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ABSTRACT
Pervasive access to distributed data sources by means of mobile
devices is becoming a frequent realistic operational context in
many application domains. In these scenarios data access may be
thwarted by the scarce knowledge that users have of the applica-
tion and of the underlying data schemas and complicated by limited
query interfaces, due to the small size of the devices.

A viable solution to this problem could be expressing the queries
in natural language; however, in applications like medical emer-
gencies, data management systems must obey requirements such
as very fast and precise data access which make this solution infea-
sible.

To reduce the time needed to get answers to user queries, the
paper proposes a lightweight, context-aware approach based on
the combination of keywords with natural language queries. The
method employs ontologies and query patterns to support the users
in formulating the most appropriate query for retrieving the desired
data. Precision and query efficiency are further improved by focus-
ing searches only to the data which are meaningful w.r.t. the current
context, thus supporting the users’ situation awareness.

The approach has been integrated in the SAFE system, devel-
oped for mobile and Web, and has been applied in cardiology to
support medical personnel in emergency interventions on patients
affected by chronic cerebro-vascular diseases. Experimental results
have shown that the proposed solution significantly reduces the
time to get useful data w.r.t. traditional form-based approaches.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Query formulation; J.3 [Computer Applications]:
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1. INTRODUCTION
The availability of small devices able to perform complex com-

putations (e.g., tablets, pads, smart-phones, etc.) is opening the way
to new working models characterised by pervasive applications and
mobile personal computing systems. In such an environment, there
is an increasing need for seamless access to distributed and hetero-
geneous data sources. However, users have often a very limited
knowledge of the information content and organisation underlying
their applications, and consequently retrieving useful data in a pre-
cise, fast and exhaustive fashion requires either time or an a-priori
technological training.

In addition, the compactness of many mobile devices makes it
difficult to design effective (i.e., complete and easy to use) user-
interfaces to support data access, retrieval and querying. In partic-
ular, approaches based on forms and SQL queries, that are very ef-
fective with desktop or web applications, may turn users away since
keyboards are small or virtual, frequent scrolling is required to
reach the desired fields, and small-size screens prevent easy reading
of query results. Despite the fact that better user-interface design
may partially solve some of these problems we believe that a better
solution resides in a different user-device interaction paradigm.

A possible course of action consists in allowing users to formu-
late queries in natural language. However, (semi)automatic gener-
ation of queries from natural language must address the problem
of recognising the intended meaning of sentences [34], a problem
that, despite the many advances obtained by means of quantita-
tive techniques, is computationally very expensive and still requires
complex training phases on large text corpora. Moreover, building
a complete sentence in natural language and transforming it into
adequate queries towards a database introduces two levels of com-
plexity that contribute to increasing the time needed to obtain the
desired information.

A more effective approach aims at reducing the problem to
keyword-based search, avoiding the burdens of building and pro-
cessing complete sentences expressed in natural language. How-
ever, pure keyword-based solutions are affected by two major prob-
lems: (i) most of the information conveyed by natural language is
hidden within the structure of the sentences, thus a list of keywords
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has often an imprecise or ambiguous semantics; (ii) in order to in-
put the keywords, the user must have at least an approximate idea
of the available information. These are critical aspects in emer-
gency situations, where speed and precision (in the sense of match-
ing users’ objectives) are of paramount importance, especially for
naive users.

The paper proposes a lightweight approach to mobile search in
emergency situations, based on semantic technologies and sup-
ported by context awareness. Ontologies are employed to match
the keyword semantics against predefined query patterns, which
are prompted to the users for them to identify the most appropri-
ate query. Precision and speed are enhanced by exploiting context-
awareness, which suggests a way for tailoring the ontology, and
consequently query templates and searches, to the current context.

Our approach is particularly interesting in application scenarios
that require flexibility in composing a query and high performance
to access data in very short time. One such situation is the treat-
ment of emergency in health-care environments and in particular
in cardiology. Here, the fundamental information is represented by
the patient’s anamnesis that must be (i) accessed very fast and (ii)
restricted to only those data that are pertinent to the current emer-
gency situation, in order to avoid death or to affect severely (i.e.,
irrecoverably) the patient’s health.

In such scenarios, each chronic patient is provided with a smart-
card (SAFE-Card) that stores (i) medical information about the
patient and (ii) suitable context meta-data that affect the way the
medical data will be accessed by the system. A central organisa-
tion (e.g. a federation of health-care structures) provides access
to a federated information system, when needed. This endpoint is
reachable through the web by means of a GSM/UMTS connection
reserved to emergency services. However, an essential requirement
of SAFE is the capability to support the health-care personnel even
in conditions of zero-connectivity with the central system.

SAFE prompts the user (a paramedic or a doctor) with a list of
parametric query patterns expressed in natural language that are re-
lated to the keywords given as input. Once the user has identified
the queries that s/he would like to execute, SAFE will answer them
by using the data stored into the smart-card or by accessing the cen-
tral information system (if reachable). Therefore, the approach can
be used both in mobile and desktop-based scenarios, as described
by the two following use cases:.
c1 - mobile emergency: a team of paramedics is sent to rescue an

unconscious patient (owning a smart-card called “SAFE-Card”) hit
by a heart-stroke in an area with limited connectivity (i.e., no broad-
band over the cellular network). The paramedics are provided with
mobile devices capable of reading the content of the SAFE-Card.
With this equipment, they are able to retrieve as much informa-
tion as possible about the patient’s recent anamnesis (e.g., chronic
diseases and subjection to heart-strokes) plus any information that
could be of interest for handling the emergency – e.g., if the pa-
tient has had a cardio-stimulator planted, rather than employing a
defibrillator the paramedics must resort to manual heart-massage,
otherwise the discharge may damage the cardio-stimulator and the
patient dies before reaching the hospital. Note that, in this situ-
ation, an easy interaction paradigm is somewhat mandatory since
paramedics may have to interact with the device in difficult en-
vironments (rain, low visibility, etc.) possibly wearing gloves or
single-handed.
c2: - first aid and pre-surgery briefing: a patient is carried to

the first-aid department of a hospital after preliminary intervention
in the ambulance during transportation. The paramedics at the
hospital use the patient’s SAFE-Card to immediately access his
or her anamnesis through the SAFE Web application, and to

automatically book the needed clinical exams and the surgery
room for a possible operation. The exams suggest to proceed
with surgery within one day. The team is now discussing before
doing surgery on the patient: the anaesthetist needs to access the
SAFE Web application through a terminal in the briefing room, to
retrieve the information about all the pharmacological treatments
prescribed to the patient – e.g., if the patient is under therapy with
vasodilator or anti-aggregating chemicals, the administration of
any further drug that empowers the effect of these chemicals might
lead to massive haemorrhages during the intervention, jeopardising
the patient’s life.

Both uses cases show the need for novel tools and technologies
able to assist and expedite the access data which are meaningful
w.r.t a given context. Accordingly, the main scientific contributions
of the paper are: (i) an architecture for fast and adaptive keyword-
based retrieval of medical information in emergency situations, (ii)
a structure for Query Patterns associating a query in natural lan-
guage with a query in a concrete query language. (iii) a context-
aware, semantic ranking algorithm for Query Patterns w.r.t. an or-
dered set of keywords and (iv) an ontology-based context model
suitable for a-priori definition of context-relevant areas in an ontol-
ogy. An additional and important contribution is the implementa-
tion and the integration of the proposed techniques in a real system
that supports fast and adaptive keyword-based retrieval of medical
information in emergency situations.

