
Energy Proportionality for Disk Storage Using Replication

Jinoh Kim and Doron Rotem
Lawrence Berkeley National Laboratory

University of California, Berkeley, CA 94720, USA
{jinohkim,d_rotem}@lbl.gov

ABSTRACT

Saving energy for storage is of major importance as storage devices
(and cooling them off) may contribute over 25 percent of the total
energy consumed in a datacenter. Recent work introduced the con-
cept of energy proportionality and argued that it is a more relevant
metric than just energy saving as it takes into account the tradeoff
between energy consumption and performance. In this paper, we
present a novel approach, called FREP (Fractional Replication for
Energy Proportionality), for energy management in large datacen-
ters. FREP includes a replication strategy and basic functions to
enable flexible energy management. Specifically, our method pro-
vides performance guarantees by adaptively controlling the power
states of a group of disks based on observed and predicted work-
loads. Our experiments, using a set of real and synthetic traces,
show that FREP dramatically reduces energy requirements with a
minimal response time penalty.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability

Keywords

Energy management, fractional replication, workload adaptation

1. INTRODUCTION
Among the many components in the datacenter, storage is the

next largest consumer of energy after servers and cooling systems.
It is currently estimated that disk storage systems consume about
25–35 percent of the total power [14]. This percentage of power
consumption by disk storage systems will only continue to increase,
as data intensive applications demand fast and reliable access to on-
line data resources. This in turn requires the deployment of power
hungry faster (high RPM) and larger capacity disks.

Several energy saving techniques for disk-based storage systems
have been introduced in the literature [17, 26, 13, 28, 27]. Most of
these techniques use the idea of spinning down the disks from their
usual high energy consumption mode into a lower energy mode

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00.

(sleep/standby mode) after they experience a period of inactivity
whose length exceeds a certain threshold (idleness threshold). The
reason for this is that typical disks consume about one tenth of the
power in standby mode as compared with their power consumption
when spinning. There are several challenges associated with these
spin-down techniques when applied to individual disks:

• Energy and response time penalty: Disks can only service re-
quests while they are spinning, in case a request arrives when
the disk is in sleep mode there is a response time penalty (typ-
ically 10–15 seconds) before the request can be serviced. In
addition, considerable amount of energy is required to spin
up the disk, in some cases this can exceed the energy saved
by transitioning the disk to standby mode.

• Expected length of inactivity periods: Under many typical
workloads found in scientific and other applications, individ-
ual disks do not experience long enough periods of inactivity
(longer than the idleness threshold) thus limiting the oppor-
tunities to save energy.

Achieving energy proportionality in datacenters, rather than just
energy saving, has been recently getting attention from industry
and researchers and proposed as an important design metric [2].
The core principal behind energy proportionality is that computing
equipment (storage, servers, networks, etc.) should consume power
in proportion to their load level, i.e., a computing component that
consumes xwatts at full load, should consume x· p

100
when running

at p-% load.
The energy management approach we consider in this paper pro-

motes energy proportionality and is different from existing approaches,
as it is based on handling energy management in a group of disks
rather than controlling disks individually. We show that our en-
ergy management is scalable to large datacenters with thousands of
disks and preserves important features of the storage system such
as parallelism and fault tolerance. As explained later, our approach
exploits data replication which is used in many datacenters for rea-
sons such as fault tolerance and load balancing. Popular distributed
file systems, such as HDFS (Hadoop Distributed File System) [15]
and GFS (Google File System) [12], also automatically replicate
data by default. Data replication can help saving energy because
when a data item is replicated several times, there is often an op-
portunity to select a replica found on a currently spinning disk, thus
avoiding the costs (spin-up energy) involved in accessing a replica
found on a disk which is currently in sleep mode.

Although replication requires additional storage space, it is a rel-
atively cheap resource as it is reported that storage resources in dat-
acenters are often considerably under-utilized and use only a small
fraction of the total available capacity (less than 25% according to
several studies) [14, 19, 21]. In this paper, we present a novel

81

replication strategy that achieves energy benefits while maintain-
ing performance and fault tolerance. In particular, our fractional
replication enables flexible gradual energy management based on
workloads which promotes energy proportionality.

Another important challenge is to determine when to transition
the disks to lower or higher power states. One typical approach for
this is to use a set of thresholds for a load metric. For example,
Lang et al. [19] use CPU utilization as their load metric, and as-
sume that disk power states are changed at some threshold points
of the load metric. Similarly, PARAID [26] monitors disk utiliza-
tion and spins disks up/down based on some thresholds. In addi-
tion, workload characteristics can be significantly different among
datacenters due to the type of applications they run, and also can
change over time in the same datacenter.

Our solution, called FREP (Fractional Replication for Energy
Proportionality), considers the disks in each disk array as a sin-
gle unit which can be spun down or up. We refer to spinning
up and down of such units as “gear-shift”. As we will discuss,
our gear-shift mechanism incorporates both predictive and reactive
mechanisms, rather than simply relying on static thresholds. To im-
prove performance, we maintain load balancing among the disk ar-
rays that are currently spinning by access request re-direction. For
downshifts (for energy saving), we make predictions based on past
historical information. For upshifts (for performance guarantees),
we utilize reactive information in order to respond to any perfor-
mance degradation quickly. As a basis for these, FREP provides a
replication strategy (and its associated functions). We believe that
FREP is an important tool for achieving energy proportionality in
storage systems. Our main contributions include the following:

• We present basic functions and strategies for FREP energy
management, including replication strategy, load distribution,
and update consistency.

• We present a prediction model based on past historical ob-
servations with de Bruijn graphs [20] to enable probabilistic
decisions. In addition, we present our constraint-based gear-
shift mechanism, by which FREP can shift gears for energy
management.

• We provide extensive evaluation results with a diverse set of
traces, including two Cello99 traces [5] 6-month apart from
each other, two OLTP traces [24], and synthetic traces with
different workload characteristics.

The paper is organized as follows. In Section 2, we discuss some
related work on energy management in datacenters. In Section 3,
we introduce the FREP replication strategy, and a series of func-
tions for I/O service and energy management in such a replicated
environment. Our prediction model with de Bruijn graphs is intro-
duced in Section 4, where the FREP gear-shift mechanism based on
the prediction model is also described. Our extensive experimen-
tal results with several workload sets are presented in Section 5.
Conclusions and some directions for future work are presented in
Section 6.

2. RELATED WORK
Our work is inspired by Power-aware RAID (PARAID) [26] which

was the first work to introduce the concept of gear-shifting based on
system load as reconfiguration. It provides a replication strategy,
called skewed striping, for disk energy management without ser-
vice disruption. The main difference is that, PARAID shifts gears
within a RAID unit by spinning up/down one or more disks in the
array, while we do it across multiple RAID arrays. Another differ-
ence is the conditions leading to a gear-shift. PARAID relies on

disk utilization to make its gear-shift decisions, while FREP moni-
tors the degree of SLA satisfaction for reconfiguration.

Lang et al. [19] used mirroring for disk energy management.
Traditionally, mirroring gives two options — running all the disks
(100%) or half of disks (50%). The authors present gradual disk
power control combined with load balancing techniques by using
a new replication strategy, called chained declustering. Although
this new technique provides more flexibility, energy saving is still
limited to 50%, since at most 50% of the disks can be spun down.
However in real systems the degree of load variation can be more
dramatic. For example, in [6], the authors observed a high degree
of load variation (over a factor of three) in a commercial web site.
Since datacenters usually tend to over provision resources to sat-
isfy peak loads, there may be many opportunities to save energy by
factors much greater than 50%.

