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ABSTRACT 

Information extraction from the Web is of growing importance.  
Objects on the Web are often associated with many attributes that 
describe the objects. It is essential to extract these attributes and 
map them to their corresponding objects. However, much attribute 
information about an object is hidden in the dynamic user 
interaction and is not on the Web page that describes the object. 
Existing information extraction approaches focus on getting 
information from the object Web page only, which means a lot of 
attribute information is lost. In this paper, we study the dynamic 
user interaction on exploratory search Websites and propose a 
novel link-based approach to discover attributes and map them to 
objects. We build an exploratory search model for exploratory 
Web sites, and we propose algorithms for identifying, clustering, 
and relationship mining of related Web pages based on the model. 
Using the unsupervised method in our approach, we are able to 
discover hidden attributes not explicitly shown on object Web 
pages. We test our approach on two online shopping Websites. 
We achieve high precision and recall: For entirely crawled Web 
sites the precision and recall are 98% and 97% respectively. For 
randomly crawled (sampled) Web sites the precision and recall are 
98% and 80% respectively. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications – data 

mining; H.3.3 [Information Systems]: Information Search and 
Retrieval – retrieval models 

General Terms 

Algorithms, Experimentation, Theory 

Keywords 

Attribute discovery, attribute labeling, exploratory search, 

information extraction, query link. 

1. INTRODUCTION 
The Web contains rich information about a large variety of objects 
such as people, products, locations, etc. Many applications rely on 
information extraction techniques that convert information on the 
Web into structured, machine readable format. Current techniques 
focus on extracting information from content on given Web pages. 
For instance, given a Web page about a product on an e-
commerce Website, much work [1-5] focused on obtaining such 
information as the name, brand, price, and other properties, of the 
product. However, there are many situations where a lot of useful 
information about the product do not appear on the final page that 
shows the product, but rather, in the dynamic user interaction 
process that leads the user to the page.  

We illustrate such situations using an example. Figure 1 is a 
product page from Zappos.com, a well known online shopping 
Website. The page shows an article of clothing known as “Tunnel 
Vision Shirt”. The information on the page includes the name, 
brand, price, color, size, width, and SKU of the product. 

However, much important information about the “Tunnel Vision 
Shirt” is not on the Web page in Figure 1. In Table 1, we show a 
total of 15 properties of the product, all of which is obtained from 
the Zappos.com Website, but only less than half of the 
information (marked “static”) is found on the page in Figure 1. 
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Figure 1. Product page. 
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The rest of the information, which we label as “interactive” or 
“hidden”, do not exist on the Web page. Instead, it is embodied in 
the interactive process with which the user explores the Website 
and finds the product. Thus, the problem is, how can we find such 
information about the product? 

Table 1. A complete property list of “Tunnel Vision Shirt” 

Property Value Availability 

Product Type Clothing Interaction 

Gender Girls Interaction 

Category Tops Interaction 

Subcategory Long sleeve tops Interaction 

Top Type Blouse Interaction 

Price Boundary $50.00 and Under Interaction 

Theme Casual Interaction 

Collar Type Spread Interaction 

Width Apparel Interaction & Static 

Color Gloxinia Interaction & Static 

Brand Roxy Kids Interaction & Static 

Size XL Interaction & Static 

Name Tunnel Vision Shirt Static 

Price $32.00 Static 

SKU 7690411 Static 

 

One example of such interaction is the so-called faceted search 
[6]. Figure 2 shows the example of faceted search on Zappos.com. 
For example, the “Tunnel Vision Shirt” can be found among the 
products shown as a result after the user clicks on “Tops” in 
“Category”, however, the final page of the product in Figure 1 
does not contain the information “Category = Tops.” From our 
studies, we found that over 80% of product information is 
embodied in user interaction, and less than 50% exists on the 
object pages or the final product pages (some interactive 
information is also available on final product pages). 

Zappos.com and e-commerce are not alone in having this 
problem. More and more Websites support the emerging 
Exploratory Search model [7], which combines querying and 
browsing in Web surfing. Compared with typical keyword search, 
exploratory search supplies additional hierarchical or multi-
dimensional browsing options for users who do not know much 
about their goals. There are a broad range of applications of 
exploratory search. For example, almost every online shopping 
Website uses faceted search to give users a variety of categorical 
search options; digital libraries, such as ACM Digital Library and 
DBLP, supply users with multiple dimensions in search including 
publication years, authors, venues, etc.; collaborative tagging [8] 
systems such as Delicious.com use tags as useful cues for people 
to discover topics that are relevant. Thus, much information about 
an object of interest is being used in exploratory search for goal 
query in search and exploration, and is not presented explicitly on 

the target Web pages. As a result, traditional information 
extraction techniques that ignore the dynamic user exploration 
process will not be able to obtain complete information about the 
objects of interest. 

The Naïve Approach. In order to find the complete set of 
attributes and their values, we can take the following naïve 
approach:  

• First, collect all the interaction hyperlinks. A good place to 
start is the faceted search box such as the one shown in 
Figure 2.  

• Second, for each hyperlink, find all the objects that the 
hyperlinks point to.  

• Third, for each hyperlink, find what attribute/value it 
represents. 

Unfortunately, each step requires a lot of user supervision. For 
instance, in the first step, it is difficult to automatically identify 
hyperlinks that correspond to exploratory search/browsing. For a 
given Website, say zappos.com, we may discover that interactive 
links satisfy a certain pattern containing the string 
“www.zappos.com/search”. Thus, it requires us to perform such 
kind of investigation on Website. 