We assume that the reader be familiar with relational databases
and keyword-based search engines. Moreover, in the following
sections we make an extensive use of ontologies. An ontology is
a formal, conceptual specification of a domain of interests [16],
modelled as a 4-tuple O =< NC,NR,NU ,NI > where NC is a set
of concept names (i.e., classes or types), NR is a set of role names
(i.e., binary relations between concepts), NU is a set of attribute
names (i.e., binary relations between a concept and a data-type)
and NI is a set of individual names (i.e., constants). In this paper
we consider Description Logics (DLs) ontologies [4] structured as
a pair KB =< T,A >, where T (the TBox) is a set of termino-
logical axioms (i.e., intensional knowledge) involving elements in
NC∪NR∪NU , while A (the ABox) is a set of facts (i.e., extensional
knowledge) about elements in NI .

The paper is organised as follows: Section 2 compares SAFE
with the literature, analysing the main results of the works more
related to the technique we propose. In Section 3 we go into the
details of the keyword-based query answering approach adopted in
SAFE while Section 4 describes how context-awareness is achieved
by means of a context model, and its effect on the SAFE system.
Finally, Section 5 is dedicated to the evaluation and experimental
setting while Section 6 draws some conclusions and proposes some
extensions to this work.

2. RELATED WORK
In SAFE we combine techniques coming from various research

fields namely: information retrieval [5], databases [1] and perva-
sive, context-aware systems [15, 24].

Enabling a simple and intuitive access to databases is the domain
of keyword-based database querying [13], a research area which is
relatively recent for the database community, where the data are
accessed through keywords instead of using structured query lan-
guages such as SQL. This approach has proved effective when the
databases have complex, unknown or evolving schemata since the
user does not need to know the logical structure of the underlying
database. These techniques mainly result from the hybridisation of
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databases with information retrieval (IR), where keywords are in-
stead used for ranking and retrieve relevant documents from (large)
collections. Relevant works on this topic include BANKS [6],
DBXplorer [2], Discover [17], SQAK [31] and ObjectRank [18],
where the user provides a set of keywords as input and the system
returns, as answer, a set of tuple-trees i.e., inter-connected tuples
that are related to all and only the keywords given as input. In
all these proposals the returned tuples must match the keywords
given as input thus increasing the precision of the answers. How-
ever, this semantics is considered too restrictive for most of the
applications, since the user might not know the exact names of the
entities s/he wants to query and this causes a limited recall espe-
cially when the database schema is unknown. In order to overcome
this problem, taxonomy- and ontology-based approaches have been
proposed. These use a reference semantic structure to enrich (i.e.,
expand) the set of keywords in order to retrieve also tuples that
are not explicitly related to the original keywords (e.g., they are
related to hyponyms of the keywords). Alternatively, approaches
such as NaLIX [21] use natural language sentences instead of key-
words. This reduces the uncertainty resulting from the intrinsic
ambiguity of flat keywords but adds the burden of natural language
processing, whose computational requirements are still unsuitable
for mobile environments. An interesting approach bridging key-
words and structured queries is that of QUICK [25], that proposes
a structured-keyword query language where that explicitly uses do-
main relationships to relate the keywords. In particular, it is pos-
sible to explicitly represent typing (e.g., John is-a person) and
relationships (e.g., Jimi Hendrix plays(guitar)). However,
this language is limited to very particular structures (e.g., it can ex-
press only targets of a relation and not their subjects), while SAFE
can automatically identify the relations between the keywords us-
ing the terms in the ontology. In particular the presence of a relation
affects in the ontology with domain disease and range system will
lead to suggesting the terms disease and system (along with their
synonyms) whenever the keyword affect is typed into the system.

Differently from the above systems, SAFE cannot afford the
luxury of inexact answers due to the particular constraints imposed
by the emergency setting and, therefore, the queries that are
eventually executed on the database are hand-made, structured
query patterns. Keywords are used only to produce a ranking
over the available query patterns that, in turn, carry a curated
natural-language description of the semantics of the query. This
eliminates the remaining uncertainty that can be introduced by the
keyword matching processing that generates the ranking of the
patterns.

Since keyword-based querying is schema-less, a natural issue
is keyword identification i.e., users must be supported during the
formulation of the keywords to avoid errors. In [14], the input
keywords are auto-completed by looking-up the entire content
of the database, and different scalable algorithm for this task are
presented. However, in order to be efficient, these techniques
require an additional memory consumption ranging from 200
to 300 megabytes for medium-sized databases (∼500k entries).
Even the most space-efficient technique presented in [14] will
require around 4 GBs of additional memory to deal with a large
medical ontology such as SNOMED [30], that is at the limit of
the memory capabilities of current mobile devices. In SAFE we
go beyond auto-completion by providing the user with a set of
related keywords based on the ontology and on the context of the
user. Differently from taxonomy-based approaches we go beyond
classic linguistic relationships by exploiting domain-specific
relationships such as the property of a concept (i.e., the name or

SSN of a patient) and relationships between terms (e.g., the fact
that a drug interacts with other substances).

When semantic technologies are combined with IR techniques
we speak of Semantic Search [20, 26, 32]. In [19], a reference tax-
onomy is used to perform keyword-based querying over a database
of medical records. Given a keyword, the system computes all the
synonyms and hyponyms of the term given as input; these terms
are then searched within the database using pre-defined queries.
However, due to the storage model adopted for the ontology, this
technique requires recursive SQL for ontology querying while, in
SAFE, querying can be reduced to answering conjunctive queries
that, differently from full SQL, can be answered very efficiently.
Si-SEEKER [37] combines the IR engine of a RDBMS with a
Semantic Search Algorithm that uses manually-generated textual
annotations for the data. In both the previous approaches, only
the sub-class relationships are taken into account, thus reducing
the domain ontology to a simple taxonomy; we exploit a broader
class of ontological relationships (with the aim of improving re-
call), while keeping a clear understanding of the influence that the
expressive power of the adopted ontological language has on query
processing efficiency. A related work in this sense is that of Search-
WebDB [33] where the keywords are used to generate SPARQL
conjunctive queries by exploring an RDF graph; such queries will
be then answered over the same RDF graph. This approach is af-
fected by the same ambiguity problem affecting the query genera-
tion techniques developed for relational databases since SPARQL
is only a syntactic variant of non-recursive SQL. However, the the
authors also propose a graph summarisation strategy to improve
the graph exploration step required to derive the structured queries
from the keywords. Since summarisation is affected by uncertainty,
in SAFE we use an a-priori context-based tailoring of the ontol-
ogy in order to explore the ontology graph efficiently for keyword
matching.

The constraints imposed by the pervasive and mobile setting of
some SAFE users, as well as the time constraints induced by the
emergency situations to be managed, led us to study how to apply
Pervasive Data Management [24] techniques to focus the search-
space of the queries while maintaining a decent response-time. The
main solution was found in context-aware techniques.