Similar to our approach, Rabbit [1] provides a skewed data place-
ment strategy for energy proportionality in a MapReduce type clus-
ter. For a dataset with B blocks, the primary replica is spread
evenly among the first p nodes (B/p blocks per node). The rest of
the nodes hold the remaining r−1 replicas where a node with index
i (i > p) holding B/i blocks. The number of nodes (s) needed to
hold the r − 1 non-primary replicas satisfies s ≥ per−1. Rabbit
provides energy proportionality by allowing one-by-one deactiva-
tion of nodes along an expansion chain. Each dataset may have its
own expansion chain. In power saving mode, a load-balancing al-
gorithm ensures that data accesses are distributed evenly among the
active nodes even though their data load is highly skewed. While
sharing some similarities with FREP in terms of skewed replication
and energy proportionality, there are also some differences between
the two techniques. FREP is designed to be used in large datacen-
ters where performance requirements are often dictated by service
level agreements (SLA). For that reason, one of the main concerns
of FREP is to save energy while satisfying these SLAs. This is
done by observing workloads and SLA violations and then adjust-
ing the number of active disks using probabilistic prediction heuris-
tics. Rabbit does not employ such mechanisms. FREP also pro-
vides some more implementation details such as analysis of stor-
age requirements for replication and the determination of a feasible
range of values for the number of primary nodes. Another impor-
tant difference is that in Rabbit the number of nodes holding addi-
tional replicas grows exponentially and also depends on p (i.e., the
number of primary nodes), while FREP is more flexible and does
not impose such restrictions.

Although energy management is a crucial problem for datacen-
ters, performance guarantees may be even more important. Hence,
energy management needs to be performed within acceptable per-
formance bounds. As pointed out in [3], simple dynamic energy
management techniques, such as timeout-based disk spin-down may
pay significant performance penalty. This makes administrators
of datacenters reluctant to employ such approaches in these cases
where system performance is a crucial requirement. To provide en-
ergy saving within a controlled performance environment, several
research works have taken system SLAs into account. Hiberna-
tor [28] employs response time constraint, and considers an opti-
mization problem to minimize energy subject to a given constraint.
Similarly, eRAID [21] uses a response time constraint in addition
to a system throughput constraint for their energy saving problem.
However, we observed that average response times can experience
a very high degree of variance, sometimes exceeding three orders
of magnitude. Elnozahy et al. [10] employ a “percentile-based re-
sponse time” to specify the performance constraint for Web servers.
In this work, we also employ this to define system SLAs.

Both static and dynamic techniques have been studied for workload-

82

adaptive energy management. A well known static technique, which
we call 2-competitive algorithm [17], is based on transitioning the
disk to sleep mode whenever it experiences a period of inactivity
greater than β

Pτ
where β is the energy penalty (in Joules) for having

to serve a request while the disk is in sleep mode (i.e., spinning the
disk down and then spinning it up in order to serve a request) and
Pτ is the rate of energy consumption of the disk (in Watts) when
spinning. This technique does not attempt to predict the work-
load and may sometimes lead to unstable performance. Dynamic
techniques include employing a multiple set of “experts” [16, 8].
In [16], a set of timeout values are combined to determine the
next idleness timeout based on associated weights varied over time,
based on the past history. In [8], rather than using an aggregated re-
sult, one expert is chosen for energy management, whenever needed,
based on the weight values. In updating weight values, this work
considered both energy saving and response time latencies. Chung
et al. [7] established Markov chains for dynamic energy manage-
ment, and calculated state transition probabilities based on obser-
vations for non-stationary workloads. Energy management actions
are determined based on the probabilities. Our prediction model
is also probabilistic and refers to past observations for workload
adaptability. In fact, the de Bruijn graph used by FREP (Section 4)
corresponds to a special type of Markov chain.

3. THE FREP SYSTEM MODEL
We are particularly interested in read-many, write-rare environ-

ments, as many datacenters use write off-loading [22] or Log Struc-
tured Files techniques [11] to batch together write transactions and
minimize their effect on power consumption.

FREP manages power states on the basis of a group of disks
(e.g., a RAID array). In other words, a group of disks (which form
a RAID array) are transitioned together to either standby or active
state in the course of energy management. We assume that the
entire disks in a group are either in a standby state (non-spinning),
or they are all spinning in the active state.1

Formally, we define node as an array of disks managed together
with respect to energy management. Thus, a node is a collection
of disks and there is no disk sharing between nodes. For example,
a node can be a RAID-5 array that includes data and parity disks.
For scalability, a large storage system can be divided into multiple
disjoint partitions, each of which consists of its own set of partic-
ipating nodes. In the rest of this paper, all functions for energy
management and analysis refer to a single partition. A partition of
a storage system consists of a set of nodes N = {Ni}. We distin-
guish between two classes of nodes: Covering Set (CS) nodes that
are always spinning and contain between them a copy of each data
item in the partition, and non-CS nodes that can change their power
states for energy management purposes. For ease of exposition, we
assume n nodes in total, where the first m (1 ≤ m < n) nodes
with the lowest indexes are CS nodes, i.e., {N1, N2, .., Nm}, and
the rest are non-CS nodes, i.e., {Nm+1, Nm+2, .., Nn}. Table 1
summarizes notations used in this paper.

FREP reconfigures the system based on the current workload, we
also call this process “gear-shift”, from the entire set of nodes active
(the highest gear level) to only the CS nodes active (the lowest gear
level). Naturally, the lower the gear level, the greater energy saving
can be achieved. Figure 1 illustrates our gear-shift model, from the
lowest gear level to the highest gear level. In the figure, filled nodes
are active, whereas non-filled nodes are standby. In the lowest gear
level, only CS nodes are active (disks associated with CS nodes are

1We interchangeably use “standby/active”, “spun-down/spun-up”,
and “powered-off/powered-on” for disk array state.

Table 1: Notation

Symbol Description

Ni A node with index i (Ni ∈ N)
Di Original data for Ni

Di(
a
b
) a/b fraction of Di

Vi Storage volume of Ni

Wi Replica storage for Ni

n Total number of nodes (= |N |)
m Number of CS nodes

n − m Number of non-CS nodes

w Number of active nodes

n − w Number of standby nodes

C Storage capacity

ρ Storage utilization

Li(w) Load for node i with w active nodes

LIF Load imbalance factor; LIF = 0 means balanced load
R(p) p-% response time in ascending order in a time frame

p_threshold minimal probability for satisfying down-shift condition

Figure 1: FREP gear-shift model: Gear-shift is based on cur-

rent workload. At highest gear level, all nodes are active (best

performance), at lowest gear level only a fraction of the nodes

(CS nodes) are active (greatest energy saving). Filled and empty

nodes denote active and standby nodes respectively.

spinning) while at the highest gear level all the nodes are active.
As explained later, for any node in standby mode, all requests to
its data are redirected and serviced (in a balanced fashion) by other
active nodes that hold an associated replica. Our replication enables
continuous service regardless of energy management with minimal
storage requirement, as discussed in the next section.

3.1 Replication strategy
The main idea behind FREP is to utilize data replication in or-

der to avoid performance penalties. We will show that our repli-
cation scheme can achieve continuous data availability even in en-
ergy saving mode. On the other hand, energy management without
replication usually causes severe latencies because of the need to
spin up disks from standby node, an operation that can take tens
of seconds to get back to service (hence unacceptable to datacen-
ters in general). For example, as shown in the evaluation section,
a simple energy management technique based on the 2-competitive
algorithm [17] mentioned earlier, may sometimes incur response
time penalty causing performance degradation by a factor of 10.

Next we outline the general structure of our replication scheme.
We assume that before replication is introduced each node Ni has
some original data denoted by Di. We denote by, Di(

a
b
) an a/b

fraction of Di. After replication each node will hold some repli-
cated data in addition to its original data as follows: (a) Each CS
node gets an equal fraction of the replicated data from each non-CS

83

CS nodes non-CS nodes

Node N1 N2 N3 N4 N5 N6

Orig. D1 D2 D3 D4 D5 D6

Repl. D3(
1
2
) D3(1

2
)

D4(
1
2
) D4(1

2
) D4(

1
3
)

D5(
1
2
) D5(1

2
) D5(

1
4
) D5(1

4
)

D6(
1
2
) D6(1

2
) D6(

1
5
) D6(1

5
) D6(

1
5
)

D1(
1
4
) D1(1

4
) D1(

1
4
) D1(

1
4
)

D2(
1
4
) D2(1

4
) D2(

1
4
) D2(

1
4
)

Figure 2: FREP replication scheme with 6 nodes

node; (b) For fault tolerance and load balancing purposes, non-CS
nodes maintain replicas of original data associated with CS nodes.
Again, each non-CS node gets an equal fraction of the replicated
data from each CS node; (c) Non-CS nodes keep replicas of origi-
nal data (Di’s) from specific other non-CS nodes in a skewed way
as explained later. We call cases (a) and (b) balanced-replication
and (c) skewed-replication.

