
GPX-Matcher: A Generic Boolean Predicate-based XPath
Expression Matcher

Mohammad Sadoghi, Ioana Burcea, and Hans-Arno Jacobsen
Middleware Systems Research Group

Department of Electrical and Computer Engineering
Department of Computer Science

University of Toronto, Canada
mo@cs.toronto.edu, ioana@eecg.toronto.edu, jacobsen@eecg.toronto.edu

ABSTRACT
Content-based architectures for XML data dissemination are
gaining increasing attention both in academia and industry.
These dissemination networks are the building blocks of se-
lective information dissemination applications which have
wide applicability such as sharing and integrating informa-
tion in both scientific and corporate domains. At the heart
of these dissemination services is a fast engine for matching
of an incoming XML message against stored XPath expres-
sions to determine interested consumers for the message.
To achieve the ultra-low response time, predominant in fi-
nancial message processing, the XPath expression match-
ing must be done efficiently. In this paper, we develop
and evaluate a novel algorithm based on a unique encoding
of XPath expressions and XML messages, unlike dominat-
ing automaton-based algorithms, for efficiently solving this
matching problem. We demonstrate a matching time in the
millisecond range for millions of XPath expressions which
significantly outperforms state-of-the-art algorithms.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Design, Measurement, Experimentation

Keywords
Publish/Subscribe, Event Processing, Complex Event Pro-
cessing, Matching Problem and Algorithm, and ToPSS

1. INTRODUCTION
XML has become the lingua franca on the Internet, with
applications ranging from life sciences [24] to news [22] and
advertisement dissemination, among many others. More-
over, XML is changing the way applications exchange mes-
sages, the way systems are integrated using service-oriented
architectures (SOA), and the way information is stored and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

processed on the Internet using Web services (WS). Thus,
it is not surprising that XML has been widely advocated as
data representation for selective information dissemination
applications and for content-based message routing [23, 6, 5,
12, 3, 13, 19]. In these scenarios, it is expected that the fil-
tering engines can be capable of processing several millions
of filter expressions over high XML document input rates.

For selective information dissemination applications (SID), a
filter expression designates an entity’s (user or system) inter-
est to receive information of the specified nature. The XML
document constitutes the information content to be selec-
tively disseminated. XPath expressions have been proposed
for modeling such filters [23, 6, 5, 12, 11, 3, 13, 4, 21, 15,
19]. However, the potential for exploiting overlap in XPath
expressions enabled by current filtering techniques is mostly
limited to prefix overlap, which is but one source of over-
lap (i.e., XPath expressions may have infix or suffix overlap
as well.) An XPath expression can specify filter constraints
on the document’s structure, its attributes, and its content.
Filter selectivity on a very fine-grained basis is thus possible.
Furthermore, the existing algorithms are mostly limited to
NFA- or DFA-based processing models, although expressive,
this choice substantially hinders the overall performance, as
we demonstrate experimentally.

It is this filtering problem that we set out to solve by look-
ing at it from the angle of a publish/subscribe matching
problem defined over Boolean predicates (i.e., XPath Ex-
pression) and sets of attribute-value pairs (i.e., XML doc-
ument.) Much research has gone into developing efficient
content-based publish/subscribe matching algorithms [27,
10, 1, 7, 2, 26]. All these approaches assume neither XML
nor XPath. In this paper, we present the design and im-
plementation of a novel matching algorithm that leverages
these existing publish/subscribe matching algorithms and
exploits their strengths for solving the XML/XPath filter-
ing problem. We introduce GPX-Matcher (GenericPredicate-
based XPath Matcher), essentially a novel generic encoding
of XPath expressions into conjunctions of Boolean predi-
cates and of XML documents into sets of attribute-value
pairs together with a selectivity-based filtering data struc-
ture. Furthermore, our XPath/XML encoding is directly
applicable to the existing rich predicate-based matching al-
gorithms (e.g. [27, 7, 2, 26, 25]).

Publish/subscribe matching algorithms are designed to ex-

45

ploit common predicates and subscriptions by storing and
evaluating them only once, thus, considerably reducing stor-
age requirements and processing time. The base assumption
is that for SID applications there is always a considerable
amount of overlap in the subscription population. Moreover,
highly-optimized processing schemes, such as the prefetching
technique, clustering, and the introduction of access predi-
cates, developed in [7] and table-based processing of predi-
cates over reasonably-sized, finite domains developed in [2],
have proven to lead to significant gains in this context. Thus,
an XML filtering technique that adapts these concepts, as
well as other directions such as the ones proposed in [27, 26],
directly benefits from these concepts.

Another major benefit of our encoding is that it could be di-
rectly applied by emerging hardware-based filtering engines,
such as fpga-ToPSS [25]. GPX-Matcher’s regular, more tabu-
lar organization, similar to [7], as well as Boolean expression
and attribute-value pairs-based nature, lends itself well to
processing in hardware, thus, further boosting performance.

Finally, another advantage is that a solution cast as a pub-
lish/subscribe matching problem can immediately be ap-
plied to the problem of matching in distributed, content-
based publish/subscribe systems (e.g., applied in [8, 14, 20]
for the processing of XML/XPath.) Thus, GPX-Matcher can
be used to support content-based XML message routing in a
distributed information dissemination system, where match-
ing is performed as a routing mechanisms requiring no func-
tional or conceptual changes.

As part of this work, we present X-ToPSS, the XML-based
Toronto Publish/Subscribe System [13, 19], which is a fully
functional end-to-end matching engine prototype based on
GPX-Matcher that has been designed with the above appli-
cation scale in mind (i.e., processing of several million filter
expressions over high document rates.) In this paper, we re-
port on experiments with matching times in the millisecond
range for up to four million XPath filter expressions. Since
our objective is an end-to-end system, XML document pars-
ing time cannot be ignored in the overall evaluation, as it is
common practice in related approaches. For example [6] re-
ports that “document parsing is another fixed overhead” and
“further improvements in path navigation time will have at
best, a minor impact on overall performance”. However, we
find that parsing is not a dominating factor in our implemen-
tation and for the experiments we ran, and is thus negligible
in the overall evaluation.

In brief, the main contribution of this paper is a novel encod-
ing and data structure for solving the XML/XPath match-
ing problem applicable for building high-performance XML
selective information dissemination applications. Our ap-
proach is capable of structural matching and value-based
attribute filtering. Furthermore, we show how to advanta-
geously choose access predicates to improve the performance
of our data structure, a critical point not addressed in prior
work. We perform a thorough experimental analysis that
evaluates the performance of our algorithm under varying
conditions and present a detailed trade-off analysis of our
algorithm against proven filtering techniques.

In the rest of this paper we adopt the terminology common

in content-based publish/subscribe and, when appropriate,
we will refer to XPath expressions as subscriptions over the
constituent Boolean predicates and XML documents as pub-
lications of attribute-value pairs.

This paper is organized as follows. Section 2 reviews related
work. In Section 3 we present our encoding to express XML
documents as attribute-value pairs and express XPath ex-
pressions as conjunctions of Boolean predicates. Section 4
presents our matching algorithm operating with the encoded
representation in detail. Section 5 presents a detailed perfor-
mance evaluation of our approach and establishes trade-offs
between our approach and the alternative algorithms.

2. RELATED WORK
The related work can be broadly classified into publish/sub-
scribe matching algorithms and XML/XPath matching al-
gorithms We discuss these areas in turn.

