
Native Support of Multi-tenancy in RDBMS
for Software as a Service

Oliver Schiller Benjamin Schiller Andreas Brodt Bernhard Mitschang

Applications of Parallel and Distributed Systems
IPVS, Universität Stuttgart

Universitätsstr. 38, 70569 Stuttgart

{schillor, schillbe, brodtas, mitsch}@ipvs.uni-stuttgart.de

ABSTRACT

Software as a Service (SaaS) facilitates acquiring a huge number of
small tenants by providing low service fees. To achieve low service
fees, it is essential to reduce costs per tenant. For this, consolidating
multiple tenants onto a single relational schema instance turned out
beneficial because of low overheads per tenant and scalable man-
ageability. This approach implements data isolation between ten-
ants, per-tenant schema extension and further tenant-centric data
management features in application logic. This is complex, dis-
ables some optimization opportunities in the RDBMS and repre-
sents a conceptual misstep with Separation of Concerns in mind.
Therefore, we contribute first features of a RDBMS to support

tenant-aware data management natively. We introduce tenants as
first-class database objects and propose the concept of a tenant con-
text to isolate a tenant from other tenants. We present a schema
inheritance concept that allows sharing a core application schema
among tenants while enabling schema extensions per tenant. Fi-
nally, we evaluate a preliminary implementation of our approach.

Categories and Subject Descriptors

H.2.1 [Database Management]: Logical Design—data models,

schema and subschema; H.2.4 [Database Management]:
Systems—relational databases

General Terms

Design, Management

Keywords

Multi-tenancy, Software as a Service, Relational Database Man-
agement Systems, Meta Data Management, Logical Data Model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

1. INTRODUCTION
Software as a Service (SaaS) constitutes a fast-growing business

model for the sales of software that bases upon the principle of out-
sourcing. At SaaS, a service provider hosts an application on its
infrastructure and delivers it as a service to several organizations.
An organization, called a tenant, subscribes for the service and ac-
cesses it across the Internet through standard web technology.

The choice of existing SaaS offerings already spans a wide range
of business applications such as e-mail [25], e-commerce [10], and
customer relationship management [21] applications. In the future,
the market and the relevance of SaaS applications will further in-
crease. The International Data Corporation (IDC) forecasts that the
revenue of the SaaS market will grow at a compound annual growth
rate of 25,3 % through 2014 [17].

From the provider’s perspective, SaaS opens the possibility to ac-
quire a large number of small companies, the so-called long tail [2],
as new customers. These companies often cannot afford or dread
the high costs when purchasing and operating business applica-
tions according to the traditional business model. Thus, a SaaS
application may attract these companies if the service fee is much
lower compared to the costs of a traditional solution. A service
provider may accomplish offering its service at a low fee by lever-
aging economies of a scale. Thus, it is an integral challenge to
reduce the overhead per tenant.

A key opportunity to reduce the overhead per tenant constitutes
the concept of multi-tenancy that describes consolidating multiple
tenants onto one resource [7], e. g. one software instance. Multi-
tenancy accounts for a higher resource utilization and lower opera-
tional costs due to less resources that the provider must manage and
maintain. Several approaches to enable multi-tenancy have been
discussed throughout the whole application stack [13, 6].

1.1 Multi-tenancy at the Data Tier
A particularly important challenge in a SaaS application is con-

cerned with enabling multi-tenancy at the data tier [7, 9]. Put sim-
ply, the challenge is to consolidate multiple tenants onto one data
tier resource, e. g. one database server, while at the same time iso-
lating them among one another, as if they were running on physi-
cally segregated resources. Note that the concept of Database as a
Service (DaaS) has to cope with the same challenge, but has other
requirements. DaaS offerings, e. g. Amazon SimpleDB [1], focus
on providing a database management system (DBMS) that allows
a tenant to run its application against. Hence, a broad range of dif-
ferent applications that have a broad range of characteristics access
the system. Contrarily, systems at the data tier of a SaaS application
are accessed by the same application for each tenant. This entails
a high potential for reducing the overhead per tenant because data
access patterns and data structures are very similar between tenants.

117

The common adoption of relational database management sys-
tems (RDBMS) at the data tier demands to keep in view how to im-
plement multi-tenancy with these systems. Until now, three main
approaches have been proposed and evaluated [16]. They vary in
the degree of consolidation:

1. Shared Machine: The tenants share a single machine, but
each tenant obtains a private database instance.

2. Shared Process: The tenants share a single database in-
stance, but each tenant obtains a private set of tables.

3. Shared Table: The tenants share a single database instance
and a single set of tables.

Jacobs and Aulbach [16] pointed out that the Shared Machine ap-
proach allows consolidating only a few tenants onto one machine
due to the large main memory footprint of a database instance. The
Shared Process approach consumes less main memory per tenant,
yet main memory consumption increases quite fast with the num-
ber of tenants, as each tenant obtains a dedicated schema instance.
In contrast, the main memory consumption of the Shared Table ap-
proach remains constant if the number of tenants increases. Fur-
thermore, recent performance tests show that the Shared Table ap-
proach may yield a better buffer pool utilization than the Shared
Process approach for a large number of small tenants [3, 23].
To conclude, the Shared Table approach seems promising for a

provider that targets the long tail because it offers the lowest over-
head per tenant and, thus, is suitable for a large number of small
tenants, e. g. 1,000 tenants each having less than 50 MB of data and
at most 5 concurrent users. A popular example that facilitates this
estimation constitutes the customer relationship management ap-
plication salesforce.com [21, 24]. They adopt the Shared Table ap-
proach to consolidate up to 17,000 tenants onto one database [18].

1.2 Shared Table Approach
The shared table approach shares a single set of tables between

tenants. Each table possesses a column that stores the tenant a table
row belongs to. A selection on this column allows to retrieve the
row set of a certain tenant.
If the tenants share one set of tables, all tenants have the same

table schema. However, even for simple applications, a tenant may
want to extend its logical schema according to its needs. By way
of example, assume that an e-commerce service, which offers cre-
ating a shop, stores the products to sell in a table Item that has the
attributes name and price. All tenants share these attributes, but
each tenant may want to add different additional attributes. For ex-
ample, a tenant that sells books may want to add an attribute pages,
whereas a tenant that sells shoes may want to add an attribute color.
Moreover, the schema modifications of one tenant must not affect
the logical schemas of other tenants. Besides schema extension
per tenant, other requirements such as statistics per tenant, backup
and recovery per tenant, migration of a tenant from one machine to
another and so forth exist.
Current RDBMS implementations do not provide native func-

tionality that fulfills the requirements of a tenant-aware data man-
agement based upon the Shared Table approach. Moreover, as
pointed out by previous research, useful features may yield a high
performance penalty or their scalability is limited. For example,
row-based access control mechanisms may increase query latency
by 15% [23] or Microsoft SQL Server permits only up to 30,000
Sparse Columns per table which reduces the scalability of per ten-
ant schema extensions [4].
Therefore, existing solutions that adopt the Shared Table ap-

proach implement required tenant-aware data management features

within the application. For example, schema mapping techniques
within the application map the tenants’ logical schemas onto the
physical schema in the database [3, 4]. Thereby, the application
itself manages all meta data, e. g. the data type of a column. Never-
theless, handling the meta data in the application does not solve by
implication the redundancy of the core application schema and its
management. In addition, the RDBMS loses knowledge about the
data and the relations and thus optimization opportunities. For in-
stance, generic access operations replace more efficient operations
specific to a certain data type. Developing required tenant-aware
data management functionality within the application is complex,
error-prone and expensive. Furthermore, the implemented solution
may lack in data security between tenants due to bugs in the appli-
cation, which are likely given the complexity of development.

In summary, we consider implementing tenant-aware data man-
agement features in the application a conceptual misstep, as a lot
of the RDBMS efforts are re-implemented with multi-tenancy sup-
port. In addition, the principle Separation of Concerns is ignored.
We argue that the native support of tenant-aware data management
features in RDBMSs for SaaS is crucial. Such a system takes the
burden of sharing data resources from the application and enhances
the security and isolation between tenants. Furthermore, it is able
to optimize data access and to provide tenant-centric system-level
operations.