Figure 2 illustrates an example of our replication scheme with 6
nodes (in a partition), two of which are CS nodes. Since there are
two CS nodes in this setting, they each keep a disjoint half of non-
CS node data. Non-CS nodes also maintain disjoint replicas of CS
node data. As there are four such nodes each gets a disjoint quar-
ter of the data. This replication is done strictly for fault tolerance
and performance as will be discussed in Section 3.6. In addition,
non-CS nodes maintain a part of other non-CS node replicas based
on the gear-shift principle. The replication between non-CS nodes
helps to distribute the request load in energy saving mode (i.e., a
non-highest gear level).

We next explain the skewed-replication, the replication scheme
used between non-CS nodes. The original data Di of a non-CS
node Ni (i > m+ 1) are replicated equally to other non-CS nodes
with lower indexes, i.e., Nj for m + 1 ≤ j < i, in a random and
disjoint fashion. This is done as follows. For each j for (m+ 1 ≤
j < i), we randomly select 1

i−1
of the blocks of Di (original data

of non-CS node Ni) without replacement, and copy them to node
Nj .

3.2 Storage requirements
We denote the storage requirement for replicas at each node by

Wi. Let Vi be the size in bytes of Di, i.e., the data volume of Ni.
The following equation shows the storage requirement for repli-
cated data on each node.

Wi =

8

>

<

>

:

Pn

k=m+1 Vk/m if 1 ≤ i ≤ m;
Pm

k=1 Vk/(n−m) if i = n;

Wi+1 + Vi+1/i otherwise.

(1)

In the equation, the first case is for CS nodes, and the second
case is for the last non-CS node Nn. These nodes only hold repli-
cation data resulting from balanced-replications. The third case is
a recursive expression for the storage requirements resulting from
the skewed-replication for non-CS nodes described above (except
for non-CS node Nn).

We next discuss the total storage requirement for FREP. For sim-
plicity, from now on, we assume that each node holds the same vol-
ume of original data, i.e., ∀Ni Vi = V , so that the total storage for
original data is nV . Clearly storage requirements are at least 2nV
as each item is replicated at least once, the next proposition shows
that it is less than 3nV .

PROPOSITION 3.1. The total storage requirementW for FREP

 0

 5

 10

 15

 20

 0 20 40 60 80 100

Number of CS nodes

n=100
ρ=0.2

mmin=ρ*n mmax=m
*

Figure 3: Constraints on the number of CS nodes: Based on

the constraints ρn ≤ m ≤ m∗ (Proposition 3.2), it is possible

to compute the min/max number of CS nodes for any configu-

ration.

is W ≈ 3nV −mV (1 + ln n
m

).

PROOF. Omitted due to space limitations. See our extended pa-
per [18]

Now, let us consider possible CS/non-CS node configurations
from the storage perspective. For simplicity, we assume that all
disks in a partition have an equal disk capacity C.

PROPOSITION 3.2. The number of CS nodes m is bounded by:

ρn ≤ m ≤ m∗, where ρ is storage utilization andm∗ is the largest

m that satisfies the inequality: 1 + m
n−m

+ ln
“

n
m+1

”

≤ 1
ρ
.

PROOF. Omitted due to space limitations. See our extended pa-
per [18]

Figure 3 shows an example for possible min/max number of CS
nodes for a system with n = 100 and ρ = 0.2. In the figure, the
minimum required number of CS nodes is 20 and the maximum is
79. In other words, the number of CS nodes cannot be smaller than
20 or greater than 79 to successfully accommodate the FREP repli-
cation. From the perspective of energy management, the maximum
energy saving can be obtained up to 80% (i.e., 1 − 20

100
) with the

minimal CS node setting in this example.

3.3 Load distribution
We next discuss the impact of energy management on load bal-

ancing and how we distribute the load to active nodes by taking ad-
vantage of the replication. In FREP, active nodes take up load from
standby nodes, based on the location of replicas (the details on im-
plementation of request redirection for standby nodes are described
in Section 3.5). For example, in Figure 2, nodes N1–N5 service re-
quests for N6 when N6 is in standby, since they have N6 replicas.
Similarly, when N5 transitions to standby, N1–N4 take up N5 load
evenly. Figure 4 shows an example of load distribution as a func-
tion of the number of active nodes (w). For simplicity, we assume
that the load generated by accessing the original data in each node
is uniform and normalize it to 1 (i.e., load=1). Note that numbers
in parentheses in the figure represent the adjusted load achieved by
our optimization algorithm to mitigate load imbalance between CS
and non-CS nodes. We will discuss it later in this section.

Next we show how to compute the load for each node based on
the number of active nodes. Let Li(w) be the load for node iwhere
the number of active nodes is w (m ≤ w ≤ n). By definition,
Li(w = n) = 1 and

P

i
Li(w) = n. We can then compute load

as follows:

Li(w) =

8

>

<

>

:

0 if i > w;

Li(w + 1) + 1/w if m < i ≤ w;

1 +
P

n

k=w+1(1− w−m

k−1
)

m
otherwise.

(2)

84

CS nodes non-CS nodes

w N1 N2 N3 N4 N5 N6

6 1 1 1 1 1 1
5 1.2 1.2 1.2 1.2 1.2 —
4 1.55 (1.5) 1.55 (1.5) 1.45 (1.5) 1.45 (1.5) — —
3 2.11 (2) 2.11 (2) 1.78 (2) — — —
2 3 3 — — — —

Figure 4: Example of load distribution: This example shows

load before and after (in parenthesis) optimization, as a func-

tion of the number of active nodes (w).

In Equation 2, the first case is for standby nodes, and thus the
load is necessarily zero. The second case is for active non-CS
nodes, and can be defined recursively with the newly introduced
load at every node spin-down (1/w). Alternatively, it can be de-
fined (non-recursively) as Li(w) = 1 +

Pn

k=w+1
1

k−1
. The last

case is for CS nodes. Since each active non-CS node takes
Pn

k=w+1
1

k−1
load from standby nodes, the rest of the load on standby nodes
which is equal to

Pn

k=w+1(1 − w−m
k−1

) should be handled by CS

nodes. Therefore, each CS node takes

P

n

k=w+1
(1− w−m

k−1
)

m
in addi-

tion to its own load (i.e., 1).
In Figure 4, we see some degree of load imbalance between CS

and non-CS nodes, as non-CS nodes transition standby. This is
the inherent characteristic of our load distribution algorithm. More
accurately, we define a metric load imbalance factor (LIF) to ex-
press how the load deviates from the ideal balanced state: LIF =
given_load − balanced_load. Thus, LIF > 0 means over-
loaded, while LIF < 0 means under-loaded and LIF = 0 in-
dicates perfect load balance. LIFi(w) represents LIF for node
i where the number of active nodes is w. Hence, LIF can be
expressed as LIFi(w) = Li(w) − n/w, since n/w is the ideal
balanced load. Figure 5 shows LIF for CS nodes varying with the
number of active nodes in a system with n = 100 and m = 20.
We can see that load is balanced for the two extremes, i.e., w = m
or w = n. In between these extremes, we see some degree of load
imbalance in the figure.