Much work has been devoted to the development of match-
ing algorithms in the context of publish/subscribe systems.
Our work builds on these algorithms [27, 10, 1, 7, 2, 18, 26].
Our design enables the techniques developed in this body of
work to be directly applied to XPath/XML matching. How-
ever, none of these algorithms addresses techniques to pro-
cess XML message against XPath expressions or even hints
at tree-structured data processing. All the above approaches
assume sets of attribute-value pair as publications and con-
junctive Boolean predicate formulas as subscriptions.

Many related approaches have looked at the XML/XPath
matching problem [23, 6, 5, 12, 11, 3, 4, 13, 19, 16, 15, 21].
However, none of these approaches is pursuing an approach
of reducing the matching problem to the problem of match-
ing with attribute-value pairs in order to leverage existing
matching techniques, with the exception of [23, 13]. On the
contrary, the above listed approaches introduce new tech-
niques that can be broadly classified into automaton-based
algorithms and index-based ones.

The automaton-based approaches [6, 11, 12, 4], most promi-
nently YFilter [6], build automata based on the XPath ex-
pressions in the system, while [4] also employs an NFA prun-
ing strategy based on prefix and suffix overlap of XPath ex-
pressions. Other automaton-based approaches mostly focus
on twig patterns. pFiST introduces value-based filtering [16],
iFist proposes a holistic matching of twig patterns using a
bottom-up approach [15], and BoXFilter also uses a bottom-
up approach, but uses the Prüfer sequence for sequencing
twig patterns [21].

The index-based approaches [23, 3, 5, 13] take advantage
of precomputed schemes on either the XML documents or
the XPath expressions. The index-based approaches are fur-
ther extended by Huo and Jacobsen [13] toward the idea of
predicate-based encodings. However, this approach heav-
ily relies on special-purpose data structures employing a
complicated ordering semantics to maintain predicate inter-
relationships during the matching process [13]. Also, the en-
coding chosen differs from the one developed in this paper.
In our evaluations, we show that GPX-Matcher outperforms
both BPA (called basic-pc-ap in [13]) and the automaton-
based Yfilter [6].

46

The WebFilter project [23] experimented with the use of pub-
lish/subscribe algorithms for XML/XPath filtering and con-
stitutes an early demonstration of the ideas of XML data
dissemination, but does not describe the detailed workings
of the approach.

An approach based on string matching to assist in comput-
ing XML message routing decisions in the context of dis-
tributed content dissemination systems is developed in [19,
17]. However, the techniques developed do not resemble any
of the above discussed approaches. The core of the approach
is based on string matching path expressions to determine
matching candidates.

Next, we review YFilter in more detail, as we use it in our
trade-off analysis in the evaluation section of this paper.
YFilter is a well-known algorithm for matching XML docu-
ments against XPath expressions. It builds a non-determinis-
tic finite automaton (NFA) from all the XPath expressions in
the system. The final states of the NFA are associated with
list of expressions. The parsing of the XML message, one
tag at a time, triggers the transitions in the NFA. Whenever
a final state is reached, it means that the corresponding ex-
pressions are matched by the incoming XML message. The
only difference between a traditional NFA and the YFilter
data structure is that the execution of the NFA does not
stop when the first final state is reached, but it continues
until all possible accepting states are visited. Thus, it de-
termines all matching queries.

3. XML AND XPATH ENCODINGS
Our GPX-Matcher algorithm translates all XPath expressions
to a predicate calculus that specify path-constraint predi-
cates. These predicates are evaluated over sets of attribute-
value pairs comprising XML document paths.

The objective of this approach is to be able to reduce the
problem of XML/XPath matching to the problem of match-
ing attribute-value pairs in the core matching logic of the
filtering engine. Section 4 will illustrate this point further.

3.1 XPath expression encoding
Each XPath expression is represented as a conjunction of
predicates, which are evaluated over document paths. In
what follows, we first present the types of predicates that are
required to support such an encoding, and then we show how
various XPath expression language features are represented
in our predicate calculus.

3.1.1 The predicate calculus
Our predicate calculus supports predicates which express
constraints over the absolute and relative position of tags in
the document path. In addition, our XPath encoding grows
linearly with respect to the size of an XPath expression, i.e.,
the number of tags, wildcards and descendant operators,
because in our encoding each tag in XPath expression is
represented by at most a single predicate in the encoding.

The predicate (pt op v), where v is a natural number, rep-
resents a constraint on the position of the tag t in the XML
document path. This is a predicate over one free variable
pt. The operator op can be either = or ≥. This predicate is

satisfied for a given document path if and only if the path
contains the tag t at position v′, which satisfies the relation
v′ op v. This predicate is used to represent a constraint on
the position in the XML path of the first location step in
the XPath expression that is not a wildcard.

The predicate (p⊣t ≥ v) represents a constraint on the posi-
tion of the tag t relative to the end of the XML document
path. This predicate is satisfied for a given document path of
length l if and only if the path contains the tag t at position
v′ such that l − v′ ≥ v. This predicate is used to represent
constraints for XPath expressions that end in wildcards.

The predicate (d(pt1 , pt2) op v) represents a predicate over
two free variables that imposes a constraint on the relative
position of the tag t2 to the tag t1. The operator op can be
either = or ≥. This predicate is satisfied for a given docu-
ment path if and only if the path contains both tags t1 and
t2 at positions v1 and v2, respectively, and these positions
satisfy the relation (v2 − v1) op v. In other words, the tags
are situated at a distance d from each other such that d op
v holds. Note that the order between the tags t1 and t2 in
the path is important. The order determines the sign for
d. This type of predicate is used to encode constraints on
consecutive location steps that are not wildcards.

The last type of predicate is a special one that does not refer
to tag names or their positions, but to the length of the XML
document path. The predicate (length ≥ v) represents a
constraint on the length of the XML document path. This
predicate is satisfied for a given document path if and only
if the length of the path is greater than v. This special type
of predicate is required to represent XPath expressions that
contain only wildcards.

3.1.2 XPath expressions
Next, we show how our predicate calculus is used to encode
XPath expressions. In order to distinguish between differ-
ent tags with the same name, each tag name is associated
with its occurrence number. For example, the XPath ex-
pression /a/b/c/a is represented as /a1/b1/c1/a2, where the
superscripts represent the occurrence numbers.

Simple XPath expressions: We call an XPath expression
simple if it does not contain wildcards (*) or descendant
operators (//). The relative XPath expression s = t1/.../tn
(all tk represent tag names other than “*”) is mapped to the
following conjunction of predicates:

(pt1 ≥ 1) ∧ (d(pt1 , pt2) = 1) ∧ · · · ∧ (d(ptn−1
, ptn) = 1)

The absolute XPath expression s = /t1/.../tn is mapped to
the following conjunction of predicates:

(pt1 = 1) ∧ (d(pt1 , pt2) = 1) ∧ · · · ∧ (d(ptn−1
, ptn) = 1)

The conjunction contains as many predicates as steps in the
XPath expression. The first predicate captures the position
of the first tag in the XML document path, while all other
predicates represent constraints for the relative position of
the current tag to the previous one. For simplicity, in the
conjunction for relative expressions, the first predicate can
be discarded. This is possible because the second predicate
requires that t1 be in the path and once the path contains a
tag name, then its position is greater or equal to one.