1.3 Contributions
Previous research also motivates the requirement of a RDBMS

that provides native multi-tenancy support [3, 23, 14], but it does
not propose concrete solutions. The development of such a sys-
tem that optimally supports multi-tenancy bears a comprehensive
challenge. As a first step to meet this challenge, we contribute
a tenant-aware data dictionary that allows for tenant-aware meta-
data management. We consider this a significant groundwork for
further tenant-aware features. Additionally, we show an integration
of a storage model in our tenant-aware data dictionary. Our ap-
proach does not impose a restriction on the adopted storage model,
though. In detail, our contributions are as follows:

1. We introduce a tenant as a first-class database object and the
concept of a tenant context that determines the tenant’s view
of the database.

2. We present a tenant-aware schema inheritance concept in or-
der to maintain the sharing of the application’s core schema
that is invariant between tenants while allowing per-tenant
schema extensions. Moreover, our concept inevitably segre-
gates tenant-specific objects between tenants and seamlessly
integrates into our previously introduced tenant context.

3. We present a SQL language extension that allows manag-
ing tenants and building schema hierarchies according to our
schema inheritance concept.

4. We illustrate a preliminary implementation of these concepts
that, with respect to the physical storage layout, builds upon
the Shared Table approach. Finally, we evaluate our tenant-
aware data dictionary implementation regarding performance
and usability.

The paper is organized as follows. After a detailed consideration of
the Shared Table approach and related research work, we present in
Sec. 3 our tenant-aware schema inheritance concept. Section 4 de-
scribes a prototypical implementation of the previously presented
concept. In the subsequent section, we evaluate this prototype. Fi-
nally, Section 6 concludes our work.

118

2. SHARED TABLE APPROACH
Previous research [3, 23] and existing solutions [21, 24] charac-

terize the Shared Table approach as well-suited for serving a large
number of small tenants. This section reviews the Shared Table
approach and its variants. We embark upon the basic principle
of the Shared Table approach. Moreover, we describe variants to
per-tenant schema extension as particularly important requirement.
Finally, we give main drawbacks.

2.1 Basic Principle
The Shared Table approach shares one database instance and also

one set of tables between tenants. That is, it stores tuples of one ten-
ant intermingled with tuples of other tenants. In order to distinguish
the tuples of different tenants, each table obtains an attribute tenant
that stores the respective tenant of each tuple. Figure 1 shows an
example of a Shared Table Item that stores tuples for the tenants
Gonzo Books and Kermit Shoes.
An application component, further referred to as query rewriter,

sets the attribute tenant on storing a tuple of a tenant. For exam-
ple, if the tenant Gonzo Books stores the tuple (’1984’, 9,90), the
query rewriter transforms this tuple to (Gonzo Books, ’1984’, 9,90).
Moreover, the query rewriter transforms the selection predicate of
queries to retrieve only tuples whose attribute tenant equals the ten-
ant to which a query belongs. For instance, we assume that the
tenant Gonzo Books issues the following query:

SELECT * FROM Item

In this case, the query rewriter would extend the selection predicate
of the original query as follows:

SELECT * FROM Item

WHERE Tenant = ’Gonzo Books’

The Shared Table approach allows consolidating a large number
of tenants onto one database instance. The number of tenants is
not limited by the available main memory because the size of the
data dictionary remains constant if a new tenant is created. The size
remains constant because a tenant does not own dedicated database
objects such as tables and indexes. Contrarily, the Shared Process
approach assigns dedicated database objects to a tenant. Thus, each
tenant requires a considerable amount of catalog information that
reduces scalability and decreases the amount of main memory that
remains for query processing.
If a large number of small tenants access the RDBMS, the Shared

Table approach may yield better utilization of the buffer pool than
the Shared Process approach. This is because the Shared Process
approach allocates dedicated pages for each tenant, whereas the
Shared Table approach shares pages between tenants. Therefore,
the Shared Process approach tends to have a higher internal frag-
mentation, especially if tenants only store few tuples in a table. A
higher internal fragmentation yields a lower average storage utiliza-
tion of pages which in turn may decrease the buffer pool utilization.

Figure 1: Example of the Shared Table approach.

2.2 Per-Tenant Schema Extension
In Section 1, we pointed out that tenants require extending the

core application schema according to their individual needs. As a
result of such extensions, the logical structure of a table may differ
from tenant to tenant. Consolidating the differently structured logi-
cal tables into one Shared Table represents a difficult and eminently
important challenge.

An apparent approach to fulfill this challenge is to add tenant-
specific attributes to the schema of the Shared Table. Hence, the
schema of the Shared Table represents the union of the tenants’ log-
ical table schemas. This approach scales poorly because it yields
a wide sparse table. For instance, if each of 10,000 tenants defines
five additional attributes, a tuple stores useful values only in a small
fraction of the total number of attributes (at least 50,000) while fill-
ing the remaining attributes with NULL values. Popular RDBMSs
do not support such a high number of attributes per table, e. g. IBM
DB2 V9.7 LUW supports a maximum of 1012 [15] and Oracle 11g
a maximum of 1000 attributes per table [20]. Moreover, storing
many NULL values causes overhead that entails considerable per-
formance degradation. The Interpreted Attribute Storage Format
that is implemented in Microsoft SQL Server as Sparse Columns
feature deals with this issue [5]. However, it prevents random at-
tribute access optimizations and permits only up to 30,000 Sparse
Columns per table.

To prevent such scalability issues, other approaches that rely on
mapping the tenants’ logical schemas onto a fixed generic schema
in the RDBMS have been adopted. Subsequently, we outline two
common techniques [7, 3]:

Pivot Table. This technique maps each cell value of the tenants’
logical tables to one row of a single Pivot Table. To identify the
cell of the logical table, it additionally stores the tenant, the row
number and attribute number. That is, the Pivot Table describes
the function: (tenant × rowno × attributeno) → value.

This approach suffers from high runtime overhead because re-
assembling a tuple with n attributes requires n− 1 joins. More-
over, the high amount of cell identification data compared to real
application data may degrade the buffer pool hit ratio.

Universal Table. A Universal Table includes, in addition to the
attributes of the core application schema, a preset number of
custom attributes that enable storing tenant-specific attributes. If
a tenant adds an attribute to its logical table schema, the attribute
is mapped onto an unused custom attribute of that tenant.

The number of preset custom attributes is critical. It must be
high enough to meet the needs of all tenants. Yet, if the max-
imum number of custom attributes is high, e. g. 200, but most
tenants only require a small number of custom attributes, e. g. 5,
there is again overhead from many NULL values.

There exist, of course, variants and hybrids of the two described
approaches. The Extension Table technique stores the attributes
of the core application schema in a Shared Table and the tenant-
specific attributes in a so-called Extension Table. A common sur-
rogate ties the parts of the tuple across the tables. A tenant may
possess an own Extension Table or it may share one Extension Ta-
ble with others if their tenant-specific attributes are exactly identi-
cal. This approach has the same scalability issues as described for
the Shared Process approach due to the potentially high number of
tables. To prevent this, all tenants may alternatively share one Ex-
tension Table that in turn adopts an approach such as Pivot Table.
Aulbach et al have presented a technique called Chunk Folding [3].
This technique stores the tenant-specific attributes in a fixed set of
so-called Chunk Tables. A Chunk Table is similar to a Pivot Table,
but stores a set of columns instead of only one. The logical tables

119

are divided into suitable chunks and distributed across the fixed set
of Chunk Tables. Several other related mapping techniques have
been proposed and evaluated in the context of storing XML [8].
The described techniques are very flexible and scalable. They

allow mapping an unlimited number of arbitrary logical tables onto
a fixed generic schema. However, they possess several drawbacks
in the context of multi-tenancy which we subsequently describe.

