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ABSTRACT

Many real world applications produce data with uncertainties drawn
from measurements over a continuous domain space. Recent re-
search in the area of probabilistic databases has mainly focused on
managing and querying discrete data in which the domain is limited
to a small number of values (i.e. on the order of 10). When the size
of the domain increases, current methods fail due to their nature
of explicitly storing each value/probability pair. Such methods are
not capable of extending their use to continuous-valued attributes.
In this paper, we provide a scalable, accurate, space efficient proba-
bilistic data synopsis for uncertain attributes defined over a continu-
ous domain. Our synopsis construction methods are all error-aware
to ensure that our synopsis provides an accurate representation of
the underlying data given a limited space budget. Additionally,
we are able to provide approximate query results over the synopsis
with error bounds.

We provide an extensive experimental evaluation to show that
our proposed methods improve upon the current state of the art
in terms of construction time and query accuracy. In particular,
our synopsis can be constructed in O(N2) time (where N is the
number of tuples in the database). We also demonstrate the ability
of our synopsis to answer a variety of interesting queries on a real
data set and show that our query error is reduced by up to an order
of magnitude over the previous state-of-the-art method.

General Terms

Data synopsis, Probabilistic databases

Categories and Subject Descriptors

H.2 [Database Management]: Database applications—Database

applications

1. INTRODUCTION
Reasoning about complex systems and events is often accom-

plished through probabilistic modeling in which attributes of inter-
est are assumed to be drawn from a probability distribution condi-
tioned on the current state of the system. Such probabilistic mod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

eling can account for many sources of data uncertainty, such as
inferring unobserved values given a set of relevant variables and
handling sensing or measurement errors among others. Storing
measurements in their true uncertain form (i.e. as probability dis-
tributions) allows for useful data analysis in which uncertainty can
be taken into account throughout the entire analysis pipeline, pro-
viding statistically reliable results. Handling uncertainty in a prin-
cipled manner poses new challenges for data management which
has only recently begun to be addressed by several probabilistic
database management systems (PDBMSs) [4, 7, 15, 20].

PDBMSs provide a concise representation of a probability dis-
tribution over an exponential number of certain databases, or pos-
sible worlds. In each world, tuples exist with certainty, just as they
would in a standard database. To answer a query in a PDBMS, it is
necessary to evaluate the query in each world and aggregate across
all possible worlds by summing the probability of each world in
which a tuple appears in the query answer set. While this pro-
cedure provides an intuitive semantics on the query results, it has
been shown, in general, that answering queries with respect to the
possible worlds semantics is #P -hard [20].

Data uncertainty, and the associated query complexity, add chal-
lenges to data management as well as common analysis tasks such
as data exploration and summarization. Data exploration is an im-
portant preliminary step in any large scale data analysis to iden-
tify any interesting patterns in the data. At this stage, it is usu-
ally preferable for the user to be able to obtain approximate query
results very quickly, rather than wasting time exploring the data
[14]. Additionally, data summarization provides a concise synopsis
which can aid exploration and mining since the summary is typi-
cally orders of magnitude smaller than the original data while pre-
serving the important attributes. Both of these tasks are even more
crucial in the presence of uncertainties since there is now an extra
dimension to the data.

To exacerbate this complexity, previous attempts to summarize
probabilistic data have made the limiting assumption that attributes
are discrete values with a small domain size, typically on the order
of 10 possible values [5]. However, values based on applications in
sensor network data management and managing scientific data (eg.
experimental measurements in the physical sciences), which are
often cited as a motivating applications for probabilistic databases
(eg. [3, 1]), are typically concerned with continuous attributes and
discrete values over large domains [18]. In such applications, the
current PDBMS internal representation scheme is inadequate, re-
quiring every possible value of each tuple to be explicitly listed
along with its probability value.

To address these issues, we propose two polynomial-based tech-
niques to represent arbitrary probability density functions. Using
these representations, we develop methods to efficiently construct
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Figure 1: The peak of a Gaussian distribution along with

function approximates. CP: Chebyshev polynomials, MMPoly:

minimax polynomial, Spline: cubic splines, Hist: histogram op-

timized for L∞, Haar: unrestricted Haar wavelets optimized

for L∞ [16].

a space-constrained database synopsis for continuous uncertain at-
tributes that is capable of answering approximate (error bounded)
queries. We focus on continuous attributes here because they have
been largely ignored in past work. We note, however, that discrete
variables defined over a large ordinal domain may be appropriately
represented by our techniques as well.

We introduce minimax and Chebyshev polynomials, in contrast
to histograms or wavelets, to represent distributions over real-valued
attributes. Chebyshev polynomials (CP) are a set of basis polyno-
mials that can be used to provide a close approximation of the min-
imax polynomial of a function on the bounded continuous interval
[−1, 1]. A minimax polynomial, P ∗

m, is a polynomial that interpo-
lates a continuous function, f , and has the minimum L∞ error of
all possible polynomials of degreem that interpolate f . In addition
to being defined over a continuous interval, this representation has
the benefit of minimizing the L∞ error uniformly over the interval.
We utilize the natural ability of these polynomials to minimize the
L∞ error in order to provide tight bounds on error induced from
answering queries on the synopsis. Further details and background
on minimax and CPs are provided in section 2.

To provide query error bounds with our probabilistic data synop-
sis we utilize the L∞ error metric throughout this work. We choose
L∞ because it allows us to provide a bound over an arbitrary range
of the domain. This means that, for a arbitrary range, we can com-
pute the (approximate) probability that a tuple lies within this range
as well as a bound on the error of this probability. We develop
a technique for constructing a database synopsis which considers
the L∞ error. Furthermore, we show that our methods result in
significantly lower error than the current state of the art (over 10x
improvement).

We argue that such a parameterized representation is more appro-
priate for approximating smooth, continuous functions than other
commonly used methods. As an example, consider approximating
a normal distribution as shown in figure 1. The original function, F ,
is well represented by both minimax and Chebyshev polynomials
(in the figure the curves completely overlap, making it difficult to
clearly show their approximations) while histograms and wavelets
induce large errors with the allocated space. Additionally, splines
can perform poorly because the knots, the points along the x-axis
in which the function values are known, are evenly spaced across
the domain. Therefore, depending on where the interesting part of
the function lies, the resulting spline curve can be shifted (as we
observe here) or miss regions of the function completely.

Method Probability Error Space (coefficients)

(space: 31 coefficients) (error: ∼ 0.01)

MMPoly 4.0e-5 21

CP 9.2e-3 31

Spline 1.01 92

Hist 0.581 750

Haar 0.367 900

Table 1: Probability errors for each representation when space

is held constant, and space requirements when error is held

constant.

We provide function approximations under two different sets of
constraints. First, we hold the space budget constant at 31 coef-
ficients (248 bytes) and measure the approximation error, then we
hold the approximation error constant and measure the space nec-
essary for each method. These values are shown in table 1.

To put the error into more understandable terms, we equate the
L∞ approximation error to a probability error defined as maximum
deviation of the approximation from the real probability over any
range. For example, a probability error, ǫ = 0.1, would mean that
computing P̂ (a ≤ X ≤ b) using the approximate distribution for
any range [a, b] would deviate by at most 0.1 from the real proba-
bility.