47

Wildcards in XPath expressions: Consider the follow-
ing relative XPath expression (all tk with 1 ≤ k ≤ n and
k ≤ i or k ≥ i+m+ 1 represent tag names other than “*”):

s = t1/.../ti/ ∗ /.../ ∗ /ti+m+1/.../tn

withm consecutive wildcards starting at location step (i+1).
This expression is mapped to predicates by bypassing the
wildcard steps, as follows:

((d(pt1 , pt2) = 1) ∧ · · · ∧ (d(pti−1
, pti) = 1) ∧

(d(pti , pti+m+1
) = m+ 1) ∧ · · · ∧ (d(ptn−1

, ptn) = 1))

The representation of an absolute XPath expression is sim-
ilar to the relative one (it contains one more predicate to
restrict the position of the first tag name.) The number of
predicates required to represent an XPath expression with
m consecutive wildcards is m predicates less than the num-
ber of predicates required for representing the expression
without wildcards.

To generalize, consider the following XPath expression:

s = xpe1/ ∗ /.../ ∗ /xpe2/ ∗ /.../ ∗ /xpe3.../ ∗ /.../ ∗ /xpen
where xpek represent simple XPath expressions and the ith

sequence of wildcards contains mi steps. This expression is
translated into a conjunction of predicates that contains all
predicates that represent the simple expressions xpek (1 ≤
k ≤ n) and all predicates pi (1 ≤ i < n) that link the
position of the last tag in xpei and the position of the first
tag in xpei+1: d(plast tag in xpei , pfirst tag in xpei+1

) = mi+1
(we call these predicates link predicates.)

There are three special cases that need to be addressed in
the representation of s:

(1) The expression starts with m wildcards: the overall con-
junction contains one more predicate that represents a con-
straint for the position of the first tag in xpe1: (pfirst tag in

xpe1 op m + 1). The operator is determined by the type
of the XPath expression: a relative expression requires the
greater than operator, while an absolute one requires the
equal operator.

(2) The expression ends with m wildcards: the overall con-
junction contains one more predicate that represents a con-
straint for the relative position of the last tag in xpen to the
end of the XML document path: (p⊣last tag in xpen

≥ m).

(3) The expression contains only m wildcards: the represen-
tation contains only one predicate: (length ≥ m).

Descendant operators in XPath expressions: Con-
sider the following relative XPath expression:

s = t1/.../ti//ti+1/.../tn

with a descendant operator after location step i. This ex-
pression is mapped to predicates as follows:

(d(pt1 , pt2) = 1) ∧ · · · ∧ (d(pti−1
, pti) = 1) ∧

(d(pti , pti+1
) ≥ 1) ∧ · · · ∧ (d(ptn−1

, ptn) = 1)

The representation of an absolute XPath expression is sim-
ilar to the relative one (it contains one more predicate to

restrict the position of the first tag name.) The only dif-
ference to the representation of a simple expression is the
operator for the second order predicate that relates the tags
ti and ti+1.

To generalize, given the following XPath expression:

s = xpe1//xpe2//xpe3...//xpen

where xpek represent simple XPath expressions. This ex-
pression is translated into a conjunction of predicates that
contain all predicates that represent the simple expressions
xpek (1 ≤ k ≤ n) and all predicates pi (1 ≤ i < n) that link
the position of the last tag in xpei and the position of the
first tag in xpei+1: d(plast tag in xpei , pfirst tag in xpei+1

) ≥ 1
(we call these predicates link predicates.)

The above encoding remains unchanged when the expres-
sions xpek contain wildcards that are neither at the begin-
ning nor at the end of the expressions. For expressions xpek
that start or end with wildcards, only the link predicates
change. Suppose there are two expressions xpel and xpel+1

such that xpel ends with m wildcards and xpel+1 starts with
n wildcards, then the lth link predicate will have to change
to d(plast tag in xpel , pfirst tag in xpel+1

) ≥ m+ n+ 1.

All encodings presented above are unique in the sense that
two different XPath expressions have different encodings and
the same encoding corresponds to identical subscriptions.

3.1.3 Examples
The following exemplifies our XPath expression encoding.

X1 : /b/c

S1 : (pb1 = 1) ∧ (d(pb1 , pc1) = 1)

X2 : a/a/*/b

S2 : (d(pa1 , pa2) = 1) ∧ (d(pa2 , pb1) = 2)

X3 : /a/a/*/*

S3 : (pa1 = 1) ∧ (d(pa1 , pa2) = 1) ∧ (p⊣
a2 ≥ 2)

X4 : /*/*/*/a/b

S4 : (pa1 = 4) ∧ (d(pa1 , pb1) = 1)

X5 : a//b/c

S5 : (d(pa1 , pb1) ≥ 1) ∧ (d(pb1 , pc1) = 1)

X6 : a/b/*//a

S6 : (d(pa1 , pb1) = 1) ∧ (d(pb1 , pa2) ≥ 2)

X7 : a/b/*/*//*/a

S7 : (d(pa1 , pb1) = 1) ∧ (d(pb1 , pa2) ≥ 4)

X8 : x/a/b/*/*//*/a/*

S8 : (d(px1 , pa1) = 1) ∧ (d(pa1 , pb1) = 1)

∧(d(pb1 , pa2) ≥ 4) ∧ (p⊣
a2 ≥ 1)

Some of the predicates above are duplicated due to overlap
in the XPath expressions. However, in our data structure,
we represent each predicate only once (i.e., no duplicated
predicates are stored or processed.) During the matching
phase of our algorithm, predicates that represent multiple
overlapping XPath expressions are evaluated only once for
all the expressions that contain them. For example, consider
XPath expressions S7 and S8. The total number of predi-
cates for expressing these two expressions is six (i.e., two for
S7 and four for S8), but the number of distinct predicates
is four, since all predicates of S7 are in S8 as well. This is

48

one of the strengths of our algorithm, as it resolves most
overlaps in XPath expressions and represents and processes
these parts only once.

3.1.4 Attribute-based Filters on XPath Expressions
In our discussion so far we referred only to XPath expres-
sions that do not contain filters on the attributes of the XML
document or nested paths. Our predicate calculus can be
easily extended to support filters on the attribute content.
Consider a location step that contains the tag name t and
the predicate [@ attr op value]. In order to represent this
filter, we introduce a new type of predicate in our system,
dt[attr op value], that expresses a constraint on the value of
the attribute attr attached to the tag name t in the XML
document. The publications resulting from the XML paths
are augmented with information about the values of all at-
tributes of a tag name t. This is also evaluated in Section 5

Nested path filters can be treated in a manner orthogonal to
the matching algorithm presented in this section. A scheme
similar to that in [6] could be used in our system in order to
support nested paths.

3.2 XML document encoding
Let d be an XML document. Document d consists of a num-
ber of paths, d = (e1, ..., el), from the root element of the
document to each leaf. A path ei consists of the tag ele-
ments, attributes and the corresponding values, and content
elements along the path from the root element to a leaf:

ei = {ti1, [(ai
t1,1, v

i
t1,1), ..., (a

i
t1,j1

, vit1,j1)], c
i
1, ...,

tin, [(a
i
tn,1, v

i
tn,1), ..., (a

i
tn,jn , v

i
tn,jn)], c

i
n}

where ai
tl,k

is the kth attribute associated with the lth tag

in the ith path of d, vitl,k represents the corresponding value

for the attribute and cil represents the content of the lth

tag. For brevity sake, we simply write e = (t1, ..., tn); the
subscript of each tag represents the position of the tag in
the path. In this formalization, we do not explicitly show
content and attribute elements, and since any path can con-
tain duplicate elements, each tag name has an occurrence
number associated (not shown in our notation above.)