2.3 Drawbacks
The Shared Table approach facilitates to reduce the costs per ten-

ant. Yet, it implements most per-tenant operations such as schema
extension, backup and recovery, statistics gathering and so forth
in the application. Consecutively, we discuss the main drawbacks
of this approach focussing on the data dictionary as an important
cross-cutting facility, on which our work concentrates.
The presented techniques to per-tenant schema extension assume

that a query rewriter in the application conducts a major part of
data dictionary management, e. g. storing the data type of a tenant-
specific attribute. For this purpose, the query rewriter must store
and manage the data dictionary information which may, in prac-
tice, limit the scalability of the presented techniques and does not
avoid redundancy per se. Moreover, the loss of data dictionary re-
sponsibility prevents the RDBMS from using optimized data access
operators, e. g. an integer comparator instead of a string compara-
tor. In addition, the query rewriter enforces isolation of meta data
and application data between tenants. Therefore, the rewriter is a
complex and critical component that requires a clean design and
sophisticated testing. Such a critical component should not be im-
plemented by each and every application anew.
To reduce the complexity of the query rewriter, the RDBMSmay

take over some of its functionality by means of SQL views and
INSTEAD-OF triggers. Yet, SQL views that apply for all tenants
and act as tenant filters on Universal Tables still require that the
query rewriter maintains the tenants’ logical table structures. Al-
ternatively, per-tenant SQL views in conjunction with a generic ta-
ble layout that keeps more of the data dictionary in the RDBMS,
e. g. Extension Tables, could be adopted. Yet, this approach re-
quires that the application manages the views and the triggers per
tenant. For this purpose, the application has to maintain mappings
between tenants, views and underlying tables by what per-tenant
schema customization still requires considerable management ef-
forts in the application.
The presented techniques to per-tenant schema extension target

high flexibility at the schema level. To obtain this flexibility, they
accept a performance loss due to the implied storage layout. They
typically have to struggle with tuple reconstruction or null com-
pression overhead. In the scope of multi-tenancy, lower flexibility
suffices, as a tenant’s logical table structure is well-known and the
corresponding data set is dense. A tenant-aware data dictionary can
help to exploit this fact for a more efficient storage layout.

3. NATIVE MULTI-TENANCY SUPPORT
Our approach gets rid of the drawbacks discussed in the pre-

vious section. It allows maintaining an application core schema
while enabling per-tenant schema extensions. At this, the RDBMS
maintains the data dictionary, such as data types of tenant-specific
attributes. This enables some optimizations. Moreover, it avoids re-
dundancy to improve scalability and to reduce the per-tenant costs.
Our approach also facilitates direct access to the RDBMS system
without the need of a complex query rewriter. Thus, a system-level
mechanism enforces isolation and security between tenants. The
achievement of these objectives relies on a deeply integrated, na-
tive support of multi-tenancy in RDBMSs.

3.1 Tenants as First-Class Database Object
The primary goal for tenant-aware data management is to pro-

vide high degrees of sharing and suitable management features. For
this purpose, tenants must use resources in common, but logically
segregated by means of virtualization. From a conceptual view,
each tenant requires a virtual database that logically contains the
objects that relate to the tenant and logically isolates it from other
tenants. To create such a virtual database, we introduce the idea of
a tenant context. A tenant context is associated with a specific ten-
ant and keeps all information that allows determining the tenant’s
virtual database. Hence, if the database management system uses
a tenant context to carry out operations on a virtual database, we
can easily switch the context and therefore the virtual database that
is processed. This concept allows executing operations aligned to
tenant boundaries, e. g. backup and recovery, as well as system-
level operations that concern different tenants, e. g. reorganization
of database files. Furthermore, different contexts may reference
the same objects. This enables flexible sharing patterns. To han-
dle, maintain and identify tenant contexts, a RDBMS must know
about tenants in the first place. Therefore, we introduce tenants as
first-class database objects that allow identifying a certain context.
Further, we assume that the database management system knows
the tenant that performs an operation, e. g. a query. With this in-
formation, the system can carry out the operation within the corre-
sponding context and it can ensure that the operation is restricted to
this context. Thus, the tenant context determines a logically closed
container with inviolable boundaries that establishes system-level
security and isolation between tenants.

3.2 Schema Inheritance Concept
RDBMSs provide a data dictionary that stores information about

data and allows tailoring a database to the needs of a specific ap-
plication. The data dictionary roughly stores two different kinds of
meta data: physical and logical. The physical meta data describes
how data is stored on disk and what the available access paths are.
The logical meta data expresses the application-specific data struc-
ture by means of the relational model, i. e. by tables, attributes
and constraints. We argue that the contents of the data dictionary
look closely alike between tenants, especially with respect to the
logical meta data. The reason is that, in our scenario, the applica-
tion that accesses the system is the same across all tenants. Thus,
there exists one core application schema that slightly differs be-
tween tenants by reason of discussed per-tenant extensions, e. g.
books and shoes. Exploiting this fact to prevent storing and man-
aging redundant meta data improves scalability. Moreover, man-
ageability improves if the core application schema can be main-
tained centrally. Our approach accounts for these aspects. It allows
centrally maintaining a core application schema that may be ex-
tended according to the needs of a tenant without affecting other
tenants.

For this purpose, our approach picks up the idea of SQL schemas
as proposed by the SQL standard. SQL schemas represent names-
paces that allow to group database objects logically. For example,
schemas allow segregating different applications or independent
parts of an application that use the same database. Our concept
adopts SQL schemas with a slightly different intention. We use
them to group objects that are redundant among tenants and to seg-
regate objects of different tenants. For this, we associate a tenant’s
context with a schema and introduce a schema inheritance concept.
Schema inheritance allows deriving a schema from another schema.
Thereby, a derived schema inherits the objects that are defined in
the parent schema. Note that a derived schema must possess all
objects defined in the parent schema. Our concept prohibits mod-

120

ifying or removing inherited objects. Yet, it allows extending and
creating objects according to a defined set of rules. Therefore, it de-
fines three different schema types: shared schema, virtual schema
and tenant schema. Subsequently, we describe each schema type in
detail. For our further discussion, it is mandatory to understand the
difference of a table definition and a table instance. A table defi-
nition expresses the structure of the table whereas a table instance
describes the actual data that is stored in rows.

3.2.1 Shared Schema

Multi-tenant applications may require tables to store data that is
specific to the application and invariant between tenants. For exam-
ple, an application may store country codes and names or the top
1000 securities of the stock market in a table within the database.
In such a case, the tenants only read the table while the provider or
an appropriate application maintains its contents. To support this
pattern, we introduce the concept of a shared schema. A shared
schema is shared among all tenants. That is, all tenant contexts in-
clude this schema. Currently, we assume that tenants access shared
schemas read-only. We claim that this access pattern usually suf-
fices, as tenants constitute closed organizational units. Yet, assum-
ing a tenant-aware security model, existing access control concepts,
e. g. row-based access control, could be applied as well.
Shared schemas are final. That is, another schema cannot inherit

from a shared schema by what shared schemas do not support per-
tenant extensions.

3.2.2 Virtual Schema

This type intends to define the core application schema that a
tenant may extend according to its individual needs. Hence, a vir-
tual schema describes the schema parts that are invariant between
tenants. As opposed to the shared schema and the tenant schema,
a virtual schema is without table instances. Consequently, it is
impossible to store data using a virtual schema. We consider the
defined tables in a virtual schema as pure definitions that may be
extended and instantiated in derived schemas.
Virtual schemas are arranged hierarchically. The hierarchy de-

scribes an inheritance relation. That is, a virtual schema can inherit
from another virtual schema. Thereby, the schema inherits all the
database objects contained in the parent schema. Thus, an inher-
itance relation between two schemas also imposes an inheritance
relation on the contained objects. We use the same nomenclature
to describe the relations between these objects.
We allow extending inherited table definitions by new attributes,

new constraints and indexes. Note that we forbid to modify in-
herited table definitions. For example, renaming or reordering of
attributes defined in the parent table definition is disallowed. As
derived table definitions cannot omit or modify inherited attributes,
it is guaranteed that index and constraint definitions remain valid
for derived tables. Newly created attributes are always placed af-
ter the attributes that already exist. Hence, we avoid intermingling
attributes of different schemas. We claim that this helps to stay
consistent with application code because the application must ac-
cess the attributes either by name or by the position. A modern
application should pursue a clean separation between data and its
presentation. Hence, the ordering of the attributes in the data layer
should not influence the ordering of the attributes in the presenta-
tion. For this purpose, this restriction facilitates a clean application
design. Note that we disallow extending the primary key definition,
existing referential integrity constraints and existing indexes.
Furthermore, our concept allows defining new tables in a derived

virtual schema. Nevertheless, our concept mandates that the names
are unique across the whole inheritance path.