The second step presents even more problems. Each interactive 
hyperlink corresponds to a search criterion. However, the objects 
that satisfy a search criterion may not be in the single page the 
hyperlink points to, and not every object on the single page 
satisfies the search criterion (the page may contain objects related 
to the search, or objects that are in promotion or under highlight). 
Thus, in order to find the complete set of objects that satisfy the 
search criterion, we need to tell the system what are the patterns 
that group multiple pages satisfying a search criterion together, 
and what region of the page contains objects that satisfy the 
search query, etc.  Thus, we need a lot of user supervision so that 
we can provide a set of templates to the system. Even if the 
Websites do not change their templates frequently, it is a tedious 

 

Figure 2. Faceted search on zappos.com 
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task to find and maintain such templates for a large number of 
Websites. 

Our Contributions. We present an unsupervised approach for 
automatically discovering interactive or hidden attributes for 
objects in a variety kinds of Websites that support exploratory 
search/browsing. Our approach achieves an average precision of 
98% and an average recall of 97% for Web sites that support 
exploratory search/browsing. 

More specifically, 

• We introduce a model for exploratory search/browsing.  
Without exception, every Website uses certain templates to 
present results that satisfy a search criterion. Although the 
templates are different for different Websites, they implement 
a similar set of semantics. For example, the concepts of “roll-
up queries” and “drill-down queries” are universal. Our model 
focuses on uncovering such semantics.   

• We introduce an unsupervised method for crawling and 
information extraction. In particular, we propose algorithms to 
automatically group web pages that correspond to a single 
search criterion, and we propose algorithms for automatic 
query identification, including roll-up and drill-down link 
detection. Since the algorithms are based on the internal 
semantics of exploratory search/browsing, there is no need to 
provide handcrafted templates for each individual Website, 
which makes our approach general.  

Paper Organization. The rest of the paper is organized as 
follows. Section 2 models the exploratory search Websites and 
defines attribute discovery task based on the model. Section 3 
discusses a naïve approach. Section 4 presents our approach based 
on the proposed model. Section 5 presents the experiment, 
including the construction of data set and the evaluation for the 
experimental results. Section 6 brings this paper to a conclusion 
and discusses future works. 

2. EXPLORATORY SEARCH/BROWSING 
Exploratory search/browsing combines keyword search and 
multidimensional browsing to help users narrow down on the 
objects they are looking for. Unlike traditional navigation, in 
exploratory search/browsing, a page often corresponds to a search 
of a fixed form, and many hyperlinks on the page correspond to 
new searches that are related to the current search.  

Websites that provide exploratory search/browsing have many 
common characteristics. Our goal is to discover the semantics 
underneath these common characteristics so that we can use the 
semantics to guide web crawling and information extraction. 

2.1 Queries and their Relationships 
We first formalize the concept of faceted search. We define a 
faceted search as a set of <attribute, value> pairs. For example, a 
search represented by {<type, ‘Clothing’>, <gender, ‘Girls’>} 
finds girls’ clothing.  

We can easily express such queries in SQL, for example: 

q   : SELECT *  

       FROM products  

       WHERE Type = ‘Clothing’ AND Gender = ‘Girls’; 

If we know the <attribute, value> pairs that correspond to a 
query q, and we know the objects that satisfy q, then we know 
these objects must have the values for the attributes specified by 
q. Thus, to find the complete set of attribute values for all objects, 
we need to find: 

1. the complete set of queries (including the <attribute, value> 

pairs that correspond to each query);  

2. objects that satisfy each query (we address this problem in 
Sec 3).  

The first problem is difficult. The Website does not list all the 
queries, nor does it specify the set of <attribute, value> pairs for 
each query.  

In our work, we discover queries through their relationships. In 
faceted search, for example, queries form “drill-down” and “roll-
up” relationships among themselves. As an instance, consider the 

query p below, whose WHERE condition is a superset of that of 
q:  

p  : SELECT *  

       FROM products  

       WHERE Type = ‘Clothing’ AND Gender = ‘Girls’ 

              AND Category = ‘Tops’; 
 

We say p is a drill-down query of q and q is a roll-up query of p. 
Instead of knowing the <attribute, value> pairs for a query q, all 
that we know is the hypertext of the drill-down link between q and 
p, that is, label(q→p) = <Category, Tops>, that is, query p 
narrows down on query p by specifying an additional <attribute, 

value> pair. 

In the rest of the paper, we focused on solving the above two 
problems.  

2.2 Page Classification 
Before we address the problem of finding queries and objects that 
satisfy the queries, we first build a model for exploratory Web 
search. Our first job is to classify pages on an exploratory search 

site into 3 types: Result Pages, Object Pages, and Unrelated 

Pages (which are pages that are neither result pages nor object 
pages). 