First, let us consider the case when a path e = (t1, ..., tn)
contains only distinct tag names (i.e., all occurrence num-
bers are equal to one.) This path is translated to the follow-
ing set of tuples:

(length, n) ,

(t1, 1), (t2, 2), . . . (tn, n) ,

(t1, t2, 1), (t1, t3, 2), ..., (t1, tn, n− 1) ,

(t2, t3, 1), (t2, t4, 2), ..., (t2, tn, n− 2) ,

...

(tn−1, tn, 1)

This set contains T(n)=O(n2) tuples. This encoding is
dictated by our predicate calculus. The length of the path is
needed to check predicates of type (p⊣t ≥ v) and (length ≥
v.) All tag positions are required to verify predicates of
type (pt op v) and (p⊣t ≥ v). Finally, all combinations of
two tags are required in order to verify predicates of type
(d(pt1 , pt2) op v). We call this set of tuples a publication.
Each publication is a set of attribute-value pairs, where the

attribute name can be the length (length ≥ v), any tag name
(pt op v), and any combination of two tags (d(pt1 , pt2) op
v), while the value is a natural number less than or equal to
the length of the XML path.

Before discussing the case when the path contains dupli-
cates, we need to present some notational conventions. Given
a path e = (t1, ..., tn), we refer to a subpath of e which con-
tains a subset of the tags in e ordered by their positions in
the path and write se = ((k1, tk1

), (k2, tk2
), ..., (kp, tkp)) (ki

represents the position of the tag tki
in the path e.) The pub-

lication p(se) resulting from a subpath se = ((k1, tk1
), (k2, tk2

),
· · · , (kp, tkp)) contains the following tuples:

(length, kp − k1 + 1) ,

(tk1
, k1), (tk2

, k2), . . . (tkp
, tkp

) ,

(tk1
, tk2

, k2 − k1), (tk1
, tk3

, k3 − k1), ..., (tk1
, tkp

, kp − k1) ,

(tk2
, tk3

, k3 − k1), (tk2
, tk4

, k4 − k2), ..., (tk2
, tkp

, kp − k1) ,

...

(tkp−1
, tkp

, kp − kp−1)

We write p(e − {tl1 , tl2 , ..., tlp}) to denote the publication
resulting from the subpath of e after eliminating the tags
tl1 , tl2 , ..., tlp . Note that after eliminating some tags that
have duplicates, the occurrence numbers are adjusted as
needed. For example, consider the path e = (a, b, c, a, b).
Including the occurrence numbers, the path is expressed as
e = (a1, b1, c1, a2, b2) (the superscripts represent the occur-
rence numbers.) The subpath of e after eliminating the first
a tag, written as se = e − {a1} is represented as se =
((2, b1), (3, c1), (4, a1), (5, b2)). Note that when eliminating
a1, the occurrence number of the second occurrence of a is
adjusted to 1.

Consider the case when the path contains only one tag t that
is duplicated d times (i.e., the same tag name t in d different
positions in the path.) The corresponding occurrence num-
bers for this tag are 1, 2, ..., and d, respectively. Since a tag
t with the occurrence number k from an XPath expression
can be mapped to any tag t from the XML path with the
occurrence number o ≥ k, we have to map the XML path to
a set of publications as follows:

P (e) =
⋃

S∈P (T)

{p(e− S)}

where T = {t1, t2, ..., td−1}, P (T) is the power set of T ,
and e − S is the subpath obtained from e after eliminating
the tags in S. The corresponding occurrence numbers are
adjusted in the subpath as explained above. We do not need
to look at the subpaths in which td is eliminated because the
elimination of the dth occurrence of the tag will not change
the occurrence numbers. Thus, it does not add any new
information to the publication. Generally speaking, if the
path e contains tags tk1

, tk2
, . . . , tkr with the corresponding

number of duplicates dk1
, dk2

, . . . , dkr , the path e is mapped
to the following set of publications:

P (e) =
⋃

S∈P (T)

{p(e− S)}

where T =

r⋃

l=1

{t1kl
, t2kl

, ..., t
dkl

−1

kl
}, P (T) is the power set of T

and e−S is the subpath obtained from e after eliminating the
tags in S (the occurrence numbers are adjusted accordingly.)

49

e: ((1, a1), (2, b1), (3, b2), (4, c1))
((length, 4), (a1, 1), (b1, 2), (b2, 3), (c1, 4),

(a1, b1, 1), (a1, b2, 2), (a1, c1, 3), (b1, b2, 1), (b1, c1, 2), (b2, c1, 1))

e− {b1} ((1, a1), (3, b1), (4, c1))
((length, 4), (a1, 1), (b1, 3), (c1, 4), (a1, b1, 2), (a1, c1, 3), (b1, c1, 1))

Table 1: Subpath, representation and publication.

Usually, XML paths contain a small number of duplicate
tags and the occurrence numbers are also small. For the case
when the path contains only one tag with two duplicates,
there are only two publications built. The total number of
tuples built still remains on the order of O(n2).

To summarize, each path e = (t1, ..., tn) is translated to one
or several publications; each publication contains a set of
attribute-value pairs. Thus, the XML document d is rep-
resented as a set of publications: d = (pub1, ..., pubp) such
that each path generates at least one publication and any
path that contains duplicate tags generates more than one
publications.

3.3 Matching XML against XPath expressions
Next, we explain how the matching problem of XML docu-
ments against XPath expressions is reduced to the problem
of matching publications against conjunctions of predicates.
First, let us present how each type of predicate from our
calculus is matched by a publication:

• A predicate of type (length ≥ v) is satisfied by a publi-
cation pub if the value v′ in the tuple (length, v′) from
the publication pub satisfies the relation v′ ≥ v.

• A predicate of type (pt op v) is satisfied by a publica-
tion pub if the publication contains a tuple (t, v′) such
that v′ satisfies the relation v′ op v.

• A predicate of type (p⊣t ≥ v) is satisfied by a publica-
tion pub if the publication contains a tuple (t, v′) such
that l− v′ +1 ≥ v, where l is the value from the tuple
(length, l) in pub.

• A predicate of type (d(pt1 , pt2) op v) is satisfied by
a publication pub if the publication contains a tuple
(t1, t2, v

′) such that v′ satisfies the relation v′ op v.

In all instances above, the matching between tag names
also respects the occurrence numbers.

A publication pub matches a conjunction of predicates s =
(pred1∧pred2∧ ...∧predm) if all predicates in s are satisfied
by the publication.

Formally, an XPath expression is matched by an XML doc-
ument if and only if the XPath expression selects a non-
empty set of nodes from the XML document. Using the
encoding described above, the matching problem is formu-
lated as follows: Given an XML document represented as
d = (pub1, ..., pubp) and an XPath expression s = (pred1 ∧
pred2 ∧ ...∧ predm), the XPath expression is matched by the
XML document if and only if there is at least one publication
pubi (1 ≤ i ≤ p) such that all predicates in s are satisfied by
the publication pubi.

Predicate p(e) p(e− {b1})
pb1 = 1 X X

d(pb1 , pc1) = 1 X
√

d(pa1 , pb1) ≥ 1
√ √

Table 2: Matching publications against predicates

Example – Consider the XPath expressions S1 and S5 from
the earlier list with their corresponding conjunction of pred-
icates and an XML document that contains the following
path e = (a1, b1, b2, c1). Table 1 presents all the subpaths
that are considered and the corresponding publications. Ta-
ble 2 shows which predicates within the XPath expressions
are matched by each publication. The expression S5 is
matched by the publication p(e − {b1}) since all its pred-
icates are matched. The expression S1 is not matched be-
cause none of the publications satisfies S1’s first predicate.

