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ABSTRACT

Graph clustering has generally concerned itself with cluster-
ing undirected graphs; however the graphs from a number of
important domains are essentially directed, e.g. networks of
web pages, research papers and Twitter users. This paper
investigates various ways of symmetrizing a directed graph
into an undirected graph so that previous work on clustering
undirected graphs may subsequently be leveraged. Recent
work on clustering directed graphs has looked at general-
izing objective functions such as conductance to directed
graphs and minimizing such objective functions using spec-
tral methods.We show that more meaningful clusters (as
measured by an external ground truth criterion) can be ob-
tained by symmetrizing the graph using measures that cap-
ture in- and out-link similarity, such as bibliographic cou-
pling and co-citation strength. However, direct application
of these similarity measures to modern large-scale power-
law networks is problematic because of the presence of hub
nodes, which become connected to the vast majority of the
network in the transformed undirected graph. We carefully
analyze this problem and propose a Degree-discounted sim-
ilarity measure which is much more suitable for large-scale
networks. We show extensive empirical validation.

Categories and Subject Descriptors

G.2.2 [Graph Theory]: Graph Algorithms; I.5.3 [Pattern
Recognition]: Clustering

General Terms

Algorithms,Performance

Keywords

Directed Graphs, Clustering, Graph Transformations
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A number of complex systems and applications can be
modeled in the form of a relationship graph or network. Ex-
amples abound ranging from Protein Interaction Networks
to Twitter networks, from Citation networks to technologi-
cal networks such as the hyperlinked structure on the World
Wide Web. Analyzing such networks can yield important
insights about the domain problem in question. A common
analysis tool here is to discover the community or cluster
structure within such networks.

Directed graphs are essential in domains where relation-
ships between the objects may not be recriprocal i.e., there
may be an implicit or explicit notion of directionality in the
context of the complex system being modeled. Most of the
work to date on community discovery or clustering of graphs
has targeted undirected networks and very little has focused
on the thorny issue of community discovery in directed net-
works as noted in a recent survey on the topic[8].

A major challenge is that the nature of relationships cap-
tured by the edges in directed graphs is fundamentally dif-
ferent from that for undirected graphs. Consider a citation
network where an edge exists from paper i to j if i cites j.
Now i may be a paper on databases that cites an impor-
tant result from the algorithmic literature (j). Our point
is that paper i need not necessarily be similar to paper j.
A common approach to handle directionality is to ignore
it – i.e. eliminate directionality from edges and compute
communities. In the above example that would not be the
appropriate solution. Such a semantics of directionality is
also evident in the directed social network of Twitter, where
if a person i follows the feed of a person j, it tell us that
i thinks the updates of j are interesting but says nothing
about the similarity of i and j.

The central, and novel, insight driving our research is that
groups of vertices which share similar in-links and out-links
make meaningful clusters in directed graphs. This is in di-
rect contrast to previous research (summarized in Section 2)
on clustering directed graphs, which either simply ignores
the directionality of the edges or concentrates on new ob-
jective functions for directed graphs which do not take into
account in-link and out-link similarity of the nodes. For de-
tecting clusters with homogenous in-link and out-link struc-
ture, we suggest a two-stage framework; in the first stage,
the graph is symmetrized i.e. transformed into an undirected
graph, and in the second stage, the symmetrized graph is
clustered using existing state-of-the-art graph clustering al-
gorithms. The advantages of the two-stage symmetrization
framework are that (i) it is flexible - prior methods for di-
rected graph clustering can also be equivalently expressed
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in this framework, (ii) it makes the underlying assump-
tions about which kinds of nodes should be clustered to-
gether explicit (i.e. the implicit similarity measure being
used in the clustering), and (iii) it allows us to leverage the
progress made in (undirected) graph clustering algorithms.
We propose two novel symmetrization methods, Bibliomet-
ric and Degree-discounted. Bibliometric symmetrization sets
the similarity between a pair of nodes as being the number of
common in- and out-links between the two nodes. However,
this approach does not work well with large scale power-law
graphs, since the hub nodes in such graphs introduce many
spurious connections in the symmetrized graph. To alleviate
this problem, we propose Degree-discounted symmetrization
which discounts the contribution of nodes according to their
degree, and therefore eliminates or downweights such hub-
induced connections in the symmetrized graph.

We perform evaluation on four real datasets, three of
which (Wikipedia, LiveJournal and Flickr) have million plus
nodes, and two (Wikipedia,Cora) of which have dependable
ground truth for evaluating the resulting clusters. We exam-
ine the characteristics of the different symmetrized graphs
in terms of their suitableness for subsequent clustering. Our
proposed Degree-discounting symmetrization approach achieves
a 22% improvement in F scores over a state-of-the-art di-
rected spectral clustering algorithm on the Cora dataset,
and furthermore is two orders of magnitude faster. The
degree-discounting symmetrization is also shown to enable
clustering that is at least 4-5 times faster than other sym-
metrizations on our large scale datasets, as well as enabling
a 12% qualitative improvement in Wikipedia. We also show
examples of the clusters that our symmetrization enables
recovery of in the Wikipedia dataset; such clusters validate
our claim that interconnectivity is not the only criterion for
clusters in directed graphs, and that in-link and out-link
similarity is important as well. Ours is, to the best of our
knowledge, the first comprehensive comparison of different
graph symmetrization techniques.

In summary, the contributions of our paper are as follows:

1. We argue and provide evidence for the merits of an
explicit symmetrization-based approach to clustering
directed graphs. This is in contrast to recent work
which attempted to design specialized spectral algo-
rithms with limited scalability.

2. We propose the Bibliometric and Degree-discounted
symmetrizations that take into account in-link and
out-link similarities (which existing directed graph clus-
tering approaches do not), with Degree-discounted also
appropriately downweighting the influence of hub nodes.

3. We extensively compare the different symmetrizations,
as well as a state-of-the-art directed graph clustering
algorithm, on real world networks, providing empirical
evidence for the usefulness of our proposed approaches.