A faceted search returns a Result Page from which a user can 
explore objects that satisfy the search criterion. Note that a search 
usually corresponds to a set of result pages instead of a single 
page. Consider the web page in Figure 3. It is the result of faceted 
search q: “Clothing -> Girls” on zappos.com, that is, it is the page 
shown after the user clicks on “Clothing” and then “Girls” in 
faceted search. The result page contains many hyperlinks, 
including links to a partial set of objects (4 objects) that satisfy the 
query, hyperlinks (called pagination links) to other result pages 
for query q, and hyperlinks that correspond to other faceted 
searches (related or unrelated to the current search). Below, we 
analyze hyperlinks on the result page, and we classify them into 
six categories:  

• Drill-down query links: which represent searches that 
narrow down user’s selection. For example, if the user clicks 
on ‘Tops’, he will trigger a new faceted search p, which is a 
drill-down query of the current query q.  
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• Roll-up query links: which represent searches that 
generalize the current search. For example, if the user clicks 
on ‘Girls’, he will trigger a new faceted search whose 
condition contains ‘Type=Clothing’ only, which is a roll-up 
query of the current query q. Note that in many Websites, 
drill-down queries and roll-up queries may form a 
complicated hierarchy and appear in the same area on the 
result page.  

• Unrelated query links: which represent searches that are 
unrelated to the current search. For example, links in the top 
navigation bar,  such as ‘SHOES’, ‘CLOTHING’, …, and 
links in the alphabetical brand search, as well as possible 
popular search options, are unrelated query links. 

• Object page links: which point to objects that satisfy the 
current search. In our example, we have 4 object links;  

• Pagination links: which point to other result pages for the  
current search. Usually, it does not have links to all the 
pages, but rather, it provides an iterative mechanism for users 
to page through all the result pages. 

• Other links: which are any hyperlinks that do not fall into 
the above 5 categories. These include links such as those that 
lead to “My Cart”, account management, objects in 
promotion, etc. 

The drill-down query links, roll-up query links, and unrelated 
query links represent other faceted searches, while object page 
links and pagination links lead to objects that satisfy the current 
search. Note that, given a page on an arbitrary Website, it is most 
likely impossible for the machine to automatically identify and 
differentiate among the 5 types of links. Instead, we need to take a 
supervised approach, that is, we need to tell the system which part 
of the page contains which types of links, and the syntactical 
patterns these links exhibit. This means we need to build 

customized crawling for every Website, which is certainly not 
scalable. 

Besides result page, another important type of page is Object 

Page, which contains information about a single object (See 
Figure 1 for an example). Objects are basic entities, such as 
products on shopping Websites, books on digital library sites, 
bookmarks on social bookmarks Websites. Each object is 
described by a set of attributes, such as price, size and color for a 
product, title, author and publication for a book, category, tag, 
source for a bookmark. These form facets for search. In this paper, 
for simplicity of discussion, we assume each object is represented 
by one and only one object page.  

We denote pages that are neither result pages nor object pages as 

Unrelated Pages. These include pages for account management, 
online transaction, site description and advertisement, etc. Note 
that it is not trivial for machines to automatically differentiate the 
3 page types without resorting to a supervised approach.  

2.3 Semantics Embedded in Link Structures 
Our goal is derive a complete set of attribute values for each 
object. Since attribute values are embedded in queries, we need to 
uncover the mapping between queries and sets of objects that 
satisfy the query. A naïve approach needs to find, for each 
Website, the syntactic patterns that encode the mapping between 
queries and objects. This requires a lot of manual work. 

We focus on uncovering the relationships between queries and 
objects by mining the hyperlinks among i) faceted searches, ii) 
result pages, and iii) object pages. We accomplish this without 
relying on syntactic patterns, and thus, there is no manual work 
involved. Specifically, we represent an exploratory 
search/browsing Website by a graph <P, L>, where P is the vertex 
set (each vertex represents a web page), and L is the edge set 
(each edge represents a hyperlink from one web page to another 

Figure 3. Search result page. 

 

Roll-up query links 

Object page links 

Pagination links 

Drill-down links 

Unrelated query 

links 
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web page). Besides the visible links between Web pages, there are 
also invisible links between queries and result pages. 

Figure 4 illustrates the relationship among queries, result pages, 
and object pages in our model. All the attributes constitute an 
attribute space, which is effectively a query space, as a search 
consists of a set of attribute and value pairs. Here we see that q1 is 
contained by q2, which means q1 has fewer attributes than q2, 

and is thus a roll-up (more general) query of q2. Furthermore, 
each query maps to a set of result pages, which in turn contain all 
the objects that satisfy the query. Note that if a query corresponds 
to more than one result page, these result pages will be connected 
using pagination links. But on any result page, the pagination 
links may not be complete, that is, a result page may only contain 
links to a previous or a next result pages, instead of the whole set 
of result pages of the query. Thus, recovering the whole set of 
result pages may require some iterative steps if we can identify the 
pagination links, which itself requires some supervised learning. 
In our approach, we cluster pages based on their internal 
hyperlink structures and avoid any supervised learning cost. 

 Formally, we define the links among queries, result pages, and 
object pages as functions shown below: 

Definition 2.1 (Result function): 2R
Q

ϕ
→ maps a query to a 

group of result pages.  

Definition 2.2 (Object Function): 2O
Q

ω
→ maps a query to a 

set of object pages.  

For any query q, it is clear that ( )qω , the objects that satisfy q, are 

listed on result pages ( )qϕ . 

There are some interesting properties in the link structures on an 
exploratory search/browsing Website.  

Property 2.3: A result page belongs to one and only one query.  

That is, even if two queries q1 and q2 have exactly same results (a 
same set of objects satisfies q1 and q2), they have a separate set of 
result pages. The result pages are unique because besides the 
hyperlinks to the objects, they also contain links related to the 
query, including, for example the roll-up and drill down queries of 

q1 and q2. Since q1 and q2 are different, their roll-up and drill 
down queries are different, which means their result pages are 
different. Thus, we can define an inverse function that maps result 
pages back to queries:  

Definition 2.4 (Inverse result function): Since each result page 

belongs to one and only one query, so function 
1

2R
Q

ϕ−

→ exists. 