The notion of context, formerly emerged in various fields of re-
search like psychology and philosophy [12], has been recently stud-
ied also by the computer science community (in particular in the
Knowledge Representation area [11, 35]), in order to find suitable
models that can be used to embed the contextual dependency in
software systems [9]. According to [15], we refer to context as
any information that can be used to characterise the situation of
an entity, where an entity is a person, a place, or an object that
is considered as relevant for the interaction between a user and an
application. Context-awareness is a very common tool in medi-
cal information systems especially when combined with IR tech-
niques: [22] enriches a standard IR engine for medical documents
with the UMLS ontology1 and a context model. The ontology is
used as a reference index; the terms in the documents are linked to
the resources of the ontology to increase the recall of the retrieval
process, while the context-model is used to annotate the documents
with meta-data about the context of the document’s author. In MIS-
earch [28], a search engine for medical information, the context
meta-data are extracted from the PHR (Patient Health Record) of
the user. In this system, the original query is forwarded to Google
and the contextual data are used to further filter and rank the search

1http://www.nlm.nih.gov/research/umls/
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results. In both [22] and [28], the context meta-data are biased
toward either the document author’s or the patient’s perspective
and they fail to represent other contexts of fruition of the infor-
mation (e.g., the situation or the device capabilities). SAFE uses
the information stored in the SAFE Card in a similar way, how-
ever its context-model, based on the one presented in [10], is much
more expressive than those adopted in the previous two systems and
can model all the necessary perspectives (i.e., situations) involving
users, systems and applications.

3. FROM KEYWORDS TO QUERIES
SAFE receives as input a sequence of keywords and produces, as
output, a ranking over a set of query patterns, possibly with a sug-
gested assignment for their parameters.

A typical execution flow (Figure 1) starts with an ordered set of
keywords < k1, ...,kn > given as inputs to one of the SAFE user
applications (A). The keywords determine a ranking of the natural-
language patterns < p1, ..., pm > that are proposed to the user along
with a suggested assignment for their parameters (B). The user
can then further specify/override the parameter assignments for the
patterns < pi, ..., p j > selected for execution (C). Afterwards, de-
pending on the SAFE application being used, the corresponding
queries < qi, ...,q j > are answered using the chunks (D) or using
the SPARQL Endpoint (E), in the case of using a mobile device or
the Web-based application, respectively.

Keyword interpretation is based on their comparison with the
resources of the domain ontology and on the current context of the
user. The following data structures constitute the information back-
bone on which SAFE relies:

• the domain ontology (SAFE-DO) that extends the relational
schema of the SAFE-DB by means of additional struc-
tures. The domain ontology is defined using OWL2-EL
based on the description logic EL++ [3], a DL for which
query-answering remains tractable (i.e., PTIME in data-
complexity) while providing sufficient expressive power for
the representation of medical and biological ontologies [29].

• A set of SAFE chunks, context-aware fragments of the do-
main ontology, which represent the data over which the
queries are evaluated on the mobile device. Their ABox
instances are retrieved from the SAFE-DB and kept cached
on the mobile device. The TBox Tc of each chunk is deter-
mined at design-time while the corresponding ABox Ac is
retrieved through the SAFE Context Server on-demand and
materialised as triples on the file-system of the mobile de-
vice.

• a set of contextual specifications representing the different
contexts the user can be in. Each context is associated with
the chunk TBox Tc which must be considered in order to
(i) suggest keywords to the user, (ii) compute the ranking
of the queries and (iii) answer the queries. The context is
modelled using the description logic ALCQ(D), that pro-
vides constructs like qualified number restrictions and others
needed for modelling contexts.

• A set of configurable Query Patterns representing the associ-
ations between a query in natural language and a query pat-
tern in SPARQL2, a query language for RDF 3, which is ac-
tually a syntactic variant of the Relational Algebra fragment

2http://www.w3.org/TR/rdf-sparql-query/
3http://www.w3.org/RDF/

of SQL [23]. In SAFE we consider conjunctive SPARQL
queries, corresponding to the select-project-join queries of
Relational Algebra. Query Patterns are thoroughly explained
in Section 3.2

SAFE-Search
Library

D2R
Server

Relational Interface

SAFE
DB

D2R Mapping

Pellet
Reasoner

SAFE-Search
WEB

SAFE-Search
Web GUI

SAFE-Search
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Reasoner

SAFE-Search 
Mobile

SAFE-Search
Mobile GUI
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(B)

SAFE
Chunk

(B)

(C)

(C)

(D)

(E)

< k1, …, kn >

< p1, …, pm >
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Domain
Ontology

Patterns
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Context Server

Context
Registry

< pi(vi), …, pk(vk) >

Figure 1: SAFE Architecture

In SAFE the queries, in SPARQL, are posed against the domain
ontology – through the Web interface – or against the chunks –
when operating in mobile contexts –. Then, they are translated
into equivalent conjunctive queries and computed by resorting to
the query-answering service of the Pellet reasoner4, embedded in
SAFE and used every time a query is issued. The SPARQL end-
point is accessed only in two situations: (i) by the SAFE-Web Ap-
plication in order to answer a query and (ii) by the SAFE Context
Server in order to compute the chunk related to a context.

We now discuss in detail (i) how the keywords are “interpreted”
by the system, (ii) how they are refined and (iii) how they contribute
to the ranking of the query patterns.

3.1 Keyword-to-Ontology Matching
In SAFE, the input keywords are first refined using the ontology

as a controlled vocabulary; then, other keywords are suggested to
the user to better specify the query. An important aspect of the
input mechanism adopted in SAFE is the possibility to specify as
keywords both search terms (e.g., patient, drug, etc.) and param-
eters (e.g., John Smith, Diazepam, etc.). The system will leverage
on the ontology and the type of the parameter (e.g., integer, string,
etc.) to recognise whether a given keyword should be used to rank
the patterns or as a value for a pattern’s parameter field.

A sequence of lemmas w=< w1,w2, . . . ,wn > is a keyword if the
lemmas of w are considered as a unique concept by the user, e.g., a
user might consider each of the two sequences of lemmas <heart
stroke> and <low blood pressure> as a unique keyword or
not. Both the mobile and the web applications in SAFE provide the
users with the needed visual support in the GUIs in order to explic-
itly denote whether a sequence of lemmas is part of a unique key-
word. This is different from classic IR where either every lemma
is considered as a distinct keyword or compound keywords must
be explicitly connected by means of boolean operators (i.e., AND,
OR, NOT, etc.) or quotes. The SAFE keyword-interface accepts
sets of keywords and uses them to retrieve a corresponding con-
junctive query pattern from an existing collection. In this way, we
4http://clarkparsia.com/pellet/
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can straightly associate the results of the search to the keywords
typed as input.

A user keyword may be typed into the system by the user or
picked from a set of suggested keywords usually related to the key-
words already provided. The suggestion mechanism is contempo-
raneous to typing and operates as follows:

Let LO be the set of all the labels (i.e., the natural language
descriptions) associated with concepts and roles in the domain on-
tology O and K and S be two ordered sets of keywords. At each
moment, K contains the keywords that have been already “con-
firmed” by the user while S contains the keywords that are being
suggested to the user by the system. The function pos(k,K) de-
notes the position of a keyword k in S and it is used to suggest
more pertinent keywords first to the user, while matchJW (s, t) de-
notes the Jaro-Winkler [36] distance between two strings s and t.