Figure 2: Illustration of our schema inheritance concept using

the introduced e-commerce scenario.

3.2.3 Tenant Schema

As opposed to shared schemas and virtual schemas, a tenant
schema relates to a specific tenant. Each tenant possesses an as-
sociated tenant schema that represents a part of its context. A ten-
ant schema must inherit from a virtual schema. The same rules as
described for a virtual schema with respect to extending and creat-
ing objects apply. From this perspective, a tenant schema behaves
similar to a virtual schema, but there exists an important difference.
In contrast to a virtual schema, a tenant schema includes table in-
stances and a tenant schema is final with respect to inheritance.
That is, another schema cannot inherit from a tenant schema. We
propose that creating a tenant automatically creates an associated
tenant schema as well as instances of table definitions that are de-
fined in the virtual schema from which the tenant schema inherits.

Figure 2 illustrates a simple example of the presented concept.
The upper part of the figure models the virtual schema Shop that
defines a table Item, as introduced in our e-commerce scenario. The
table Item has two attributes Name and Price. The lower part of the
figure illustrates two derived tenant schemas. The tenant schema
Kermit Shoes in the left and the schema Gonzo Books in the right.
The schema Kermit Shoes extends the table Item by an attribute
color, whereas the schema Gonzo Books extends it by an attribute
pages and another attribute ISBN. In addition, the tenant schemas
contain the respective instances of the table Item.

3.3 Language Extension
To manage schema hierarchies and tenants, we propose extend-

ing the SQL language by suitable statements. The following listing
enumerates the statements that we devised to create schema hierar-
chies:

CREATE [SHARED] SCHEMA <schemaname>

CREATE VIRTUAL SCHEMA <schemaname>

[INHERITS FROM <schemaname>]

The statement CREATE SHARED SCHEMA creates a new shared
schema with the given name. In order to create a virtual schema, the
statement CREATE VIRTUAL SCHEMA is available. The optional
clause INHERITS FROM specifies the virtual schema from which
the newly created schema inherits. Both statements create appro-
priate entries in the data dictionary (see Sec. 4.2).

To manage tenants, we propose the following statements:

CREATE TENANT <tenantname>

SCHEMA INHERITS FROM <schemaname>

DROP TENANT <tenantname>

SET TENANT {<tenantname>|None}

The CREATE TENANT statement creates a new tenant with the
given name. In addition to creating a tenant, the statement creates
an associated tenant schema and table instances for the inherited

121

table definitions. For this purpose, the clause SCHEMA INHERITS

FROM specifies a virtual schema from which the tenant’s schema in-
herits. The DROP TENANT statement drops the given tenant as well
as dependent objects, most notably the associated tenant schema.
In order to carry out operations within a tenant’s context, the

RDBMS requires to know the tenant that performs an operation.
For this purpose, the SET TENANT statement explicitly causes the
system to switch to the given tenant. Instead of explicitly setting the
tenant, the authentication process may set the appropriate tenant by
mapping users to tenants during connection establishment. Nev-
ertheless, applications typically exploit a connection pool to avoid
the overhead of re-establishing a connection. Thus, switching a
tenant on an established connection is necessary. Our mechanism
supports this requirement. To increase security, we envision an au-
thentication mechanism that extends our approach, similar to proxy
authentication in Oracle Database [19].

4. IMPLEMENTATION
We created a prototypical implementation of our presented ap-

proach to native multi-tenancy support in a RDBMS.We used Post-
greSQL 8.4 as starting point because it is available as open source,
it features a clean design and its source code is well-documented.

4.1 Architectural Overview
To illustrate our implementation, we first outline the architecture

of PostgreSQL. PostgreSQL follows a client/server-model. A mul-
tiplexing process, called PostMaster, waits for incoming connec-
tions. For each incoming connection, it starts a new process, called
Backend. The Backend executes submitted queries and returns the
results.
To implement our approach, we only had to enhance the Backend

as the query processing engine. Figure 3 depicts the core compo-
nents of the Backend and our respective enhancements.

The Parser builds the syntax tree of a given statement. We en-
hanced the parser to support statements to manage schema hier-
archies and tenants.

The Planner uses a cost-based approach to construct the presum-
ably cheapest plan for executing the statement. We did not en-
hance the planner.

The Executor executes the constructed plan and builds the reply.
We enhanced it to process only data of the tenant that issued the
statement.

The Data Dictionary stores the information about the data. We
enhanced it to maintain schema hierarchies and tenants.

The Heap provides arrays on disk to store tuples. As we inter-
mingle tuples of different tenants in one array, we add a system
attribute to a tuple that stores to which tenant it relates.

The Index enables the efficient search of tuples. To exploit this,
we add the tenant key of a tuple to its index key.

The main architecture of current RDBMS implementations is quite
similar. The implementation of our concept mainly affects the
parser, the data dictionary and the executor which exist in most im-
plementations. Thus, although our implementation considerations
are specific to PostgreSQL, the main ideas are transferable to other
systems as well.
The remainder of this section describes the main implementation

considerations and decisions with which we dealt while applying
the described enhancements.

Figure 3: Architectural overview of a PostgreSQL Backend in-

cluding our respective enhancements.

4.2 Data Dictionary
We modified the data dictionary so that it maintains informa-

tion about tenants and schema hierarchies. We present our logical
model as well as our main memory representation of the data dic-
tionary. Thereafter, we discuss the maintenance and the access of
the data dictionary.

4.2.1 Data Model

Figure 4 depicts a simple logical model of relevant data dictio-
nary tables. Note that, for the sake of readability, we use simpler
names than the actual names in the implementation, e. g. Attribute
instead of pg_attribute. We have added the tables Tenant and Table-
Instance to the original data dictionary tables of PostgreSQL. The
other tables represent original data dictionary tables that we have
modified. For this discussion, we refer to tables of the data dictio-
nary as system tables in order to distinguish them from application-
specific tables. We exemplify our data model through a data dictio-
nary excerpt of our e-commerce scenario that Fig. 5 shows.

The system table Tenant stores available tenants. They are identi-
fied by unique names and system-generated integer identifiers. Ac-
cording to our e-commerce scenario, Fig. 5 shows two entries for
the tenants Gonzo Books and Kermit Shoes. For the sake of read-
ability, we use names to indicate references to tuples. Actually, the
system uses integer identifiers to store references.

The system table Schema stores the defined schemas. A schema
entry stores the schema name, a unique identifier and its type, i.e.
shared, virtual or tenant. As a tenant schema always relates to ex-
actly one tenant, it possesses the same identifier as its associated
tenant. This avoids mapping steps from a tenant schema to its as-
sociated tenant and vice versa. A schema entry additionally stores
the path up to the root level of the schema hierarchy. The system
recursively traverses this path to gather and assemble the database

Figure 4: Data dictionary model.