2. PRIORWORK

2.1 Normalized cuts for directed graphs
Many popular methods for clustering undirected graphs

search for subsets of vertices with low normalized cut [11,
18, 21] (or conductance[11], which is closely related). The
normalized cut of a group of vertices S ⊂ V is defined as[21,

18]

Ncut(S) =

∑

i∈S,j∈S̄ A(i, j)
∑

i∈S degree(i)
+

∑

i∈S,j∈S̄ A(i, j)
∑

j∈S̄ degree(j)
(1)

where A is the (symmetric) adjacency matrix and S̄ = V −S

is the complement of S. Intuitively, groups with low nor-
malized cut are well connected amongst themselves but are
sparsely connected to the rest of the graph.

The connection between random walks and normalized
cuts is as follows [18] : Ncut(S) in Equation 1 is the same
as the probability that a random walk that is started in the
stationary distribution will transition either from a vertex
in S to a vertex in S̄ or vice-versa, in one step [18]

Ncut(S) =
Pr(S → S̄)

Pr(S)
+

Pr(S̄ → S)

Pr(S̄)
(2)

Using the unifying concept of random walks, Equation 2
have been extended to directed graphs by Zhou et. al. [24]
and Huang et. al. [10]. Let P be the transition matrix of a
random walk on the directed graph, with π being its associ-
ated stationary distribution vector (e.g. PageRank vector)
satisyfing πP = π. The probability that a random walk
started in the stationary distribution traverses a particular
directed edge u → v is given by π(u)P (u, v). The Ncut of a
cluster S is again the probability of a random walk transi-
tioning from S to the rest of the graph, or from the rest of
the graph into S in one step:

Ncutdir(S) =

∑

i∈S,j∈S̄ π(i)P (i, j)
∑

i∈S π(i)
+

∑

j∈S̄,i∈S π(j)P (j, i)
∑

j∈S̄ π(j)

(3)
Meila and Pentney [17] introduce a general class of weighted

cut measures on graphs, called WCut, parameterized by the
vectors T, T ′ and the matrix A:

WCut(S) =

∑

i∈S,j∈S̄a T
′(i)A(i, j)

∑

i∈S T (i)
+

∑

j∈S̄,i∈S T ′(j)A(j, i)
∑

j∈S̄ T (j)

(4)
Different NCut measures can be recovered from the above
definition by plugging in different values for T, T ′ and A,
including the definitions forNCut andNCutdir given above.

All of the above work minimizes these various cut mea-
sures via spectral clustering i.e. by post-processing the eigen-
vectors of suitably defined Laplacian matrices. The Lapla-
cian matrix L for Ncutdir , e.g., is given by [24, 10, 4]

L = I −
Π1/2PΠ−1/2 +Π−1/2P ′Π1/2

2
(5)

where P is the transition matrix of a random walk, and Π is
a diagonal matrix with diag(P ) = π, π being the stationary
distribution associated with P .

2.1.1 Drawbacks of normalized cuts for directed graphs

A common drawback of the above line of research is that
there exist meaningful clusters which do not necessarily have
a low directed normalized cut. The prime examples here are
groups of vertices which do not point to one another, but all
of which point a common set of vertices (which may belong
to a different cluster) We present an idealized example of
such situations in Figure 1, where the nodes 4 and 5 can be
legitimately seen as belonging to the same cluster, and yet
the Ncutdir for such a cluster will be high (the probabil-
ity that a random walk transitions out of the cluster {4, 5}
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Figure 1: The nodes 4 and 5 form a natural cluster
even though they don’t link to one another, as they
point to the same nodes and are also pointed to by
the same nodes.

to the rest of the graph, or vice versa, in one step, is very
high.) Such situations may be quite common in directed
graphs. Consider, for example, a group of websites that be-
long to competing companies which serve the same market;
they may be pointing to a common group of websites out-
side themselves (and, similarly be pointed at by a common
group of websites), but may not point at one another for fear
of driving customers to a competitor’s website. Another ex-
ample may be a group of research papers on the same topic
which are written within a short span of time and there-
fore do not cite one another, but cite a common set of prior
work and are also in the future cited by the same papers.
We present real examples of such clusters in Section 5.7.

Another drawback of the above line of research is the poor
scalability as a result of the dependence on spectral cluster-
ing (except for Andersen et. al. [1] who use local partitioning
algorithms). We further discuss this issue in Section 3.2.

2.2 Bibliographic coupling and co-citationma-
trices

The bibliographic coupling matrix was introduced by Kessler [13],
in the field of bibliometrics, for the sake of counting the
number of papers that are commonly cited by two scientific
documents. It is given by B = AAT , and B[i, j] gives the
number of nodes that the nodes i and j both point to in the
original directed graph with adjacency matrix A.

B(i, j) =
∑

k

A(i, k)A(j, k)

=
∑

k

A(i, k)AT (k, j)

B = AA
T

The co-citation matrix was introduced by Small [22], again
in the field of bibliometrics. It is given by C = ATA, and
C[i, j] gives the number of nodes that commonly point to
both i and j in the original directed graph.

3. GRAPH SYMMETRIZATIONS
We adopt a two-stage approach for clustering directed

graphs, schematically depicted in Figure 2. In the first stage
we transform the directed graph into an undirected graph
(i.e. symmetrize the directed graph) using one of different
possible symmetrization methods. In the second stage, the
undirected graph so obtained is clustered using one of sev-
eral possible graph clustering algorithms. The advantage
of this approach is that it allows a practitioner to employ
a graph clustering algorithm of their choice in the second
stage. For example, spectral clustering algorithms are typ-
ically state-of-the-art quality-wise, but do not scale well as
eigenvector computations can be very time-consuming [5].