4. THE MATCHING ALGORITHM
Each incoming XML file is processed, and its paths are trans-
lated into sets of publications as previously explained. Each
publication is submitted to the matching algorithm sepa-
rately. The matching algorithm proceeds in two stages: first,
each publication is matched against the predicates in the
system; second, given this information, the matched XPath
expressions are identified. After all publications resulting
from the XML document are processed, the matched XPath
expressions are collected. Next, we present in detail the data
structures and algorithms used for the two matching stages.

=
>

=
>

>
=

=
>

pid

hash(tag) hash(occ , tag , occ) 1 21 2 value

Figure 1: Predicate data structure

4.1 Predicate matching
Each XPath expression is translated into a conjunction of
predicates. These predicates are inserted in the correspond-
ing data structures. Recall that our predicate language sup-
ports four different types of predicates that refer to tag
names and the length of the XML path. The representa-
tion of the predicates have to take into account that the tag
names may be duplicated in an XPath expression. Thus,
each tag name has an associated occurrence number, as al-
ready explained. Next, we present the data structures for
representing these predicates. Each predicate in our system
is represented by a unique identifier.

All values that are used in the predicates are defined over
a finite domain D : [1 : l] where l represents the maximum
length of the XPath expressions supported by the system.
Thus, the main data structure used for storing and evaluat-
ing predicates is a predicate-table that extends from 1 to l –

50

the upper bound of the domain – and can be indexed by the
value of the predicate. Each row of the table is uniquely as-
sociated to one of the predicate operator (i.e., = or ≥). Each
element of the table records the corresponding predicate id
(pid, for short) or nothing if there is no such predicate in the
system. Based on the corresponding operator, the matching
performs differently for an attribute-value pair that contains
a value v. If the operator is equality, then only the predicate
identified by the pid at the vth position in the table is set
to true. If the operator is greater than, then all predicates
identified by the pids at positions i, where i ≤ v, are set to
true.

The predicate (d(pt1 , pt2) op v) represents a second order
predicate that imposes a constraint on the relative position
of the tag t2 to the tag t1. As the tags of the predicate
can be any tag names within an XPath expression, each tag
name may have an occurrence number greater than one. The
data structure used for storing this type of predicates is de-
picted in Figure 1. The first hashtable is indexed on the first
tag name. Each entry of this hashtable points to another
hashtable that is indexed on a key composed of the occur-
rence number of the first tag name, the second tag name,
and the occurrence number of the second tag name. Each
entry of the second hashtable points to two predicate-tables,
one for each operator supported by this type of predicate.

The predicate (p⊣t ≥ v) represents a constraint on the posi-
tion of the tag t relative to the end of the XML path. As
tag t is the last tag name in the XPath expression, its occur-
rence number may be greater than one (if the path contains
another location step that refers to the same tag name.)
The data structure used for storing this type of predicates is
also a hashtable on the tag name of the predicate. However,
each entry of the hashtable points to a matrix that can be
indexed on the occurrence number. Thus, each ith row of
the matrix is a predicate-table for the ith occurrence of the
corresponding tag name.

The predicate (pt op v) refers to the position of the tag in the
XML path. This predicate always refers to the first tag name
in the XPath expression; therefore, the occurrence number
for this tag is always one and the data structure used for
these types of predicates does not contain bookkeeping in-
formation for occurrence numbers. The data structure used
for storing this type of predicates is a hashtable; the key of
the hashtable is built using the tag name of the predicate.
Each entry of the hashtable points to two predicate-tables,
one for each operator supported by this type of predicate.

The predicates that refer to the length of the XML path are
stored separately in a predicate-table. Note that the XPath
expression that contains a predicate on the length of the
XML path is composed only of wildcards. Thus, this is the
only predicate that this subscription contains. The matching
algorithm treats these subscriptions separately comparing
the maximum length of all paths in the incoming XML file
against the predicate-table. All matched predicates from
this table dictate that the corresponding subscriptions are
matched.

Two different XPath expressions may have overlapping pred-
icates (same predicate is contained in both subscriptions.)

However, we store the predicate only once (each predicate is
unique in the system.) For each predicate we also store a list
of all subscriptions that contain that predicate. This infor-
mation is used in the second stage of matching: subscription
matching.

As the paths resulting from the XML documents have over-
laps, the publications we build for the paths also have com-
mon tuples. This knowledge about which tuple matches
which predicates and the evaluation of common tuples in
overlapping paths of the XML document only once can be
further exploited. This utilization resembles the concept of
batch processing proposed in [9], which is complementary
to our approach and brings about a new avenue of research
to further improve the matching time. Overall, the predi-
cate matching data structures presented above resemble the
techniques developed in [2], but have been generalized here
to account for the richer predicate calculus required for the
encoding of XPath expressions and XML documents.

4.2 Subscription matching
Subscription matching represents the second stage of the
matching algorithm, in which given all matched predicates,
the set of matched subscriptions is built. When an XPath
expression (subscription) is added to the system, it is de-
composed into its predicates. In addition, we consider only
distinct subscriptions in the matching stage. We achieve this
by building groups of subscriptions having exactly the same
predicates, and we promote only one subscription per group.
We call this promoted subscription the group representative.
Only representatives participate in the actual matching stage.
In the final step of the subscription matching, we iterate over
the set of matched representatives and set as matched all
subscriptions within each group that has its representative
matched. For simplicity, we use the term subscription and
representative interchangeably.

Counting algorithm: Here, the subscription matching
stage is based on two data structures: the subscription-
predicate count vector and the hit vector. The subscription-
predicate count vector stores for each subscription the num-
ber of its predicates. The hit vector records the number of
satisfied predicates per subscription; we call each position in
this vector a hit-counter. The hit vector is re-computed for
each publication evaluation. During the evaluation of a pub-
lication, whenever a predicate is set to true, all hit-counters
associated with the subscriptions that contain that predicate
are incremented. After all predicates are evaluated, the hit
vector is compared against the subscription-predicate count
vector. All subscriptions for which each of the two entries
are equal are considered as matched. Note that this is a
valid operation because each predicate is evaluated to true
at most once during the evaluation of a publication. All
hit-counters are reset before evaluating another publication.

After all publications resulting from the XML file are evalu-
ated, the set of matched subscriptions represents the matched
XPath expressions.

Access predicates: Subscription evaluation is a time-con-
suming process since the last stage of the algorithm requires
iterating over all distinct subscriptions in the system to
check the corresponding counters. Moreover, this operation

51

 0.125
 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

 128
 256

10K
30K

50K
70K

90K

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Distinct Queries

News Industry Text Format (NITF)

GPX
GPX-apf
GPX-ap

BPA
yfilter

(a) NITF DTD

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

1K 3K 5K 7K 9K

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Distinct Queries

Protein Sequence Database (PSD)

GPX
GPX-apf
GPX-ap

BPA
yfilter

(b) PSD DTD

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1K 3K 5K 7K 9K

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Distinct Queries

NASA DTD (NASA)

GPX
GPX-apf
GPX-ap

BPA
yfilter

(c) NASA DTD

Figure 2: Varying the number of distinct queries (with no duplicates)

happens for each generated publication. Each XML path
produces at least one publication. In order to reduce the
time spent on this stage of the algorithm, we adapt an opti-
mization inspired by [7]. The optimization involves cluster-
ing subscriptions on an access predicate. Each cluster con-
tains all subscriptions having a common access predicate. If
there are subscriptions that contain more than one access
predicate, they are inserted only into one cluster. During
matching, if a cluster’s access predicate is not satisfied, then
none of the cluster’s subscriptions will be matched. Thus, in
the last phase of the algorithm, we have to iterate only over
subscriptions whose access predicates are matched. Conse-
quently, These access predicates have to be selective enough
such that the number of subscriptions to be checked in the
last phase of the algorithm is considerably reduced. Oth-
erwise, the overhead of bookkeeping clusters may not be
justified. Although [7] introduces the idea of access predi-
cates, the authors do not present any insights on how these
access predicates can be chosen in general. For instance,
computing statistics on workload (as suggested in [7]) could
be used to estimate predicate selectivity. But, given our do-
main, the predicates are built from the XPath expressions,
and an XPath expression refers to XML documents that
have a tree-like structure which further complicates selectiv-
ity estimation. However, a key observation in our domain
is that the selectivity of the XPath expression tends to be
higher as the number of location steps contained in the ex-
pression increases. Therefore, we claim that the predicate
built over the last location step with a tag name to be the
most selective one. This claim is supported by our extensive
experimental evaluation (cf. Section 5.)