122

Figure 5: Example of our data dictionary for the introduced e-commerce scenario.

objects visible in the schema (see Sec. 4.2.3). Note that shared
schemas always have a path length of one because they cannot in-
herit from other schemas. In accordance with the tenants of our
example, Fig. 5 shows two entries for the tenant schemas Gonzo
Books and Kermit Shoes. The stored root path reflects that both
schemas inherit from the virtual schema Shop which has also a
related entry in Schema. Moreover, Schema has an entry for the
shared schema Globals.
To know which database objects relate to which schema, affected

data dictionary tables establish a schema member relationship. For
example, the system table Attribute has an attribute Schema that
references the schema to which an attribute relates.
The system tables TableDefinition and TableInstance provide the

basis to represent the extension of tables according to our schema
inheritance concept. TableDefinition stores table definitions and
TableInstance stores table instances. A table definition defines a
table in terms of attributes, constraints and indexes, whereas a table
instance represents a concrete occurrence of a table definition to
store data. A common identifier ties a table definition and related
table instances together. As each virtual schema or tenant schema
may extend the lists of attributes, constraints and indexes of an in-
herited table definition, the system assembles the complete table
definition by traversing the related schema inheritance path. In our
example, the virtual schema Shop defines a table Item that has two
attributes: Name and Price. The schemas Gonzo Books and Ker-

mit Shoes respectively extend Item by additional attributes. Thus,
Attribute contains corresponding entries: one entry for the attribute
Color of Kermit Shoes and two entries for the attributes Pages and
ISBN of Gonzo Books. Furthermore, each tenant schema contains
an instance of the table Item which is reflected in TableInstance.
Our current implementation only supports defining tenant schemas
that inherit from a virtual schema.
The structure of TableDefinition and TableInstance is similar.

They have the same attributes except some static attributes. Static
attributes store information that is equal across all instances, e. g.
the name. An instance can overwrite the common attributes. That
is, if the value of an instance attribute is not NULL, this value is
used. Otherwise, if the value is NULL, the system consults the
table definition to obtain the required value.
According to our concept, a table definition and an instance to-

gether are required to store data. Yet, we support a special case
that implicitly considers a table definition instantiated, i. e. Table-
Instance is without a related entry. We assume this if the schema
that contains the table definition is final. In this case, only one in-
stance of the table definition can exist. Thus, we can store instance-
specific information directly in the table definition. From a concep-
tual view, this slightly violates our approach, but it is in line with the
original way PostgreSQL handles table definitions and instances
and, thus, helps to stay compatible to existing code. Moreover, this

is more efficient because we can save a lookup in TableInstance in
this case.

4.2.2 Main Memory Structure

The data dictionary is heavily accessed during query processing.
Therefore, the database management system transfers the external
format of the data dictionary into a quickly accessible network of
main memory objects. It is important to keep this network small so
that the system can easily keep the data dictionary in main memory
as much as possible. Therefore, our main memory layout avoids
redundancy by sharing common parts between tenants.

Figure 6 depicts a simplified example of the memory structures
that hold the description for the table

The large boxes hold general information about a table. We
call them table descriptors. The descriptor Shop.Item holds the
information of the table definition that is invariant between tenants.
Contrarily, the descriptorsGonzo Books.Item andKermit Shoes.Item
hold information that is specific to the respective tenant schema.
They reference the descriptor Shop.Item to access the common def-
inition parts easily. Each table descriptor references another struc-
ture that holds information about related attributes. We call them
attribute descriptor lists and refer to them by the label of the refer-
encing table descriptor. The lower part of Fig. 6 shows the related
attribute descriptor lists. The attribute descriptor list Shop.Item
references two attribute descriptors that describe the structure of
the two attributes Name and Price. The attribute descriptor list
Gonzo Books.Item additionally references an attribute descriptor
for the attribute Pages and ISBN. Analogously, the attribute descrip-
tor list Kermit Shoes.Item references an attribute descriptor for the
attribute Color.

To search objects of the data dictionary, PostgreSQL adopts cor-
responding hash tables. We adapted the existing hash tables to ac-
count for schema identifiers. For example, a hash table to look up
attributes by name features a hash key that consists of the schema
identifier, the table identifier and the name of the attribute. In addi-
tion, we created additional hash tables to search tenants and table
instances efficiently. Item of our e-commerce scenario.

Figure 6: Example for the main memory layout of table and

attribute descriptors.

123

4.2.3 Maintaining and Accessing the Data Dictio-
nary

To maintain the presented data dictionary, we had to modify ex-
isting data definition operations so that they consider the schema
hierarchy and the context they are executed within. For example,
the statement ALTER TABLE ADD ATTRIBUTE must ensure that
the name of the new attribute is unique across the inheritance path.
Accessing a table entails constructing a table descriptor in main

memory. If the accessed table is inherited from a virtual schema,
the system assembles relevant parts by traversing the related schema
inheritance path. Listing 1 shows the construction of a table de-
scriptor in pseudo code. The algorithm recursively steps through
the schema inheritance path until it finds a descriptor of the de-
sired table. After finding a descriptor, it goes back through the
schema inheritance path and creates an appropriate chain of de-
scriptors, as explained in Sec. 4.2.2. The shown algorithm may
require more data dictionary lookups than the original algorithm.
Yet, the penalty of the shown algorithm is moderate if the data dic-
tionary is in main memory. Our system addresses OLTP-like work-
loads which require that the data dictionary is in main memory to
obtain high transaction rates and low latencies. This is because a
query in an OLTP workload is short running and typically accesses
a small amount of data. Thus, accessing the data dictionary must
be very fast to keep the relative overhead introduced by accessing it
small. To achieve this, data dictionary accesses should prevent disk
accesses, i. e. the data dictionary mostly resides in main memory.

4.2.4 Synchronizing the Data Dictionary

To ensure that tables are not dropped or modified in incompat-
ible ways while executing a statement that references them, each
statement acquires appropriate table-level locks. Our schema in-
heritance concept requires a locking approach that accounts for the
relationship of tables according to the given schema inheritance.
Modifying a table definition in a virtual schema requires to lock
dependent table definitions in derived schemas. The same goes the
other way, if a table definition is modified, the related table defini-
tions on the root path of the schema must be locked. As modifying
a tenant’s schema should not affect other tenants, locking a table
does not entail locking tables that have the same parent definition.
To accomplish the described behavior, we extended the original

lock manager to support a multi-granularity scheme for table-level
locks [12]. At this, the granularity of the table-level locks follows
the inclusion relation of tables that is imposed by the inclusion re-
lation of the particular schema hierarchy. If a statement wants to
acquire a table-level lock, the lock manager records an absolute

function GetTableDescriptor(tableId, schemaPath)

begin

tabDescr = QueryTabDescrCache(tableId, schemaPath.first)

if tabDescr not found then

tabInfo = BuildTabDescrFromDisk(tableId,

schemaPath.first)

if tabInfo not found and schemaPath.next exists then

parent = GetTableDescriptor(tableId, schemaPath.next)

tabInfo = CreateTabDescrForThisSchema(parent,

schemaPath.first)

PutTableDescrInCache(tabDescr)

return tabDescr

end if

else

return tabDescr

end if

return not found

end GetTableDescriptor

Listing 1: Table Descriptor Construction Algorithm

lock on the corresponding table and intentional locks on the related
ancestors. The statement only obtains the requested lock if it does
not conflict with existing locks on the table or on ancestor tables.
Hence, a lock of a table in a virtual schema implicitly locks all de-
scendents. In general, our use case entails a flat schema hierarchy.
Thus, locking a table requires recording only few additional locks.

If a data dictionary entry is modified, the system requires to up-
date the related main memory structures. For this, the old entries
are invalidated and discarded. New entries reflecting the modified
version are created during the next access. On invalidating a table
descriptor, the system takes care of invalidating dependent table de-
scriptors in deeper levels of the schema hierarchy. For this purpose,
the invalidation process traverses the subschemas and invalidates
related entries as well.

4.3 Storage Model
The storage model of the Universal Table approach has been

characterized as well-suited for serving a large number of small
tenants with regard to performance. As our work so far focused on
the tenant-aware meta data management, we simply adopted this
storage model and integrated it into our approach. To completely
describe our implementation, we briefly present the integration of
this storage model. Note that our so far presented approach does
not rely on a specific storage model.