Under such circumstances, it is useful to be able to plug in
a scalable graph clustering algorithm of our own choice, such
as Graclus [5], MLR-MCL [20], Metis [12] etc. Note that it
is not the objective of this paper to propose a new (undi-
rected) graph clustering algorithm or discuss the strengths
and weaknesses of existing ones; all we are saying is that
whichever be the suitable graph clustering algorithm, it will
fit in our framework.

Of course, the effectiveness of our approach depends cru-
cially on the the symmetrization method. If the symmetriza-
tion itself is flawed, even a very good graph clustering algo-
rithm will not be of much use. But do we have reason to
believe that an effective symmetrization of the input directed
graph is possible? We believe the answer is yes, at least if the
domain in question does indeed have some cluster structure.
Fundamentally a cluster is a group of objects that are similar
to one another and dissimilar to objects not in the cluster.
If a domain admits of clusters, this means that there must
exist some reasonable similarity measure among the objects
in that domain. Since similarity measures are generally sym-
metric (i.e. similarity(i, j) = similarity(j, i)) and positive,
defining a notion of similarity for a fixed set of input objects
is equivalent to constructing an undirected graph among
them, with edges between pairs of objects with non-zero
similarity between them and the edge weight equal to the
actual value of the similarity. In fact, our proposed degree-
discounted symmetrization method can just as validly be
thought of as measuring the similarity between pairs of ver-
tices in the input directed graph.

We next discuss various ways to symmetrize a directed
graph. In what follows, G will the original directed graph
with associated (asymmetric) adjacency matrix A. GU will
be the resulting symmetrized undirected graph with associ-
ated adjacency matrix U .

3.1 A+ AT

The simplest way to derive an undirected graph from a
directed one is via the transformation U = A + AT . Note
that this is very similar to the even simpler strategy of sim-
ply ignoring the directionality of the edges, except that in
the case of pairs of nodes with directed edges in both di-
rections, the weight of the edge in the symmetrized graph
will be the sum of the weights of the two directed edges.
It is important to empiricallly compare this scheme against
other symmetrizations since this is the implicit symmetriza-
tion commonly used [15, 5, 17, 24].

The advantage of this method is, of course, its simplicity.
On the other hand, this method will fare poorly with situa-
tions of the sort depicted in Figure 1; the nodes 4 and 5 will
continue to remain unconnected in the symmetrized graph,
making it impossible to cluster them together.

3.2 Random walk symmetrization
Is it possible to symmetrize a directed graph G into GU

such that the directed normalized cut of a group of vertices
S, NCutdir(S) is equal to the (undirected) normalized cut
of the same group of vertices in the symmetrized graph GU?
The answer turns out to be yes.

Let P be the transition matrix of the random walk, π its
associated stationary distribution, and Π is the diagonal ma-
trix with π on the diagonal.Let U be the symmetric matrix

345



Figure 2: Schematic of our framework

such that

U =
ΠP + P TΠ

2

Gleich [9] showed that for the symmetrized graph GU with
associated adjacency matrix U , the (undirected) Ncut on
this graph is equal to the directed Ncut on the original di-
rected graph, for any subset of vertices S. This means that
clusters with low directed ncut can be found by clustering
the symmetrized graph GU , and one can use any state-of-
the-art graph clustering for finding clusters with low ncut
in GU , instead of relying on expensive spectral clustering
using the directed Laplacian (given in Eqn 5) as previous
researchers have [24, 10].

The matrix P can be obtained easily enough by normal-
izing the rows of input adjacency matrix A, and the sta-
tionary distribution π can be obtained via power iterations.
However, the clusters obtained by clustering GU will still be
subject to the same drawbacks that we pointed out in Sec-
tion 2.1.1. Also note that this symmetrization leads to the
exact same set of edges as A+AT , since P and P T have the
same non-zero structure as A and AT and Π is a diagonal
matrix. The actual weights on the edges will, of course, be
different for the two methods.

3.3 Bibliometric symmetrization
One desideratum of the symmetrized graph is that edges

should be present between nodes that share similar (in- or
out-) links, and edges should be absent between nodes in the
absence of shared (in- or out-)links. Both A+AT and Ran-
dom walk symmetrization fail in this regard as they retain
the exact same set of edges as in the original graph; only
the directionality is dropped and, in the case of the Ran-
dom walk symmetrization, weights are added to the existing
edges.

The bibliographic coupling matrix (AAT ) and the co-citation
strength matrix (ATA) are both symmetric matrices that
help us satisfy this desideratum. Recall that AAT mea-
sures the number of common out-links between each pair of
nodes, where as ATA measures the number of common in-
links. As there does not seem to be any obvious reason for
leaving out either in-links or out-links, it is natural to take
the sum of both matrices so as to account for both. In this
case U = AAT + ATA, and we refer to this as bibliometric
symmetrization. 1

Setting A := A + I prior to the symmetrization ensures

1Meila and Pentney [17] compare against the ATA sym-
metrization, but neither suggest nor compare against the
AAT +ATA symmetrization. To the best of our knowledge,
this symmetrization is new to our work.

that edges in the input graph will not be removed from the
symmetrized version.

3.4 Degree-discounted symmetrization
As a consequence of the well-known fact that the degree

distributions of many real world graphs follow a power law
distribution [7, 3], nodes with degrees in the tens as well as
in the thousands co-exist in the same graph. (This is true
for both in-degrees and out-degrees.) This wide disparity in
the degrees of nodes has implications for the Bibliometric
symmetrization; nodes with high degrees will share a lot
of common (in- or out-) links with other nodes purely by
virtue of their higher degrees. This is the motivation for
our proposed Degree-discounted symmetrization approach,
where we take into account the in- and out-degrees of each
node in the symmetrization process.

Another motivation for our proposed symmetrization is
defining a useful similarity measure between vertices in a
directed graph. As noted earlier in Section 3, a meaning-
ful similarity measure will also serve to induce an effective
symmetrization of the directed graph; ideally, we want our
symmetrized graph to place edges of high weight between
nodes of the same cluster and edges of low weight between
nodes in different clusters.

