
Taking the OXPath down the Deep Web∗

Andrew Sellers, Tim Furche, Georg Gottlob, Giovanni Grasso, Christian Schallhart
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD

firstname.lastname@comlab.ox.ac.uk

ABSTRACT
Although deep web analysis has been studied extensively,
there is no succinct formalism to describe user interactions
with AJAX-enabled web applications.

Toward this end, we introduce OXPath as a superset of
XPath 1.0. Beyond XPath, OXPath is able (1) to fill web
forms and trigger DOM events, (2) to access dynamically
computed CSS attributes, (3) to navigate between visible
form fields, and (4) to mark relevant information for extrac-
tion. This way, OXPath expressions can closely simulate the
human interaction relevant for navigation rather than rely
exclusively on the HTML structure. Thus, they are quite
resilient against technical changes.

We demonstrate the expressiveness and practical efficacy
of OXPath to tackle a group flight planning problem. We use
the OXPath implementation and visual interface to access
the popular, highly-scripted travel site Kayak. We show,
how to formulate OXPath expressions to extract all booking
information with just a few lines of code.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services

General Terms
Languages, Algorithms

Keywords
Web extraction, web automation, XPath, AJAX

1. INTRODUCTION
You need to meet your co-authors to discuss some break-

through ideas. With grant money in short supply, a service
“to find out which of your co-authors’ universities would be

∗The research leading to these results has received funding
from the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007–
2013) / ERC grant agreement no. 246858.

(c) 2010 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/03 ...$10.00

doc("http://www.kayak.com/flights")//field()[5]/{$origin}
2 /following::field()[@type=’text’][1]/{$destination}

/following::field()[last()]/{click /}
4 //tbody[@class~=’flightresult’][1]:<flight>/tr[2]

[td[2]/a:<price=string(.)>] [td[4]:<airline=string(.)>]

Figure 1: OXPath for finding the cheapest flights

the cheapest location for a meeting, considering flight and
accommodation”, would be extremely useful.

Everyone is daily faced with such problems: each indi-
vidual piece of information is readily available on some web-
page, but their (manual) extraction and aggregation is often
unmanageable due to the number of possible combinations—
forcing us to accept far from optimal solutions.

Extracting and aggregating web information is certainly
not a new challenge. Previous approaches fall, in the over-
whelming majority, into two classes: In the first class, service
providers are obliged to deliver their data in a structured
fashion, as in the case of the Semantic Web, Linked Open
Data, or “Web 2.0-APIs”, allowing their clients to process
the received data with languages such as XPath, XQuery,
or SPARQL. Since many service providers have no incentive
for answering requests with such structured information, we
often face approaches from the second class. In this case,
we have to wrap unstructured information sources to ex-
tract and aggregate relevant data. However, wrapping a
web site is often tedious, especially for AJAX-enabled web
applications that reveal the relevant data only through user
interactions. Most older works on web data extraction [6, 8,
4, 7, 9] do not adequately address web page scripting. Even
where scripting is addressed, user input is often ignored, as
in [2]. Otherwise, the simulation of user actions is neither
declarative, nor succinct, but rather relies on imperative ac-
tion scripts, as in [1].

Though XPath is the language of choice to query a set of
nodes in an XML or HTML tree, it is aimed at static XML
documents. However, many current Web applications, such
as GMail or FaceBook, extensively rely on Javascript and
HTML events to implement complex user interactions that
cannot be adequately addressed in XPath.

Therefore, we introduce OXPath, an extension of XPath,
to allow the declarative specification of user interactions
with (scripted) web applications. We show that just four
concise extensions over XPath enable OXPath to deal with
scripted web applications while retaining XPath’s declara-
tivity and succinctness. Underlying these extensions is OX-
Path’s ability to access the dynamic DOM trees of a current
browser engine, reflecting all changes caused by scripting:
(1) The simulation of user actions, such as filling form fields

542

or hovering over a details button, enables interaction with
AJAX applications which modify the DOM dynamically.
(2) Selection based on dynamically computed CSS attributes
allows navigation e.g. to the first green section title. (3) For
expressing the interaction with forms, navigation exclusively
relying on visible fields is essential. (4) Marking expressions
allows identification of relevant pieces for extraction.

Our demonstration shows how OXPath is able to extract
the data needed for finding the cheapest location for a group
meeting from existing travel sites. Figure 1 gives a flavour of
the language, displaying an OXPath expression for solving
the above task.For details, see Section 3.

We also demonstrate a browser-based visual interface for
OXPath which records user interactions (including DOM
events, form fillings and navigation) with a Web site and
allows visual selection of data values for extraction.

The OXPath prototype and interface are available on
diadem-project.info/oxpath under the new BSD license.