We use this property to group result pages by queries (Section 4). 

The second important property is concerned with the query links 
on result pages. On a result page, there are 6 types of links, 
namely, roll-up query links, drill-down query links, unrelated 
query links, object page links, pagination links, and other links 
(Section 2.1). For example, Figure 4 shows that pages in Result 
Page Group 1, which correspond to query q1, contain drill-down 

links to q2 (as defined, 1 2q q⊂ ), while pages in Result Page 

Group 2, which correspond to query q2, contain roll-up links to 
q1. Result Page Group 2 and Result Page Group 3 have similar 
interlinks, and so on. Result Page Group 4 does not have roll-up 
or drill down relationships with q1, q2, or q3, but still, it may 
contain links to q1, q2, or q3 as unrelated query links, vice versa 
for pages in Result Page Group 1, 2, and 3.  

Consider two pages p1 and p2 in the same result page group. 
Clearly, the two pages will have different pagination links and 
object page links. However, the roll-up and drill-down links on p1 
and p2 are the same, that is, we have the following property: 

Property 2.5 Let q be a query, for any two pages in ( )qϕ , that is, 

for any two pages in the same result page group of query q, the 

roll-up and drill-down links on the two pages are most likely to be 

the same.  

The property holds because roll-up queries and drill drown 
queries depend on the current query only. Since pages in the same 
result page group are generated by the same query, they will have 
the same set of roll-up and drill-down links. This is of course 
based on the assumption that each result page presents all of 
possible drill-down links and roll-up links for the current query q. 
This assumption is true for all the exploratory search/browsing 
Websites we have surveyed.  

Besides the above two properties, there are some other properties 
which are important to the correctness of our approach. These 
include:  

• Queries are deterministic, that is, the set of result pages of a 
query q is fixed (unless objects are added into or removed 
from the database). In other words, though the execution of 
query q may be triggered by different hyperlinks or at 
different time, q always generates the same result page 
group;  

• Query results are complete, that is, a query retrieves all the 
objects that satisfy the query. In other words, if an object has 
all the attribute values specified by the query, this object is 
certain to be retrieved by this query;   

• All result pages are accessible, that is, starting from any 
result page, users can follow pagination links to access all the 
result pages in the same result page group.  

Figure 4. Relationship among queries, result pages, and 

object pages. 
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3. UNSUPERVISED APPROACH 
In this section, we present our approach of finding hidden 
attribute values for objects on exploratory search Websites. The 
approach is general as it does not rely on Website specific 
templates. We first give an overview of our approach, and then 
describe three algorithms, namely identifying page types, 
clustering result pages, and detecting relationship between 

queries. 

3.1 Overview 
Our goal is to find attribute values for each object. The attribute 
values are hidden or embedded in queries. So our approach is to 
find: i) the complete set of queries; ii) the <attribute, value> pairs 
that correspond to each query; and iii) the objects that satisfy each 
query. Let o be an object, and let Q(o) be the set of queries that o 
satisfies. Then, o’s attribute values are the unions of the set of 
<attribute, value> pairs of all the queries in Q(o). 

However, queries are not first class citizens on exploratory search 
Web sites. In our approach, we represent queries using their result 

page groups. Let q be a query, we use ( )qϕ , the set of result pages 

correspond to q, to represent q. Thus, the result page groups act as 
a bridge between the queries and the objects. 

Specifically, we adopt the following steps to carry out the above 
task: 

(1) Crawling and preprocessing. We first crawl the entire 
Website. We identify each page using its URL and extract all 
hyperlinks from the pages. 

(2) Identifying the type of each page. We classify Web pages 
into three types: result, object and unknown.  

(3) Clustering result pages for queries. This step clusters result 
pages into groups, each of which is for a query. The clustering 
method takes advantage of the observation that result pages 
for a same query co-cite a largely same set of result pages. 

(4) Detecting relationship between queries. As we have 
discussed, hidden attributes exist on the query links (hypertext 
of the link from a roll-up query to a drill-down query). For 
each query link, say X, we create an attribute, using the 
hypertext of X as attribute value and the information of upper 
level HTML element of X as attribute name. There are a lot of 
mature technologies to find the upper level HTML element of 
a hyperlink, such as [25-27]. 

(5) Assigning attributes to objects. The hidden attributes of an 
object are recovered as the union of the <attribute, value> 
pairs of all the queries that the object satisfies. 

The challenges in above steps are identifying pages’ types, 
clustering result pages and detecting relationship between queries. 
If these three steps can work generally and unsupervised, the total 
process will run without any template. The rest of this section will 
describe our algorithms for these key steps. 

3.2 Page Type Identification 
For an input Website, we want to find the relationships among its 
result pages and object pages. To do this, first we need to classify 
all of its pages into three types: result pages, object pages, and 
unknown pages.  

It is usually very easy to use a specific pattern to identify an object 
page. For example, on an e-commerce Website such as 
Zappos.com, each object page contains a label “Add to shopping 
cart.” Certainly, this pattern is site specific. However, since it is 
very easy to identify such a pattern, and the pattern is extremely 
effective, we use hand-coded patterns to identify object pages. 
This is the only site-specific pattern we use in our work. 
Alternatively, we can use Web page classification methods based 
on machine learning techniques, such as [12] and [13], for this 
task as HTML structures of object pages on the same Website are 
quite similar.  