We now present an optimization technique to reduce LIF for
CS nodes, thus bringing the system closer to a balanced state. The
basic idea is to have non-CS nodes service CS node load based on
replicated data they maintain. To achieve this, it is possible to redi-
rect requests accessing CS node data to any active non-CS nodes
probabilistically if the corresponding replicas are kept in such ac-
tive non-CS nodes. In our optimization, we compute the redirection
probability (θ) as follows:

θ = min

„

1,

Pm

k=1 LIFk(w)

m
×
n−m

w −m

«

(3)

In the equation,
P

m

k=1
LIFk(w)

m
is simply LIF1(w), since each

CS node has the same LIF .
The intuition behind this is to redirect requests for any CS node

data more aggressively if either the LIF for CS node is greater or
the number of active non-CS nodes are smaller (or both). For any
request accessing CS node data, we can probabilistically redirect
the request based on the computed θ but only if any of active non-
CS nodes keeps the replica. For example, suppose θ = 0.5 and ac-
tive non-CS nodes keep 1/2 of CS node replicas. In that case, 50%
requests to CS node data can be redirected to non-CS nodes (prob-
abilistically), but 50% of them can actually be serviced by active
non-CS nodes. Consequently, it can reduce CS node load by 0.25.
Figure 5 shows LIF for CS nodes with and without the optimiza-

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

L
IF

 (
L
o
a
d
 I
m

b
a
la

n
c
e
 F

a
c
to

r)

Number of active nodes (w)
(m) (n)

Basic (without optimization)
Optimized

Figure 5: Load imbalance factor (LIF) for CS node (LIF =
given_load − balanced_load): With the optimization, LIF is

significantly reduced.

tion in a system with n = 100 and m = 20. We can see that our
optimization can significantly mitigate load imbalance compared to
the basic one. Except for states with fairly small number of active
non-CS nodes (less than 50 in the graph), load is almost balanced
for active nodes.

3.4 Update consistency
Since our focus is more on read-dominant environments, FREP

provides simplified functionality for new writes and update con-
sistency. The main principle for writes is that we redirect write
requests for data on standby non-CS nodes to the replica held on
CS nodes, and perform synchronization later in the reorganization

phase (discussed below). Hence, the basic idea is similar to write
off-loading [22], in which all writes to powered-off disks are redi-
rected to other disks temporarily. This can slightly increase the load
on CS nodes, but we assume write requests occur infrequently.

More specifically, for an update request to a block of Di resid-
ing on Ni (the node holding the updated block), if all replicas of
Di are on active nodes, all of them are updated. Otherwise (i.e., if
one or more of the nodes holding replicas of Di is standby), FREP
off-loads the updated block to the CS node holding its replica, and
the updated block in Di is marked as stale (in the meta data) to
prevent subsequent accesses. For new writes on Di, we distinguish
between two cases (a) a new write to a CS node and (b) a non-CS
node. In case (a), we write it on Ni. We then randomly select a
non-CS node Nj . If Nj is active, we write the new block on it;
otherwise, we mark the appropriate block on Nj as stale for later
synchronization. In case (b), ifNi is active, the new block is added
to Di and replicated based on our replication scheme (described in
Section 3.1); otherwise, one of CS nodes is randomly selected, the
new block is off-loaded to it, and the block on Ni is then marked
stale for later synchronization. The off-loaded information can also
be duplicated to another separate place (e.g., a centralized cache)
to handle unexpected CS node failures, and cleared whenever reor-
ganization is done.

Whenever the gear goes up to the highest level (i.e., performance
mode), a background reorganization process is scheduled. That is,
any subsequent down-shift condition enables reorganization to be
executed. During the reorganization, down-shift is postponed. In
this phase, all stale blocks in non-CS nodes are synchronized with
the corresponding copies of CS nodes. New blocks that are off-
loaded in CS nodes are also copied to non-CS nodes, and replica-
tion takes place using our skewed-replication scheme, as discussed
in Section 3.1. After completing reorganization, the gear is then
shifted down if the down-shift condition is still in effect. In case an
up-shift condition arises in the course of reorganization, it will take
priority over it, and the system will resume reorganization when a
down-shift event occurs.

85

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
e

c
)

Time (min)

Avg. Response Time (Cello99)

Window=1min
Window=5min

Window=15min
Window=60min

Figure 6: Variation of Average Response Time (Cello99)

3.5 Request redirection
Requests can be redirected to one of replica nodes, (1) when

the node with the original block is now in the standby, (2) when
the original block is updated (hence stale), or (3) when we need
load optimization as discussed in Section 3.3. For (3), we use a
probabilistic approach as discussed. For (1) and (2), we maintain
a mapping table that holds meta data for replica locations and data
status (e.g., stale). For each request, FREP tests redirection first,
and based on the test result, the request is dispatched to a node.
More information about this redirection procedure can be found in
our extended paper [18].

3.6 Fault tolerance
The storage system in many datacenters consists of RAID ar-

rays. We therefore assume each node is a RAID group of disks,
and thus, most disk failures can be handled by the RAID fault tol-
erance functions. For failures that cannot be dealt with by RAID
functions, FREP immediately stops energy management functions,
and standby nodes are spun up. If a failed node is a non-CS node,
all requests to it are redirected to CS nodes (similar to the case when
it is in standby). In the case of CS node failure, non-CS nodes take
over all requests to that CS node, since non-CS nodes maintain CS
node replicas (as seen in Figure 2). In that case, load for non-CS
nodes is 1 + 1

(n−m)
, while active CS nodes have load 1. As men-

tioned, off-loaded information can be cached to a separate location,
and the information can be used for synchronization in case of CS
node failure.

4. GEAR-SHIFT MECHANISM
FREP shifts gears for energy management, and as a result, its

energy benefits and response time performance critically rely on
the gear-switch mechanism. In this section, we present our gear-
switch mechanism.

4.1 Service constraints
Our main goal in designing gear-switching mechanism is to max-

imize energy benefits, such that the system SLA is met. There are
various SLA metrics in the literature. Average response time is
one typical example [28, 21]. However, in real life trace logs we
observed a high degree of variation for this metric (Cello99). As
shown in Figure 6, variation of over 3 orders of magnitude is possi-
ble. The figure plots average response time observed with different
window sizes from 1 minute to 1 hour. Even with a large time
window, we can still see drastic changes across time. Such a high
degree of variation makes it difficult to use this metric in defining
system SLAs For this reason, we alternatively consider percentile
for system SLAs.

Percentile is widely employed in definitions of system SLAs.
For example, availability requirement (for data, node, etc) is of-

ten defined with x-nines, where x-nines refers to the number of
‘9’ in percentile value. Thus, 5-nines refers to 99.999% availabil-
ity. In this paper, we use percentile of request response time for
the system SLA. For instance, we can specify a service constraint:
“99% of requests should be serviced within 500 msec.” This is a
safer metric than average response time, particularly for such en-
vironments with a high degree of variations, in which only smaller
number of delayed completions can critically affect the aggregated
result. Formally, a system SLA is defined:

SLA : R(p) ≤ τ (4)

Here, p is a percentile, R(p) is p-% response time in ascending
order (observed in a given time interval), and τ is the response time
constraint. Thus, we need to provide values for p and τ to specify
an SLA. With the specified SLA, FREP checks whether p-% re-
quests lie within τ . For this, FREP uses a predictive approach, and
makes gear-shift decisions based on prediction. Before discussing
our prediction model, we first discuss workload diversity with real
and synthetic traces, and then continue to discuss our prediction
model based on de Bruijn graphs.

4.2 Sensitivity to Workload Characteristics
Workload characteristics can be widely different for systems or

even in a single system over time. Figure 7 compares request arrival
rates from two traces, a Cello99 trace and an OLTP trace, each
of which is from HP Storage Research Lab [5] and University of
Massachusetts [24], respectively. We call these traces “Cello99”
and “umass”. The details of workload traces used in this paper are
described in Section 5. As can be seen in the figure, the traces have
fairly distinctive patterns. The Cello99 trace looks highly bursty
going over to 1,000 requests in a second, while the umass trace
is relatively uniform moving up and down between arrival rate 0 to
200 per second over time. Another recent observation also reported
significant I/O workload differences for server systems, including
mail, web, and file servers [25].

Figure 8 shows disk idle time distributions for the two traces de-
scribed above and three new synthetic traces, each of which has
an exponential distribution with µ=6ms, µ=20ms, and µ=50ms, re-
spectively, for inter-arrival time. The first two synthetic traces were
characterized in Hibernator [28] for OLTP workload (µ=6ms) and
Cello99 workload (µ=20ms). We additionally create the third syn-
thetic trace to represent a relatively light workload. Note that inter-
arrival time for our cello trace is 29 ms, and for the umass trace is
8 ms. We assume that the disk is idle if it does not perform any
action over 10 seconds. Here, TBE refers to break-even time, a
time interval where the energy consumption in idle mode is equal
to the sum of energy for disk spin-down, standby, and spin-up, and
is computed based on our disk model used in Section 5.