When we hold the space budget constant, only the Chebyshev
and minimax polynomials provide approximations with usable er-
ror. Furthermore, minimax polynomials provide an improvement
of two orders of magnitude over CPs. We observed this order of
improvement frequently from our experiments with non-parametric
distributions as well. Additionally, we see that histograms and
wavelets require over 35x more space to reach the same level of
error and, while not quite as drastic, splines require 4x more space.
This simple example demonstrates the importance of providing more
appropriate representation techniques for density functions when
space is limited. With this motivating example in mind, we next
introduce our problem statement and summarize the contributions
made in this work.

Problem statement: Given a collection of N probabilistic tu-
ples with attribute uncertainty over a continuous domain and a space
budget B, our goal is to efficiently construct a probabilistic data
synopsis which is capable of accurately answering (approximate)
queries with an error bound.

Our contributions in this paper can be summarized as follows.

• We propose a space efficient technique for accurately represent-
ing arbitrary probability density functions based on minimax poly-
nomial interpolation. We further show how to construct a prob-
abilistic synopsis for a database capable of answering approxi-
mate queries and show that our methods provide more accurate
results when compared to other representation techniques.

• We derive upper and lower bounds on the L∞ approximation er-
ror of Chebyshev polynomials. We use the upper bound to (1)
avoid re-clustering the tuples during our synopsis construction,
(2) develop and apply an adaptive coefficient allocation algo-
rithm, and (3) derive a distance computation which is indepen-
dent of the size of the domain which is used for clustering similar
distributions.

• We perform an extensive experimental evaluation of our methods
using a real dataset consisting of uncertain tuples over a continu-

1Values that fall below 0.0 or above 1.0 can be truncated since prob-
ability densities are strictly positive and integrate to 1.
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ous domain. We show that our synopsis can be constructed more
efficiently, providing several orders of magnitude improvement
over competing methods. We also show the flexibility of our
synopsis in answering several different types of queries in which
our methods provide up to a 35x reduction in error over previous
methods.

2. BACKGROUND
In this section, we first describe the key properties of Chebyshev

polynomials and how they are used for function interpolation. Then
we introduce the notion of minimax polynomials. We describe their
mathematical properties and the Remez exchange algorithm (REA)
which is used to approximate the minimax polynomial for an arbi-
trary function.

2.1 Chebyshev Polynomials
Chebyshev polynomials are a set of orthogonal polynomials in

x of degree m, defined as Tm(x) = cos(m cos−1(x)) for x ∈
[-1, 1]. This stems from de Moivre’s Theorem which states that
cos(m θ) is a polynomial of degree m in cos(θ) (where x =
cos(θ)) [19]. The mth degree Chebyshev polynomial can be de-
fined through the following recurrence.

Tm(x) = 2xTm−1(x)− Tm−2(x)

The first few Chebyshev polynomials are listed below (T0 and
T1 provide the initial conditions for the recurrence):

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

Although x is only defined on the interval [-1, 1], it is easy to
generalize this to the an arbitrary interval [a, b] [19].

Because Chebyshev polynomials are a set of basis functions,
they can be used to represent any polynomial function exactly. Ad-
ditionally, they are typically capable of providing a good approx-
imation of any continuous function defined over a closed interval.
In fact, previous work has shown that they provide a good estimate
of the minimax polynomial for many functions.

To transform any continuous function f into Chebyshev space,
we must compute the polynomial coefficients for the function in
Chebyshev space (using the Chebyshev polynomials as basis func-
tions). Equation (1) shows the formula for computing the coeffi-
cient of the jth Chebyshev polynomial for a polynomial of order
m.

cj =
2− δ{j=0}

m+ 1

m∑

k=0

f(xk)Tj(xk) (1)

where δj=0 is the Kronecker delta which is 1 only if j = 0 and
0 otherwise, the xk’s are the roots of the Chebyshev polynomials,
otherwise referred to as the Chebyshev nodes. For k = 0, 1, ..., m,

xk = cos(
k + 1

2

m+ 1
π) (2)

The Chebyshev nodes offer a particularly good set of points at
which to interpolate1 a function on the interval [−1, 1]. These
points are typically chosen as the initialization values for iterative
methods which compute the best minimax polynomial of a func-
tion, that is, the polynomial which uniformly minimizes the L∞

distance to the function.

2.2 Minimax Polynomials
Chebyshev polynomials typically provide a close approximation

of the minimax polynomial of a function. However, for more com-
plex functions, computing the (approximate) minimax polynomial
can provide significant improvements in the L∞ approximation er-
ror. We introduce minimax polynomials here and provide an out-
line of the algorithm used to approximate them.

The problem of computing the minimax polynomial of a contin-
uous function over a closed interval is a well studied problem in
the applied mathematics [10] and numerical methods communities
[25]. The solution is typically computed by some form of the Re-
mez Exchange Algorithm (REA) [21] which utilizes the alternat-
ing theorem (described below) to iteratively update the polynomial
coefficients and the interpolation points. We first define minimax
polynomials and introduce some key theorems from the literature,
then provide a brief outline of REA for completeness.

DEFINITION 1. Minimax polynomial: A polynomial approxi-

mation which, of all the polynomials of the same order, has the

smallest L∞ distance to the true function.

We begin by presenting a theorem stating proof of existence of a
polynomial approximation. For more information on the theorems
presented in this section (or their proofs) we refer the interested
reader to [19] and [22].

THEOREM 1. (Weierstrass’ Theorem) [19] For any function f

defined over the closed interval [a, b] and for any given ǫ > 0,
there exists a polynomial pm for some sufficiently large m such

that ||f − pm||∞ < ǫ

This theorem offers a powerful theoretical result: that we may
approximate any continuous function on a closed interval to an ar-
bitrarily small error using the minimax polynomial. Unfortunately,
for arbitrary functions, the minimax polynomial can only be com-
puted analytically for m = 1. For higher order polynomials, itera-
tive numerical methods, such as the REA [21], must be employed.

Next, we explain the optimality constraint for a polynomial ap-
proximation.

THEOREM 2. (Alternating Theorem) [19] For any function f

over the interval [a, b], a minimax polynomial approximation pm
exists, and is uniquely characterized by the ‘alternating property’

that there are (at least) m + 2 points in [a, b] at which f − pm
attains its maximum absolute value with alternating signs.

This theorem provides the mechanism by which it is possible
to check for the optimality of any given approximation. Given an
approximating polynomial, we can compute the error function over
the closed interval, if the peaks and troughs of the error function
are all approximately of the same magnitude, we’ve reached the
optimal polynomial (within some precision). Using this theorem,
we also have an idea of how close to optimal our approximation is
at any intermediate step of REA.

Remez Exchange Algorithm Outline: REA is an iterative al-
gorithm which computes an approximate minimax polynomial for
an arbitrary function. The Remez algorithm works by alternating
between updating estimates of polynomial coefficients and refining
the set of interpolation points. The algorithm is briefly outlined
below.