Our physical storage model to materialize tables depends on the
type of the associated schema. Tables in shared schemas do not
require to distinguish between tenants. Thus, the original storage
model of PostgreSQL is adequate. Contrarily, the storage model
for tables that are defined in a virtual schema and extended and
instantiated in tenant schemas builds on the model of the Universal
Table approach. That is, we store the tuples of different tenants
intermingled in a single heap array. Each tuple stores the tenant to
which it relates as system attribute in the tuple header. We refer to
this attribute as tenant attribute. In contrast to the Universal Table
approach, a clean separation of system-relevant data and user data
exists. Moreover, this enables minor optimizations while accessing
a tuple.

All insertion operators set the tenant attribute to the tenant of the
tenant context in which they are executed. Furthermore, the oper-
ators that carry out heap scans only return tuples that relate to the
tenant of the current tenant context. Nevertheless, maintenance op-
erations that are triggered by the administrators may scan all tuples,
e. g. to build an index or cluster a heap file. The system interprets
the tuple according to the schema of the related tenant. This avoids
storing NULL values to enable attribute extensions as opposed to
the Universal Table approach.

As discussed, an index definition in a virtual schema is effective
for all derived schemas. Thus, we index tuples of all tenants whose
schema is derived from the virtual schema of the index definition by
a single physical index. To distinguish between different tenants,
the index automatically includes the tenant attribute in the index
key definition. Thereby, the tenant attribute precedes the original
index keys. Prepending the tenant attribute partitions the index by
tenants and effectively leads to a Partitioned B-tree [11]. This is
efficient for index scans because the index tuples of a tenant are
stored consecutively. The insert and scan operations on the index
take into account the tenant of the context in which they are exe-
cuted, just as the analogous operations on the heap.

Our approach allows to define new tables and indexes in a ten-
ant schema. Currently, we assign dedicated files to such tables and
indexes. This approach may degrade the buffer pool hit ratio, sim-
ilar to the Shared Process approach. Thus, in future work we will
develop a storage model tailored towards multi-tenancy.

124

5. EVALUATION
Our approach mainly targets tenant-aware meta data manage-

ment. Thus, our main enhancements affect the data dictionary. To
evaluate data dictionary performance of our approach compared to
other approaches, we embark upon an experiment to measure mem-
ory consumption and lookup time. At that, we draw a comparison
between the Shared Process, the Shared Table and our approach.
Using the results of this experiment, we discuss the usability of our
approach as well as future work.

5.1 Experimental Results
With respect to performance, our approach targets saving main

memory to increase scalability and maximize space available for
query processing. We save main memory by sharing the application
core schema among tenants. To retrieve insight about the effective-
ness of this idea, we developed a test that extends an application
core schema by a given number of custom attributes per tenant.
Thereafter, the test issues queries for each table and each tenant
and measures lookup time as well as main memory consumption
of the data dictionary. PostgreSQL does not provide a mechanism
to retrieve data dictionary lookup times. Therefore, we measured
the total execution time of a query. To minimize effects that are
not related to the data dictionary, our test prepends the EXPLAIN
keyword to each query. This causes PostgreSQL to executes all
query processing steps except for the execution of the generated
plan. For simple queries, accessing the data dictionary takes con-
siderable time during parsing and planning. Thus, the time for ex-
ecuting a query with EXPLAIN gives a rough estimation of lookup
times for the data dictionary. In the remainder, we refer to a query
that includes the EXPLAIN keyword as explain query.

5.1.1 Data Dictionary Test Environment

As application core schema, we used the TPC-C schema [22]
depicted in Fig. 7. The schema comprises 9 tables, 12 indexes
and 86 attributes. For the Shared Process approach, our test cre-
ates for each tenant a dedicated schema instance by mapping it
onto a SQL schema whose name includes the related tenant, e. g.
shop_tenant23. Thereafter, the test defines custom attributes
in each schema. The Shared Table approach requires only one
schema. Our test defines this schema with custom attributes and
adds an attribute to store the tenant. For our approach, the test cre-
ates the schema depicted in Fig. 7 as virtual schema Shop. Next, it
creates the given number of tenants and, thus, tenant schemas. A
tenant’s schema inherits from Shop. Finally, the test defines cus-
tom attributes in each tenant schema. For each approach, the test
distributes the number of custom attributes per tenant evenly over
the tables Item, Customer, District, and Warehouse. For example,
32 custom attributes per tenant entails 8 custom attributes per table.
The custom attributes are of type varchar.

Figure 7: Schema that our test uses as application core schema.

The test extends this schema per tenant by a given number of

custom attributes.

After generating the schemas, our test creates a random sequence
of explain queries that we call explain sequence. The sequence con-
tains exactly one explain query for each table and each tenant. An
explain query projects all attributes of the related table. Depending
on the approach, the explain queries slightly differ. Explain queries
for the Shared Process approach qualify a tenant’s tables by placing
the name of the associated schema in front of table names. Explain
queries for the Shared Table approach obtain a selection predicate
according to the related tenant. For our approach, the test places a
suitable SET TENANT statement in front of the explain query in
order to set the related tenant.

The test executes the generated explain sequence two times in a
row. Thereafter, it shutdowns the DBMS and restarts it with an-
other database. The test switches between systems and databases
according to the approaches that are evaluated. In between, it drops
file system caches of the Linux kernel. Hence, the first execution
of the explain sequence uses a cold cache, whereas the second exe-
cution uses a warm cache. The test executes the explain sequences
sequentially over a single session.

The test reports for each explain query the end-to-end execution
time as difference from the time of issuing the explain query to
the time of retrieving the results. After executing a sequence, our
test additionally reports the resident main memory consumption of
the corresponding PostgreSQL Backend using smaps in the proc-
interface of Linux. Hence, each test run measures main memory
consumption two times.

For our tests, we ran the databases on a Dell Optiplex 755 that
was equipped with an Intel Core2 Quad Q9300 CPU running at
2.50 GHz and 4 GB of main memory. We stored the database and
its write-ahead log on two striped 250 GB SATA 3.0 GB/s hard
drives spinning at 7.200 RPM. The test machine ran a 64 bit 2.6.31
Linux kernel (Ubuntu release 9.10 Server). The client machine
on which we ran our test tools was equipped with four Dual Core
AMD Opteron 875 CPUs running at 2.2 GHz and 32 GB of main
memory. The operating system was a 64 bit 2.6.9 Linux Kernel
(CentOS release 4.8). This machine was connected to the database
machine over a 1 GBit/s ethernet network. We used the default
database configuration generated by PostgreSQL, except the size
of the buffer pool, which we increased to 1024 MB. Thus, the data
dictionary tables totally fit in buffer pool.

5.1.2 Measurements

Table 1 lists the main memory consumption of our test cases.
We ran each test case three times. For each test case, we report
the highest measured memory consumption of the three runs af-
ter executing the generated explain sequence the second time. The
measured values after the first execution of the query sequence are
nearly identical, though. That is because the required meta data
was completely loaded during the first execution. Thus, the sec-
ond execution just queries the data dictionary cache, but it does not
build additional structures.

The measurements evidence almost constant memory consump-
tion to the Shared Table approach. The memory consumption of the
Shared Table approach does not depend on the number of tenants,
but only on the number of custom attributes. This is evident as the
meta data for custom attributes is naturally shared among all ten-
ants. The amount of additional meta data on increasing the number
of custom attributes is fairly small. Contrarily, the Shared Process
and our approach consume considerably more memory by a higher
number of tenants and custom attributes. The memory consump-
tion of both approaches increases almost identical for higher num-
bers of custom attributes. We expected this behavior because both
keep custom attributes dedicated for each tenant.

125

Shared Process Shared Table Native MT Support
Cust. Attr. 1000 10000 1000 10000 1000 10000

0 193 2.041 4 4 15 106
32 236 2.308 4 4 43 387
64 267 2.586 4 4 70 654
128 329 3.114 5 5 123 1197

Table 1: PostgreSQL Backend’s main memory consumption in

MBwith different numbers of custom attributes per tenant and

different tenant cardinalities.