In the figure, the Cello99 trace shows a heavy tail, indicating
some devices experienced very long idle times. The umass trace
looks similar to Cello99, but shows a slightly shorter tail. The syn-
thetic traces show relatively short lengths of idle times and non-
heavy tails compared to the real-world traces, and provide lesser
opportunities for energy savings for the 2-competitive algorithm
(which is based on a fixed idleness threshold). One interesting ob-
servation is that the synthetic trace with µ=50ms shows smaller op-
portunities than the real traces despite heavier arrival rates. These
observations suggest that in order to get better results, we need en-
ergy savings strategies that consider workload characteristics.

Variations in workload characteristics indicates that static tech-
niques should be ruled out. For example, if we simply apply the
2-competitive algorithm for the synthetic traces (particulary for the
first two synthetic traces), there will be severe performance and en-

86

 0

 200

 400

 600

 800

 1000

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
rr

iv
a

l
ra

te
 (

re
q

/s
)

Time (sec)

Request arrival rate

Cello99
umass

Figure 7: Request arrival rates for real traces

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

Idle time (sec)

Device idle time distribution

Cello99 (>TBE = 8.2%)
Umass (>TBE = 10.5%)

Synthetic exp(µ=6ms) (>TBE = 0%)
Synthetic exp(µ=20ms) (>TBE = 0.46%)
Synthetic exp(µ=50ms) (>TBE = 5.86%)

Figure 8: Disk idle time distribution

ergy penalties. Although the static parameters can be tuned for each
workload, it is usually difficult to capture workload characteristics
a priori. A predictive approach can be an option for dynamic adap-
tation to different workload characteristics. In this paper, we con-
sider a predictive approach based on probability that is constructed
based on past observations, as discussed next.

4.3 Prediction with de Bruijn graphs
We use “state-based” predictors to probabilistically predict fu-

ture states by using a de Bruijn graph. In a de Bruijn graph with k
bits, there exist 2k states represented in binary, each of which has 2
incoming edges and 2 outgoing edges [20]. For each state, one of
two events can take place , 0 or 1, based on how the current state
transitions to the next state along with the corresponding outgoing
edge. With this property, each state tells us what has happened over
k time frames. For example, if the current state is ‘100’, there was
1-event before 2 time frames, followed by 2 consecutive 0-events.
Thus, we can be aware that the most recent event was 0-event. Fig-
ure 9(a) illustrates a 3-bit de Bruijn graph with 8 possible states. In
the figure, the current state is ’010’, and the next possible state is
either ’100’ or ’101’ according to the next event.

On a de Bruijn graph, we construct edge probabilities based on
historical information. To achieve this, each node has two counters,
c0 for the number of 0-events and c1 for the number of 1-events.
These counters are incremented based on the corresponding event.
Figure 9(b) shows a snapshot of the counters for state ‘001’. Based
on the counter values, edge probabilities are computed, as shown
in the figure.

By configuring max number of tickets (MaxTicket), it is pos-
sible to limit the window length we wish to monitor. The win-
dow length should be equivalent to time frame length×MaxTicket,
where time frame length is an observation interval, in which a sin-
gle event (zero or one) is generated based on the observation. If
the total number of tickets is smaller than MaxTicket, the coun-
ters are simply incremented according to the event. After the to-
tal number of tickets reaches MaxTicket, however, one ticket in a
counter is transferred to the other counter, instead of incrementing

(a) A de Bruijn graph (b) Counters in a de
Bruijn node

Figure 9: A de Bruijn graph and ticket transfer

the counter. Thus, there will be no change in the total number of
tickets (=MaxTicket) after this happens. In Figure 9(b), an 0-event
occurs, and we see that a ticket in c1 is transferred to c0 and the
probabilities are recomputed accordingly. Note that the values of
the counters can be zero or a positive integer.

4.4 Gear-shift algorithm
Now, we present the FREP gear-shift algorithm. For down-shift,

FREP relies on the above prediction model, while it uses a reactive
model for up-shift. We first discuss how FREP determines down-
shift, and then discuss the case of up-shift.

FREP maintains a de Bruijn graph for each partition. To con-
struct edge probabilities, we assume a 0-event happened if the mea-
sured information meets the service constraint (e.g., 99% of re-
quests are less than 500 ms) in the time frame. On the other hand,
if the percentage of violations is greater than the given percentile,
we assume 1-event happened. That is, we give zero if R(p) ≤ τ ;
otherwise give one for each time frame.

To determine down-shift, we calculate the probability of consec-
utive k zeros (i.e., the probability that the service constraint will
be met for the following k time frames) at the end of each time
frame. If the computed probability is greater than a certain thresh-
old (or p_threshold), we consider that the down-shift condition is
satisfied, and the node with the highest index among active non-CS
nodes will be sent to standby mode. Naturally, no down-shift test
is performed at the lowest gear level.

For clarity, we formally describe this procedure as follows. Let
Si be state i in the graph configured with k bits. Hence, there are
max 2k states, and we assume that i is the state number; for exam-
ple S0 indicates state ’000’, while S7 is for state ’111’. Let Pi,0

be the probability of 0-edge at Si, and similarly Pi,1 be the prob-
ability of 1-edge at Si. If we suppose the current state is Sa, the
probability for consecutive k-zeros means the probability of transi-
tion from Sa to S0, right after k time frames. Then, the probability
P is defined:

P =

k−1
Y

i=0

Pa≪i,0 (5)

where ‘≪’ is the bitwise shift-left operator. Based on the com-
puted probability, we decides down-shift. The gear goes down if
P ≥ p_threshold; otherwise, nothing takes place.

We determine k (i.e., the number of bits in the graph) from the
break-even time (TBE). For a given time frame size TW , we set
k = ⌈TBE/TW ⌉. The intuition behind this is that there is no
energy penalty if the following k consecutive time frames satisfy
the service constraint. Prediction can sometimes fail due to rea-

87

Figure 10: Disk power model (from Seagate Barracuda 7200)

sons such as a sudden change in workload characteristic. In such
a case, we give a penalty, and edge probabilities are totally recom-
puted. With a penalty, all 0-counters in the graph are dropped by
half of their original values, and the corresponding number of tick-
ets are transferred to the associated 1-counters. This decreases 0-

probabilities, resulting in more conservative down-shift decisions
thereafter. For TW and p_threshold, we explore the impact of those
parameters in Section 5.5.

Making up-shift decisions relies on reactive information. In our
mechanism, FREP immediately up-shifts the gear whenever it sees
l consecutive misses against the service constraint, so as to prevent
undesired performance degradation. In this paper, we used l =
2 by default to prevent any impulsive up-shift decision due to a
temporal degradation. However, l may have a certain correlation
with time frame size TW . Investigation of this would be interesting
and planned for future work.

5. EVALUATION OF FREP

5.1 Experimental Setup
For evaluation, we augmented Disksim [9], which is widely used

for studying storage systems, with energy metrics. We considered
Seagate Cheetah 15K.5 enterprise disks.2 For this disk model, how-
ever, some power information, such as standby power and spin
up/down power, is missing in the associated documents. For this
reason, we alternatively chose power parameters from Seagate Bar-
racuda specification.3 Since the main purpose of our experiments
here is to see applicability of FREP in terms of both performance
and power, we believe that comparing FREP with existing tech-
niques with identical power parameters is a fair comparison. The
power model we used in this paper is shown in Figure 10.

We assumed a datacenter environment with 120 disks. Although
our model has no dependency on any specific RAID organization,
we used RAID-5 structure as a unit of energy management where
a RAID-5 array is a node in our terminology. Each array has 4 data
disks and 1 parity disk. Thus, there are 24 RAID arrays in the sys-
tem (i.e., 24 nodes). We divided the system into 4 partitions, each
of which consists of 2 CS nodes and 4 non-CS nodes. However, we
also conducted experiments with different partition configurations
in order to examine configuration effects.