1We use the terms function interpolation and approximation inter-
changeably.
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We first initialize the set of interpolation points, xi, usually by
setting them to the Chebyshev nodes for themth degree Chebyshev
polynomial, which we know from theorem 2 has m roots.

The first step of the iterative REA is to set up and solve a set of
m + 2 (independent) linear equations which gives us the m + 1
polynomial coefficients and the resulting approximation error. For
our input function F , interpolation points xi’s, and error E =
maxx|F (x) − Pm(x)|, we solve the following set of linear equa-
tions:

F (xi) − Pm(xi) = (−1)iE ∀xi

With the updated polynomial coefficients, cj ’s and error, E, the
second step of the algorithm seeks to update the (m + 2) interpo-
lation points to approach the minimax condition (equal error mag-
nitude). This is accomplished by performing a local hill climbing
on the residual function, which is defined as the error between the
approximation and input functions, for each point so that each xi

is shifted toward the closest local maxima while maintaining alter-
nating signs.

This process is iterated until the error maxima converge to the
same magnitude. In our experiments we found that REA typically
converged in under ten iterations and reduced the L∞ error by at
least half and as much as six orders of magnitude over a direct
application of Chebyshev Polynomials.

3. PROBABILISTIC DATA SYNOPSIS
In this section we introduce our uncertainty model and provide

an overview of the process used for building our probabilistic data
synopsis. We explain what data composes the synopsis and how it
is used to answer queries and provide bounds on the error.

3.1 Uncertain Data Model
We assume we are given a set of independent tuples with a sin-

gle uncertain attribute over a continuous domain. This fits within
the attribute uncertainty model presented in prior work because we
assume that each tuple exists in the dataset and only its value is
uncertain. Extending this to the tuple uncertainty model is possi-
ble by simply allowing the each probability distribution to sum to
a value at most one, where the total area under the curve denotes
the probability of existence. For presentation simplicity, we do not
explore this model further.

We focus on continuous probability distributions, however, the
methods developed here are suitable for discrete distributions on an
ordered domain as well. This may improve space efficiency (over
histograms or wavelets) for complex distributions defined over a
large domain. Furthermore, interpolating discrete functions over a
closed interval using CPs has been addressed in [2] and has shown
to produce impressive results.

3.2 Synopsis Overview
For each tuple in the database, we first compute the minimax

polynomial approximation of the density function by applying the
Remez algorithm. Empirically, we have found that a 40th order
polynomial provides a good representation for the majority of the
density functions we have seen in practice. Additionally, we have
experienced numerical instability when computing polynomials of
larger order making them difficult to evaluate. Once the polyno-
mial coefficients have been computed, we transform each tuple
into Chebyshev space. Note that there is no information loss in
this step since both representations are polynomials. Alternatively,
we can trade-off accuracy for a faster construction time by apply-
ing Chebyshev polynomial interpolation directly. This will reduce
construction time significantly as the Remez algorithm takes, on av-

erage, an order of magnitude longer than Chebyshev interpolation.
In our experiments, we provide a comparison of both methods.

Data reduction is performed by first aggregating tuples with sim-
ilar density functions and then applying an adaptive coefficient al-
location algorithm which efficiently allocates space to represent tu-
ples by considering a global error measure. We use hierarchical
clustering [8] for data reduction, and introduce an algorithm that
improves the synopsis error by alternating between searching for an
appropriate number of clusters and allocating coefficients to these
clusters given the space budget [8]. Each of these methods is de-
scribed in detail in the following sections.

Finally, the synopsis stores the CP approximation for each clus-
ter representative along with the cluster size and the maximum
within cluster L∞ error. This information is used to answer queries
and provide error bounds. We illustrate this procedure by consid-
ering a range query, though the process is similar for other query
types. First, we need to compute the probability that each tuple
belongs to the result set. We do this by integrating the CP over
the specific range. This probability is used to represent all tuples
assigned to this cluster. Furthermore, to compute the error bounds,
we take the maximum within cluster L∞ error and add this value to
the 0th order coefficient and integrate this function over the query
range. This is the probability value upper bound for this cluster
(considering our error). Similarly, we can compute the lower bound
and return these values to the user.

Although this error bound is correct, it will tend to provide an
overestimate of the potential error in our results. We improve upon
this method by considering that Chebyshev polynomials interpolate
their target functions, that is, they pass through the function at a
known set of points. Additionally, we have from the alternating
theorem, that the sign of the error function will alternate and reach
maximum magnitude m + 2 times, therefore having m roots at
the Chebyshev nodes. Using this, we need only to compute the
error over alternating intervals, since the error will be additive over
these regions (i.e. the error will have the same sign). We show the
effectiveness of this approach over various query range widths in
our experiments (see figure 7(a)).

In the case of minimax polynomials, this does not provide a
strict upper bound on the error since new interpolation points are
computed. To fix this, we may simply compute the deviation of
each new interpolation point from the original Chebyshev nodes
and store the maximum of these values, δ, in the synopsis. Then,
when we compute the error, we can assume the current interval is
expanded by δ in both directions and compute the error in the same
manner as described above. This will provide a strict bound since
we are assuming the worst case for each interval. Additionally, it
only adds a single extra value to the synopsis.

4. SYNOPSIS CONSTRUCTION
Next we explain each step of the synopsis construction process

in detail. We start by deriving bounds on our approximation error
that results from pruning coefficients from the representation. Then
we introduce our adaptive coefficient allocation algorithm and ex-
amine the relationship between our error bound and the quality of
the resulting coefficient allocation. Next, we explain how to cluster
distributions more efficiently by again utilizing our approximation
bound and deriving a bound on the distance between two tuples.
Finally, we provide an algorithm that combines these methods to
construct a synopsis that effectively helps reduce the global error
of the synopsis given the user defined space budget.

4.1 Approximation Error Bounds
Constructing a data synopsis is often computationally expensive
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and this can be exacerbated by using approximation methods that
must be recomputed each time their space budget is altered (i.e.
histograms). We avoid this problem by developing an ‘incremental’
construction process for CPs. We avoid this problem by develop-
ing an ‘incremental’ construction process for CPs. For each tuple,
we compute a CP for this distribution just once. Then as we are
figuring out how many tuple representatives are needed and how
much space should be allocated to each, we can remove (and re-
place) coefficients quickly and evaluate the synopsis error for each
configuration.

We derive bounds on the approximation error induced by pruning
Chebyshev coefficients from the complete polynomial representa-
tion. Our error bound offers several benefits over the actual error
and is used throughout our synopsis construction process. In addi-
tion to providing computational savings in the synopsis construc-
tion process, our upper bound provides an error function that is con-
vex in the number of pruned coefficients. Utilizing the fact that the
(bounded) error for each representation is strictly decreasing with
each new coefficient, we develop an algorithm that allocates space
to a set of tuples quickly and effectively while reducing a global
error. We discuss our adaptive coefficient allocation algorithm and
its connection to the quality of this bound in the following section.