Considering the absolute memory consumption, our approach re-
quires considerably less memory than the Shared Process approach.
For 10000 tenants, the difference approximately amounts to 1900
MB, independent of the number of custom attributes. This result
approves the effectiveness of sharing the application core schema.
Our approach consumes little main memory for 10000 tenants

without customization. Yet, as already pointed out, our approach
naturally consumes considerable more main memory by higher de-
grees of customization per tenant. Consequently, the scalability of
our approach mainly depends on the customization requirements.
Note that this does not apply to the Shared Process approach, as
an additional tenant requires a new instance of the application core
schema. Thus, each new tenant takes a serious amount of main
memory. Regarding the high main memory consumption of the
Shared Process approach for a large number of tenants, our mea-
surements confirm results of previous research [16].
Interestingly, our measurements show that an additional attribute

requires approximately 800 Bytes of main memory, although an en-
try in the system table Attribute has an average size of 107 Bytes.
Thus, an attribute consumes at least seven times more main mem-
ory than the size of its external representation. That is because of
high redundancy in the main memory structures. So far, typical
use cases had only smaller amounts of meta data. Therefore, Post-
greSQL adopts main memory structures optimized for fast access,
but not for size. In our use case, however, the amount of meta
data becomes considerably large. The implementation of the main
memory structures has to take this into account. Note that even
if the access to a single structure may suffer by optimizing it for
size, the overall performance may increase due to the lower main
memory consumption of the data dictionary.
Our execution time measurements demonstrate how larger main

memory structures of the data dictionary degrade its lookup time.
To exemplify the characteristics of the different approaches, we re-
port the measured times for 10000 tenants and 64 custom attributes
in Fig. 8. We only report one test case as others have shown identi-
cal characteristics. To smoothen the graph and reduce the number
of points for readability, we accumulated the measured times for
every 1000 explain queries. Note that we ran each test case three
times. The results of the runs where consistent for which we only
report the values of the first run.
The Shared Table approach provides constant lookup times over

the whole run. Only at the beginning, the lookup time is higher as
the system table pages are read from disk. The same behavior ap-
plies to the Shared Process and our approach (referred to as Native
MT Support in the figure). Yet, it takes longer until the buffer pool
can satisfy all page requests because the data dictionary is larger
and, thus, occupies more pages.
The graph clearly indicates the finish of the first execution and

the start of the second execution of the explain sequence (90000).
As the second execution uses a warm data dictionary cache, all ap-
proaches provide constant times. The lookup times of the Shared

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160 180

ti
m

e
 [
s
e
c
o
n
d
s
]

number of query window in explain sequence

Shared Process
Native MT Support

Shared Table

Figure 8: Data dictionary lookup times for 10000 tenants and

64 custom attributes per tenants. We ran the explain sequence

in query windows of 1000 explain queries. We refer to our ap-

proach as Native MT Support.

Process approach increases until the first execution of the gener-
ated query sequence finishes. The increasing lookup times have
their seeds in the considerable amount of used main memory and
more collisions in the hash tables of the data dictionary cache. Our
approach degrades for the same reasons during the first execution
of the sequence, but lesser. The saltus in lookup times of our ap-
proach, after the first execution of the query sequence, hints at the
efforts of recursively stepping through the schema inheritance hier-
archy. This effort falls away for the second execution of the explain
sequence.

Finally, Fig. 9 reports the accumulated lookup times for the sec-
ond execution of the explain sequence, i. e. only explain queries
against a warm data dictionary cache. Note that 9a) demonstrates
accumulated times of 9000 explain queries, whereas 9b) demon-
strates the accumulated times of 90000 explain queries. The times
of the Shared Process approach increase quite linearly with the
number of tenants. Contrarily, our approach provides almost iden-
tical times for 1000 and 10000 tenants without custom attributes.
The times of the Shared Process and of our approach increase more
than linearly with the number of custom attributes. As our approach
maintains a smaller data dictionary, it does not degrade as much as
in the Shared Process approach. Hence, for 10000 tenants and 64
custom attributes per tenant, our approach takes about 0,7 millisec-
onds per explain query as opposed to the Shared Process approach
that takes about 7 milliseconds per explain query.

5.2 Discussion and Future Work
The Shared Table approach outperforms our approach in the pre-

sented measurements. However, regarding functionality, the naive
comparison of the Shared Table approach to our approach com-
pares apples and oranges. As opposed to our approach, the Shared
Table approach requires to build tenant-aware meta data manage-
ment functionality in the application on top of the RDBMS. This
causes extra runtime overhead, which needs to be added to the |per-
formance figures of the Shared Table approach for a fair compari-
son. Furthermore, this means that each and every application that
adopts the Shared Table approach has to implement its own so-
lution, which is complex, error-prone and expensive. This is natu-
rally worse than implementing and testing only one solution, which
is feasible as tenant-aware meta data management is typically not

126

 1

 10

 100

 1000

0 32 64 128

ti
m

e
 [
s
e
c
o
n
d
s
]

number of custom attributes per tenant

Shared Process

Shared Table

Native MT Support

(a) 1000 Tenants

 1

 10

 100

 1000

0 32 64 128

ti
m

e
 [
s
e
c
o
n
d
s
]

number of custom attributes per tenant

Shared Process

Shared Table

Native MT Support

(b) 10000 Tenants

Figure 9: Accumulated data dictionary lookup times of querying each table (see Fig. 7) for each tenant on a warm data dictionary

cache. We refer to our approach as Native MT Support.

specific to a single application. It might be objected that appro-
priate middleware solutions may compensate for this issue. Yet,
building a tenant-aware meta data management solution on top of
the RDBMS requires re-implementing competencies a RDBMS al-
ready offers. Solutions on top of the RDBMS must implement a
data dictionary similar to the data dictionary of the RDBMS, al-
though multi-tenancy does not change the data model, i. e. the re-
lational model remains. Moreover, they must parse, interpret and
rewrite queries; RDBMSs are specialized at this and perform these
steps anyway. Thus, solutions on top of the RDBMS cause doubled
efforts for implementation as well as for runtime. Furthermore, if
the RDBMS loses control and responsibility for the information
about data, it also loses some optimization opportunities, e. g. spe-
cialized index structures for certain data types. Finally, a solution
on top of the RDBMS entails another piece of software or system
which has to be maintained. On the basis of the points mentioned,
we argue that native support of multi-tenancy in RDBMSs for SaaS
is mandatory. This is also in line with Separation of Concerns.
As opposed to the Shared Table approach, our approach provides

native features to tenant-aware data management in the RDBMS.
So far, we focused on tenant-aware meta data management to ease
the development of multi-tenant SaaS applications that rely on a
RDBMS. Of course, further tenant-aware data management fea-
tures are required, e. g. backup and recovery per tenant or migra-
tion of a tenant to another system. Nevertheless, we are confident
that our approach builds a perfect infrastructure to create such oper-
ations as it provides the concept of a tenant context and introduces
tenants as first-class database objects.
To improve scalability while providing tenant-aware meta data

management in the RDBMS, our approach exploits characteristics
specific to multi-tenant SaaS applications that rely on a RDBMS.
Our idea is to share the application core schema among tenants.
Our measurements show that adopting this idea may considerably
decrease main memory consumption and lookup times of the data
dictionary compared to a totally dedicated schema per tenant, as
in the Shared Process approach. Of course, lookup times of the
data dictionary only form a small fraction of total query time. For
instance, taking the 7 milliseconds for 10000 tenants and 64 cus-
tom attributes of the Shared Table approach and assuming an aver-
age runtime of 280 milliseconds for a simple query, the data dic-
tionary lookup times only form 2.5 %. Thus, we do not consider
our results of data dictionary lookup times significant to the over-

all performance of query processing. However, the experiments
show that our approach does not significantly degrade dictionary
lookup times, although meta data management in our approach is
more complex due to its schema inheritance hierarchy. The actual
performance benefit of our approach is the moderate main memory
consumption of the data dictionary while providing tenant-aware
meta data management. This is an important point, as the data
dictionary may seriously degrade main memory consumption, thus
limiting available space for the buffer pool, which ultimately im-
pacts overall query performance. For instance, assume that a ma-
chine with 32 GB of main memory runs our test case for 10000
tenants and 128 custom attributes. In this case, the Shared Process
approach would leave 29 GB for query processing, whereas our
approach would leave 31 GB, which is about 7 % more.