Our concern is then how to differentiate result pages from 
unknown pages. We take a greedy approach, and classify any non-
object page as a result page as long as it contains one hyperlink to 
an object page. Although theoretically this may lead to some 
issues in clustering result pages, we find the impact is negligible. 
In our experiments, we analyze the effect in detail.  

Algorithm 1 shows our page type identification algorithm. It is a 
two phase algorithm. In the first phase, it identifies the pages 
contain “Add to shopping cart” label as object type. In the second 
phase, it identifies the remnant pages as result type or unknown 
type.  

Algorithm 1 Page Type Identification 

Input: A Website W=<P, L> 

Output: a map from pages to types 

1: for p P∈ do 

2:         if p contains “Add to shopping cart” then 
3:                 Identify p as object page; 

4:         else 
5:                 Identify p as unknown page; 

6:         end if  
7: end for 

8: for each unknown page p do 

9:         if p contains a link to x and x is object page then 
10:                 Identify p as result page; 

11:         end if 

12: end for 

 

Obviously, Algorithm 1 only need scan every Web page twice, so 
the time complexity of it is O(|P|). 

3.3 Link-based Result Page Clustering 
We explore hyperlink structures to cluster result pages into result 
page groups. We introduce a distance measure based on pages’ 
co-citation information, and then we use a single-pass clustering 
algorithm based on the distance measure. 

According to Property 2.5, if two result pages belong to the same 
query, their drill-down links and roll-up links are the same. 
Besides drill-down links and roll-up links, unrelated query links 
(links to objects under promotion, for example) on result pages 
that belong to the same query are often the same as well 
(unrelated queries are either site-specific or query-specific). In 
other words, if two result pages belong to the same query, they co-

cite a lot of result pages. 

Inspired by the above observation, we introduce a distance 
measure to describe the co-citation situation of two pages.  
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Definition 3.1 (Distance of links): Let R be the set of all result 

page. Let ( ) { ' | , ' }'pp p R L p Rpτ ∈→= ∈ ∈ denote the set of 

result pages p points to.  For p R∈ and 'p R∈ , let ( , ')p pδ  

denote their distance, which is defined as the symmetric 

difference between ( )pτ and ( ')pτ , that is 

 ( , ') | ( ( ) ( ')) ( ( ') ( )) |p p p p p pδ τ τ τ τ= − ∪ −               (1) 

In other words, the larger the distance between two pages, the less 
likely they belong to the result of the same query. Intuitively, if p 
and p' belong to the same query q, then the query links of p and 
the query links of p' should be largely the same. Their difference 
is mainly the links to the objects that belong to p and p’ 

respectively, and the pagination links. Thus, p and p' should have 

many common links, so ( ,  ')p pδ  is small. On the other hand, if p 

and p' belong to two different queries, say, page p belongs to 

query  ( )pθ  and p' belongs to query  ( ')pθ ,  ( )  ( ')p pθ θ≠ , then 

the distance between p and p’ will tend to be large. This is 
because the drill-down and roll-up query links depend on the 
query, so the result pages pointed to by the drill-down and roll-up 
query links of p are quite different from those of p'. Furthermore, 
the pagination links of p, which point to other result pages for 

( )pθ , are totally different from the pagination links of p'.  

Based on the nature of the above distance function, we introduce a 
threshold to indicate whether two pages belong to the same query 

or not. Formally, let d be the threshold, let p and p' be two result 
pages, the assumption is: 

( ), ' ( , ')  ( ) ( ')p p R p p d p pδ θ θ∈∀ < ⇔ =                  (2) 

Algorithm 2 clusters result pages according to Eq (2). The output 

is a set of result page groups  (RPG). In the main loop, we  check 
every result page. If a result page, say p, has not been added to 
any group in RPG, we create a new group using p as a seed page, 
then we group neighboring pages starting from p, and add the new 
group to RPG at the end. The GroupNeighboringPage function 
walks from a seed page to all pages which are neighboring with 
their previous pages. That is, for all pages whose distance from 
current page is smaller than d, say p', the function add p' to the 
group of current page and recursive call itself using p' as seed 
page. 

Algorithm 2 finds the complete set of result pages for each query. 
To see this, let q be a query pointed to by any drill-down link on 
the web site, and let Q be the set of all such queries. The members 
of Q have a one-to-one mapping with members of RPG. The 
reason is as follows. First, Line 2 of the algorithm checks every 
result page of the input data and line 4 makes sure that every 
result page will not be added into more than one group, so each 
result page belongs to one and only one group of RPG. Second, 
line 2 in GroupNeighboringPage makes sure only result pages for 
the same query will be added to a same group. Furthermore, if a 
query generates more than one result page, each result page will 
be pointed to by at least one result page for the query using 
pagination links (easily inferred from the accessibility of result 
pages). So if two pages are for the same query, they will be 
clustered into a same group finally. Thus, the queries of Q have  
one-to-one mapping to the groups of RPG. 

Finally, the time complexity of Algorithm 2 is O(|P|), since every 
result page is checked once.  