We used multiple traces, including real and synthetic workloads:
2 Cello99 traces from HP Storage Research Lab [5]: a 1-day trace
on May 1st (labeled “cello-1”) and a 3-day trace between Novem-
ber 15th–17th (labeled “cello-2”); 2 financial traces provided by
University of Massachusetts [24], these are labeled “umass-1” and
“umass-2”, respectively. The average inter-arrival time for Cello99

2http://www.seagate.com/www/en-us/products/enterprise-hard-
drives/cheetah-15k/
3http://www.seagate.com/support/disc/manuals/sata/100402371a.pdf

Table 2: Synthetic traces
Trace # req. Arrival dist. Disk access dist. # block dist.

S11 1 M exp(6) uniform exp(20)
S12 1 M exp(20) uniform exp(20)
S13 1 M exp(50) uniform exp(20)

S21 1 M exp(6) Zipf(α=1.0) exp(20)
S22 1 M exp(20) Zipf(α=1.0) exp(20)
S23 1 M exp(50) Zipf(α=1.0) exp(20)

S31 1 M exp(6) Zipf(α=1.8) exp(20)
S32 1 M exp(20) Zipf(α=1.8) exp(20)
S33 1 M exp(50) Zipf(α=1.8) exp(20)

traces is 29.6 ms and 20.9 ms for cello-1 and cello-2, while it is 8.2
ms and 11.1 ms for umass-1 and umass-2, respectively.

To map the Cello99 traces to our configuration with 120 disks,
we assumed that each disk in the traces is mapped into a single
RAID array. Thus, 24 disks in the traces are mapped to 120 disks
in 24 RAID arrays. The umass traces have no disk information. To
use these traces in our experiments, we assumed that each appli-
cation runs with a dedicated RAID array. Similar to the Cello99
traces, umass requests are mapped to RAID addresses.

We additionally created 9 synthetic workloads with different char-
acteristics, as summarized in Table 2. In the table, “exp(µ)” stands
for exponential distribution with mean µ. For example, exp(6)
for arrival distribution represents an exponential distribution with
µ=6ms. The exp(6) and exp(20) arrival rates were used in Hiberna-
tor [28], and we added one more arrival distribution with exp(50) to
consider an environment with a relative light load . It is observed
in the literature that Internet data access patterns are related to a
Zipf distribution with skewness α=1.0 [4]. In addition, the authors
in [23] observed more heavily skewed accesses with α=1.8. We
modeled synthetic traces based on those observations, in addition
to uniform access distribution.

We evaluated 4 different systems: NPS (No Power Saving) is
a base system for comparison without energy management; FTH
(Fixed Threshold) is a system employing a fixed idleness threshold
based on the 2-competitive algorithm; PARAID(k, l) is a PARAID
configuration with a total of l disks with gear shifting down to k
(thus, l−k disks can go standby); and FREP(n,m) is an FREP con-
figuration with a total of n nodes andm CS nodes in a partition. We
set up two PARAID systems (PARAID(5,3) and PARAID(5,2)) and
multiple FREP systems with different configurations, but mainly
discuss the FREP(6,2) configuration. Thus, there are 4 partitions
for 24 nodes for FREP(6,2) setting. By definition, PARAID sys-
tems can spin down disks with up to 40% (for PARAID(5,3)) and
60% (for PARAID(5,2)) of the total disks spun down, while FREP(6,2)
can spin down a maximum of 67% disks. We observed that PARAID(5,1),
that allows spinning down of up to 80% disks, is severely degraded
in terms of response time performance. For example, PARAID(5,1)
increased average response time by a factor of 5 as compared to
NPS with cello-1 trace. We thus excluded this configuration from
our experiments.

As discussed in Section 4, FREP maintains de Bruijn graphs
for gear-switch decisions. For the graphs, we used 5-second time
frame (i.e., TTF = 5s). Since we configure the number of bits
based on the break-even time (i.e., number of bits = ⌈TBE/TTF ⌉),
the graph is configured with 11 bits, since TBE = 54s based
on the power model (Figure 10). In addition, we conservatively
chose p_threshold=0.9 for down-shift, and set consecutive miss
counter l=2 for up-shift to consider temporal performance degra-
dation. We discuss the effects of time frame size and p_threshold

in Section 5.5.

88

5.2 Relaxed service constraints
As discussed, FREP makes gear-shift decisions under consider-

ation of service constraints. Here, we first consider relaxed con-

straints. To give a relaxed constraint, we reverse-engineered NPS
logs, then we set service constraints with numbers greater than dou-
ble of the numbers in the logs. For example, 99% response time in
the NPS results with cello-1 is 1,485 ms, and we used a number
greater than 2 × 1485 ms for the 99% constraint for relaxation.
Thus, FREP focuses more on energy saving in this case.

Figure 11 compares those two metrics with the real traces. Over-
all, FTH is fairly sensitive to workloads with respect to energy sav-
ing, and it shows very poor response times due to spin-up delays.
PARAID and FREP consistently save energy for different work-
loads. However, PARAID shows a higher degree of variation in re-
sponse time, while FREP shows fairly stable results by adaptively
shifting gears to the given workload. Interestingly, we can see that
FREP yields better response time than NPS with the cello-2 trace.
This can be explained by the effect of request redirection. Bursty
requests to a single node can be smoothed out by redirecting them
to multiple nodes when FREP is operating in energy saving mode.
For the umass traces, FTH shows an average response time of 77–
173ms, while the others show quite negligible time (< 4ms) for
these non-bursty workloads.

Figure 12 shows the experimental results with a set of synthetic
workloads. With these traces, FTH could make 0%–20% energy
saving, but the mean response time is very poor. Although not
shown in the figure, mean response time in the worst case was 389
ms for S33, which is 100 times greater than NPS. The replication-
based solutions (i.e., PARAID and FREP) consistently yield signif-
icant energy saving with little performance loss.

5.3 Tight service constraints
We next examine FREP under tight service constraints. We as-

sume the following three types of constraints, based on our con-
straint model: R(p) ≤ τ , where p is a percentile and τ is a response
time constraint.

• C1: (p = 90%) ∧ (τ = 90% NPS response time);
• C2: (p = 95%) ∧ (τ = 95% NPS response time);
• C3: (p = 99%) ∧ (τ = 99% NPS response time).

For comparison, we call relaxed constraint C0.
Figure 13 shows the experimental results under tight constraints.

In the figure, P(n,m) ≡ PARAID(n,m). We can see that significant
percentages of violations occurred for PARAID in order to obtain
energy benefits for all three constraints. PARAID(5,2) shows heavy
violations between 37%–57%. Even in the case of PARAID(5,3),
the violations were over 20% for those real-world traces. FTH also
shows some degree of violations greater than the constraints but
smaller than PARAID. In contrast, FREP largely satisfies the given
constraints. With tight constraints, FREP operates energy manage-
ment more conservatively. Nonetheless, we can see that FREP still
achieves non-trivial energy savings. FREP yields 15%–60% en-
ergy saving for the cello traces and 3%–15% for the umass traces.
The reason why FREP achieves relatively greater energy saving
with the cello traces is that they have greater NPS response times
as compared with the umass traces. Thus, the service constraints
for the umass workloads are more restrictive and hence difficult to
meet than these of the cello workloads, leading to the results shown
in the figure. For example, the 99% of NPS response time for the
one-day cello trace is 1.4s, while for the umass-1 it is only 6ms.

Figure 14 shows the results with the synthetic traces for C3 con-
straints. FREP successfully maintains violation rates to less than
the 1% constraint. However, it yields energy saving only with

skewed traces (i.e., S31 and S32). We found that skewed access
patterns provide more opportunities to save energy as compared
with uniform access patterns. The reason for that is that with more
skewness a smaller number of disks (and therefore only some par-
titions) become more heavily utilized allowing the remaining parti-
tions to shift to lower gear thus save more energy. Additionally, as
explained before, the reason why S31 had the greatest power sav-
ing compared to the others is because it had the greatest NPS re-
sponse time and hence the least restrictive constraint. For example,
99% NPS response times we observed were S31=15ms, S32=10ms,
S33=8ms.

Summarizing, although energy benefits achieved by FREP in this
case may be reduced, it still provides strong performance guaran-
tees. We observed only a single case that slightly exceeds the given
constraint (5.4% for 5% requirement for cello-1 C2) out of 21 ex-
perimental cases.