How exactly should the degree of nodes enter into the com-
putation of similarity between pairs of nodes in the graph?
First we will consider how the computation of out-link simi-
larity (i.e. the bibliographic coupling) should be changed to
incorporate the degrees of nodes.

Consider the following two scenarios (see Figure 3(a)):

1. Nodes i and j both point to the node h, which has
in-coming edges from many nodes apart from i and j.
In other words, the in-degree of h, Di(h) is high.

2. Nodes i and j both point to the node k, but which
has in-coming edges only from a few other nodes apart
from i and j.

Intuition suggests that case 1 above is a more frequent (hence
less informative) event than case 2, and hence the former
event should contribute less towards the similarity between
i and j than the latter event. In other words, when two
nodes i and j commonly point to a third node, say l, the
contribution of this event to the similarity between i and j

should be inversely related to the in-degree of l.
Next we consider how the degree of two nodes should fac-

tor into the similarity computation of those two nodes them-
selves. Figure 3(b) illustrates the intuition here: sharing a
common out-link k counts for less when one of the two nodes
that are doing the sharing is a node with many out-links. In
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other words, the out-link similarity between i and j should
be inversely related to the out-degrees of i and j.

We have determined qualitatively how we should take the
in- and the out-degrees of the nodes into account, but the
exact form of the relationship remains to be specified. We
have found experimentally that discounting the similarity by
the square root of the degree yields the best results; mak-
ing the similarity inversely proportional to the degree itself
turned out to be an excessive penalty.

With the above insights, we define the out-link similar-
ity or degree-discounted bibliographic coupling between the
nodes i and j as follows:(Do is the diagonal matrix of out-
degrees, and Do(i) is short-hand for Do(i, i). Similarly Di

is the diagonal matrix of in-degrees. α and β are the dis-
counting parameters. )

Bd(i, j) =
1

Do(i)
α
Do(j)α

∑

k

A(i, k)A(j, k)

Di(k)β

=
1

Do(i)αDo(j)α

∑

k

A(i, k)AT (k, j)

Di(k)β

Note that the above expression is symmetric in i and j. It
can be verified that the entire matrix Bd with its (i, j) entries
specified as above can be expressed as:

Bd = D
−α
o AD

−β
i A

T
D

−α
o (6)

Our modification for the co-citation (in-link similarity)
matrix is exactly analogous to the above discussion; we pro-
ceed to directly give the expression for the matrix Cd con-
taining the degree-discounted co-citation or in-link similari-
ties between all pairs of nodes.

Cd = D
−β
i A

T
D

−α
o AD

−β
i (7)

The final degree discounted similarity matrix Ud is simply
the sum of Bd and Cd.

Ud = Bd + Cd

Empirically we have found α = β = 0.5 to work the best.
Using α = β = 1 penalized hub nodes excessively, while
smaller values such as 0.25 were an insufficient penalty. Pe-
nalizing using the log of the degree (similar to the IDF trans-
formation [16]) was also an insufficient penalty. Therefore,
the final degree-discounted symmetrization is defined as fol-
lows:

Ud = D
−1/2
o AD

−1/2
i A

T
D

−1/2
o +D

−1/2
i A

T
D

−1/2
o AD

−1/2
i

(8)
We point out that the degree-discounting intuition has

been found to be effective for solving other problems on di-
rected graphs previously. In the context of node ranking,
Ding et al. [6] combine the mutual re-inforcement of HITS
with the degree-discounting of PageRank to obtain ranking
algorithms that are intermediate between the two. In the
context of semi-supervised learning, Zhou et al. [25] propose
to regularize functions on directed graphs so as to force the
function to change slowly on vertices with high normalized
in-link or out-link similarity.

3.5 Pruning the symmetrized matrix
One of the main advantages of Degree-discounted sym-

metrization over Bibliometric symmetriation (AAT +ATA)
is that it is much easier to prune the resulting matrix. AAT+

ATA and the Degree-discounted similarity matrix Ud share
the same non-zero structure, but the actual values are, of
course, different. For big real world graphs, the full sim-
ilarity matrix has far too many non-zero entries and clus-
tering the entire resulting undirected graph is very time-
consuming. For this reason, it is critical that it be possible
for us to pick a threshold so as to be able to retain only those
entries in the matrix which pertain to sufficiently similar
pairs of nodes. However, picking a threshold for AAT +ATA

can be very hard; as the degrees of nodes are not taken into
account, the hub nodes in the graph generate a large number
of non-zero entries with high non-zero values (this is because
hubs will tend to share a lot of out-links and in-links with
a lot of nodes just by virtue of their having high degrees).
When we set a high threshold so as to keep the matrix sparse
enough to be able to cluster in a reasonable amount of time,
many of the rows corresponding to the other nodes become
empty. When we lower the threshold in response, the matrix
becomes very dense and it becomes impractical to cluster
such a dense matrix.

This problem is considerably reduced when applying Degree-
discounted symmetrization. This is because the matrix en-
tries involving hub nodes no longer are the largest; this lets
us choose a threshold such that when we retain only matrix
entries above the threshold, we have a matrix that is suffi-
ciently sparse and at the same time covers the majority of
nodes in the graph.

3.6 Complexity analysis
The time complexity in general for multiplying dense ma-

trices is O(n2.8) using Strassen’s algorithm, where n is the
number of rows/columns. However, since our matrices are
sparse, we can do significantly better than that. Each node i
that has di connections (either through in-links or out-links),
contributes to the similarity between each of the

(

di
2

)

pairs of
nodes it connects to. Therefore, the total number of similar-
ity contributions that will need to be computed and added
up is

∑

i d
2

i , which means that a new upper bound on the
time complexity of the similarity computation is O(

∑

i d
2

i ).
We can further improve upon this by exploiting the fact that
we only want to compute those entries in the similarity ma-
trix which are above a certain prune threshold. Bayardo et.
al. [2] outline approaches for curtailing similarity computa-
tions that will provably lead to similarities lower than the
prune threshold, and which can enable significant speedups
compared to computing all the entries in the similarity ma-
trix.