Our approximation bound is based on the magnitudes of the co-
efficients for the Chebyshev polynomials. This ensures an efficient
computation which requires only the Chebyshev approximation,
whereas computing the real error would require the true distribu-
tion as well.

THEOREM 3. The L∞ error E, induced from pruning coeffi-

cients of a Chebyshev polynomial is bounded by the following:

|
∑

g∈G

cg | ≤ E ≤
∑

g∈G

|cg| (3)

where G denotes the set of indices of the pruned basis functions

and cg is the coefficient value of the gth polynomial.1

This theorem provides us with an efficient procedure with which
to compute the upper bound on the approximation error after prun-
ing a subset of coefficients. This also presents us with a pruning
order which minimizes L∞ error. From the bounds, we see that
by pruning coefficients in order of increasing magnitude (prune the
coefficient with the lowest absolute value first) we add the smallest
potential for error at each step. This result is important because it
allows us to reduce our space consumption by simply pruning co-
efficient instead of recomputing the approximation which can be
costly for minimax polynomials.

Despite the simplicity, our upper bound tends to be tight in prac-
tice. To see this, remember that Chebyshev polynomials have a
cosine basis, Tm(x) = cos(mx), and the number of interpolation
points increases linearly with the polynomial order. Therefore, we
see that coefficients naturally tend toward 0 as the polynomial order

increases: limm→∞

∫ 1

−1
cos(mx)dx = 0

Using this upper bound, we can pre-compute a polynomial rep-
resentation of each tuple, pruning coefficients from less complex
distributions adaptively to adjust the synopsis to our space require-
ments. Our coefficient allocation algorithm is described next.

4.2 Adaptive Coefficient Allocation
Due to the large number of functions we aim to approximate,

tuples are likely to exhibit varying levels of complexity. This pro-
vides an opportunity to further reduce our space consumption (or
reduce error) by intelligently allocating coefficients to each tuple
(or representative tuple) to reduce the global error of our synopsis.

1All proofs are available in the appendix.

For example, consider the three density functions shown in figure 2.
Function C is more complex than A and as such, coefficients should
be allocated appropriately to provide the best approximations for
the entire collection of functions. Table 2 shows a comparison of a
uniform coefficient allocation vs. our adaptive approach for a bud-
get of 24 coefficients along with the associated errors. Although
the uniform allocation provides very low approximation errors for
functions A and B, C contains a very large L∞ error. In contrast,
the adaptive allocation algorithm assigns the majority of the alloted
coefficients to function C, thereby significantly reducing the global
L∞ error of these functions.

 

 

A

B

C

Figure 2: Example density functions of various complexity.

To address the issue of managing functions of various levels of
complexity, we propose an algorithm to adaptively allocate coeffi-
cients to those tuples that would most benefit from the additional
representational power. The idea is to incrementally assign the next
coefficient to the tuple that is currently represented the least accu-
rately (i.e. has the largest L∞ error). We assume that we have the
CP for each tuple precomputed and we find the tuple with the max-
imum error bound. We assign an extra coefficient to this tuple and
repeat until there are no more coefficients to assign. The algorithm
has time complexity O(B) and space complexity O(N), where B
is the space budget and N is the size of the database. Furthermore,
the resulting allocation can be shown to be optimal under certain
assumptions which we discuss next.

Uniform Adaptive

Function Alloc Error Allloc Error

A 8 2.73e-12 3 6.14e-04

B 8 4.44e-15 7 2.20e-03

C 8 1.10e-01 14 4.62e-03

Table 2: Probability errors for each representation method.

From our upper bound, we see that pruning coefficients in order
of increasing magnitude minimizes our L∞ error. This guarantees
that our (upper bound) error function is convex. Using this, we can
show that if the true error is strictly decreasing, then our algorithm
provides an optimal allocation. While, in general, this may be dif-
ficult to guarantee, an upper bound on the error with this property
may be used instead (as we do here). In this case, the quality of
our algorithm is directly dependent on the relative tightness of our
error bound. Our experiments show this algorithm performs very
well in practice, typically providing near optimal coefficient alloca-
tions and a significant improvement over a uniform allocation (see
section 5.2.3).

We denote F = {f1, ..., fK} as a set of K functions to be ap-
proximated given a space budget, B. We denote the local budget
for each function fi as xi. An optimal allocation for space B is
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X∗
B = {x1, ..., xK} such that

∑K
i xi = B where each xi is a pos-

itive integer denoting the number of coefficients allocated to the
approximation of function fi. An allocation is optimal in the sense
that the global error, the error defined over the set of all function ap-
proximations, is minimized over all other allocations with the same
space budget: Err(X∗

B) ≤ Err(XB). We note that there may be
more than one optimal allocation for a given budget.

We make a distinction between local and global error. The lo-
cal error function is defined between a function, fj , and its b-
space constrained approximation, pbm. As discussed earlier, we use
the L∞ error: err(fj , b) = maxi|fj(i) − pbm(i)|. The global
error is defined over the entire set of functions, F , here we use
maximum since this value affects our error bounds: Err(Xb) =
Err(F,Xb) = maxj err(fj , xj).

Intuitively, we can see that at each step we should be assigning
more coefficients to the worst approximation, otherwise our error
is not being reduced. Also, due to the fact that each error is strictly
decreasing we can see that if, at one step we were to reassign a co-
efficient from fi to fj , then the error for fi would increase. Since
we assigned a coefficient to fi at some point, obviously this helped
us reduce the global error and thus this reassignment actually in-
creases our error.

THEOREM 4. If err(f, b) is strictly decreasing (with respect to

b), then an optimal allocation X∗
b+1 can be computed greedily (by

adding 1 to exactly one element of X∗
b ). That is, ∃!i, xi,b+1 =

xi,b + 1 and ∀j 6= i xj,b+1 = xj,b.

This theorem shows that, if the true approximation error is strictly
decreasing, a greedy algorithm provides an optimal allocation. Since
we use an upper bound instead of the true error, the quality of the
allocation produced by our algorithm is dependent on the tightness
of our upper bound.

4.3 Clustering
Combining similar tuples to reduce the database size is a key

step in constructing any data synopsis. Previous work in proba-
bilistic data synopses has addressed this problem by assuming an
ordering on the tuples in the database in order to utilize a dynamic
programming approach for combining similar probability distribu-
tions [5]. Here, we remove this limiting assumption and propose a
clustering based approach.

One difficulty with this approach is that computing the distance
between two density functions requires an expensive integral. To
circumvent this complexity, we take advantage of our representa-
tion and show that we can bound the distance between two dis-
tributions by only evaluating the distance between their associated
CP coefficient vectors. Again, we utilize our approximation error
bound and further derive a bound on the distance between two tu-
ples by comparing only their Chebyshev coefficients.

We build on the result of a lemma introduced in [2] (labeled
lemma 3) which states that a linear function combination corre-
sponds to a linear combination of CP coefficients.

LEMMA 1. let c1, c2, and cz be the Chebyshev coefficients for

the functions f1, f2 and their difference fz = f1 − f2, then 0 ≤
i ≤ m, cz(i) = c1(i) − c2(i), where m is the total number of

coefficients.