2. OXPATH: LANGUAGE & SYSTEM
First and foremost OXPath is just XPath: Every XPath

expression is also an OXPath expression. We extend XPath
with (1) a new kind of location step (for actions and form
filling), (2) a new axis (for selecting nodes based on visual
attributes), (3) a new node-test (for selecting visible fields),
and (4) a new kind of predicate (for marking data to be
extracted). For page navigation, we also adapt the notion
of Kleene star over path expressions from [5].

OXPath carefully extends XPath with these features in or-
der to provide the necessary expressiveness for web data ex-
traction while remaining able to make strong and favourable
guarantees on time and memory w.r.t. expression evalua-
tion. While XQuery was a candidate for extension to form a
new language, it allows query composition and queries with
arbitrary many variables rather than the two variable lim-
itation of queries of XPath. These features may be useful
for general XML processing, but we have found little use
for them in web extraction. Certainly, inclusion of these
features does not justify the performance penalty and the
resulting uncertainty to time and memory requirements.

2.1 Simulating User Interaction
In this section, we limit our presentation to navigating

scripted, form-based web applications.
Explicit Event Simulation. For explicitly simulating

DOM 3 events such as clicks , OXPath introduces action
steps. There are two types of action steps: contextual ac-
tion steps such as {click} and absolute action steps such as
{click /} with a trailing slash. Where XPath expressions
select nodes from a single DOM, OXPath expressions may
select nodes from multiple DOMs. Actions may modify the
current DOM or replace it entirely. Thereby, absolute ac-
tions return the root nodes of the DOMs resulting from ex-
ecuting the action. Contextual actions return those nodes
in the resulting DOMs, that are matched by the action-free
prefix of the expressions. The action-free prefix is built by
removing all intermediate contextual actions from the seg-
ment starting at the previous absolute action.

For instance, the following expression visits Google News
and follows the link to the web site of the top story:

doc("news.google.com")/desc::h2.title[1]/a/{click /}

HtmlUnit
Parse	 DOM

HTML	 document

par
se	 &

	

clea
n

Javascript	 Engine	
evaluates	 inline	
scripts,	 onLoad,	 etc.

Java-‐
script	

DOM	 node modified	 sub-‐treeselected	 node

Initial	 DOM Modified	 DOM Modified	 DOM

OXPath: /.../... {action} {action}/.../... /.../...

Figure 2: OXPath Event-Actions

We adopt the . operator from CSS as the node test for an
HTML class attribute.

Figure 2 illustrates OXPath’s architecture for simulating
user interactions: We use the web testing framework Html-
Unit [3] to simulate a browser. First, an HTML document
is cleaned, parsed, and any inline or on-load scripts are ex-
ecuted. On the resulting DOM, we evaluate the expression
up to the first action, execute it (and any implicit intermedi-
ate actions) for each selected node, and obtain a set of new
(or modified) DOMs. The expression up to the next action
is evaluated against the new DOMs and so on.

Simulating Form Filling. In addition to actions for
explicitly simulating DOM events, OXPath provides actions
for filling form fields which usually trigger an entire series of
events. The following expression searches for “Oxford”:

doc("google.com")//input[@name=’q’]/{"Oxford"}/
2 following::input[@type=’submit’]/{click}

It navigates to google.com, simulates a user moving the
focus to the search text field (identified by its id q), enter-
ing “Oxford” (simulating each keystroke to trigger keyboard
events), and clicking on the submit button.

Form filling actions in OXPath are either strings for text
fields, numbers for selecting options in a select box, or DOM
event keywords. Simulated events invoke all appropriate
event hanlders. OXPath also allows the use of XPath vari-
ables (such as $x) in form actions; variable bindings are pro-
vided by the environment.

Visual Selection. To allow easy and robust expres-
sions for form filling, navigation between just the visible
form fields is essential. Unfortunately, XPath as a general
XML selection language does not give access to the visual
attributes of DOM nodes. Therefore, we introduce in OX-
Path two extensions for lightweight visual navigation: a new
axis for accessing CSS properties of DOM nodes and a new
node test for selecting only visible form fields.

The style axis is comparable to the attribute axis, but nav-
igates the (computed) CSS properties of a node rather than
its properties. For example, we can select the sources for the
top story on Google News using only visual information:

doc("news.google.com")//*[style::color="#767676"]

543

Search	 Page Result	 Page	 1	 of	 10

<form>

Input

Select

submit
Price:

Web	 page HTML	 element form	 element HTML	 link	 element
nextsubmitHTML	 hierarchy form	 submission follow	 HTML	 linksextracted	 element