Note that the discussed issues also apply to pre-compiled queries.
Pre-compiled queries avoid the overhead of parsing and planning
during runtime and, thus, decrease accesses to the data dictionary.
However, to execute pre-compiled queries, the RDBMS still re-
quires to access meta data in order to interpret accessed data. Stor-
ing all required meta data in the plans of the pre-compiled queries
yields similar scalability issues as in the Shared Process approach.
Thus, pre-compiled queries also benefit from our approach, if they
use the data dictionary cache during execution.

Besides meta data management, the storage model is crucial in
RDBMS. For the present, we integrated a storage model that bases
upon the Universal Table approach. This decision was driven by
the proven and good performance of the Universal Table approach.
As a benefit of our tenant-aware data dictionary, our approach does
not require storing NULL values to enable per-tenant schema ex-
tension, as opposed to the Universal Table approach. Our own pre-
liminary performance measurements show that this fact causes a
performance improvement if the ratio between the maximum num-
ber and average number of custom attributes is high. In this case,
the benefit of avoiding to store NULL values amortizes the penalty
due to the higher memory consumption of our approach.

Despite the proven and good performance of the described stor-
age model, it is unclear whether it really meets the requirements to
build an efficient tenant-aware data management. Considerations
so far concentrate on the performance of query processing. Yet,
tenant-aware data management also requires appropriate tenant-
aware administrative operations such as backup and recovery of
one tenant, migration or replication of one tenant to another ma-

127

chine, removal of one tenant and so forth. The described storage
model implies that these operations have to deal with single tuples.
This is an apparent issue that requires further analysis.
On the basis of the points mentioned, we see two main directions

to a completely tenant-aware RDBMS:

1. Creating tenant-aware administrative operations.

2. Developing a storage model that is tailored to the require-
ments of tenant-aware data management.

As our concrete next steps, we plan to identify relevant tenant-
aware administrative operations. Thereafter, we plan to evaluate
the identified operations on different storage models.

6. CONCLUSION
We motivated the requirement for appropriate functionality in

RDBMSs to support tenant-aware data management natively and
presented first features to fulfill this requirement. At this, we fo-
cused on tenant-aware meta data management.
We introduced the concept of a tenant context that logically as-

sembles all information that describes the tenant’s view of the data-
base and cleanly isolates tenants among another. Furthermore, we
presented a schema inheritance concept tailored to multi-tenancy.
The concept offers different schema types for different challenges.
Virtual schemas intend to describe application core schemas. Vir-
tual schemas that inherit from other virtual schemas enable to spe-
cialize the application core schema for specific domains. Tenant
schemas that inherit from virtual schemas enable schema isolation
and per-tenant schema extension.
Our approach eases the development of multi-tenant SaaS ap-

plications that rely on a RDBMS, as it prevents the implementa-
tion of a complex query rewriter on top of the RDBMS. More-
over, it facilitates the central maintenance of the application core
schema and the individual maintenance of tenants’ schemas. As
the RDBMS knows and controls the application core schemas as
well as the tenants’ schemas, the RDBMS can optimize data access
and data processing. Moreover, our concept avoids redundancy by
sharing the application core schema among tenants. Our measure-
ments show that sharing the application core schema considerably
decreases main memory consumption and lookup times of the data
dictionary compared to totally dedicated schemas per tenant.
A lot of further work exists to obtain a RDBMS that facilitates

complete and efficient support for multi-tenancy. Our future work
concentrates on better understanding the tradeoffs between normal
query processing and administrative operations of different storage
models for multi-tenancy.

Acknowledgements

Wewould like to thank Nazario Cipriani and Alexander Moosbrug-
ger for improving our work by their useful advice.

7. REFERENCES

[1] Amazon. Amazon SimpleDB.
http://aws.amazon.com/simpledb/, 2010.

[2] C. Anderson. The Long Tail: Why the Future of Business Is

Selling Less of More. Hyperion, 2006.

[3] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger.
Multi-Tenant Databases for Software as a Service:
Schema-Mapping Techniques. In Proc. of SIGMOD Conf.,
pages 1195–1206, 2008.

[4] S. Aulbach, D. Jacobs, A. Kemper, and M. Seibold. A
Comparison of Flexible Schemas for Software as a Service.
In Proc. of SIGMOD Conf., pages 881–888, 2009.

[5] J. L. Beckmann, A. Halverson, R. Krishnamurthy, and J. F.
Naughton. Extending RDBMSs to Support Sparse Datasets
Using an Interpreted Attribute Storage Format. In Proc. of
ICDE, pages 1–58, 2006.

[6] M. T. Carl Osipov, Germán Goldszmidt and I. Poddar.
Develop and Deploy Multi-Tenant Web-delivered Solutions
using IBM middleware: Part 2: Approaches for enabling
multi-tenancy. IBM Corp. Website, 2009.

[7] F. Chong and G. Carraro. Architecture Strategies for
Catching the Long Tail. Microsoft Corp. Website, 2006.

[8] D. Florescu and D. Kossmann. A Performance Evaluation of
Alternative Mapping Schemes for Storing XML Data in a
Relational Database. Technical report, INSTITUT
NATIONAL DE RECHERCHE EN INFORMATIQUE ET
EN AUTOMATIQUE, 1999.

[9] G. C. Frederick Chong and R. Wolter. Multi-Tenant Data
Architecture. Microsoft Corp. Website, 2006.

[10] GoECart. GoECart. http://www.goecart.com, 2010.

[11] G. Graefe. Sorting and Indexing with Partitioned B-Trees. In
Proc. of CIDR., 2003.

[12] J. Gray. Notes on Data Base Operating Systems. In
Operating Systems, An Advanced Course, pages 393–481,
1978.

[13] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao. A
Framework for Native Multi-Tenancy Application
Development and Management. In Proc. of CEC/EEE, pages
551–558, 2007.

[14] M. Hui, D. Jiang, G. Li, and Y. Zhou. Supporting Database
Applications as a Service. In Proc. of ICDE, pages 832–843,
2009.

[15] IBM. DB2 9.7 LUW Infocenter – SQL and XML Limits,
2010.

[16] D. Jacobs and S. Aulbach. Ruminations on Multi-Tenant
Databases. In Proc. of BTW Conf., pages 514–521, 2007.

[17] R. P. Mahowald. Worldwide Software as a Service
2010-2014 Forecast: Software Will Never Be the Same. In
IDC Report, Number 223628, 2010.

[18] T. McKinnon. Plug Your Code in Here - An Internet
Application Platform. http://www.hpts.ws/
papers/2007/hpts_conference_oct_2007.ppt,
2007.

[19] Oracle. Oracle Database JDBC Developer’s Guide and
Reference 11g (11.1) – Proxy Authentication.

[20] Oracle. Oracle Database SQL Language Reference 11g
(11.1) – Oracle Compliance with FIPS 127-2, 2008.

[21] Salesforce.com. Salesforce. http://www.salesforce.com,
2010.

[22] Transaction Processing Performance Council. TPC
Benchmark C, Standard Specification, Revision 5.10.1, 2009.

[23] Z. H. Wang, C. J. Guo, B. Gao, W. Sun, Z. Zhang, and W. H.
An. A Study and Performance Evaluation of the
Multi-Tenant Data Tier Design Patterns for Service Oriented
Computing. In Proc. of ICEBE, pages 94–101, 2008.

[24] C. D. Weissman and S. Bobrowski. The design of the
force.com multitenant internet application development
platform. In Proc. of SIGMOD Conf., pages 889–896, 2009.

[25] Zimbra. Zimbra. http://www.zimbra.com, 2010.

128