Using this result along with our upper bound, we can show that
comparing two vectors of CP coefficients using the L1 distance
metric provides an upper bound on the L∞ distance between the
two functions.

THEOREM 5. Minimizing L1 distance between vectors of CP

coefficients bounds the L∞ distance in function space.

The above theorem enables us to perform clustering in the re-
duced space of the CP coefficient space. In addition to the compu-
tational savings, we show experimentally that this distance bound
provides quality clustering results.

4.4 Iterative Synopsis Refinement
Next we show how these methods are combined in our synopsis

construction algorithm. Our goal is to allocate the budgeted space
throughout the synopsis in such a way as to reduce the synopsis er-
ror. We start by applying hierarchical clustering to the database (us-
ing our distribution distance bound). This enables us to explore dif-
ferent clustering configurations while computing the distances and
linkages (distances between sets of observations) just once which
is important as these are the most computationally intensive opera-
tions in hierarchical clustering.

Algorithm 1 Space budgeted synopsis construction algorithm

Input: Probabilistic database: probDB, space budget: B
Output: Probabilistic Data Synopsis: probSyn

1: Perform hierarchical clustering, initializeα (gradient step size)
and k (initial no. of clusters), E0 = ∞,minErr = ∞, i = 0,
β = 0.75

2: while |α| > 1 do

3: Compute cluster representatives, clusterRep[1..k]
4: probSyn = AdaptCoeffAlloc(clusterRep[1..k], B)
5: Ei = error(probSyn) // Compute global error of probSyn
6: if Ei > Ei−1 then

7: α = −βα // change directions
8: end if

9: if Ei < minErr) then

10: minErr = Ei

11: optProbSyn = probSyn // save clustering
12: end if

13: k = k + α

14: i++
15: end while

16: return optProbSyn

The intuition behind this method is to alternate between modify-
ing the number of clusters and the allocation of coefficients to the
representative tuples such that we continue improving the synopsis
error. Naturally, there is a trade-off between the two, by storing
more representatives, we are able to allocate fewer coefficients to
each which may raise the synopsis error. Therefore, we perform a
search over the number of clusters in which we keep increasing (or
decreasing) k as long as the synopsis error continues to decrease
(increase). Because we only take a step if it reduces the global syn-
opsis error, we converge to a local minimum. An outline of this
method in algorithm 1.

5. EXPERIMENTS
We examine the following aspects of our probabilistic data syn-

opsis: scalability, approximation quality, query approximation and
query error bounds. Specifically, we discuss the rate at which our
synopsis construction algorithm scales as the database size grows,
exploring the individual components involved (i.e. Chebyshev in-
terpolation, clustering, etc.). Next, we thoroughly examine each
of our proposed approximations and space saving techniques de-
scribed in section 4. Then we execute several queries and again
show that our synopsis provides results with significantly lower er-
ror than competing methods. Lastly, we examine the query error
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bounds resulting from our synopsis and examine the difference be-
tween using CPs and minimax polynomials.

We evaluate our proposed methods on a dataset consisting of
real-valued measurements of cloud cover taken around the globe
from 1981 to 19911. The raw reports contain a value between 0
and 10 which provides a measure of cloud cover at a specific loca-
tion along with the time and date the measurement was observed.
The measurements were taken approximately every 3 hours on se-
lected days over this period. To transform these measurements into
an uncertain dataset, we chose to aggregate the set of observations
over each day. That is, we assume the measurements from each
date were generated i.i.d. from a continuous density function. To
estimate this density function we apply a Gaussian kernel 2 to the
set of observations. The resulting uncertain dataset contains 100k
tuples, each with an arbitrary probability density over the bounded
domain [0, 10], which describes the density of cloud cover obser-
vations for a particular location on a specific date.

All experiments were run on an Intel i7 2.67 GHz machine with
12.0 GB of main memory. Our code was written primarily in Java
(1.6), but some functions were written in C and Matlab (R2009).
Most notably, the Remez algorithm was written in Matlab for im-
plementation simplicity. This will certainly provide a distorted
comparison of running times, however, we do not investigate this
in depth (see figure 3(c)).

5.1 Scalability
Our synopsis construction is composed of three major steps: (1)

polynomial interpolation, (2) hierarchical clustering, and (3) the K-
Search, which improves the error by searching for an appropriate
number of clusters. We first analyze the time breakdown of the
construction in terms of each of these steps.

The most expensive step of the construction process is clustering,
which has time and space complexity O(N2). The cost of comput-
ing the minimax polynomial of each density and the adaptive coef-
ficient allocation algorithm both scale linearly with the number of
tuples.

Comparing CP with minimax polynomials (figures 3(b) and 3(a)),
we see that the Remez algorithm takes a significant portion of the
total time, and therefore one must evaluate the trade-off between
the increased accuracy of minimax polynomials and the time to
compute them. However, the overall time complexity for our syn-
opsis construction for both Chebyshev and minimax polynomials
is O(min(N2, T ) +N +K), where the min(N2, T ) term is for
clustering where T represents the maximum number of tuples that
may be clustered in memory, N is for polynomial approximation,
and K is for our K-search algorithm.

Next, we compare the construction time against probabilistic his-
tograms, the current state-of-the-art method in probabilistic data
summarization. However, we were not able to build a probabilistic
histogram directly given our data since our domain is continuous.
To ameliorate this, we sampled 100 equally spaced points to use as
our domain and interpolated the density at those points. This still
provides us with a domain and space budget that are orders of mag-
nitude larger than the experiments carried out in [5], both of which
affect the construction time.

We were only able to construct a probabilistic histogram with
1, 000 tuples, for 2, 500 tuples we allowed the program to run for
over 24hrs before stopping the (incomplete) process3. To construct
a probabilistic histogram more quickly, we divided the complete
database (10k tuples) into blocks of 500 tuples each and assigned
each block an equal amount of space. A probabilistic histogram
was then built on each block and the total time was computed by
taking the summation of the construction time over all blocks. A

comparison of the construction times is presented in figure 3(c).
Even computing the minimax polynomials, we are able to con-

struct a synopsis in less time that using the blocked probabilistic
histograms. We only experiment with up to 10k tuples in our ex-
periments in order to provide a fair comparison to probabilistic his-
tograms. However, as we show in figures 3(b) and 3(a), our syn-
opsis scales much better in terms of both the number of tuples and
length of the tuple domain.

5.2 Approximation Quality
In this section we will investigate several aspects of our synopsis

related to the quality of the approximation. We start by examining
the quality of the bounds we derived for pruning CP coefficients
and show that they tend to be useful in practice. Then, we show
that using the CP bounds to compute distances for clustering pro-
vides quality clusters. Lastly, we experiment with our adaptive co-
efficient allocation algorithm and show that it provides significant
(near-optimal) improvements over a uniform allocation.