The sets K and S are initially both empty. Every time the user in-
puts a character, the system considers that character as part of a pos-
sible keyword w being typed by the user. During the typing process,
the function matchJW (w, l) is computed between the string w that
is being typed in and each of the labels l ∈LO. The system adds to
S the top-m labels l in the ontology for which matchJW (w, l)> t –
where m (i.e., the number of suggestions) and t (i.e., the similarity
threshold) are defined at configuration time – and proposes them to
the user; it is worth noting that, during this process, the ontology
is used as a controlled dictionary of possible keywords. Whenever
the user selects a keyword k from S, the string w is replaced by k
that is, in turn, added to K. If the user does not select any of the
suggested keywords from S and confirms the given input string w
to be considered as a keyword, the system associates it with the
resources in the ontology O whose labels are the best matches for
w. If no l ∈ LO exists such that matchJW (w, l) > t, then w is in-
terpreted as a possible value (i.e., a hint) for the parameters of the
query patterns and it will not be associated with any resource in the
ontology.

For each suggested keyword k, its position in S (i.e., pos(k,K))
is computed on the basis of (i) how frequently k has been used in
past searches and (ii) how much k represents a pertinent concept
w.r.t. the ontology resources associated with the other keywords in
K.

The usage frequency f req(k) of a keyword k is computed
through the analysis of the system’s logs. Every time a keyword
k is typed into the system, it is logged and added to the statisti-
cal base. The value of f req(k) is then computed as the number of
times it has been used in a search over the total number of searches
executed by the system.

The pertinence of a resource r w.r.t a generic set of keywords
K (i.e., pert(r,K)) denotes how much r is related to the resources
associated with the keywords contained in K.

Assume K={drug, ascriptin} and the following ontology frag-
ment:

R1 R2
R3

string string
R4 R5

where circles represent concepts, arrows represent roles and dot-
ted rectangles represent data-types. The resources (concepts
and roles) carry with the following labels: LR1 ={drug, pharma-
ceutical, medicinal}, LR2 ={disease, condition, illness, sickness},
LR3 ={treat, cure, heal}, LR4 ={name}, LR5 ={code}. The computa-
tion of the pertinence is carried out in three steps:

1. SAFE associates each keyword k with the resource rk whose
label is the best match for k. The association is estab-
lished by first decorating each r ∈ O with a property mk(r)

whose value is m(k) =maxl∈Lk (matchJW (k, l)) (i.e., the best
match), where Lk is the set of labels associated with the re-
source r in the ontology. Then, rk is the resource such that
mk(rk) = maxr∈Omk(r). Notice that, whenever a keyword is
selected by the user from the ordered set S of suggestions,
the association is certain (i.e., m(k) = 1) since the selected
keyword comes from those taken from those available in the
ontology. With respect to the above example, we associate a
property mdrug to R1 with value v = 1.0 because the keyword
matches perfectly a label from LR1 , while the keyword “as-
criptin” (which is the name of a particular cardio-aspirin) is
not associated to any of the ontological resources.

2. A subsequent phase progressively decorates the neighbours
< t1, . . . , tn > of rk in the ontology (i.e., resources directly
connected to rk); for each j ∈ {1, . . .n}, the value of mk(t j)

is computed as mk(t j) = ∑
ti∈T

τ ·mk(ti) where T is the set of

all the resources ti which are in their turn directly connected
to t j, that is, the neighbourhood of t j: intuitively, mk(t j) reg-
isters how much t j is related to rk. The decoration process is
repeated for n hops, determining a set of resources that rep-
resents an area in the ontology that is related to rk, and thus
to the keyword k.

The value of τ takes into account the types of the resources
(classes and properties) and determines an area in the ontol-
ogy whose resources are somewhat related to the input key-
words. In the current version of SAFE, after experimental
trials, the values for τ are set as in Table 1

Table 1: Decoration function (τ) coefficients.
ti t j τ

concept attribute mk(ti)
#number o f attributes o f ti

concept hyponym mk(ti)
concept hypernym mk(ti)

#number o f hypernyms o f ti
concept role mk(ti)

#number o f roles whose ti is the domain
attribute domain mk(ti)

role domain mk(ti)
2

role range mk(ti)
2

Instead, the choice of n is configurable on the basis of the
structure of the domain ontology. In general, n is greater than
zero and limited by the maximum path length identifiable in
the ontology graph. The output of this process for the ex-
ample above is the set of annotations {(R1, mdrug, 1.0), (R2,
mdrug, 0.25), (R3, mdrug, 0.5), (R4, mdrug, 0.5), (R5, mdrug,
0.25)}.

3. The final step computes the pertinence w.r.t. K of each re-
source r (not necessarily associated with a keyword) that is
simply the average among all the values of the properties mk
(for each k ∈K) decorating r.

pert(r,K) = avgk∈K(mk(r)) (1)

With respect to the example above, due to the presence of a
single keyword in K the pertinence values correspond to the
values of mdrug.

Let now RmathcalS be the set of resources associated with the key-
words k ∈ S. For each k ∈ S, its position is then determined through
the function pos(k,S), which is computed as a linear combination

193



of its frequency and of the pertinence value of the resource rk asso-
ciated with k:

pos(k,K) = avgrk∈Rk (pert(rk,K))+β(t) · f req(k) (2)

where β(t) is computed as
1
2
− 1

2 ·n(t)
and n(t) is the number of

different keywords used in searches up to the instant t. Notice that
n(t) > 0 for each instant t > t0. This factor is used to ensure that
the statistical base is large enough before proposing a keyword on
the basis of its usage frequency. In this way, the pertinence factor
will be predominant in small statistical bases, while the two fac-
tors will be asymptotically considered as equally important, while
the system collects more keywords. Following the example above,
if we assume β(t) = 0 and n = 5, the set of suggested keywords
is S={name, treat, cure, heal, condition} while the keyword “as-
criptin” will be considered as a parameter value.

We are now going to describe how the pertinence of the resources
affects the ranking of the query patterns.

3.2 Ontology-driven Query-Pattern Selection
In SAFE, all the queries are presented to the user in natural
language. Each query in natural language is associated with
a SPARQL query over the domain ontology through a pattern
structure. Each pattern is enriched with suitable meta-data that
specify the intended semantics of the natural language query that,
in turn, determines whether or not a particular query should be
shown to the user and its position in the ranking. Each query
pattern is specified by the following elements:

NL-Query: encodes the natural-language query and its variables.
As an example, consider the situation of the use-case c1 and the
query: “show the risk factors leading to heart-stroke
in John Smith’s anamnesis”. The corresponding NL-Query
is: Show the risk factors leading to $pat in $id’s
anamnesis, where $pat and $id are variables to be bound.

Variable Bindings: in SAFE, each variable is associated with an
XML datatype but it is possible to specify the admissible values
to either (i) a default value, (ii) a set of possible values (i.e.,
enumeration) or (iii) a user-defined function.

Formal Query: encodes the SPARQL query associated with the
NL-Query. The two queries share the variables defined in the
variable bindings section, and the values fed into the NL-Query
are transferred to the SPARQL query before its evaluation. Note
that this separation is important since, in general, a very simple
NL-Query might correspond to a complex SPARQL query.

Formal Resources: lists the ontology resources that specify the
semantics of the NL-Query. These resources are used to determine
how much a query is related to a set of keywords and its ranking
among the results. The formal resources are also used to decouple
the ranking process from the terms explicitly used in the SPARQL
query thus making the ranking independent of the structure of the
SPARQL query.

By leveraging on the value of pertinence associated to the for-
mal resources it is now possible to determine whether a NL-Query
should be shown to the user and in which position.

The ranking of a query pattern (denoted by ran(p)) is determined
by two factors: (i) the pertinence and the number of formal re-
sources defined in the pattern, and (ii) the number and the types of
the involved variables (i.e., the pattern parameters).

