ′ ∈ ModQ(V ) be a subview, t be a
data tree, and ti be a tree in V (t). We call ti ⋄ V ′ a view
answer annotated by V ′ (note that ti may be outside V ′(t)).
Similar to Theorem 3.1, we can prove the following lemma.

Lemma 5.7: Let Q and V be TPs in P {/,//,∗,[]}. Let

h1, . . . , hk be all of the useful embeddings from Q to V . Then
Q(t′ ⋄ V ) = CATh1

(t′) ∪ · · · ∪ CAThk
(t′).

Using the lemma above, we can prove

Theorem 5.3: For any data tree t, suppose V (t) = {t1, . . . , tm},
and ModQ(V ) = {V1, . . . , Vn}. Then

MCR(Q,V )(V (t)) =

n⋂

i=1

(Q(t1 ⋄ Vi) ∪ · · · ∪Q(tm ⋄ Vi))

Proof sketch. By Theorem 5.2 (2),

MCR(Q, V )(V (t)) =
⋂n

i=1 MCR(Q,Vi)(V (t))

=
⋂n

i=1(MCR(Q, Vi)(t1) ∪ · · · ∪MCR(Q,Vi)(tm))

By Theorem 5.1 and Lemma 5.7, MCR(Q,Vi)(tj) = Q(tj⋄Vi)
for j ∈ [1, m], i ∈ [1, n]. Therefore, MCR(Q,V )(V (t)) =⋂n

i=1(Q(t1 ⋄ Vi) ∪ · · · ∪Q(tm ⋄ Vi)).

The above theorem indicates that we can answer Q without
explicitly finding MCR(Q,V ). Instead, we can evaluate Q
over tj ⋄ Vi (i ∈ [1, n], j ∈ [1, m]), and intersect Q(t1 ⋄ Vi) ∪
· · · ∪Q(tm ⋄ Vi) for all subviews Vi in ModQ(V ).

5.3 Redundant view answers wrt P = P {//,[ ],∗}∪

P̂ {/,//,[ ],∗}

It is easy to verify that all propositions, theorems and corol-
laries in Sections 3 and 4 still hold if V and Q are changed
to any patterns in P {/,//,∗,[]}. Therefore, because of The-

orem 5.1, in the special cases Q ∈ P {//,[ ],∗} ∪ P̂ {/,//,[ ],∗}

or V ∈ P {/,[ ],∗}, for all data tree t, MCR(Q,V )(V (t)) =⋃
t′∈V (t) Q(t′ · V ). That is, evaluating the query Q directly

over the annotated view answers will generate the same an-
swers as evaluating the MCR over the original answers. Fur-
thermore, we can use the same criteria and procedures as
described in Section 4 to identify/remove redundant view

answers with respect to P = P {//,[ ],∗}∪ P̂ {/,//,[ ],∗}, for any
view V ∈ P {/,//,∗,[]}.

6. RELATED WORK
In this section we compare our work with previous ones that
are the mostly closely related to ours. As mentioned in Sec-
tion 1, apparently [8] is the first paper on MCR of tree pat-
tern queries using views, and it proposed the technique of
useful embeddings for queries and views in P {/,//,[]}. The
paper also proposed an algorithm to find the MCR under a
non-recursive and non-disjunctive DTD which can be repre-
sented as an acyclic graph. The basic idea is to reduce the
original problem to one without DTD by chasing the tree
patterns repeatedly using constraints that can be derived
from the DTD. Recently, [11] proposed a method for finding
the MCR for queries that have no *-nodes connected to a
//-edge and no leaf node u such that u and the parent of u
are both labeled *, based on the concepts of trap embedding
(and its induced pattern) and trap relay, where a trap em-
bedding is a mapping from a tree pattern to a tree, and a
trap relay is a mapping from a pattern to another pattern.

163



It can be shown that the induced pattern of a trap embed-
ding from Q to a pattern Vi in modL∗

Q
+1(V ) is the same as

a CAT if the attach point (see [11]) of Vi is sn(Vi). Thus
Theorem 3.3 of [11] can be derived from Theorem 5.2 (1) of
this paper (but not the other way around). Previously, [13]
studied maximal contained rewriting using multiple views
for queries and views in P {/,//,[]}. More recently, [7] and
[16] studied the evaluation of MCRs, and [12] gave an algo-
rithm for identifying redundant contained rewritings, which
is orthogonal to Section 4 of this work. It should be noted
that the redundant view answers discussed in this paper are
with respect to the union of all CATs, and they may not
be redundant with respect to equivalent rewritings or with
respect to a subset of CATs.