5.2.1 Approximation Error Bounds

Many of the methods we describe for constructing our proba-
bilistic database synopsis are dependent on the approximation error
bounds we derived for pruning Chebyshev coefficients. We evalu-
ate the tightness of these bounds on our dataset by sampling 10k
tuples and evaluating the difference between the real probability er-
ror and the error bounds after pruning a variety of coefficients (out
of a maximum of 41). Figure 4 shows the average difference be-
tween the real probability error and the lower and upper bound (the
deviation of each bound from the true error) along with error bars
denoting one standard deviation.
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Figure 4: Approximation error bounds.

The upper bound tends to be very tight when pruning up to 50%
of the coefficients and loosens up slightly afterwards (this is ex-
plained in section 4.1). Additionally, we note that in the context
with which we use the bound, it is not the absolute error that mat-
ters, but the rank ordering of the bound relative to the true error.
This is explored further in the next section.

5.2.2 Clustering Quality

To validate our approach to clustering tuples based on their Cheby-
shev coefficients, we compute the real and approximate distances
and compare the results. Due to the nature of clustering, we are
most interested in the relative distance between distributions us-
ing our bound in place of the real distances. That is, if dist(A, B)

> dist(A, C), we would like d̂ist(A,B) > d̂ist(A,C) as well,

where d̂ist(·, ·) represents our distance bound. We compute the
Spearman’s rank correlation coefficient between the two sets of
distances, which measures how well the relationship between the
values can be described as a monotonic function. Sampling 100
tuples (and averaging over 100 trials), we found this correlation to
be 0.9950 (a value of 1 would mean the order of the values aligned
perfectly). This means that using our bound for hierarchical clus-
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Figure 3: Synopsis construction time

tering will result in nearly exactly the same clusters as using the
true distances.

5.2.3 Adaptive Coefficient Allocation

We test the effectiveness of our adaptive coefficient allocation
algorithm by comparing it to both a uniform and optimal allocation.
Our optimal allocation is computed using a dynamic programming
algorithm, similar to that proposed in [13]. We sampled 100 tuples
from our dataset and computed the error for each allocation over
a variety of space budgets. This was repeated 100 times and the
average errors are shown in figure 5.

Note that we are representing each tuple individually here, not
clusters as we do later. This experiment validates the use of this al-
gorithm for allocating coefficients across several tuples. We reason
that if we choose good representative tuples, then this method will
reduce the error of our complete synopsis.
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Figure 5: Adaptive coefficient allocation algorithm evaluation.

From this graph, we notice two interesting trends: (1) our adap-
tive algorithm significantly outperforms the uniform allocation, es-
pecially when space is limited and (2) our adaptive algorithm con-
sistently performs at near optimal levels. The near optimal per-
formance further corroborates the utility our error bounds, as the
quality of this algorithm depends directly on the relative differences
between the approximation upper bound for each tuple.

5.3 Query Approximation
In this section we test the quality of approximate query results of

our probabilistic database synopsis as compared to the same queries
on the original database. We pose four different queries to show-
case the versatility of our synopsis and the quality of our results as
compared with probabilistic histograms [5]. The probabilistic his-
togram synopsis was constructed as described in section 5.1 and we
use 10, 000 tuples from our database with a space budget of 20, 000
coefficients (80kB). Note that, using a 40th order polynomial for
each tuple, this budget is 5% of the space required to completely
represent the complete database without clustering.

Probabilistic RangeQuery (RNG): The probabilistic range query

is defined as: P (a < x < b) =
∫ b

a
p(x)dx. The result of this

query is, for each tuple, the probability of that tuple containing a
value in the range [a, b]. To evaluate the quality of this query we run
the same query on the original dataset and the synopsis and com-
pare the probability returned for each tuple in the original dataset
with the probability returned by the synopsis representative corre-
sponding to that tuple. An example use of this query would be
“What is the probability that the cloud coverage was in the range

[0.75, 2.25] at location A”. This query would tell us the probability
of (nearly) clear skies at the given location, however, it could be
posed using any range in the bounded domain, thus demonstrating
the utility of the L∞ error for providing bounds.

Probabilistic Threshold Query (THRESH): It is often the case
that users are interested in a tuple satisfying a set of constraints only
if it is very probable, thus a probabilistic threshold query filters out
any ‘unlikely’ tuples from the result set. For example, we may
pose the same query presented above, but threshold at a probability
of 0.8 to ensure we only see the tuples that are very likely to have
a value in the range. The probabilistic threshold query is defined
as: P (a < x < b) > T . The result of this query is a count of
the tuples that passed the threshold. To evaluate this query, for a
given range, we compare the counts of the query on the synopsis
and the original database. For our experiments, our threshold is
kept proportional to the length of the range we are evaluating.

Probabilistic Join Threshold Query (JOIN): It is often of in-
terest to understand the relationship between tuples. For example,
we may be interested in finding pairs of locations that had similar
cloud cover at a specific time. Since we are dealing with probabilis-
tic data, we may not be able to find tuples that match exactly, but
again, we can threshold on the probability to only present matches
that occur with a high probability. The probabilistic join threshold
query is defined as: P ([a < xi < b] ∧ [a < xj < b]) > T for two
tuples xi and xj , a range [a, b] and a threshold T . Semantically,
this query evaluates the probability of a pair of tuples containing
values in a given range and selects the pairs that have a high proba-
bility of jointly existing in that range. Our evaluation of this query
is the same as the probabilistic threshold query, however, due to
the potentially large result set, we sample two sets of 100 tuples
and perform the join between this subset. That is, database size
refereed to in figure 6(c) is 1002 = 10, 000.

Probabilistic Comparison Query (COMP): Comparing ran-
dom variables from different distributions is a common technique
in statistical analysis. For example, it may be of interest to find
if the difference in cloud cover in two specific locations is signifi-
cant. To do this, we would pose the query “what is the probability
that the cloud cover at location A is greater than that of location

B”. The probabilistic comparison query is defined as P (x > q) =∫
px(x)P

′
q(x)dx for some query random variable, q ∼ pq , where

P ′
q denotes the cumulative density function (cdf) of pq . This is the

only query that is not dependent on a range, since the integral is
performed over the entire domain. The result of this query is, for
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each tuple, the probability of that tuple being greater than the query
distribution. We evaluate this query similarly to the range query.

Except for COMP, we repeat each query using a range that varies
in length from 5 - 75% of the width of the domain. For each range
length, we perform 10 query trials such that the range location is
picked randomly. We average our results for each range length over
all the trials and plot the errors in figure 6.

Both CPs and minimax polynomials provide very low query er-
rors across the board, with no distinguishable difference between
the two methods. This is intuitive as most of the error is introduced
during clustering. After this step, the more advanced interpolation
technique does little to regain and lost representation accuracy (the
real benefit of minimax polynomials comes from the tighter query
bounds, discussed next).

More interesting is the vast difference in quality between our
synopsis and probabilistic histograms. While we are able to answer
each query with near perfect accuracy the probabilistic histogram
introduces significant errors across the board. Our synopsis pro-
vides an error reduction of at least one order of magnitude for each
of the queries. We ran the same queries varying the synopsis space
budget between 10,000 and 50,000 total coefficients, each resulted
in similar improvements over probabilistic histograms.