Result	 Page	 2	 of	 10

Price:

nex
t …next

Figure 3: OXPath Page Iteration and Extraction

With the style axis, we can write expressions that are re-
silient to changes in the HTML structure or changes to
id or class attributes. The style axis gives access to the
actual CSS properties of DOM nodes (as returned by the
DOM style object), regardless of where they are specified.
This contrasts to an XPath expression using attribute::style

which queries only inline style declarations.
The most common use of the style axis for deep web ex-

traction is to navigate only over the visible fields of a page.
This excludes those fields that have type or visibility hidden,
and those that have display property none or are contained
in such an element. To speed-up and simplify the navigation
of visible form fields, we introduce the node-test field(). In
the Google example, we can thus rely only on the order of
the visible fields to fill the search form:

doc("google.com")/descendant::field()[1]/{"Oxford"}
2 /following::field()[1]/{click}

Such an expression is not only easier to write, it is also far
more robust against changes on the web site. For it to fail,
either the order or set of visible form fields has to change.

Page Iteration. Relevant web data is often organized in
records over multiple pages each linking to the next. This
is true for most result pages of web forms. Extracting infor-
mation from all such results then requires following all next
links until there is no further. For this purpose, we borrow
the Kleene star from [5] to express the repeated navigation
over a specified path. The expression //a(/b/d)*, e.g., selects
all nodes reached via alternating b and d nodes from an a

node. For navigating result pages for web forms this is par-
ticularly useful: From the search result, we collect all the
result pages by repeatedly clicking on the next link. Since
we use an absolute action step, the remaining expression
//h3 is evaluated relative to the roots of all these pages.

... foll::field()[1]/{click /}
2 (//table[@id=’nav’]/descendant::a[last()]/{click /})*//h3

We can limit the number of pages navigated to by a posi-
tional predicate, as in any XPath step.

2.2 Data Extraction
Navigation and form filling are ultimately means to data

extraction: In XPath, only a single node-set can be re-
turned, while data extraction requires records to be made
up by many related attributes. Attributes may be atomic or
records themselves, thus allowing record nesting. Thus, the
result of an OXPath expression is the set of selected nodes
and an XML document with the extracted records. We in-
troduce a new kind of predicate, the extraction marker,
for indicating both representative nodes for records and their
attributes. Extraction markers for records are denoted as in

Figure 4: Kayak flight search form

:<story> following the expression selecting the desired nodes.
Those for attributes are denoted as in :<title=string(.)>,
specifying the value to be extracted. For instance,

doc("news.google.com")//div[@class~="story"]:<story>
2 [.//h2:<title=string(.)>]

[.//span[style::color="#767676"]:<source=string(.)>]

extracts, from Google News, a story element for each current
story, containing its title and its sources, as in:

<story><title >Tax cuts ...</title>
2 <source>Washington Post</source>

<source>Wall Street Journal</source> ... </story>

The :<source> marker occurs in a predicate after :<story>.
Thus, the extracted source elements are children of the story

records in the output. In general, the structure of a record
mirrors the structure of the OXPath expression: An extrac-
tion marker in a predicate represents an attribute to the
(last) extraction marker outside the predicate. Attributes
within a record are returned in document order.

Figure 3 summarizes the typical extraction process on a
form-driven web application: (1) On the search page, we
navigate and fill form fields with the specified values and
submit the form. (2) On the first result page, we extract
all items that match OXPath expressions with extraction
markers (here the :<Price>). (3) Most web sites paginate the
results, and thus OXPath expressions often contain page
iterations. On each result page, we follow the link to the
next result page until there is no further such link.

3. DEMO DESCRIPTION
In the demo, we extract data from the flight booking site

Kayak (kayak.com/flights) and present on our project page
(diadem-project.info/oxpath) examples from other sites.

Web application. Kayak showcases OXPath’s capabil-
ity to deal with modern web applications as it uses a heavily
scripted interface. Figure 4 shows its search form. Though
that form contains a “Search” button, form submission is
triggered by an event handler. Results are presented as
structured records ordered by price. However, to access de-
tails such as the flight number, the user has to click on a
link that retrieves those details asynchronously and displays
them dynamically. In the demonstration, we give a brief
run-through of searching on Kayak, including a visualiza-
tion of the used event handlers.

Filling the Search Form. Let’s turn again to the query
from the introduction: “Find out which of your co-authors’
universities would be the cheapest location for a meeting,

544

Figure 5: OXPath Firefox plug-in

considering flights and accommodation”. In the live demo,
we show how to extract both prices for flights and accommo-
dations, but here we focus only on flights. We assume that
$origin and $meeting are bound one by one to all combina-
tions of author’s universities and possible meeting places.

We have implemented a visual interface, shown in Fig-
ure 5, for creating and testing OXPath expressions based
on the Selenium IDE, a Firefox plug-in for web testing. It
is able to record user actions, e.g., for form filling. In Fig-
ure 5, the interface is shown with a sequence of actions and
OXPath expressions identifying the target nodes for those
actions. The sequence is the result of recording the user ac-
tions for filling in origin and destination airport as well as
travel times. If we continue filling and submitting the form,
the necessary actions will be appended to the sequence. This
interfaces additionally allows the visual selection of records
and attributes to be extracted.