An easy way to compute ran(p) is to average over the pertinence
of the formal resources specified in the query pattern and use this
value to rank the patterns; given a set RP(p) of formal resources
assigned to p, the ranking based on average pertinence is computed
as:

ran(p) = ∑
ri∈RP(p)

pert(ri,K)

| RP(p) |
(3)

The formula above almost does the job, however, our experiments
showed that this way of computing the ranking would penalise
more general patterns referencing many resources (broad patterns)
w.r.t. those patterns which reference few resources and are thus
more precise (narrow patterns). For this reason we add to Equa-
tion 3 a normalisation factor as follows:

rannorm(p) = ν · ran(p) (4)

where the value of ν is defined as follows:

ν =
1− | RP(p) |
| RP(p) |

· | RP(p)\Rk |+ | RP(p) | (5)

ν takes into account the number of resources directly associated
with any keyword k (denoted by Rk) and mentioned in the set of
formal resources of the pattern. It leaves unaltered the ranking
when Rk is empty while removes the dependency on the number
of referenced resources when the pattern mentions only resources
in Rk.

Another situation to be taken care of arises when it is not possi-
ble to determine the position of a query pattern in the ranking by
relying on the referenced resources only because they get the same
value for ran(p). When such conditions occur we rely on the “un-
matched” keywords. As already introduced in Section 3.1, when
it is not possible to find a resource in the ontology that matches
through its labels a keyword given as input, the system considers
that string as a possible value for the variables in the pattern (i.e., a
hint). Hints are matched against the variables defined in the query
pattern considering both the number of variables and the associated
type. The pattern with the higher number of matches dominates
(i.e., is shown before) the other patterns.

Once the NL-Queries correspondent to the patterns have been se-
lected, the user chooses which queries have to be executed against
the available data represented by the current chunk.

3.3 Adaptive Ranking
In the approach presented so far, given a set of keywords, the rank-
ing of query patterns is determined only by the pertinence of the
ontology resources associated to the keywords. However, with a
simple extension, it is possible to make the ranking adaptive w.r.t
the user interpretation of the input keywords.

This problem is generally known in Information Retrieval as rel-
evance feedback [27] and the aim is to involve the user in the re-
trieval process by allowing him to explicitly denote a document as
relevant or un-relevant w.r.t. the issued query; this information is
then used to iteratively improve the retrieval process.

In SAFE, an important user feedback is the selection of a query
that is not at the top of the ranking, meaning that the ranking pro-
cess did not capture precisely the user interpretation of the input
keywords. The idea is thus to define an additive correction factor
for the ranking which integrates the history of the user’s feedbacks
during ranking computation, allowing SAFE to learn from the pre-
vious user experience. This form of feedback is known as implicit
feedback since the user is not giving an explicit judgement on the
relevance of the retrieved pattern. In addition, no other form of
feedback would be acceptable due to the peculiar time-constraints
imposed by the emergency scenario where SAFE is adopted.
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First, SAFE computes the value ∆ = rannorm(pt)− rannorm(ps),
representing the difference between the ranking values of the top-
ranked pattern and of the selected pattern. We believe ∆ can be
assumed as a measure of the “gap” between the system’s and the
user’s interpretation of the input keywords. The additive correction
factor is then computed as follows for a given pattern p, a given set
of keywords K and the current time instant t:

exp(p,K, t +1) = η ·∆+ exp(p,K, t) (6)

where exp(p,K,0) = 0 and η ∈ (0,1] is the learning rate which
determines how fast the SAFE system adapts to the user feedbacks.
Also the value of η is determined experimentally, since a high
learning rate could make the system too much subjected to user
mistakes during the selection of queries, while a low learning rate
could lead to a system that adapts with difficulty to the user feed-
backs. The resulting formula for the determination of the ranking
of a query pattern is the following:

ranexp(p) = rannorm(p)+ exp(p,K, t) (7)

The techniques presented so far have been inspired by classical
techniques adopted in Information Retrieval such as query refor-
mulation and expansion [5]; however, in SAFE the keywords are
eventually connected to the entities in the ontology and, therefore,
to the formal resources present in the query patterns. This direct
link between keywords and patterns makes the SAFE ranking much
more precise w.r.t. traditional IR since the keywords are used more
likely as indexes for the query patterns than as queries such is the
normality in IR. In addition, traditional relevance-feedback tech-
niques such as the Rocchio’s algorithm [27] are known to be inef-
fective when the keywords’ answer-sets are inherently disjunctive
(e.g., <Patient, Drug>). This problem originates from the fact
that in Rocchio-style algorithms, similar objects are traditionally
assumed to belong to the same cluster identified by a keyword. On
the contrary, in our approach the correction factor takes into ac-
count the entire set of keywords given as input thus limiting this
problem.

4. THE ROLE OF CONTEXT
Since most of the queries are answered over the chunks rather than
through the federated information system, the correct design of the
different Tc’s (i.e., the chunk’s TBoxes) is of extreme importance
in order to avoid too frequent context-switching and, as a conse-
quence, deficiencies in accessing the wanted information during an
emergency. Moreover, since SAFE’s main aim is the fast and pre-
cise retrieval of medical information in order to provide the needed
decision support to health-care professionals during medical emer-
gencies, the prior identification of the subset of the available data
that is relevant to a given situation (or context) may provide a de-
cisive means to reduce the search-space during the computation of
the ranking for query patterns.

We first introduce the structure of the context model and then
proceed to the description of how context-awareness affects the
ranking of the query patterns.

4.1 The Context Model
It has been recognised [11] that knowledge has a contextual compo-
nent, and that this component may be of use to extract and present
the relevant chunks of knowledge, thus allowing for information fil-
tering, focusing and reduction. Differently from other approaches
to context-aware system design [9], we believe that the context in
which information is managed is orthogonal with respect to what
we might call “object information”, and that as such it should be

treated. Consequently, we represent contexts by means of a context
model which is completely independent of the information space,
and whose relationship with it is clearly stated.

In a common-sense interpretation the context is perceived as a set
of variables whose values may be of interest for an agent (human
or artificial) because they influence its actions. As an example, the
following attribute-value pairs:

role=paramedic, situation=car-crash, topic=equipment

may be used to characterise the context of a paramedic who takes
in a car-crash rescue operation and has to select the appropriate
equipment. However, given an application, not all the combinations
of variables and value assignments are necessarily meaningful, e.g.,
the following pairs:

role=paramedic, situation=surgery, topic=equipment

characterise the unlikely situation of a paramedic taking part in a
surgical operation.

In general, the precise definition of the valid combinations is ob-
tained through a context model [8]. Within SAFE, we adopt the
context model known as Context Dimension Tree (CDT) [10], for-
malized as an ontology. This model allows the application designer
to specify all the possible (meaningful) contexts related to the ap-
plication situation, including the association between each context
and the part of the domain ontology which is relevant for that con-
text.

Figure 2 shows the graphical representation of a CDT, mod-
elling the possible contexts of SAFE. In this example context is
analysed with respect to the dimensions (drawn as black nodes)
which are common to most applications: the role, representing
the user’s role (e.g., General Practitioner, Lab technician,
Hospital personnel, etc.), the situation he/she may be in, the
query interface and the topic of interest. A dimension value
(drawn as a white node) can be further analysed with respect to dif-
ferent viewpoints, generating further (sub-)dimensions in the tree
structure. A value can be further specified by means of parameters
(circled nodes) such as an identifier or a date. A context is a sub-
tree of the CDT, obtained by appropriately choosing a set of (sub-
)dimension values. The CDT designer is in charge of establishing
which dimensions are appropriate for the current application do-
main and of specifying the correspondence between each context
and the portion of the domain ontology that is relevant to it (called
context-aware chunk).