5.4 Query Error Bounds
In this section, we examine the quality of the query error bounds

produced by our synopsis. We first examine the difference between
the naive error bound and our improved computation which utilizes
the locations of the Chebyshev nodes. Then, we examine the differ-
ence in the bound quality between CPs and minimax polynomials.

We rerun the probabilistic range query and compute the error
bound on each tuple probability using both the naive and improved
error bounds and plot the resulting errors and bounds in figure 7(a).
As expected, we see a substantial improvement in the error bound
that increases with the width of the query range. This is intuitive
since the longer query ranges will cross more Chebyshev nodes,
thus providing a greater error reduction.
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Figure 7: Query error bounds.

In figure 7(b) we compare the error bounds produced fromCheby-

shev vs minimax polynomials. Because minimax polynomials min-
imize the L∞ error, we expect that their main advantage will come
in terms of the resulting error bounds. We see that both methods
produce similar query estimates, but minimax polynomials consis-
tently provide a 20-30% improvement in their error bound across
the width of the query range. Thus given sufficient space and more
stringent error requirements, minimax polynomials may become
worthwhile. For example, if we construct a synopsis on double
the space budget, minimax polynomials consistently provide bound
improvements of more than 50% over CPs.

6. RELATED WORK
We highlight areas of work most relevant to our own and provide

the reader with a concise comparison. Specifically, we review work
on summarization techniques, and managing and querying uncer-
tain data.

Continuous vs Discrete Uncertain Attributes: Singh et al. [24]
introduce the first system to integrate support for continuous distri-
butions by integrating some common parametric distributions and
discretization techniques. This is one of the first papers in the area
to highlight the importance of supporting continuous distributions
in probabilistic database systems. Previous work in managing un-
certain data has primarily focused on managing discrete probability
distributions over small domains [1, 20, 23]. In these systems, tu-
ples have only a handful of possible values, and thus may be stored
efficiently by simply enumerating the values and their associated
probabilities. However, there are many applications in which there
exists a large number of possible values for each tuple, or even con-
tinuous domains, which require more sophisticated techniques for
storing the distributions. Additionally, this system incorporates a
set of parametric probability distributions and thus lacks a unified
representation technique, as well as support for arbitrary density

functions.
Korn et al. [17] utilize cubic splines to represent a probability

density of tuples over a continuous domain for the task of selec-
tivity estimation. The authors show that splines provide significant
improvements in accuracy over histograms for the same space bud-
get as we corroborate in our own experiments when using similar
error metrics. While this work provides a representation for arbi-
trary density functions, our work goes one step further to provide
improved accuracy in limited space.

Data Summarization: Summarizing data is a general area of
research concerned with accurately approximating a signal in less
space than would be necessary to maintain the raw data. Haar
wavelets are a popular tool in the database community for creat-
ing compact data synopses mostly due to the simplicity in which
Haar decompositions may be computed (and their applicability to
streaming data). Another nice property of Haar wavelets is that
pruning the coefficient with the minimum magnitude is guaranteed
to provide an approximation with minimum L2 error with respect
to the number of coefficients [11]. This is useful when it is the sig-
nal in its entirety signal that is of interest, however, when querying
over local regions of a signal, the L∞ is a more desirable metric
because it provides local guarantees on the error.

1The clouds dataset may be downloaded from
http://cdiac.esd.ornl.gov/cdiac/ndps/ndp026b.html.
2We used the ksdensity command implemented in Matlab.
3Note that the experiments carried out in [5], used a database with
10k tuples as well, however, their domain was set at 10 values.
Because the algorithm for constructing probabilistic histograms is
dependent on the domain size, an order of magnitude increase in
domain size results in an order of magnitude increase in running
time as well.
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Figure 6: Query error.

In recent years, there has been a large amount of work on build-
ing space constrained wavelet decompositions that optimize the
L∞ error for its role in providing error bounds [11, 12, 16]. Garafalakis
and Kumar [11] study the restricted version of this problem, in
which given a space budget, and the wavelet decomposition of an
input signal, the problem is only to pick the set of wavelet coeffi-
cients to keep in order to minimize L∞ error. Later, Karras et al.
[16] and Guha and Harb [12] studied the unrestricted version of this
problem, in which the goal is to compute both which coefficients
to maintain as well as their values to minimize the maximum error
for a given space budget.

Uncertain Data Summarization: The problem of summarizing
static probabilistic data was only recently addressed by Cormode
and Garofalakis [6]. In this work, the authors introduced methods
to build optimal histograms and Haar wavelets for probabilistic data
by optimizing the expected value of an error metric. Although the
expected value is often an important statistic, it is insufficient for
answering approximate queries.

To address this, Cormode et al. [5] provide a technique for build-
ing a complete synopsis over a probabilistic database that supports
approximate query evaluation based on histograms. Their approach
builds a histogram over the entire database where the representative
value in each bucket is a distribution represented as a histogram.
This ensures that, provided sufficient space, it is possible to repre-
sent the database exactly. However, the authors assume that there is
a natural ordering over the set of density functions in the database,
such that tuples close to each other will have similar distribution
functions. This is often not the case in reality, and we propose a so-
lution for aggregating tuples based on similar probability densities
in an efficient manner.

Chebyshev Polynomials: Previously, Cai and Ng [2] have ap-
plied Chebyshev polynomials to summarize time-series data. Whereas
their work utilizes Chebyshev polynomials as a mechanism to ap-
proximate time series for indexing, we are concerned with building

an accurate representation of density functions with the added con-
straint of a space limitation. Therefore we utilize the salient fea-
tures of Chebyshev polynomials such as their good approximation
of the minimax polynomial of a function. Additionally, we further
utilize the Remez algorithm [21] to compute a better approxima-
tion of the minimax polynomial and show that this step is able to
provide significant gains in accuracy for smooth functions.

A plethora of other signal approximation methods have been
used in the time-series literature, however, these works are typically
interested in indexing and searching over complete (often discrete)
signals. Therefore most of the techniques have been built or tai-
lored for Euclidean error, thus we do not explore or compare with
these methods. We refer the interested reader to [9] for a compari-
son of various methods.

Space Constraints: While the methods mentioned so far are
concerned with representing an individual input signal, Jagadish et
al. [13] introduce two algorithms to allocate buckets to a set of m
histograms to minimize the global error. Improvements come from
summarizing a diverse set of distributions where each requires a
different number of buckets to reach the same error. We extend this
idea to our task of approximating a database of probability distri-
butions using minimax or Chebyshev polynomials. We introduce
a greedy allocation algorithm and show how to avoid recomputing
the summary of a distribution every time we update the space bud-
get. Due to this, we are able to provide much better scalability than
the previous work.

7. CONCLUSION
The inability of current probabilistic databases to efficiently han-

dle data that is defined over large domain spaces limits the appli-
cability of these systems to real world data, specifically to scien-
tific applications which often deal with continuous attributes. In
this paper, we have introduced an efficient method to construct a
space constrained synopsis for probabilistic data which is capable

398



of answering queries with error bounds. We derived a useful up-
per bound on the probability distribution approximation error that
allows us to prune coefficients to reduce the space of a summary
while still reducing the L∞ error. Using this bound, we also de-
rive a distance metric based on the Chebyshev coefficients which
allows for efficient clustering of distributions. Additionally, our
upper bound enables us to efficiently allocate coefficients among
the set of tuples to reduce the global error of our synopsis.