In terms of space complexity, the similarity computation
requires no extra space in addition to that required to store
the similarities themselves.

4. EXPERIMENTAL SETUP

4.1 Datasets
We perform experiments using four real datasets, detailed

below. Also see Table 1.

1. Wikipedia: This is a directed graph of hyperlinks be-
tween Wikipedia articles. We downloaded a snapshot of the
entire Wikipedia corpus from the Wikimedia foundation 2

(Jan–2008 version). The corpus has nearly 12 million arti-
cles, but a lot of these were insignificant or noisy articles

2http://download.wikimedia.org/
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(a) If the nodes i and j both point to a hub node h with many in-
coming edges (left), that should contribue lesser to their similarity
than if they commonly point to a non-hub node k (right)

(b) All else equal, the node i should be less similar to the
hub node h which has many out-going edges (left) when
compared to the non-hub node j (right).

Figure 3: Scenarios illustrating the intuition behind degree-discounting.

Dataset Vertices Edges Percentage of symmetric links No. of ground truth categories
Wikipedia 1,129,060 67,178,092 42.1 17950

Cora 17,604 77,171 7.7 70
Flickr 1,861,228 22,613,980 62.4 N.A.

Livejournal 5,284,457 77,402,652 73.4 N.A.

Table 1: Details of the datasets

that we removed as follows. First, we retained only those
articles with an abstract, which cut the number of articles
down to around 2.1 million. We then constructed the di-
rected graph from the hyperlinks among these pages and
retained only those nodes with out-degree greater than 15.
We finally obtained a directed graph with 1,129,060 nodes
and 67,178,092 edges, of which 42.1% are bi-directional.

Pages in Wikipedia are assigned to one or more categories
by the editors (visible at the bottom of a page), which we
used to prepare ground truth assignments for the pages in
our dataset. We removed the many categories that are
present in Wikipedia for housekeeping purposes (such as
“Articles of low significance”, “Mathematicians stubs”). We
further removed categories which did not have more than 20
member pages in order to remove insignificant categories.
We obtained 17950 categories after this process. Note that
these categories are not disjoint, i.e. a page may belong to
multiple categories (or none). Also, 35% of the nodes in the
graph do not have any ground truth assignment.

2. Cora: This is a directed graph of CS research papers
and their citations. It has been collected and shared by An-
drew McCallum 3. Besides just the graph of citations, the
papers have also been manually classified into 10 different
fields of CS (such as AI, Operating Systems, etc.), with each
field further sub-divided to obtain a total of 70 categories at
the lowest level. Again, 20% of the nodes have not been
assigned any labels.We utilize the classifications at the low-
est level (i.e. 70 categories) for the sake of evaluation. This
graph consists of 17,604 nodes with 77,171 directed edges.
Note that although symmetric links are, strictly speaking,
impossible in citation networks (two papers cannot cite one
another as one of them will need to have been written be-
fore the other), there is still a small percentage (7.7%) of
symmetric links in this graph due to noise.

3. Flickr and 4. Livejournal:These are large scale di-
rected graphs, collected by the Online Social Networks Re-

3http://www.cs.umass.edu/ mccallum/code-data.html

search group at The Max Planck Institute [19]. The number
of nodes and edges for these datasets can be found in Ta-
ble 1. We use these datasets only for scalability evaluation
as we do not have ground truth information for evaluating
effectiveness of discovered clusters.

4.2 Setup
We compare four different graph symmetrization methods

described in Section 3. For Random walk symmetrization,
the stationary distribution was calculated with a uniform
random teleport probability of 0.05 in all cases. We clustered
the symmetrized graphs using MLR-MCL [20], Metis [12]
and Graclus [5]. We are able to show the results of Graclus
only on the Cora dataset as the program did not finish exe-
cution on any of the symmetrized versions of the Wikipedia
dataset. Note that the number of output clusters in MLR-
MCL can only be indirectly controlled via changing some
other parameters of the algorithm; for this reason there is
a slight variation in the number of clusters output by this
algorithm for different symmetrizations.

We also compare against the BestWCut algorithm de-
scribed by Meila and Pentney [17], but on the Cora dataset
alone, as the algorithm did not finish execution on theWikipedia
dataset. It bears emphasis that BestWCut is not a sym-
metrization method. The directed spectral clustering of
Zhou et. al. [24] did not finish execution on any of our
datasets.

All the experiments were performed on a dual core ma-
chine (Dual 250 Opteron) with 2.4GHz of processor speed
and 8GB of main memory. However, the programs were
single-threaded so only one core was utilized. The software
for each of the undirected graph clustering algorithms as well
as BestWCut [17] was obtained from the authors’ respective
webpages. We implemented the different symmetrization
methods in C, using sparse matrix representations.

4.3 Evaluation method
The clustering output by any algorithm was evaluated
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Figure 4: Distributions of node degrees for different
symmetrizations of Wikipedia.

with respect to the ground truth clustering as follows. Let
the output clustering be C = {C1, C2, . . . , Ci, . . . , Ck}. For
any output cluster Ci, the precision and recall of this cluster
against a given ground truth category, say Gj , are defined

as: Prec(Ci, Gj) =
|Ci∩Gj |

|Ci|
and Rec(Ci, Gj) =

|Ci∩Gj |

|Gj |
. The

F-measure F (Ci, Gj) is the harmonic mean of the precision
and the recall. We match each output cluster Ci with the
ground truth cluster Gj for which F (Ci, Gj) is the highest
among all ground truth clusters. This is the F-measure that
is subsequently associated with this cluster, and is referred
to as F (Ci); i.e.

F (Ci) = max
j

F (Ci, Gj)

The average F-measure of the entire clustering C is defined as
the average of the F-measures of all the clusters, weighted by
their sizes (i.e. we compute the micro-averaged F-measure).