Algorithm 2 Result pages Clustering 

Input:  a Website W=<P, L> 

             a threshold d 

Output: the set of result page groups (RPG) 

1: RPG←∅, LS←{all result pages}; 

2: for p LS∈ do 

3:         if ( )s RGP p s∈∃ ∈  then 

4:                 continue; 

5:         end if 

6:         G←∅, E←∅ ; 
7:         Add p to g; 
8:         GroupNeighboringPage (G, E, p); 
9:         Add G to RPG; 

10: end for 
 

function GroupNeighboringPage (G, E, p) 

1: for ' ( ) ' 'p p p G p Eτ∈ ∧ ∉ ∧ ∉  do 

2:          if ( , ')p p dδ < then 

3:                 Add p' to G; 
4:                 GroupNeighboringPage (G, E, p'); 

5:         else  
6:                 Add p' to E; 

7:         end if 
8: end for 

 

3.4 Detecting Relationship between Queries 
Our goal of detecting relationships between queries is to recover 
<attribute, value> pairs for queries. As mentioned, hidden 
attributes are embedded in query links. A query link essentially 
associates two queries with specific semantics depending on 
whether it is a drill-down, a roll-up, or an unrelated query. We 
discuss how to obtain <attribute, value> pairs from different 
query link types, and then propose an algorithm to select useful 
query links. 

The drill-down and roll-up links encode the relationship between 
two queries. Let p be a drill-down query of q (equivalently, q is a 
roll-up query of p.) Then, in many cases, the drill-down hyper link 
from q to p will contain the <attribute, value> information as an 
anchor text. For instance, assuming a user is browsing a page 
about women’s shoes, then, a drill-down link on that page may 
have the anchor text “size = 6” or just “6” (we will discuss how to 
discover the attribute name when only values appear in the anchor 
text).  From the anchor text, we obtain <size, 6> as the attribute 
value pair that denotes the relationship between the two queries. 
The case with roll-up link, however, is not always the same. For 
instance, on Zappos.com, the anchor text on a roll-up link may 
simply be “remove your selection.” As another example, 
Amazon.com displays a set of query links in a hierarchy, for 
instance, “Shoes -> Women -> Size -> …” Thus, a single anchor 
text “Shoes”, “Women”, or “Size” is not informative, and 
understanding the hierarchy requires developing handcrafted 
rules. On the other hand, a query link from an unrelated page 
(e.g., a page showing a user’s account information) may contain 
the attribute/value pair that defines the query. For instance, the 
anchor text may simply be “Women’s” on a e-commerce site that 
sells shoes. In summary, exploratory search Websites often 
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present attributes on the drill-down links and unrelated links to 
inform uses about the content of the link.  

Based on the discussion above, we can see that the anchor texts in 
drill-down and unrelated links are more reliable. Thus, our goal 
becomes how to differentiate roll-up links from drill-down and 
unrelated links.  

Based on the query definition, given two queries p and q such that 
q is the drill down query of p, then the set of objects that satisfy q 
must be a subset of the objects that satisfy p. That is, the two 
result sets must have set containment relationship. In reverse, if 
two object sets, each of which derives from a query, have set 
containment relationship, the corresponding queries may be 
connected by a drill-down link or an unrelated link. In other 
words, if an object set X which derives from a query qX, is a 
subset of another object set Y which derives from a query qY, then 
qX must not be the roll-up query of qY. We represent queries using 
result page groups, and discuss how the subset relation between 
two object sets affect query links between two result page groups. 
Formally, 

Theorem 3.2: Let RPG be the set of all result page groups. 

s RPG∀ ∈ , r RPG∀ ∈ , s ≠ r, if 
1 1( ( )) ( ( ))s rω ϕ ω ϕ− −⊂ , then 

query links between s and r are not roll-up query links. 

Proof: s RPG∀ ∈ , r RPG∀ ∈ , 1 1( ) ( )s r s rϕ ϕ− −≠ ⇒ ≠  because 

groups in RPG correspond one-to-one with queries. Thus, links 
among s and r contain no pagination link. All pages in s or r are 

result pages, so x r∀ ∈ , y s∀ ∈ , x may points to y using (1) drill-

down query link, or (2) roll-up query link, or (3) unrelated query 

link, or (4) no link. If 1 1( ( )) ( ( ))s rω ϕ ω ϕ− −⊂ , according to the 

completeness of queries, 1 1( ) ( )s rϕ ϕ− −⊄  otherwise all object 

retrieved by 1( )rϕ−  will be retrieved by 1( )sϕ− . Thus, 

1 1( ( )(( )) )r sω ϕ ω ϕ− −⊆ . According to the definition of roll-up 

query, 1( )sϕ− is not a roll-up query of 1( )rϕ− . If x y→ , the 

possible cases of x pointing to y remain case (1) and case (3). ∎ 

Another useful and obvious property of relationship between 
object sets is that if two object sets, each of which derives from a 
query, are equal, and their corresponding result pages have query 
links point to each other, the attributes presented by those query 
links are certain to be common attributes of the two object sets. 

In conclusion, if a query link associate query x to query y, and 

( ) ( )y xω ω⊆ , the attributes presented by the link will belong to 

query y. We denote this kind of query link as useful link. If we can 
find out useful links, the mapping from attributes to queries is 
known. 

A naïve approach that detects useful links need to check every 
query link. For each result page group, say s, we check all query 
links on pages in s. If a query link points to page in result page 

group r, we check the subset relationship between 1( ( ))sω ϕ−  and 

1( ( ))rω ϕ− . Assume the average time cost of checking subset 

relationship is C. The total cost of naïve approach is as high as 
O(|L|*C).  