A context-aware chunk or, simply, a chunk is a pair C =<
Tc,Ac > where Tc is a subset of the terminological axioms of the
domain ontology’s TBox, while Ac is a subset of the domain ontol-
ogy’s ABox consistent with Tc (i.e., Ac is a model for Tc).

We represent the context model for SAFE in ontological terms
introducing the following structures:

• the context-vocabulary defines the vocabulary (i.e., the meta-
model) used to build the context models. This vocabulary is
application-independent.

• the context-model is an instantiation of the context-
vocabulary and defines the context model for the given ap-
plication. In particular, the context-model specifies the (pos-
sibly hierarchical) context dimensions for the specific appli-
cation, along with their possible values.

• the contexts are instantiations of the context-model and rep-
resents valid (i.e., consistent with the context model) con-
texts for a particular application.
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Figure 2: The Context Dimension Tree (CDT) for SAFE

• the relevant-areas represent the associations between a valid
context c and the corresponding subset (Tc) of the domain
ontology.

The context-vocabulary provides the building blocks for
modelling concepts as: (i) dimensions and their values
(e.g., time=recent, role=GP, pathology=cardio-vascular)
and (ii) parameters and their values (e.g., $m_ID=65403,
$cardv_ID=heart-stroke, etc.), in a word, to represent the struc-
ture and semantics of the context model. The full specification of
the context-vocabulary is given in Table 2.

The concepts named as Dimension and Parameter represent
the super-classes for all the possible dimensions and parameters
of a context model, while the concepts named ActualDimension
and ActualParameter model value assignments for dimensions
and parameters. In a given model, the values will be instances
of the concepts Value and xsd:AnyType (i.e., a generic XML
Schema data-type) or their sub-classes; a Context is then defined
as something for which there exists one or more dimension
assignments.

The context-model ontology uses the resources of the context-
vocabulary ontology to build an application-dependent context
model. Consider, as an example, the fragment of the SAFE context
model shown in Table 3. Statements of the form of (1) and (2)
define the formal dimensions (e.g., topic) and the formal param-
eters (e.g., cev_ID), while statements of the form of (3) constrain
the valid value assignments for each dimension (e.g., situation
may assume the value ambulance or emergency-room but not
anamnesis. All the values also inherit from the vocabulary con-
cept Value (see (4)). Statements of the form of (5) and (6) define
the valid assignments for dimensions and parameters, constructing
also the hierarchical structure of the context model since each
dimension assignments has a reference to his parent in the model;
finally statement (7) defines the structure of a SAFEContext as a
restriction of the Context defined in the context-vocabulary. In
this example, a Context for SAFE is one that may assume (among
the others) as actual dimension the topic and hence also one of its
specialisations such as pathology. Besides the topic dimension
and its values and sub-dimensions, the context-model ontology
contains the other dimensions of the CDT of Figure 2 along with
their values.

It is now clear that the context-model ontology supports the
representation of a certain (finite) number of valid contexts which
correspond to different consistent ABoxes (i.e., models for the
TBox) of the context-model ontology. An example of context
consistent with the SAFE context model and the use-case c1 of
Section 1 is shown in Table 4. Here we define the context for the
use-case c1, where the paramedic in the ambulance is accessing

the recent anamnesis of the patient through a mobile device. c1 is
constituted by five dimensions (time, role, topic, interface
and situation). The last column of Table 4 assigns, to each
dimension, the value it takes in c1.

The relevant areas define the domain ontology resources that are
“relevant” for a given context (i.e., the TBox Tc of a chunk). Ba-
sically, each context c is assigned to the fragment Tc of the ontol-
ogy’s TBox that has the property of containing all the resources
needed to answer the user’s queries when c is active. This assign-
ment is manually-defined by an expert at design-time and stored in
the relevant areas ontology. The association of a context to the cor-
responding Tc is constructed by means of the property inContext
of the context-vocabulary ontology.

4.2 Context-Aware Pattern Ranking
Relevant areas can be exploited to improve the ranking of query
patterns. At any moment, during the execution of the SAFE system,
there exists a single active context. As already said, each context
defines a precise set of resources (concepts and properties in the
corresponding chunk’s TBox) taken from the domain ontology that
are somewhat related to the queries that a user may want to execute
while operating in a given context; let us call this set of resources
Rel(c) where c is the considered context. The ranking of a query
pattern p is thus adapted as follows:

ranctx(p) = ν
ctx · ran(p)· | Rel(c)∩RP(p) | (8)

where the correction factor νctx adapts the multiplicative factor ν

used in Equation 4 in order to take into account the relevant-area.
νctx is computed as follows:

ν
ctx =

1− Rel(c)∩RP(p)
RP(p)

Rel(c)∩RP(p)
RP(p)

· | RP(p)\Rk |+
Rel(c)∩RP(p)

RP(p)
(9)

Roughly speaking, the value of the ranking depends now on the
fraction of resources that are, at the same time, referenced by the
pattern and mentioned in the chunk associated with the active con-
texts. Whenever a pattern does not reference any resource inside
the relevant-area, the computed ranking is equal to zero and the
pattern will be shown at the bottom of the ranking. On the contrary,
when the pattern references only resources in the relevant-area, the
ranking is equal to the sum of the values of pertinence of the ref-
erenced resources plus one. As it can be seen, the new ranking
prefers patterns whose referenced resources are in the w.r.t patterns
whose referenced resources are sources of pertinence.

4.3 Chunk Computation
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Table 2: The context-vocabulary ontology
ActualDimension v ∃=1formalDimension.Dimension u ∃=1dimensionValue.Value u ∃=1hasDimension−.ActualDimension
ActualParameter v ∃=1formalParameter.Parameter u ∃=1parameterValue.AnyType u ∃=1hasParameter−.Value
Context v ∃=1hasDimension.ActualDimension

Table 3: A fragment of the SAFE context model
(1a) Dimension(situation) (3a) Situation(ambulance) (4a) Situation v Value
(1b) Dimension(topic) (3b) Situation(emergency-room) (4b) Topic v Value
(1c) Dimension(pathology) (3c) Topic(anamnesis) (4c) Pathology v Value

(3d) Topic(treatment)
(2a) FormalParameter(cev_ID) (3e) Pathology(cardioVascular)
(2b) FormalParameter(cav_ID) (3f) Pathology(cerebroVascular)

(5a) ActualSituation v ActualDimension u ∃dimensionValue.Situation u ∃formalDimension.{situation}
u ∃hasDimension−.(ActualDimension u ∃dimensionValue.{all})

(5b) ActualTopic v ActualDimension u ∃dimensionValue.Topic u ∃formalDimension.{topic}
u ∃hasDimension−.(ActualDimension u ∃dimensionValue.{all})

(5c) ActualPathology v ActualDimension u ∃dimensionValue.Pathology u ∃formalDimension.{pathology}
u ∃hasDimension−.(ActualTopic u ∃dimensionValue.{anamnesys})

(6a) ActualParCerebroVascular v ActualParameter u ∃parameterValue.XSDString u ∃formalParameter.{cev_ID} u ∃hasParameter−.{cerebroVascular}
(6b) ActualParCardioVascular v ActualParameter u ∃parameterValue.XSDString u ∃formalParameter.{cav_ID} u ∃hasParameter−.{cardioVascular}

(7) SAFEContext v Context u . . . u ∃hasDimension.ActualSituation u ∃hasDimension.ActualTopic u . . .