Avg.F (C) =

∑

i |Ci| ∗ F (Ci)
∑

i |Ci|

5. RESULTS

5.1 Characteristics of symmetrized graphs
The number of edges in the resulting symmetrized graph

for each symmetrization method for the different datasets
is given in Table 2, along with the pruning thresholds used.
To obtain more insight into the structure of the symmetrized
graphs, we analyze the distribution of node degrees in the
case of Wikipedia (see Figure 4). Note that A + AT and
Random Walk have the same distributions, as they have the
same set of edges. The Degree-discounted method ensures
that most nodes have medium degrees in the range of 50-
200 (which is about the size of the average cluster [15]), and
completely eliminates hub nodes. These properties enable
subsequent graph clustering algorithms to perform well. The
Bibliometric graph, on the other hand, has many nodes with
both very low degrees, as well as many hub nodes, making
clustering the resulting graph difficult. The A + AT graph
also has more hub nodes than the Degree-discounted graph.

5.2 Results on Cora

Results pertaining to cluster quality as well as clustering
time on the Cora dataset are shown in Figures 5 and 6.

Figure 5 (a) compares the Avg. F scores obtained us-
ing MLR-MCL with different symmetrizations. For all sym-
metrizations, the performance reaches a peak at 50-70 clus-
ters, which is close to the true number of clusters (70).
With fewer clusters, the precision is adversely impacted,
while a greater number of clusters affects the recall. Degree-
discounted symmetrization on the whole yields better F scores
than the other methods, and also achieves the best overall F-
value of 36.62. Bibliometric symmetrization also yields good
F-scores with a peak of 34.92, and marginally improves on
Degree-discounted for higher number of clusters. A + AT

and Random walk perform similarly and are relatively poor
compared to the other two methods. Figure 5 (b) shows the
effectiveness of different symmetrizations, this time using a
different clustering algorithm, Graclus. Degree-discounted
symmetrization clearly delivers improvements over the other
symmetrizations in this case as well. This shows that mul-
tiple clustering algorithms can benefit from the proposed
symmetrizations.

Figure 6 (a) fixes the symmetrization to Degree discounted
and compares MLR-MCL, Graclus and Metis with Meila and
Pentney’s BestWCut [17]. The peak F score achieved by
BestWCut is 29.94, while the peak F-scores for MLR-MCL,
Graclus and Metis are 36.62, 34.69 and 34.30 respectively.
Therefore Degree-discounted symmetrization combined with
any of the three clustering algorithms - either MLR-MCL,
Graclus or Metis - comfortably outperforms BestWCut. Us-
ing MLR-MCL, Degree-discounted symmetrization improves
upon BestWCut by 22%.

Figure 6 (b) compares cluster times of MLR-MCL, Gra-
clus and Metis with Degree-discounted symmetrization against
the time taken by BestWCut. All three are much faster than
BestWCut. The slow performance of BestWCut is because
of the need for expensive eigenvector computations, which
none of the other three algorithms involve.

5.3 Results on Wikipedia
We next turn to cluster quality and timing results on

Wikipedia, depicted in Figures 7 and 8. In general, this
dataset was harder to cluster than the Cora dataset, with
an overall peak Avg. F score of 22.79, compared to 36.62
for Cora. Note that we do not have any results from Best-
WCut [17] on this dataset as it did not finish execution.

Figure 7 (a) and (b) compares the Avg. F scores with dif-
ferent symmetrizations using MLR-MCL and Metis.Degree-
discounted symmetrization yields the best Avg F scores,
with a peak F value of 22.79. A + AT gives the next best
results, with a peak F value of 20.31. These peak scores
were obtained using MLR-MCL. Metis on Degree-discounted
symmetrization achieves a peak F-value of 20.15, a signifi-
cant 27% improvement on the next best F-value of 15.95,
achieved using A + AT . Therefore Degree-discounted sym-
metrization benefits both MLR-MCL and Metis. The per-
formance of Random Walk is slightly worse than A+AT but
is otherwise similar. We do not report Metis combined with
Random Walk symmetrization as the program crashed when
run with this input. Bibliometric performs very poorly, with
F scores barely touching 13%. The main reason for the poor
performance of Bibliometric is that explained in Section 3.5
- even though we pruned the outputs of both Bibliometric
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Dataset
A+ AT / Random Walk Bibliometric Degree-discounted

Edges Edges Threshold Edges Threshold
Wikipedia 53,017,527 85,035,548 25 80,373,184 0.01
Flickr 15,555,041 79,765,961 20 45,167,216 0.01
Cora 74,180 986,444 0 986,444 0

Livejournal 51,352,001 143,759,001 5 91,624,309 0.025

Table 2: Number of edges for various symmetrization strategies, and the pruning thresholds used.
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Figure 5: Effectiveness of symmetrizations on Cora using (a) MLR-MCL and (b) Graclus, as the clustering
algorithms.

20 40 60 80 100 120 140

Number of clusters

24

26

28

30

32

34

36

38

40

A
v
g
. 
F

 s
c
o
re

s

Degree-discounted vs BestWCut on Cora

MLR-MCL

Graclus

Metis

Meila and Pentney's BestWCut

(a)

20 40 60 80 100 120 140

Number of clusters

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
 (

in
 s

e
c
o
n
d
s
),

 l
o
g
 s

c
a
le

Clustering times on Cora

Meila and Pentney's BestWCut

MLR-MCL

Metis

Graclus

(b)

Figure 6: Comparison of Degree-discounted symmetrization vs. Meila and Pentney’s BestWCut w.r.t. (a)
Effectiveness and (b) Speed.
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Figure 7: Effectiveness of symmetrizations on Wikipedia using (a) MLR-MCL and (b) Metis, as the clustering
algorithms.
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Figure 8: Clustering times on Wikipedia using (a) MLR-MCL and (b) Metis, as the clustering algorithms.
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Figure 9: Clustering times using MLR-MCL on (a) Flickr and (b) LiveJournal
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Threshold No. of edges
MLR-MCL Metis

F score Time F score Time

0.010 80,373,184 22.47 4225 20.15 7010

0.015 73,273,127 22.45 3615 20.06 4488

0.020 50,801,885 22.27 1912 20.04 1399

0.025 37,663,652 21.72 1039 19.86 547

Table 3: Effect of varying pruning threshold

and Degree-discounted symmetrizations so that they con-
tained a similar number of edges (around 80 milion), the
Bibliometric graph still ended up with nearly 50% of the
nodes as singletons. It is worth mentioning that there was
no such problem with Degree-discounted.