5. PERFORMANCE EVALUATION
Experiment setup: We experimentally evaluate the per-
formance of our main counting-based algorithm GPX-Matcher

(in short GPX) and the selectivity-aware version GPX-Matcher-
ap (in short GPX-ap), that is, based on the notion of access
predicates. To better understand the performance and the
trade-offs of these algorithms, we also compare them against
YFilter [6] and BPA [13].

In our X-ToPSS framework, all algorithms are implemented
in C. For XML parsing, we implemented a parser based
on libxml2. All reported experiments were run on an In-
tel Quad-Core 2.66GHz with 4GB of main memory run-
ning Ubuntu 10.4. Since our implementation is not multi-
threaded, none of the algorithms take advantage of more
than a single core.

None of the algorithms require or exploit DTD information.
However, we used DTDs to generate workloads for our ex-
periments. The DTDs we used are: NITF (News Indus-
try Text Format), PSD (Protein Sequence Database) and
NASA. These DTDs are commonplace, and are used as stan-
dard benchmarks in many research studies such as [12, 6, 5].
Due to space limitations, we included only selected results
obtained via the NASA DTD.

In order to generate the XPath expressions, we used the
XPath generator released by Diao et al. [6]. We control
the XPath workload in the experiments through the follow-
ing parameters: Q represents the number of queries ranging
from 25, 000 to 4, 000, 000, D indicates whether the queries
are distinct, L represents the maximum length of the XPath
queries ranging from 6 to 12, W represents the probability
of a wildcard occurring at a location step (varied between
0-0.7), DO represents the probability of a descendant op-
erator at a location step (again varied from 0-0.9), and P
represents the number of predicate filters per query ranging
from 1 to 10.

For generating the XML documents, we relied on the IBM
XML Generator. The XML generator was used with the
default parameters with only one exception: we varied the
maximum number of levels in the resulting XML tree from 6
to 12. This guarantees that if the resulting tree goes beyond
the maximum number of levels, the generator will add none
of the optional elements (denoted by * or ? in the DTD)
and only one of each of the required elements (denoted by
+ or no option.) As a result, the number of levels of the
resulting XML files may be greater than the actual value of
this parameter.

For each DTD, we generated 500 XML documents. All re-
ported results are averaged over this set, unless otherwise
stated. For each experiment, a set of XPath expressions
was generated using the specified parameters. For each al-
gorithm, we filtered the 500 XML files against the query
workload, then we averaged the resulting time. Note that
the time to build the predicate data structures or the NFA
(for YFilter) is not included in the filtering time.

All our experiments use the total filtering time as the main
performance metric. This time includes parsing the XML
documents, matching them against the query workload, and
collecting the results. For all studied algorithms, the match-
ing result is represented as a bit vector with one bit for each

52

 0.5

 1

 2

 4

 8

 16

 32

 64

0.5M
1.0M

2.0M
3.0M

4.0M

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Queries

News Industry Text Format (NITF)

GPX
GPX-ap

yfilter

(a) NITF DTD

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

0.5M
1.0M

2.0M
3.0M

4.0M

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Queries

Protein Sequence Database (PSD)

GPX
GPX-ap

yfilter

(b) PSD DTD

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

900K
1.5M

2.1M
2.7M

3.3M
3.9M

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Queries

3 DTDs: NITF, PSD, NASA

GPX
GPX-ap

yfilter

(c) Mixed DTDs

Figure 3: Varying the number of queries (with duplicates)

query; a query is matched if and only if its corresponding
bit is set to 1. As our experiments will show, parsing time is
negligible compared to the total filtering time. The average
parsing time for NITF and PSD XML documents are on the
order of microseconds, while the total matching time are on
the order of millisecond.

Varying the number of queries: We begin the perfor-
mance evaluation by looking at scalability of the algorithms
as we vary the number of queries. First, we look at dis-
tinct queries, and then at workloads that contain duplicate
queries.

Distinct Queries: The query workload is generated using
L = 6, D=true, W = 0.2, and DO = 0.2. The number
of distinct queries is varied from 10, 000 to 90, 000 for the
NITF DTD and from 1, 000 to 9, 000 for the PSD DTD. The
PSD DTD limits the number of distinct queries that can be
generated with the above parameters, since it is not recur-
sive and the maximum number of levels is 8. The results for
the NITF DTD are shown in Figure 2(a). As seen, GPX-ap
not only gracefully scales as the number of distinct queries
is increased, it also exhibits superior performance; that is,
filtering 90, 000 XPath expressions takes just under 1 ms, as
GPX-ap fully utilizes the workload selectivity, compared to
18 ms for YFilter. In fact, in the NITF workload, the gener-
ated queries are highly selective, in which the percentage of
matched queries on average is about 0.06. On the one hand,
GPX-ap, fully exploits workload selectivity through its novel
access predicate selection (only possible due to the unique
encoding it employs) and dominates all other approaches
(GPX-apf, a variation of GPX-ap, performance is discussed
in more detail later.) On the other hand, as expected, YFil-
ter also performs better than our baseline GPX and BPA as
the number of distinct queries increases because YFilter also,
to a limited degree, utilizes the workload selectivity by re-
ducing the number of the NFA’s triggered states.

Figure 2(b) presents the results for the PSD DTD. Most im-
portantly, the difference between YFilter and GPX becomes
more significant in this case. For 10, 000 queries, YFilter
takes more than three times as much time as GPX. This
happens because the selectivity is lower. Therefore, the ex-
ecution of the NFA takes more time as more of its states
are touched during filtering. The smaller number of queries
translates into a smaller number of predicates for GPX. Lower
selectivity also slightly worsens the performance of GPX-ap,
yet it remains dominant. The NASA workload with results

in Figure 2(c) also follows the same pattern as the PSD DTD
results.

Finally, the detailed distinction between the GPX-ap and
GPX-apf algorithms is postponed to a later section that is
dedicated to predicate clustering. For the rest of our exper-
iments, we shift our focus to the top performing algorithms:
GPX, GPX-ap, and YFilter.

Queries with duplicates: Large filtering systems (e.g., news
filtering and dissemination services) are characterized by
large subscription workloads that are likely to contain du-
plicate and overlapping subscriptions. These duplicates rep-
resent common interests of different subscribers. In order to
study the effect of duplicate subscriptions on filtering time,
in this experiment, we vary the number of queries from half
a million to four million and set D to false (the query gener-
ator will not eliminate duplicates), while adopting the other
parameter values from our previous experiment. The results
are summarized as follows: Figure 3(a) based on the NITF
workload, Figure 3(b) based on the PSD workload, and Fig-
ure 3(c) based on a mix of the NITF, PSD, and NASA work-
loads. For all DTDs, all algorithms scale gracefully as the
number of queries increases. Note, again, that YFilter is out-
performed even by our baseline GPX for the PSD workload.
Most prominently, our GPX-ap algorithm significantly im-
proves over all algorithms across all populations of queries
by an order of magnitude.