Table 4: SAFE Context Configuration for c1
SAFEContext(c1)
hasDimension(c1, c1_time) ActualTime(c1_time) timeValue(c1_time, recent)
hasDimension(c1, c1_role) ActualRole(c1_role) roleValue(c1_role, paramedic)
hasDimension(c1, c1_pathology) ActualPathology(c1_pathology) dimensionValue(c1_pathology, cardioVascular)
hasDimension(c1, c1_situation) ActualSituation(c1_situation) dimensionValue(c1_situation, ambulance)
hasDimension(c1, c1_interface) ActualInterface(c1_interface) dimensionValue(c1_interface, palm)

The context plays a predominant role also in the definition of the
chunk TBoxes. As discussed in Section 1, SAFE queries are mostly
answered over the chunks rather than through the SPARQL End-
point; each chunk is constructed using one or more queries over
the domain ontology that retrieve the chunk’s ABox Ac.

These queries are intentionally wide, in the sense that their are
not meant to answer to a query but, rather, to retrieve all the in-
stances from the SPARQL Endpoint that constitute a model for the
resources defined in Tc. If the Tc’s have been defined correctly, at
any moment the data needed to answer the queries will be contained
in some chunk associated with the active contexts. Whenever the
active context changes, the mobile device signals a context-switch
to the system; the new chunks will be downloaded by querying the
system and stored on the mobile device for subsequent querying.

It is important to note that, whenever the chunk is computed, the
entire domain ontology and all the instances in the SAFE-DB are
used; the answers are then complete in the sense of logical com-
pleteness. As a consequence, while the chunk’s TBox is a projec-
tion of the resources in the domain ontology, all the facts (included
those implicit in the knowledge base) have been made explicit in
the chunk. As an example, consider a small domain ontology with
only one class hierarchy constituted by a concept Person and two
sub-classes Physician and Paramedic. Let Tc be the relevant area
for some context c containing just the hierarchy between the classes
Person and Physician. The Ac corresponding to Tc will not rep-
resent the class Paramedics but will contain all the instances of
persons (paramedics included) because Ac has been computed us-
ing the domain ontology and not just Tc.

5. EXPERIMENTATION
In this section, the SAFE approach is evaluated by discussing the
results of an empirical experiment based on a first implementation
of the system. The section is divided into three parts: the first one
describes the testbeds, the second one presents the method used
for the experiment and its setting, and the third part reports on the
resulting times and their break down.

5.1 Testbeds
SAFE has been implemented both for the Web, by resorting to
recent technologies for enterprise applications, and for Maemo
Linux5 mobile devices such as the Nokia Smartphones N810 and
N900. Due to the absence in literature of similar implementations,
we decided to compare the SAFE approach with a Web-based re-
implementation of a traditional form-based application currently
used by the cardiology unit of a public hospital that collaborated in
the development and the experimentation of the system. For this
reason, only the Web version (which is the SAFE worst case) of the
semantics-based GUI was adopted for the experimentation in a sce-
nario similar to the one described in the c2 use-case of Section 1.

The overall SAFE implementation is composed of the following
components (the first three ones are from third-parties):

• A federated relational database, SAFE DB, containing
(among the others) data about patients, health-care person-
nel, health-care structures, diseases, procedures etc.

• An instance of the D2R-Server [7] along with its SPARQL
endpoint exposing a domain ontology which describes the

5http://maemo.org/
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resources needed in SAFE. The D2R-Server acts as an inter-
face between the SAFE DB and the SAFE user applications,
virtualising the DB as an RDF graph.

• The Pellet OWL 2 reasoner.

• The SAFESearchLib, implementing the algorithm for seman-
tic search and for managing query patterns and contexts. It
exploits a SPARQL endpoint to submit queries to the D2R
server.

• The SAFE-Mobile, implementing the keyword-based graph-
ical query interface for mobile devices and the related appli-
cation logic.

• The SAFE-Web/Semantics, implementing the keyword-
based interface for Web-based desktops, and a scalable ap-
plication logic hosted by an application server (JBoss6).
The client-side implementation is based on the SEAM7 and
OpenLaszlo8 frameworks, to offer a GUI for search (form-
and semantics-based, respecively). The connection between
OpenLaszlo views and the application logic is based on the
framework EU4RIA9.

• The SAFE-Web/Forms, implementing a pre-existing applica-
tion of the hospital. It is characterised by a number of forms
that collect and group cohesive data extracted from a remote
DB. Users can navigate among these forms by selecting tabs.

• The SAFE Context Server, implementing the context-switch
services needed to generate a suitable chunk when requested
by the mobile application in the case of changes of the op-
erative contexts. The context specifications are sent to the
SAFE Context Server, which accesses a registry containing
the associations between the context and a suitable SPARQL
query able to retrieve the corresponding chunk from the do-
main ontology, stored in the mobile device.

5.2 Experimental setting
The objective of the experiment was the evaluation of the time for
accessing to specific medical information of a patient in a realis-
tic scenario, starting from off-line queries expressed in natural lan-
guage that emulate the questions that the medical personnel would
ask the patient during an emergency intervention (see Table 5).

The experiment involved ten people, with a sufficient knowledge
of the domain but without a previous knowledge of the two systems
they would use. The storage of query patterns was initially pop-
ulated with one hundred queries whereas the database contained
information related to about one thousand patients. The domain
ontology adopted for the experiment is composed of 35 classes, 55
object properties, 77 data properties.

Since the aim of the paper is not improving query-processing
performance but increasing the ability of the system to quickly sug-
gest the best queries to be submitted to the system in order to ob-
tain the desired data, we adopted a minimal deployment on a clien-
t/server system. As for any other client/server application, scalable
servers will be of paramount importance when many users will use
the system at the same time. Note that the appropriate scalability
level can be easily achieved by replicating the application logic for
each user and exploiting a scalable hardware with server replicas.
6http://www.jboss.org/
7http://seamframework.org/
8http://www.openlaszlo.org/
9http://eu4ria.googlecode.com

Table 5: Natural Language Queries
ID Query
1. Find phone contacts of the patient
2. Verify whether the patient has risk factors tied to the family anamnesis
3. Verify whether the patient uses drugs
4. Verify whether the patient registered high stress situations
5. Verify whether the the patient is overweight
6. Verify whether the patient is a smoker
7. Show possible heart problems in infancy age
8. Show possible heart problems related to the last years
9. Show possible recent heart problems
10. Find anamnesis tied to the habits of the patient
11. Show correlations between patient’s pathologies and the family anamnesis
12. Verify whether the patient is under pharmacological therapy
13. Find addresses to use for contacting the patient’s relatives
14. Verify whether the patient frequently uses alcohol
15. Show all the diseases occurred to the patient during his/her infancy
16. Show the diseases occurred in the last months
17. Show all the diseases occurred to the patient
18. Show possible diseases occurred in the last months
19. Find the contacts of all the doctors who follow the patient

However, to understand the effects of the different algorithms im-
plemented, besides measuring the overall time (aT) for accessing
data, we inserted some probes in the code in order to break down
this time in its main components:

• Thinking time (thT) is the time users spend deciding the ac-
tions they have to perform onto the application GUI to obtain
the desired results.