Figure 8 (a) and (b) show the time to cluster different sym-
metrizations using MLR-MCL and Metis. We find that both
MLR-MCL and Metis execute faster with Degree-discounted,
than any of the other symmetrizations. The difference be-
comes more pronounced with increasing number of clusters;
MLR-MCL executes nearly 4.5 to 5 times faster on Degree-
discounted as compared to the other symmetrizations in the
high clusters range (16000-18000). We believe that the ab-
sence of hub nodes (as can be seen in Fig 4), coupled with
clearer cluster structures in the Degree-discounted graph ex-
plains its better performance. It is also interesting to note
that on this dataset MLR-MCL is on average significantly
faster (2000s) than Metis on the degree-discounted transfor-
mation.

5.3.1 Varying the prune threshold

How does the performance of Degree-discounted symmetriza-
tion change as we change the pruning threshold i.e. as more
or fewer edges are retained in the graph? We experimented
with four different thresholds. The obtained Avg F scores
as well as times to cluster are given in Table 5.3.1, for both
MLR-MCL and Metis. The trends depicted in the table ac-
cord very well with our intuition; as we raise the threshold,
there are fewer edges in the graph, and there is a grad-
ual drop in the cluster quality, but which is compensated by
faster running times. In fact, even with a threshold of 0.025,
and having only 60% as many edges as A + AT , Degree-
discounted+MLR-MCL still yields an F score of 21.72 (com-
pared to 20.2 for A+AT ) and clusters in 1039 seconds (com-
pared to nearly 23000 seconds for A+ AT ). The trends are
very similar for Metis as well.

These results also suggest that there is no single “cor-
rect”pruning threshold. Lower prune thresholds retain more
edges in the symmetrized graphs and result in higher clus-
tering accuracies, but on the flip side, take longer to clus-
ter. Higher prune thresholds mean the accuracy may be
lower, but the graph is also clustered faster. The user may
therefore select a prune threshold according to their com-
putational constraints. One can compute all the similarities
corresponding to a small random sample of the nodes, and
choose a prune threshold such that the average degree when
this threshold is applied to the random sample approximates
the final average degree that the user desires. For many real
networks, an average degree of 50-150 in the symmetrized
graph seems most reasonable, since this is the size of typical
clusters in such networks [15].

5.4 Results on Livejournal and Flickr
In Figure 9(a) and (b), we show clustering times using

α β F-score on Cora F-score on Wiki
0 0 28.48 9.42
log log 30.92 19.43
0.25 0.25 30.79 18.13
0.5 0.5 31.66 20.15
0.75 0.75 29.82 19.97
1.0 1.0 30.58 18.70
0.25 0.50 30.42 19.79
0.25 0.75 31.42 19.52
0.50 0.25 30.51 18.65
0.50 0.75 30.93 20.04
0.75 0.25 30.07 18.42
0.75 0.50 31.07 19.38

Table 4: Effect of varying α, β (Metis). The best
results are indicated in bold.

MLR-MCL on the Livejournal and Flickr datasets. We
could not evaluate cluster quality for lack of ground truth
data. We do not report results on Bibliometric, since it
is clear from the number of singletons for that transforma-
tion (see Table 2) that it is not viable for such large scale
graphs. The trends for these datasets closely mimic the
trends in Wikipedia, with Degree-discounted symmetriza-
tion once again proving at least two times as fast to cluster
as the others at the higher range of the number of clusters.
Similar to Wikipedia, the main reason for the faster perfor-
mance of Degree-discounted symmetrization is the absence
of hub nodes in the symmetrized graphs and a clearer cluster
structure (the normalized cuts [21, 5] obtained from clus-
tering the Degree-discounted symmetrized graphs are much
lower than those obtained using the original graph, indicat-
ing the presence of well-separated clusters in the former).

5.5 Effect of varying α and β

We next examine the effect of varying the out-degree dis-
count parameter α and the in-degree discount parameter β.
The Avg. F-scores obtained by clustering the symmetrized
graph using Metis for a specific configuration of α and β is
shown in Table 5.5 (for ease of comparison, the number of
clusters is fixed at 70 for Cora and 10,000 for Wikipedia).
In both the datasets, the best F-scores are obtained using
α = β = 0.5. However, doing degree-discounting using some
configuration of α and β is better than doing no degree dis-
counting at all (shown as α = β = 0 in Table 5.5).

In fact, using α = β = 0.5 is similar to using L2-norms
for normalizing raw dot-products, as done when computing
cosine distance. Spertus et. al. [23] empirically compared
six different similarity measures for the problem of commu-
nity recommendation and found that L2-normalization per-
formed the best. Hence, it is not suprising that α = β = 0.5
should similarly work well for us across different datasets.