We believe this work provides an important step forward in terms
of achieving fast and accurate exploratory querying over proba-
bilistic tuples as well as extending the utility of these systems to
more scientific domains.
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B. ERROR BOUNDS

LEMMA 2. For each Chebyshev basis polynomial, Tn(x) = 1
when x = 1.

PROOF. First, recall that we are only concerned with the func-
tion values within the closed interval [-1, 1]. It is easy to see that
this is the case in the first two basis polynomials.

T0(x) = 1

T1(x) = x

Additionally, using the recursive definition we see the inductive
argument.

Tn(x) = 2xTn−2(x)− Tn−1(x)

If Tn−2 = 1 and Tn−1 = 1 at x = 1 then we have the following

Tn(1) = 2(1)(1) − (1) = 1

Proof of theorem 3:

PROOF. By definition, we have

Pm − c1T1 − · · · − cmTm = 0

We represent the set of basis function to economize as G, so we
can add this set from both sides of (4).

Pm − c1T1 − · · · − cmTm + (
∑

g∈G

cgTg) =
∑

g∈G

cgTg

Pm − (
∑

g/∈G

cmTm) =
∑

g∈G

cgTg

We can put this into a form more similar to the L∞-norm by taking
the maximum value with respect to x of both sides.

maxx|Pm(x)− (
∑

g/∈G

cgTg(x))| = maxx|
∑

g∈G

cgTg(x)| (4)

From (4), we can derive upper and lower bounds of the approx-
imation L∞ error. We simplify the right side of the equation by
setting x = 1 since, by lemma 2, Tg(1) = 1, ∀g, resulting in a
lower bound of the L∞ error.

maxx|Pm(x)− (
∑

g/∈G

cgTg(x))| ≥ |
∑

g∈G

cg | (5)

To see why this is a lower bound, consider the following two cases.
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1. maxx occurs at x = 1. In this case, equality will hold since
the assumption we made on the right side of the equation
holds on the left as well.

2. maxx occurs at x 6= 1. In this case, both sides of the equa-
tion are maximized at an x other than x = 1. Since we as-
sume x = 1 on the right side of the equation, obviously this
term will be less than the left side.

For the upper bound, we take equation 4 and move the absolute
value inside of the summation (on the right hand side) creating an
inequality. Additionally, we know that |Tg(x)| ≤ 1, which gives
us the following inequality.

maxx|Pm(x)− (
∑

g/∈G

cgTg(x))| ≤
∑

g∈G

|cgTg(x)|

≤
∑

g∈G

|cg|

We take the far right hand side of this equations our upper bound.

maxx|Pm(x)− (
∑

g/∈G

cgTg(x))| ≤
∑

g∈G

|cg | (6)

C. COEFFICIENT ALLOCATION

LEMMA 3. For an optimal allocation X∗
b , reducing the num-

ber of coefficients allocated to any approximation will increase the

global error. That is, ∀j s.t. xj > 0, err(fj , xj − 1) ≥ Err(X∗
b ).

PROOF. Assume that err(fj , xj − 1) < Err(X∗
b ). There must

exist some function fi, i 6= j such that err(fi, xi) = Err(X∗
b ).

In fact there are two cases to consider.
First, the case in which there exists only one signal influencing

the global error. Here we see that transferring a coefficient from fj
to fi would produce a new allocationX1

b such that

Err(X1
b ) < Err(X∗

b )

This causes a contradiction since X∗ is optimal.
Second, the case in which there exist multiple functions, Fmax(X

∗
b ),

which influence the global error. Here, an optimal allocation will
minimize the size of this set. Transferring a coefficient from fj to
any function in the set Fmax(X

∗
b ), to form a new allocation X1

b

gives us: |Fmax(X
∗
b )| > |Fmax(X

1
b )| since fj is not contained

in this set. Again, this causes a contradiction since X∗ is optimal,
thus the lemma is proved.

Proof of theorem 4:

PROOF. We use δi to denote a unit vector of length k with such

that δi(i) = 1 and δi(j) = 0 ∀j 6= i. δ̂i is a vector of length

k with such that δ̂i(i) > 1 and
∑

j δ̂i(j) = 1. Each element in
any δ vector may take on any integer value (positive values denotes
adding space and negative values denote removing space).

We assume fi is one of the functions with a maximum local error
in the current allocation: err(fi, xi) ≥ err(fj , xj) ∀j 6= i. Be-
cause we are interested in the maximum L∞ error metric, the only
way to decrease the global error is to improve the worst approxi-
mation. Hence, we partition all possible transformations from X∗

b

toX∗
b+1 into the following two cases

X
1∗
b+1 = X

∗
b + δ̂i (7)

X
2∗
b+1 = X

∗
b + δi (8)

where (8) is the greedy approach and (7) represents all other possi-
ble transforms, where xi is increased by more than one.

In the case of (7), there must be some index j 6= i such that
xj,b > xj,b+1. By definition, err(fj , xj,b+1) > err(fj , xj,b),
causing the global error to (possibly) increase since Err(X∗

b ) ≤
Err(Xb). To see this, we can view (7) as a two step transform. We
describe the simple case in which the coefficient of the δ vectors is
one, however, the following logic is applicable for any coefficients.

X
1∗
b = X

∗
b + δi − δj (9)

X
1∗
b+1 = X

1∗
b + δi + δ̃i,j (10)

where δ̃ contains the portion of the transformation that does not
include functions fi and fj .

After (9), Err(X∗
b ) ≤ Err(X1∗

b ) by definition of optimality,
since both are allocations over a budget of b. Additionally, from
lemma 3 we see that fj is guaranteed to influence the global error.
However, in the second step of the transform, (10), xj is not in-
creased, so the global error of this allocation is left unchanged and
Err(X1∗

b+1) ≥ Err(Xb), thus a contradiction.
In the case of (8) we only assign the unallocated space to fi. This

guarantees that Err(X2∗
b+1) ≤ Err(Xb) and that the set of signals

contributing to the global error is minimized. We conclude with the
following inequality:

Err(X2∗
b+1) ≤ Err(X∗

b ) ≤ Err(X1∗
b+1)

Thus X2∗
b+1 is an optimal allocation for a budget of b+ 1.

We note that monotonicity is all that is required in this theorem
since we are interested in the L∞ error. As long as the local error
is guaranteed to decrease with an increase in space, we can always
reduce the error by allocating more space to the tuple with the max-
imum error.

D. CLUSTERING
Proof of theorem 5:

PROOF. Given Lemma 1, consider the upper bound (equation 6)
of the error function fz and its approximation in the extreme case
in which we prune all Chebyshev coefficients.

maxx|fz(x)| ≤
∑

g∈G

|cz(g)|

maxx|f1(x)− f2(x)| ≤
∑

g∈G

|c1(g)− c2(g)|

distL∞
(f1, f2) ≤ distL1

(c1, c2)
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