Predicate clustering: As we have observed so far (Fig-
ure 2(a-c)), the predicate clustering implemented by GPX-ap
improves the total filtering time by an order of magnitude in
comparison with our baseline approach GPX. This supports
our claim that parsing is not a dominant factor in the overall
matching time. In fact, if the parsing time was dominant,
then no significant gain was attainable by using our GPX-
ap. Next, we want to further explore our various predicate
clustering approaches, i.e., GPX-apf and GPX-ap.

First, we validate through experiments the intuition that the
last predicate of each XPath expression is a good candidate
as an access predicate. We implement clustering on both
the first and on the last predicate representing the XPath
expressions. Figure 2(a-c) shows the results for these exper-
iments using different DTDs, where clustering on the first
predicate is labeled GPX-apf. As expected, the clustering
on the first predicate of each query provides no additional
gain as it fails to exploit the workload’s underlying selectiv-

53

 0

 2

 4

 6

 8

 10

 12

 14

 16

0 0.1
0.3

0.5
0.7

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Wildcard Probability (2M queries)

News Industry Text Format (NITF)

GPX
GPX-ap

yfilter

(a) NITF DTD

 0

 5

 10

 15

 20

 25

 30

0 0.1
0.3

0.5
0.7

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Wildcard Probability (2M queries)

Protein Sequence Database (PSD)

GPX
GPX-ap

yfilter

(b) PSD DTD

 0

 5

 10

 15

 20

 25

0 0.1
0.3

0.5
0.7

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Wildcard Probability (2M queries)

NASA DTD (NASA)

GPX
GPX-ap

yfilter

(c) NASA DTD

 0

 5

 10

 15

 20

 25

0 0.1
0.3

0.5
0.7

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Descendant Probability (2M queries)

News Industry Text Format (NITF)

GPX
GPX-ap

yfilter

(d) NITF DTD

 0

 5

 10

 15

 20

 25

 30

0 0.1
0.3

0.5
0.7

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Descendant Probability (2M queries)

Protein Sequence Database (PSD)

GPX
GPX-ap

yfilter

(e) PSD DTD

 0

 10

 20

 30

 40

 50

 60

 70

0 0.1
0.3

0.5
0.7

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Descendant Probability (2M queries)

NASA DTD (NASA)

GPX
GPX-ap

yfilter

(f) NASA DTD

Figure 4: (a)-(c) Varying wildcard (*) probability (d)-(f); Varying descendant (//) probability

ity. Therefore, the minor overhead incurred for managing
the clusters could potentially deteriorate the performance
as well because it provides no pruning and nearly all sub-
scriptions are checked. In contrast, GPX-ap’s effectiveness is
clearly evident which results in substantial performance gain
and improves the performance by considerably reducing the
number of subscriptions to be checked for matching.

Effects of wildcards and descendant operators: We
investigate the impact of the probability of wildcards (W)
and descendant operators (DO). We built two different
query workloads. First, we set DO = 0.2 and varied W
from 0-0.7; second, we set W = 0.2 and varied DO from 0-
0.7. All workloads have two million queries. The results of
varying the wildcard probability for NITF, PSD, and NASA
workloads are demonstrated in Figure 4(a), 4(b), and 4(c),
respectively.

Increasing the wildcard probability has an interesting effect,
that is, it decreases the query selectivity. For instance for the
NITF dataset, when W = 0, a common XPath expression
of length 6 is:

/nitf/body/body.head/distributor/org/alt-code.

It has relatively high selectivity, while when W approaches
0.7 the following XPath expression is no longer uncommon:

/*/*/*/distributor/*/*.

This XPath expression imposes only one concrete filtering
condition (i.e., the tag“distributor”) and, consequently, match-
es many incoming XML documents. Hence, such XPath ex-
pressions have a lower workload selectivity. The low selectiv-
ity property translates to an increased number of matched
XPath expressions, which in turn, increases the matching
computation time for all algorithms. Even, in face of in-
creased computation time, GPX-ap remains the dominant

algorithm, and improves over the next best algorithm (GPX)
by at least two times.

A similar trend is also observed when varying the descendant
operator probability, but with a few key distinctions. First,
the selectivity does not increase as rapidly as it is increased
when the wildcard probability was at 0.7. For example, as
DO approaches 0.7, a common XPath expression is:

//body.head//distributor//org//alt-code.

It is rather selective. However, if a correct access predi-
cate is not chosen, then the above expression could partially
match many incoming messages due to the nature of the de-
scendant operator, which is translated into the low selective
Boolean predicate of greater than as oppose to a more se-
lective predicate having equality as an operator. Thus, for
algorithms that do not incorporate pruning using selectivity
(i.e., GPX and YFilter), the matching time increases signif-
icantly as the probability of DO increases. However, with
the highly effective pruning strategy of GPX-ap, the match-
ing computation time remains virtually unaffected as DO
increases.

In general, as the probability of W and DO increases, YFil-
ter suffers due to an increase in the non-determinism of the
NFA. Furthermore, the increase in DO also leads to an in-
crease in the size of the NFA. Moreover, the descendant op-
erator introduces states with self-loops, which also increases
the number of touched states during filtering. Our unique
encoding together with our novel data structures avoid these
shortcomings.

Effects of XML/XPath length Another important work-
load characteristic is the XPath expression length. There-
fore, we study the increase in the maximum length of the
XPath queries and the maximum number of levels of the

54

 1

 4

 16

 64

 256

 1024

 4096

6 7 8 9 10 12

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Maximum Length Path (2M queries)

News Industry Text Format (NITF)

GPX
GPX-ap

yfilter

(a) Varying XPath/XML length

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

6 7 8 9 10

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Maximum Length Path (2M queries)

News Industry Text Format (NITF)

GPX
GPX-ap

Yfilter

(b) Varying XPath length

Figure 5: Varying the XPath/XML length

XML documents for NITF (the PSD DTD is limited to 8
levels) ranging from 6-12. The results are shown in Fig-
ure 5a. As expected, the performance of GPX degrades due
to the increase in the number of attribute-value pairs result-
ing from the XML documents which results in an increase
in the number of partial matches. However, our GPX-ap
gracefully scales as the length of the XPath/XML artifacts
increase due to GPX-ap’s powerful pruning capability that
significantly reduces the number of partial matches. YFilter
is also affected as expression and document lengths increase
due to the larger NFA size and increased number of states.
Similarly, the same trend is observed when the length of
XML document was fixed at 10 and the XPath expression
length was varied from 6-10 (cf. Figure 5b). In short, GPX-
ap is an order of magnitude faster than other approaches.

Value-based predicate filters: Finally, we study the per-
formance of our algorithm when the XPath queries have
attribute-based filters. For these experiments, we modified
the query generator to output filters on tag names that con-
tain as operator one of the following: =, ≥, ≤. We extended
GPX-ap to support predicates corresponding to attribute-
based filters. All the attributes in the XML documents are
evaluated against these predicates. For YFilter, we imple-
mented the selection postponed approach [6]. Note that our
approach can be looked at as an inline approach since the
predicates are evaluated regardless of whether the queries
are structurally matched or not. Next, we investigate the
trade-offs between our inline approach and the YFilter selec-
tion postponed one.