Algorithm 3 Useful link detection 

Input: A Website W=<P, L>, RPG 

Output: Useful link set D 

1: D←∅ ; 

2: for s GAP∈ do 

3:         p ← arbitrary page in s; 

4:         for each p x L→ ∈ do 

5:                 r ← result page group of x; 

6:                 if 1 1( ( )) ( ( ))r sω ϕ ω ϕ− −⊆  then 

7:                         Add k to D;        

8:                 end if 
9:         end for 
10: end for 

 

Algorithm 3 is our pruning method to detect useful links. We 
prune some repeated check operations in the above simple 
approach. Property 2.5 and the co-citation phenomenon discussed 
in Section 3.3 figure out that, if two pages belong to the same 
query, their query links are the same except pagination links. And 
the attributes on the query links are certainty, reviewing our goal 
which is to map attributes extracted from useful links to objects 
retrieved by the queries, we only need to check arbitrary one page 
for a result page group. 

The time complexity of Algorithm 3 is O(|RPG|*C). Obviously, 
|RPG| is far smaller than |L|. 

4. RELATED WORK 
A lot of existing work extracts attributes from semi-structure data 
(e.g., static Web pages). There are three main categories of  
information extraction technologies: 1) Traditional rule or regular 
expression based approaches (e.g., [1, 14, 15]). Typically, they are 
efficient and can achieve high accuracy when the task is 
controlled and well-behaved, for example, the extraction of price 
information from Web pages; however, they are not general 
because they depend on human experts and programmers to 
design hand-coded patterns for every Website; furthermore, as 
discussed in [16], they cannot handle noises in a robust manner; 
2) Supervised machine learning approaches (e.g., [17, 18]).  They 
are more automatic as they learn extraction rules from manually 
labeled Web pages; and they are useful in closed domains where 
human involvement is both essential and available. However, the 
training is expensive; 3) Unsupervised approaches (e.g., [19, 20]). 
Unsupervised approaches are more robust to noise and more 
general for various data sources but usually it is difficult to 
achieve high accuracy and they often make many assumptions 
which may not always be satisfied.  

Much recent research focuses on information extraction without 
using templates, and often uses technologies such as ontology and 
text mining to get better results. For instance, Holzinger et al [21] 
use ontology for extracting product information from tabular data 
on Web pages. Its rectangular table model does not make use of 
the additional structural information that is present in more 
complex layouts. Other works [2, 4, 22] treat Web information 
extraction as a classification problem. For example, single-view 
and multi-view semi-supervised learning algorithms [2, 4] are 
developed to exploit large amounts of unlabeled data. However, 
their performance is not quite good since they do not take 
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advantage of characteristics of Web structure. Recently, extracting 
information from tables attract a lot of attention. Zhai et al and 
Gatterbauer et al [24, 25] propose methods that mine data records 
from pages based on the structure of HTML. They combine tag 
string match and some visual features to achieve better 
performance. More recently, Wang et al [3] uses an automatically 
constructed knowledgebase [30] for large scale information 
extraction from Web tables. 

Lerman et al [26] took advantage of the structure of Websites to 
automatic extract and segment records from Web tables. The idea 
of [26] is quite similar to our work. Its approach relies on the 
common structure of many Websites, which present information 
as a list or a table, with a link in each entry leading to a detail 
page containing additional information about that item. But its 
goal and algorithms are quite different from our work. 

Discovering attributes for objects from massive Web data benefits 
various applications including information retrieval, ontology 
building and data mining. If we can restructure information of 
products from Web pages on online shopping Websites, it is easy 
to build shopping comparison services [27] like shopping.com, or 
mine high level knowledge for competitive intelligence [28]. If 
information about papers on DBLP, ACM Digital Library can be 
understood automatically, faceted search engine for scholar is 
easy to build. And extracting metadata of social bookmarks from 
Delicious can facilitate machine understanding the relationship 
among various concepts, so as to build ontology. Recently WePS 
[29] campaign which focuses on Web People Search problem has 
been held three time because the challenges and importance of the 
problem. 

5. EXPERIMENT 
This section reports our experiment on the unsupervised approach 
on two well-known exploratory Website: Zappos.com and 
Amazon.com. We evaluate the precision and recall on different 
scale of data and we show that our unsupervised approach is 
effective with close to 100% recall and precision. We further 
analyze why our approach cannot achieve close to 100% recall 
and precision.  

5.1 Data Sets 
Zappos.com is a typical faceted search Website. It has good 
design which makes it possible to manually create some templates 
for the Website, which allows us to extract attributes using the 
naïve approach (as described in the introduction). We perform the 
naïve approach on the Zappos data and use the result as a 
validating dataset.  

We crawl the entire Web site of Zappos.com beforehand. The 
total number of relevant Web pages is 11,955,201 (Web pages 
that do not have additional information about the products, for 
example, pages that display products in different order, are 
filtered). We also derive a “ground truth” dataset by handcrafting 
templates for Zappos.com and then use the naïve approach to 
extract products and their attribute values.  

Table 2 shows some statistical information about Zappos, 
including the number of real result pages, objects and total links. 
We  also show the number of pages that contain links to objects 
but are not related with any queries (we call them fake result 

pages here) and the number of <object, attribute> pairs in the data 
set. 

Table 2. The Zappos Dataset 

# of result 

pages 

# of objects 

(products) 

# of <object, 

attribute> 

pairs 

# of fake 

result 

pages 

# of total links 

11831247 124839 2208052 2448 2391035716 

 

Amazon.com is a famous and well designed online shopping 
Website too. We also crawl Web pages from Amazon.com 
(mostly pages in the Shoes category) as another data set. The data 
set has 28,186,473 Web pages after applying the same filtering 
strategy for Zappos. Table 3 shows the statistical information 
about the Amazon data set. 