Below we show different OXPath expressions for identi-
fying the same form fields or data, and how changes in the
web site affect these expressions. To select the origin air-
port on Kayak, we can use any of the following expressions:
/descendant::*[105] //input[@id=’origin’]

//field()[5] //field()[@type=’text’][1]

The first two are pure XPath expressions, while the lat-
ter two use OXPath’s field() node-test. The expressions
using field() navigate only among the form fields visible to
the user. Thus the expression is resilient to most common
changes such as adding hidden fields, changing the field ids,
or modifying the structure of the container elements.

The following expression fills in origin and destination air-
port using the corresponding variables and submits the form:

doc("www.kayak.com/flights")//field()[5]/{$origin}
2 /following::field()[@type=’text’][1]/{$destination}

/following::field()[last()]/{click /}

For both form inputs ({$origin} and {$destination}), we use
contextual action steps to preserve the context. For exam-
ple, the following::field() in line 2 is evaluated relative to
the form field filled by {$origin}. It selects all visible fields
after the one(s) the action is performed on. The destination
airport is the first such field that also has type text. The
“Search” button is the last visible form element. To submit
the form, we use an absolute click action step on that but-
ton. We simulate all necessary events because Kayak uses
event handlers for form validation and submission.

Extracting the Cheapest Flight. On the result page

obtained by executing the above OXPath expression, we
want to extract the cheapest flight as follows:

<flight><airline>Austrian Airlines</airline>
2 <price>$177</price></flight>

Kayak returns flights sorted by price. Thus, we identify
the first record as the first flightresult table body:

//tbody[@class~=’flightresult’][1]:<flight>

The :<flight> extraction marker indicates that for each such
row a flight element is extracted. Its attributes to be ex-
tracted are price and flight, both located in td children of its
second row; thus, this expression finds the cheapest flight:

doc("www.kayak.com/flights")//field()[5]/{$origin}
2 /following::field()[@type=’text’][1]/{$destination}

/following::field()[last()]/{click /}
4 //tbody[@class~=’flightresult’][1]:<flight>/tr[2]

[td[2]/a:<price=string(.)>] [td[4]:<airline=string(.)>]

OXPath can deal both with separate detail pages and
with details that are dynamically inserted into the DOM
by scripting, as on Kayak. For example, to get the flight
number, we navigate from the flight record selected above
to the details link, click it and extract the number:

...//tbody[@class~=’flightresult’][1]:<flight>/tr[2]
2 [td[2]/a:<price=string(.)>] [td[4]:<airline=string(.)>]

[.//a[contains(., ’details’)]{click /}
4 /following::table[1]//nowrap[.#=’Flights’]:<nr=string(.)>]

Extracting all Prices. If we are not just interested in
the cheapest flight, but rather all flights, we need to inspect
several or even all result pages. For that, we use the Kleene-
star construct from [5]:

(/descendant::a[contains(.,’Next’)][1]{click /})*

This expression returns the root nodes of all pages reach-
able by following next links from the first result page or any
subsequent result page. We conclude with the full OXPath
expression to extract all flights with their price and airline:

doc("www.kayak.com/flights")//field()[5]/{$origin}
2 /following::field()[@type=’text’][1]/{$destination}

/following::field()[last()]/{click /}
4 (/descendant::a[contains(.,’Next’)][1]{click /})*

//tbody[@class~=’flightresult’][1]:<flight>/tr[2]
6 [td[2]/a:<price=string(.)>] [td[4]:<airline=string(.)>]

4. REFERENCES
[1] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web

information extraction with Lixto. In VLDB, 2001.

[2] C. Duda, G. Frey, D. Kossman, and C. Zhou.
AJAXSearch: Crawling, Indexing, and Searching Web
2.0 Applications. In VLDB, 2008.

[3] HtmlUnit. http://htmlunit.sourceforge.net/

[4] M. Liu and T. W. Ling. A rule-based query language
for HTML. In DASFAA, 2001.

[5] M. Marx. Conditional XPath. TODS, 30(4), 2005.

[6] A. Mendelson, G. Mihaila, and T. Milo. Querying the
World Wide Web In DIS, 1996.

[7] QL2 Software. WebQL. http://www.ql2.com/.

[8] A. Sahuguet and F. Azavant. WysiWyg web wrapper
factory (W4F). In WWW, 1999.

[9] W. Shen, A. Doan, J. F. Naughton, and R.
Ramakrishnan. Declarative information extraction
using datalog with embedded extraction predicates. In
VLDB, 2007.

545