For the first set of experiments, we created workloads with
the same number of queries (half a million), and we varied
the number of filters per query ranging from 0 to 10 (see
Figures 6(a)-(b) for the results.) For the second set of ex-

periments, we generate workloads with one or respectively
two filters per path and varied the number of queries. Fig-
ure 6(c) shows the results for the NITF DTD. The results
for the PSD DTD are also shown in Figure 6(d).

YFilter is slightly less sensitive when increasing the num-
ber of filters per query since the filters are checked only if
the queries are structurally matched (selection postponed.)
Therefore, when no filter is used GPX-ap is faster by orders of
magnitude, and as the number of filters per query increases
and approaches 10 filters, GPX-ap suffers some performance
degradation, but still improves over YFilter by at least 50%
(see Figures 6(a)-(b).)

On the contrary, if most of the queries are structurally matched,
YFilter takes a significantly longer time to process queries
with only one to two filters per query. This is the case for
the PSD DTD (Figure 6(d)) in which the queries are very
simple structurally, so most of them are matched in struc-
ture, but not in terms of the filters specified. Even for a
workload with higher selectivity such as the NIFT DTD (see
Figure 6(c)), again, with only one or two filters per query,
GPX-ap significantly outperforms YFilter.

6. CONCLUSIONS
While most existing XML/XPath matching approaches use
standard techniques such as NFAs or DFAs for process-
ing XPath expressions, we altogether diverted and proposed
a fundamentally new approach for XML/XPath matching.
Our novel proposal is GPX-Matcher, a matching algorithm
that determines interested subscribers in a content-based
publish/subscribe system for which subscriptions are cap-
tured using XPath expressions while publications are cap-
tured as XML documents. The key idea behind our al-
gorithm is that XML messages are translated into sets of
attribute-value pairs that are evaluated over conjunctions
of Boolean predicates resulting from our unique XPath ex-
pression encoding. Our extensive evaluations illustrate the
scalability of GPX-Matcher for XML/XPath matching involv-
ing millions of XPath expressions. In our experiments, we
show that GPX-Matcher gracefully scales for workloads of up
to four million subscriptions. On workloads without dupli-
cate subscriptions exhibiting high selectivity (i.e., few sub-
scriptions match the incoming message), GPX-Matcher clearly
outperforms state-of-the-art techniques by orders of magni-
tude. Moreover, for workloads including duplicates and high
matching load, GPX-Matcher also consistently outperforms
alternatives due to its unique encoding and novel data struc-
tures that effectively exploit workload selectivity. Lastly,
GPX-Matcher is highly robust while changing key workload
parameters such as wildcard probability, descendant oper-
ator probability, XML/XPath depth, and number of filters
per XPath expression.

7. REFERENCES
[1] M. K. Aguilera, R. E. Strom, D. C. Sturman,

M. Astley, and T. D. Chandra. Matching events in a
content-based subscription system. In ACM PODC’99.

[2] G. Ashayer, H. Leung, and H.-A. Jacobsen. Predicate
matching and subscription matching in
publish/subscribe systems. In DEBS’02.

[3] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava.
Navigation-vs. Index-based XML multi-query

55

 8

 16

 32

 64

 128

 256

0 2 4 6 8 10

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Filters per Query (500K queries)

News Industry Text Format (NITF)

GPX-ap
Yfilter

(a) NITF DTD

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

0 2 4 6 8 10

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Filters per Query (500K queries)

Protein Sequence Database (PSD)

GPX-ap
Yfilter

(b) PSD DTD

 32

 64

 128

 256

 512

 1024

500K
1.0M

1.5M
2.0M

2.5M

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Queries

News Industry Text Format (NITF)

GPX-ap-1
GPX-ap-2

YFilter-1
YFilter-2

(c) NITF DTD

 32

 64

 128

 256

 512

 1024

 2048

 4096

500K
1M 1.5M

2.0M
2.5M

M
a
tc

h
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Queries

Protein Sequence Database (PSD)

GPX-ap-1
GPX-ap-2

YFilter-1
YFilter-2

(d) PSD DTD

Figure 6: Attribute-based filters

processing. In ICDE’03.

[4] K. S. Candan, W.-P. Hsiung, S. Chen, J. Tatemura,
and D. Agrawal. AFilter: adaptable XML filtering
with prefix-caching suffix-clustering. In VLDB’06.

[5] C. Y. Chan, P. Felber, M. N. Garofalakis, and
R. Rastogi. Efficient filtering of XML documents with
XPath expressions. In ICDE, 2002.

[6] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. Fischer. Path sharing and predicate evaluation for
high-performance XML filtering. ACM TODS’03.

[7] F. Fabret, H.-A. Jacobesen, F. Llirbat, J. Pereira,
K. Ross, and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe
systems. In SIGMOD’01.

[8] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski.
The PADRES distributed publish/subscribe system.
In ICFI’05.

[9] P. M. Fischer and D. Kossmann. Batched processing
for information filters. In ICDE’05.

[10] K. J. Gough and G. Smith. Efficient recognition of
events in distributed systems. In ACSC18’95.

[11] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata.
In ICDT’02.

[12] A. K. Gupta and D. Suciu. Stream processing of
XPath queries with predicates. In SIGMOD’03.

[13] S. Hou and H.-A. Jacobsen. Predicate-based filtering
of XPath expressions. In ICDE’06.

[14] R. S. Kazemzadeh and H.-A. Jacobsen. Reliable and
highly available distributed publish/subscribe service.
In SRDS’09.

[15] J. Kwon, P. Rao, B. Moon, and S. Lee. Fast XML
document filtering by sequencing twig patterns. ACM
TOIT’09.

[16] J. Kwon, P. Rao, B. Moon, and S. Lee. Value-based
predicate filtering of XML documents. DKE’08.

[17] G. Li, S. Hou, and H.-A. Jacobsen. Routing of XML
and XPath queries in data dissemination networks. In
ICDCS’08.

[18] G. Li, S. Hou, and H.-A. Jacobsen. A unified approach
to routing, covering and merging in publish/subscribe
systems based on modified binary decision diagrams.
In ICDCS’05.

[19] G. Li, S. Hou, and H.-A. Jacobsen. XML routing in
data dissemination networks. In ICDE’07.

[20] G. Li, V. Muthusamy, and H.-A. Jacobsen. A
distributed service-oriented architecture for business
process execution. ACM TWEB’10.

[21] M. M. Moro, P. Bakalov, and V. J. Tsotras. Early
profile pruning on XML-aware publish-subscribe
systems. In VLDB’07.

[22] News Industry Text Format (NIFT).
http://www.nitf.org.

[23] J. Pereira, F. Fabret, H.-A. Jacobsen, F. Llirbat, and
D. Shasha. WebFilter: A high-throughput XML-based
publish and subscribe system. VLDB ’01.

[24] PIR-International Protein Sequence Database (PSD).
http://pir.georgetown.edu.

[25] M. Sadoghi, M. Labrecque, H. Singh, S. Warren, and
H.-A. Jacobsen. Efficient event processing through
reconfigurable hardware for algorithmic trading. In
VLDB’10.

[26] S. E. Whang, H. Garcia-Molina, C. Brower,
J. Shanmugasundaram, S. Vassilvitskii, E. Vee, and
R. Yerneni. Indexing boolean expressions. VLDB’09.

[27] T. W. Yan and H. Garćıa-Molina. Index structures for
selective dissemination of information under the
boolean model. ACM Trans. Database Syst.’94.

56