5.6 Significance of obtained improvements
We emphasize that the improvements obtained using Degree-

discounted symmetrizations are significant, both in the prac-
tical and the statistical sense. MLR-MCL, Graclus and
Metis are quite different clustering algorithms, and combin-
ing any of them with the Degree-discounted symmetriza-
tion resulted in significant improvements over baseline ap-
proaches in terms of quality (in the range of 10-30%), as well
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as in terms of clustering time (2-5 times speedup on million-
plus node graphs). We also found that the improvements
obtained using Degree-discounted symmetrization over the
baseline approaches were highly statistically significant. We
used the very general paired binomial sign test to test the
null hypothesis that there is no improvement. The sign test
makes no assumptions about the underlying test distribu-
tion, and hence is suitable in our situation since we do not
actually know the underlying test distribution. It was ap-
plied as follows. We count the number of graph nodes that
were correctly clustered in one clustering but not in the other
clustering (in a paired fashion i.e. each node in one cluster-
ing is compared with the same node in the other clustering),
and also the other way around. The probability of the ob-
tained counts (or more extreme counts) arising from the null
hypothesis, calculated using the binomial distribution with
p=0.5, gives us the final p-value. Small p-values tell us that
the observed improvements are unlikely to have occured by
random chance.

The improvements in clustering accuracy reported above
are all highly statistically significant. On Cora, MLR-MCL’s
improvement using Degree-discounted symmetrization over
using A+AT is significant with p-value 1.0E-312, and the im-
provement over BestWCut is significant with p-value 1.0E-
112. Similarly, the improvement of Graclus using Degree-
discounted symmetrization over using A+ AT is significant
with p-value 1.0E-36, and the improvement over using Best-
WCut is significant with p-value 1.0E-44. The improvement
of Metis over using BestWCut is significant with p-value
1.0E-79. Coming to Wiki, MLR-MCL’s improvement when
using Degree-discounted over A + AT is significant with p-
value 1.0E-3367. The improvement for Metis is also signifi-
cant with p-value 1.0E-22767.

5.7 A case study of Wikipedia clusters
Why exactly does Degree-discounted symmetrization out-

perform other methods? We give some intuition on this
question using examples of Wikipedia clusters that were suc-
cessfully extracted through this method but not with the
other symmetrizations. Note that these example clusters
were recovered by both MLR-MCL as well as Metis and is
thus independent of the clustering algorithms.

A typical example is the cluster consisting of the plant
species belonging to the genus Guzmania. The in-links and
out-links of this group is shown in Figure 10. Example clus-
ter consisting of plants belonging to the Guzmania family.
The first notable fact about this cluster is that none of the
cluster members links to one another, but they all point to
some common pages - e.g. “Poales”, which is the Order con-
taining the Guzmania genus; “Ecuador”, which is the coun-
try that all of these plants are endemic to; and so on. All
group members are commonly pointed to by the Guzmania
node as well as point to it in return.

Note that this cluster is not an isolated example. Clusters
involving lists of objects particularly were found to satisfy
a similar pattern to the Guzmania cluster. Other examples
include Municipalities in Palencia, Irish cricketers, Lists of
birds by country etc.

These examples provide empirical validation of our hy-
pothesis - laid out in Section 3 and Figure 1 - that in-link
and out-link similarity, and not inter-linkage, are the main
clues to discovering meaningful clusters in directed graphs.

Figure 10: The subgraph of Wikipedia consisting of
plant species of the genus Guzmania and their in-
links and out-links.

5.8 Top-weight edges inWikipedia symmetriza-
tions

We pick the top-weighted edges in the different symmetriza-
tions of Wikipedia to gain a better understanding into their
workings. The top 5 edges from Degree-discounted, Bib-
liometric and Random Walk symmetrizations are shown in
Table 5. Bibliometric heavily weights edges involving hub
nodes such as ‘Area’, ‘Population density’ etc (‘Area’ has
an in-degree of 71,146, e.g.), as expected. Similarly, Ran-
dom walk heavily weights edges involving nodes with high
Page Rank, which also typically tend to be hub nodes. The
top-weighted edges of Degree-discounted, on the other hand,
involve non-hub nodes with specific meanings; the particu-
lar examples listed in Table 5 are almost duplicates of one
another.

6. CONCLUSION
In this article, we have investigated the problem of clus-

tering directed graphs through a two-stage process of sym-
metrizing the directed graph followed by clustering the sym-
metrized undirected graph using an off-the-shelf graph clus-
tering algorithm. We presented Random Walk and Biblio-
metric symmetrizations, drawing upon previous work, and
based on an analysis of their weaknesses, presented the Degree-
discounted symmetrization. We compared the different sym-
metrizations extensively on large scale real world datasets
w.r.t. both quality and scalability, and found that Degree-
discounted symmetrization yields significant improvements
in both areas. In future work, we would like to investigate
the performance of our proposals in large-scale web scenarios
involving the possibilities of spam and link fraud. Extend-
ing our approaches to bi-partite and multi-partite graphs
also seems to be a promising avenue. Similarly, in addition
to evaluation on real data we would like to validate results
on synthetically controlled datasets. Unfortunately, we are
aware of no synthetic graph generators for producing realis-
tic directed graphs with known ground truth clusters. For
instance the Kronecker graph generator [14] allows the gen-
eration of realistic directed networks - but does not come
associated with a set of clusters with ground truth.
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Symmetrization method Node 1 Node 2 Edge weight

Random walk

Area Square mile 3354848
Mile Square mile 2233110

Geocode Geographic coordinate system 1788953
Degree (angle) Geographic coordinate system 1766339

Area Octagon 1457427

Bibliometric

Area Population density 2465
Record label Music genre 2423

Population density Geographic coordinate system 2301
Square mile Population density 2129

Area Time zone 2120

Degree-discounted

Cyathea Cyathea (Subgenus Cyathea) 68
Roman Catholic dioceses in England & Wales Roman Catholic dioceses in Great Britain 57

Sepiidae Sepia (genus) 55
Szabolcs-Szatmár-Bereg Szabolcs-Szatmár-Bereg-related topics 53
Canton of Lizy-sur-Ourcq Communauté de communes du Pays de l’Ourcq 52

Table 5: Edges with highest weights for different symmetrization methods on the Wikipedia dataset. Note
that the edge weights in the rightmost column are normalized by the lowest edge weight in the graph, as the
non-normalized weights are incommensurable.

0917070.
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