• Keyword-to-pertinence time (kpT) is the time from the typing
of the first character of a keyword to the assignment of scores
to the concepts that are pertinent with the keyword itself.

• Score and rank time (srT) is the time spent to assign a score
to each query pattern stored in the system and to arrange the
order of the queries from the highest score to the lowest one.

• Query execution time (qeT) is the time from the submission
of a SPARQL query to the retrieval of the data from the DB.

• Communication time (coT) is the time spent for the commu-
nication between the client and the server.

To reduce the overhead due to reasoning, semantic indexing is
applied every time the ontology changes. The indexing is used to
pre-compute the pertinence coefficients of each concept of the on-
tology.

5.3 Evaluation
Each person received five queries, randomly extracted from the

pool of queries shown in Table 5 and started to search for the de-
sired information by using the first form-based application and then
the semantics-based one. A timer was started before reading each
query and stopped at the end when the desired information was
found.

During the experiment, the people behaved in different ways:
(1) with the form-based application, they navigated among tabs to
reach the right view; (2) in the other case, they inserted one or
more keywords to obtain the desired queries in natural language
and, after the selection of one or more of these queries, the desired
information. Whenever additional information was needed, more
than one pattern and the related SPARQL queries were executed in
parallel.

In 65% of cases, the selected queries were found on top of the
ranked list; in 25% of cases, users found the query in the second po-
sition whereas in the remaining 10%, the desired query was shown
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after the second position but always in the list of query patterns
visualised without any scrolling. As concerning adaptation, it is
worth noting that the convergence towards the top score depends
on the learning coefficient (η): a query is moved to the top of the
list in at least 1/η iterations.

In several cases people were not able to find the searched
information with the form-based application, whereas with the
semantics-based approach data were found in a precise and more
focused fashion, by showing only the results tied to the selected
query patterns.

The main quantitative results of the experiment are shown in Ta-
ble 6 that also reports on the access time breakdown for semantic
search. The presence of zeros in columns kpT and srT for some
rows means that in those cases users found the desired queries with-
out typing any keyword. However, also in other cases both kbT
and srT are always very short. More time (about 1 sec) is spent for
querying data through a SPARQL query while the main contribu-
tion is due to thT.

Table 6: SAFE Human-Computer Interaction Evaluation
Query Form Semantics

ID aT (s) aT (s) thT (s) kpT (ms) srT (ms) qeT (ms) coT (ms)

Candidate 1
7 72 30 28.7 0 0 1231 60
10 57 11 10.1 0 0 803 78
2 16 4 2.6 1.6 25.9 1258 69
5 27 24 22.9 0 0 962 87
17 32 58 56.8 1.6 66 1093 69

Candidate 2
1 10 5 3.3 1.6 59 1535 66
3 122 11 10.2 0 0 713 75
13 17 6 5.2 2.6 34.5 695 69
16 41 24 2.3 1.3 59 1039 75
18 44 16 1.5 1.3 58 581 84

Candidate 3
3 111 21 20.2 0 0 667 81
7 40 21 19.8 0 0 1153 75
11 26 12 11.2 1.7 79 658 72
14 8 10 9.2 0 0 662 114
15 31 18 16.7 1.8 91 1146 72

Candidate 4
4 110 11 9.7 0 0 1199 84
6 20 12 11.1 0 0 704 96
12 37 10 9.17 1.9 40.9 715 75
17 25 38 36.8 1.9 110 977 108
19 71 7 5.9 3.9 49.9 982 84

Candidate 5
1 27 9 8.1 1.6 21.8 765 72
7 33 22 21.1 1.3 118 704 87
8 21 35 34.3 0 0 620 84
10 67 25 23.8 0 0 1139 81
14 23 15 14.3 0 0 603 75

Candidate 6
3 164 24 23 0 0 859 87
6 54 13 11.9 1.5 19.5 1018 78
9 22 34 32.8 0 0 1044 123
12 55 7 5.9 1.4 25.1 959 78
13 25 8 6.8 1.3 19.5 1117 87

Candidate 7
3 117 20 19.2 0 0 683 84
7 37 18 17.1 1.2 105.5 668 78
11 19 35 34.1 0.9 87.1 685 108
16 47 22 20.7 1.1 113 1087 81
9 20 16 14.9 0.6 17.6 988 78

Candidate 8
7 62 26 24.7 0.6 76.3 1099 84
14 46 35 33.9 0 0 928 87
11 55 18 16.8 0.6 31.6 1082 81
18 42 7 5.9 0.5 30.1 992 93
1 23 7 5.9 0.6 18.5 982 81

Candidate 9
19 36 18 16.8 0.5 103 1030 78
12 32 9 7.7 0.6 78.7 1110 87
6 36 27 25.8 0 0 1059 81
4 11 9 7.8 0.6 31.2 1077 93
1 22 5 4.2 0.6 18.9 606 105

Candidate 10
3 88 5 4.3 0 0 633 81
17 48 18 17.1 0.7 18.6 756 78
9 41 8 6.9 0 0 1027 93
11 27 69 68.2 0.5 27.6 661 81
13 21 17 16.3 0.6 20.6 606 78

For the form-based search, the overall time could be broken in
thinking and navigation (over tabs), query execution and commu-
nication times. Since query execution time is very small for simple
queries on medium-size databases, and the communication time is
almost the same as for semantic search, the most relevant contri-

bution is the thinking and navigation time (which almost coincides
with the overall access time shown in Table 6 - II column).

Query ID

Time [s]

Figure 3: Form-based vs. Semantics-based searches

Figure 3 shows the average time for each natural language query.
In most cases, semantics enabled people to reach the desired infor-
mation more rapidly.

Additional experiments were conducted with larger sets of query
patterns to assess the system scalability. The measures obtained
with 500 and 1000 queries showed a growth approximately linear
of the score and ranking time. This proves a good scalability of
the system and its applicability, since the number of query patterns
used is sufficiently large to satisfy most of the real scenarios.

6. CONCLUSIONS AND FUTURE WORK
The paper presented an approach for accessing – in a fast, precise
and exhaustive fashion – data from personal or centralised infor-
mation systems in pervasive environments. The approach has been
integrated in an innovative system, SAFE, developed for support-
ing health-care personnel during emergency situations. The system
exploits domain ontologies to access data with semantic inference.
The ontologies are tailored, on the basis of the application work-
ing context, through a context model which is also used to identify
the chunk of knowledge (ontology and data) that is stored into the
personal smart-cards of the patients.

The results obtained by our experiments show that SAFE signif-
icantly improves the time to access the desired data in emergency
situations for many kinds of queries. It is worth noting that the ex-
periment was conducted in the worst case for the semantic search
approach, due to constraints related to the legacy application used
by the hospital.

A more beneficial environment is the mobile one: in this case, in
fact, the approach based on keywords and natural language patterns
is much more effective if compared with the navigation based on
tabs, scrolling or other techniques, which are very difficult to use
in the small working spaces offered by personal devices.

SAFE was very appreciated by the specialised medical person-
nel who was involved in the definition and experimentation of the
system. Their feedbacks helped us to improve the system and sug-
gested further extensions for future work: (i) highlighting the terms
of interest in the results; (ii) adopting user profiles since they can be
useful to store the history of pattern selections to incrementally im-
prove the ranking of the SPARQL queries; (iii) deriving SPARQL
queries automatically from queries in natural language.
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