5.4 Impact of FREP partition configuration
In this experiment, we configured 4 additional FREP settings

with different numbers of nodes and CS nodes for each partition:
FREP(4,1), FREP(4,2), FREP(6,1), and FREP(6,2).

Figure 15 shows the experimental results with cello-1 under dif-
ferent partition settings. We can see that FREP saves energy from
40% to 76% compared to NPS. In terms of performance penalty,
defined as the ratio of the mean response time to the NPS’s, it is
only 14% at the worst case. Interestingly, 2 out of 5 cases showed
negative penalty, which implies that FREP showed better response
time than NPS. This is a result of request redirection as discussed
in Section 5.2.

5.5 Impact of time frame size and p_threshold
The time frame size (TW) determines the number of bits in the de

Bruijn graph (= ⌈TBE/TW ⌉), while p_threshold (denoted by ψ)
enables probabilistic decisions for down-shifting on the graph. A
greater TW requires less space complexity for graph representation
with smaller number of bits. As mentioned, we used TW = 5s,
and thus, the number of bits was 11. Additionally, we set up a
graph with TW = 30s resulting in three bits for the graph. With
those time frame sizes, we conducted experiments along different
p_threshold values from ψ = 0.1 to ψ = 0.9 incrementing by 0.1
(we used ψ = 0.9 by default) under C1.

Figure 16 shows the results. We compare the results of the two
time frame sizes. As expected, a smaller time frame size yields
greater energy saving, but worse response time. In contrast, a greater
time frame size makes more conservative gear-shift decisions, thus
yielding less energy saving but better performance.

Choosing a p_threshold value largely affects both performance
and energy saving. Increasing p_threshold gradually reduces the
level of energy saving due to more conservative gear-shifts. With
respect to performance, average response time becomes stable as
ψ ≥ 0.8 for TW = 5. In the case of TW = 30, ψ = 0.9 im-
proves response time dramatically. With less than that, there are no
significant differences.

Turning our attention to the number of down-shifts. Naturally,
smaller p_threshold tends to make more down-shifts. We observed
78 down-shifts with ψ = 0.1 and 20 with ψ = 0.9 in the setting
of TW = 5s. At the same time, the number of down-shifts for
TW = 30s was 496 with ψ = 0.1 and 34 with ψ = 0.9. As
expected, this shows that a greater time frame size (i.e., a smaller
number of bits) makes more frequent gear-shift decisions.

5.6 Impact of the number of tickets
It is possible to configure MaxTicket (i.e., the maximum number

89

 0%

 20%

 40%

 60%

 80%

 100%

cello−1 cello−2 umass−1 umass−2

E
n
er

g
y
 S

av
in

g
 (

%
)

Energy Saving

FTH

PARAID(5,3)

PARAID(5,2)

FREP(6,2)

(a) Energy saving

 0

 100

 200

 300

 400

 500

 600

 700

 800

cello−1 cello−2 umass−1 umass−2

M
ea

n
 R

es
p
o
n
se

 T
im

e
(m

se
c)

Mean Response Time

NPS

FTH

PARAID(5,3)

PARAID(5,2)

FREP(6,2)

(b) Average response time

Figure 11: Energy saving and average response time (real traces)

 0%

 20%

 40%

 60%

 80%

 100%

S11 S12 S13 S21 S22 S23 S31 S32 S33

E
n

er
g

y
 S

av
in

g
 (

%
)

Energy Saving (synthetic)

FTH
PARAID(5,3)
PARAID(5,2)
FREP(6,2)

(a) Energy saving

 0

 5

 10

 15

 20

S11 S12 S13 S21 S22 S23 S31 S32 S33

R
es

p
o

n
se

 T
im

e
(m

se
c)

Mean Response Time (synthetic)

NPS
FTH
PARAID(5,3)
PARAID(5,2)
FREP(6,2)

(b) Average response time

Figure 12: Energy saving and average response time (Synthetic traces)

 0%

 20%

 40%

 60%

 80%

 100%

cello−1 cello−2 umass−1 umass−2

E
n

er
g

y
 S

av
in

g
 (

%
)

Energy Saving

FREP(C0)

FREP(C1)

FREP(C2)

FREP(C3)

(a) Energy saving

 0%

 5%

 10%

 15%

 20%

 25%

 30%

C1(cello−1) C1(cello−2) C1(umass−1) C1(umass−2)

%
 R

es
p

o
n

se
 T

im
e

C
o

n
st

ra
in

t
V

io
la

ti
o

n
s

Response Time Constraint Violations (C1)

NPS

FTH

PARAID(5,3)

PARAID(5,2)

FREP(6,2)

(b) Percentage of response time constraint viola-
tion (C1)

 0%

 5%

 10%

 15%

 20%

 25%

 30%

C2(cello−1) C2(cello−2) C2(umass−1) C2(umass−2)

%
 R

es
p

o
n

se
 T

im
e

C
o

n
st

ra
in

t
V

io
la

ti
o

n
s

Response Time Constraint Violations (C2)

NPS

FTH

PARAID(5,3)

PARAID(5,2)

FREP(6,2)

(c) Percentage of response time constraint viola-
tion (C2)

 0%

 5%

 10%

 15%

 20%

 25%

 30%

C3(cello−1) C3(cello−2) C3(umass−1) C3(umass−2)

%
 R

es
p

o
n

se
 T

im
e

C
o

n
st

ra
in

t
V

io
la

ti
o

n
s

Response Time Constraint Violations (C4)

NPS

FTH

PARAID(5,3)

PARAID(5,2)

FREP(6,2)

(d) Percentage of response time constraint viola-
tion (C3)

Figure 13: Energy saving and performance guarantee under specified SLAs

90

 0%

 20%

 40%

 60%

 80%

 100%

S11 S12 S13 S21 S22 S23 S31 S32 S33

E
n

er
g

y
 S

av
in

g
 (

%
)

Energy Saving (synthetic)

FTH
PARAID(5,3)
PARAID(5,2)
FREP(6,2,C0)
FREP(6,2,C3)

(a) Energy saving

 0%

 2%

 4%

 6%

 8%

 10%

S11 S12 S13 21 S22 S23 S31 S32 S33

%
 R

es
p

o
n

se
 T

im
e

C
o

n
st

ra
in

t
V

io
la

ti
o

n
s

Response Time Constraint Violations (synthetic)

FTH
PARAID(5,3)
PARAID(5,2)
FREP(6,2,C0)
FREP(6,2,C3)

(b) Percentage of response time constraint viola-
tion

Figure 14: Energy saving and performance guarantees (Synthetic traces)

 0%

 20%

 40%

 60%

 80%

 100%

FREP(4,1) FREP(4,2) FREP(6,1) FREP(6,2) FREP(6,3)

E
n
er

g
y
 S

av
in

g
 (

%
)

Energy Saving (cello−1)

(a) Energy saving

 −20

 −10

 0

 10

 20

 30

 40

 50

FREP(4,1) FREP(4,2) FREP(6,1) FREP(6,2) FREP(6,3)

P
er

fo
rm

an
ce

 P
en

al
ty

 (
%

)

Performance Penalty (cello−1)

(b) Performance penalty

Figure 15: Impact of FREP configurations with different number of CS and non-CS nodes (cello-1)

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1
 0

 50

 100

 150

 200

 250

 300

E
n

e
rg

y
 s

a
v
in

g
 (

%
)

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
)

p_threshold

Energy saving (time frame = 5 sec)
Energy saving (time frame = 30 sec)
Response time (time frame = 5 sec)

Response time (time frame = 30 sec)

Figure 16: Impact of time frame size and p_threshold (cello-

1/C1)

of tickets) to set window size, since it limits the number of observa-
tions used for edge probabilities on the de Bruijn graph. Intuitively,
any larger window may allow us to construct a more accurate graph
with many more observations (due to a greater time length to col-
lect), but may not be helpful for frequently varying workloads over
time (because each observation has less impact on a larger collec-
tion of observations). With a smaller window, in contrast, it can
better react to the recent workload characteristics.