There have been works on equivalent rewritings (ERs), where
an equivalent rewriting is a special contained rewriting Q′

which satisfies the condition Q′ ◦ V = Q. Among them
[15] showed that if V and Q are in P {/,//,[]}, P {/,[ ],∗} or
they are normalized linear patterns, there is an equivalent
rewriting of Q using V iff Qk is an equivalent rewriting,
where k is the position of sn(V) on the selection path of
V , and Qk is the subtree of Q rooted at the k-th node on
the selection path of Q. [4] extended the above result to

Q, V ∈ P {/,//,∗,[]} and showed that for many common spe-
cial cases, there is an equivalent rewriting of Q using V iff
either Qk or Qk// is an equivalent rewriting, where Qk// is
the pattern obtained from Qk by changing all edges con-
nected to the root to //-edges. Thus in those special cases,
to find an equivalent rewriting we only need to test whether
Qk or Qk// is an equivalent rewriting. [9] assumed both Q
and V are minimized, and reduced tree pattern matching to
string matching, allowing a more efficient algorithm for find-
ing equivalent rewritings. They further proposed a way to
organize the materialized views in Cache to enable efficient
view selection and cache look-up. [6] investigated equivalent
rewritings using a single view or multiple views for queries
and views in P {/,//,[]}, where the set of views is represented
by grammar-like rules called query set specifications. The
work can be seen as an extension to an earlier work [5] which
investigated the same problem for explicit views.

None of the previous works dealt with the redundant view
answers problem or the approach of finding answers to a
new TP using annotated view answers. Finally, Section 5
of this work borrows techniques from [10], and some of our
results on query containment, namely Lemmas 5.1 and 5.3,
are extensions to the results in [10].

7. CONCLUSION
We revisited the problem of answering TP queries using
views, and showed that for Q in P {/,//,[]} evaluating Q di-
rectly over the annotated view answers will find the same
answers as evaluating the MCR of Q using V over the origi-
nal view answers. We also provided an algorithm for identi-
fying redundant view answers in this case. Our preliminary
experiments with TreeBank and XMark showed that there
can be a large percentage of redundant view answers and
the majority of the them can be found using the linear algo-
rithm FastScan. We showed that the new approach and the
techniques for finding redundant view answers can also be

applied if we limit Q to P̂ {/,//,[ ],∗} or P {//,[ ],∗}. We showed

that if V has no //-edges then for any Q ∈ P {/,//,∗,[]} the ap-
proach of useful embeddings can be used to find MCR(Q, V ).

For V and Q which are general TPs in P {/,//,∗,[]}, we pre-
sented a method for finding MCR(Q,V ) by dividing V into
a finite set of subviews and finding the MCRs of Q using
each of the subviews. We discussed how to answer Q using
V without explicit rewriting in the general case.

As future work we plan to do experiments to compare the
actual performance of the rewriting approach and the anno-
tated view answer approach, design more efficient algorithms
for finding the MCR and investigate the redundant view an-
swer problem for the general case where Q, V ∈ P {/,//,∗,[]}.

Acknowledgement: This work is supported by the Aus-
tralian Research Council Discovery Grant DP1093404 and
by grant of the Research Grants Council of the Hong Kong
SAR, China No. 419008. We thank Professor Wenfei Fan
for helpful comments on an earlier draft of this paper.

8. REFERENCES
[1] http://www.xml-benchmark.org/.

[2] http://www.cs.washington.edu/research/xmldatasets/.

[3] http://xml.coverpages.org/BIOML-XML-DTD.txt.

[4] F. N. Afrati, R. Chirkova, M. Gergatsoulis,
B. Kimelfeld, V. Pavlaki, and Y. Sagiv. On rewriting
XPath queries using views. In EDBT, 2009.

[5] B. Cautis, A. Deutsch, and N. Onose. XPath
Rewriting using multiple views: Achieving
completeness and efficiency. In WebDB, 2008.

[6] B. Cautis, A. Deutsch, N. Onose, and V. Vassalos.
Efficient rewriting of XPath queries using query set
specifications. PVLDB, 2(1):301–312, 2009.

[7] J. Gao, J. Lu, T. Wang, and D. Yang. Efficient
evaluation of query rewriting plan over mterialized
XML view. The Journal of Systems and Software,
83:1029–1038, 2010.

[8] L. V. S. Lakshmanan, H. Wang, and Z. J. Zhao.
Answering tree pattern queries using views. In VLDB,
2006.

[9] B. Mandhani and D. Suciu. Query caching and view
selection for XML databases. In VLDB, 2005.

[10] G. Miklau and D. Suciu. Containment and equivalence
for a fragment of XPath. J. ACM, 51(1), 2004.

[11] J. Tang and A. W.-C. Fu. Query rewritings using
views for XPath queries, framework, and
methodologies. Inf. Syst., 35(3):315–334, 2010.

[12] J. Wang, K. Wang, and J. Li. Finding irredundant
contained rewritings of tree pattern queries using
views. In APWeb/WAIM, pages 113–125, 2009.

[13] J. Wang and J. X. Yu. XPath rewriting using multiple
views. In DEXA, pages 493–507, 2008.

[14] J. Wang, J. X. Yu, and C. Liu. Independence of
containing patterns property and its application in
tree pattern query rewriting using views. World Wide
Web, 12(1):87–105, 2009.

[15] W. Xu and Z. M. Özsoyoglu. Rewriting XPath queries
using materialized views. In VLDB, 2005.

[16] R. Zhou, C. Liu, J. Li, J. Wang, and J. Liu.
Evaluating contained rewritings of XPath queries over
materialized views. In DASFAA, 2011, to appear.

164