Figure 17 shows the impact of MaxTicket with the cello-1 trace
under C1, as in the above experiment. Overall, using a small win-
dow achieves better energy saving but worse performance, and vice
versa. Thus, MaxTicket can be adjusted based on system goals and
the expected degree of workload variations. The number of down-
shifts observed was 179 with MaxT icket = 720, while it was
only 20 for MaxT icket = ∞ (used in the other experiments).

5.7 Evaluation of down-shift decisions
In this section we discuss the quality of gear shifting decisions

using our four workloads. In general, three main approaches are

0%

20%

40%

60%

80%

100%

720 2160 4320 8640 infinite
 0

 50

 100

 150

 200

E
n

e
rg

y
 s

a
v
in

g
 (

%
)

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
)

Number of tickets

Energy saving
Response time

Figure 17: Impact of number of tickets (cello-1/C1)

employed in the literature for gear down-shift decisions. MAID
based products simply perform a down-shift when the disk idle pe-
riod exceeds some fixed threshold (FTH), PARAID uses disk uti-
lization thresholds, whereas FREP determines when to perform a
down-shift using probabilistic prediction based on analysis of past
historical events (by using de Bruijn Graphs).

The advantage of using FREP’s de Bruijn graph prediction is
illustrated in Figure 11 where it is shown that FREP achieves ex-
cellent energy savings while paying a minimal price in terms of
response time. Similarly, in Figures 13(b)–13(d) and 14(b), FREP
consistently shows the smallest number of response time constraint
violations. In Figure 18, we analyze the quality of FREP’s predic-
tions based on the percentage of down-shifts that were penalized
due to service constraint violations for the four workloads. Recall
that a penalty event occurs in FREP if the service constraint is not
met during a period of break-even time right after the down-shift.
Maximizing the number of down-shifts is essential in order to max-
imize energy saving, while at the same time we wish to minimize
the number of penalty events. As shown in the figure, prediction
accuracies are over 80% for most cases (C0 results show almost

91

 0%

 20%

 40%

 60%

 80%

 100%

cello−1 cello−2 umass−1 umass−2

M
is

−
p
re

d
ic

ti
o
n
 (

%
)

Downshift Mis−prediction

C0

C1

C2

C3

Figure 18: Prediction accuracy

100% accuracy). However, we can see that C2 and C3 for umass-2
have somewhat higher inaccuracy. Nonetheless, we have seen that
FREP successfully manages the performance level even for umass-
2, as shown in Figure 13. In the case of umass-2 C3, FREP reduced
the number of down-shifts to 60% of C0’s (due to the penalties).

6. CONCLUSION
Energy proportionality is one of key metrics for future datacen-

ters for both energy conservation and performance guarantees. In
this work, we presented a technique called FREP (Fractional Repli-
cation for Energy Proportionality), for energy management that en-
hances energy proportionality in large datacenters. FREP includes
a replication strategy and basic functions to enable flexible energy
management. Specifically, our method provides performance guar-
antees by adaptively controlling the power states of a group of disks
based on observed and predicted workloads. Our extensive exper-
imental results with a broad set of traces showed that our energy
management technique can achieve energy saving of over 90% of
theoretical limits with little performance loss. With tight service
constraints, we showed that FREP satisfies service constraints in
diverse settings. Future planned work includes extending our data
placement algorithm and mathematical analysis for allowing vari-
able replication factors to different parts of the data based on their
access frequencies.

7. ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their construc-

tive comments and suggestions. This work was supported by the
Director, Office of Science, Office of Advanced Scientific Comput-
ing Research, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

8. REFERENCES
[1] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and

K. Schwan. Robust and flexible power-proportional storage. In
Proceedings of the 1st ACM symposium on Cloud computing, SoCC
’10, pages 217–228, New York, NY, USA, 2010. ACM.

[2] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. IEEE Computer, 40(12):33–37, 2007.

[3] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design
techniques for system-level dynamic power management. pages
231–248, 2002.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and zipf-like distributions: Evidence and implications. In
Proceedings of INFOCOM (INFOCOM ’99), pages 126–134, 1999.

[5] Tools and traces, http://www.hpl.hp.com/research/ssp/software/.

[6] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle. Managing energy and server resources in hosting centers. In
SOSP ’01: Proceedings of the eighteenth ACM symposium on

Operating systems principles, pages 103–116. ACM, 2001.

[7] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G. De Micheli.
Dynamic power management for nonstationary service requests.
IEEE Trans. Comput., 51(11):1345–1361, 2002.

[8] G. Dhiman and T. S. Rosing. Dynamic power management using
machine learning. In ICCAD ’06: Proceedings of the 2006
IEEE/ACM international conference on Computer-aided design,
pages 747–754, New York, NY, USA, 2006. ACM.

[9] Disksim, http://www.pdl.cmu.edu/disksim/.

[10] M. Elnozahy, M. Kistler, and R. Rajamony. Energy conservation
policies for web servers. In USITS’03: Proceedings of the 4th
conference on USENIX Symposium on Internet Technologies and

Systems, pages 8–8. USENIX Association, 2003.

[11] L. Ganesh, H. Weatherspoon, M. Balakrishnan, and K. Birman.
Optimizing power consumption in large scale storage systems. In
HotOS, 2007.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system.
SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[13] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke.
DRPM: dynamic speed control for power management in server class
disks. In ISCA ’03: Proceedings of the 30th annual international

symposium on Computer architecture, pages 169–181. ACM, 2003.

[14] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke.
Reducing disk power consumption in servers with DRPM. Computer,
36(12):59–66, 2003.

[15] D. Borthakur. The Hadoop Distributed File System: Architecture and
Design., http://hadoop.apache.org/ core/docs/current/hdfs design.pdf.

[16] D. P. Helmbold, D. D. E. Long, and B. Sherrod. A dynamic disk
spin-down technique for mobile computing. In MobiCom ’96:

Proceedings of the 2nd annual international conference on Mobile

computing and networking, pages 130–142. ACM, 1996.

[17] S. Irani, G. Singh, S. K. Shukla, and R. K. Gupta. An overview of the
competitive and adversarial approaches to designing dynamic power
management strategies. IEEE Trans. VLSI Syst., 13(12):1349–1361,
2005.

[18] J. Kim and D. Rotem. Energy proportionality for disk storage using
replication. Technical Report LBNL-3936E, Lawrence Berkeley
National Laboratory, September 2010.

[19] W. Lang, J. M. Patel, and J. F. Naughton. On energy management,
load balancing and replication. SIGMOD Rec., 38(4):35–42, 2009.

[20] F. T. Leighton. Introduction to parallel algorithms and architectures:

array, trees, hypercubes (Section 3). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1992.

[21] D. Li and J. Wang. eRAID: a queueing model based energy saving
policy. In MASCOTS ’06: Proceedings of the 14th IEEE
International Symposium on Modeling, Analysis, and Simulation,
pages 77–86, Washington, DC, USA, 2006. IEEE Computer Society.

[22] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading:
Practical power management for enterprise storage. Trans. Storage,
4(3):1–23, 2008.

[23] V. N. Padmanabhan and L. Qiu. The content and access dynamics of
a busy web site: findings and implications. SIGCOMM Comput.

Commun. Rev., 30(4):111–123, 2000.

[24] Umass Trace Repository: OLTP Application I/O,
http://traces.cs.umass.edu/index.php/storage/storage.

[25] A. Verma, R. Koller, L. Useche, and R. Rangaswami. SRCMap:
energy proportional storage using dynamic consolidation. In FAST,
pages 267–280, 2010.

[26] C. Weddle, M. Oldham, J. Qian, A.-I. A. Wang, P. Reiher, and
G. Kuenning. PARAID: A gear-shifting power-aware RAID. Trans.
Storage, 3(3):13, 2007.

[27] T. Xie. SEA: a striping-based energy-aware strategy for data
placement in RAID-structured storage systems. IEEE Trans.

Comput., 57(6):748–761, 2008.

[28] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes.
Hibernator: helping disk arrays sleep through the winter. In SOSP
’05: Proceedings of the twentieth ACM symposium on Operating

systems principles, pages 177–190. ACM, 2005.

92