Table 3. The Amazon data set 

# of result 

pages 

# of objects 

(products) 

# of <object, 

attribute> pairs 

# of fake 

result pages 

# of total 

links 

27515023 634767 1853145 36683 5637294633 

 

5.2 Evaluation Method 
We evaluate our experimental results using the conventional 
precision and recall measure. Recall that our goal is to discover 
hidden attributes for objects. We define the precision and recall 
for single object respectively as Eq (3) and Eq (4): 

| ( ) ( ) |
( )

| ( ) |

real i machine i
recall i

real i

∩
=                     (3) 

| ( ) ( ) |
( )

| ( ) |

real i machine i
precision i

machine i

∩
=                (4) 

where i is an object, real(i) is the real attribute set of i, machine(i) 
is the detected attribute set of i. 

For recalls and precision on the entire dataset, we sum the single 
evaluation for each object with a weight, where the weight is the 
ratio of attributes of the object divided by the total number of real 
attributes. Equation (5) and equation (6) define the recall and 
precision for dataset s: 

| ( ) |
( ) ( )

| ( ) |
i s j s

real i
recall s recall i

real j
∈ ∈

= ×∑ ∑                     (5) 

| ( ) |
( ) ( )

| ( ) |
i s j s

real i
precision s precision i

real j
∈ ∈

= ×∑ ∑            (6) 

5.3 Experimental Results 
In order to test the performance and the overhead of our 
unsupervised approach, we test on various subsets of our data 
sets. In particular, we gauge the effect of the distance threshold in 
clustering on the precision and recall on small datasets; and we 
test the precision and recall on big data sets with the detected best 
parameter. To measure the effectiveness and overhead, we count 
the number of object-attribute pairs that can be detected from 
datasets of various sizes. 
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In Table 4 we show the precision and recall of results derived by 
our approach with different clustering distance thresholds. The 
dataset we use contains about 10 thousand pages from Zappos and 
10 thousand pages from Amazon. Performance on the entire 
Zappos and Amazon data sets are presented in Table 5.  

Our experiments show that the clustering distance threshold, 
which is the only parameter in our approach, is easy to fix. Recall 
that in our clustering algorithm, if two pages belong to the same 
query, the only possible links which don’t co-cite the same result 
pages are pagination links. Thus, the distance threshold is the 
number of different pagination links between two pages. As we 
known, each paged Web page has its own serial number. Nearly 
all Websites design their pagination hyperlinks in the slide 
window way. That is, result pages for same query are sorted by 
their serial number and each result page presents hyperlinks point 
to n neighboring result page. So it is easy to fix this parameter by 
investigating how many n is. For example, Zappos.com is 4 and 
Amazon.com is 5. Table 4 shows the performance of our approach 
on about 10 thousands of pages with various clustering distance. 
The distance parameter affects the performance evidently that the 
precision drops but the recall grows with the threshold increases. 
When the threshold equals to the experiential value, the precision 
and recall reach its peek value (shown in bold font) at the same 
time. Thus in practice, we can fix this parameter preliminarily by 

user experience and then validate it on small data set. All of our 
succeeding experiments fix their clustering distance for Zappos 
and Amazon respectively as 4 and 5. The excellent results on 
various data scale argue that   clustering distance parameter affects 
the performance stably. 

In Figure 4 we show the online precision and recall as our 
approach produce results on the crawled dataset. The horizontal 
axis shows the total number of objects (in thousands) the method 
has produced so far. We carry out the same test for Amazon data, 
and result is shown in Figure 5. Figure 6 and Figure 7 show the 
number of object-attribute pairs we recover given the number of 
web pages (in thousands) we have processed. Since we have the 
entire dataset of Zappos, the number of additional new pairs 
reduces as we process more and more pages. This phenomena is 
not obvious for the Amazon dataset, as we work on a subset of 
Amazon data.  

The performance of our approach is good. No matter it is on the 
entire Website (Zappos) or on an incomplete Website (Amazon), 
the precisions are as high as 0.98. And the recall of results from 
Zappos is also good. The recall of results from Amazon is a little 
lower than that from Zappos. 

Interestingly, the recall of our approach depends not only on the 
completeness of the dataset, but also on the speed of crawling. 

            

            

Figure 5. Performance on Amazon Figure 4. Performance on Zappos 

Figure 6. Object-attributes on different page scares of 

Zappos 

Figure 7. Object-attributes on different page scares of 

Amazon 

482



The reason why recall on Zappos, as shown in Table 5, cannot 
achieve 100% is because the Website updates their products 
during our crawling process. So some pages in our data sets are 
inconsistent. For example, the product “Tunnel Vision Shirt” for 
query “clothing & kids” existed on Zappos.com when we crawl 
the result pages of query “clothing & kids”, but it was removed 
when we crawl result pages of query “clothing”, then our 
approach will not identify hyperlinks on pages of “clothing” to 
pages of  “clothing & kids” as drill-down links. So “clothing” will 
not be labeled to “Tunnel Vision Shirt”. The reason why the recall 
of results from Amazon is lower than that from Zappos is that the 
Amazon data set lacks some necessary Web pages because the 
dataset we have is not complete. Definitely, if some result pages 
for a query are not crawled, the objects on these result pages will 
not be retrieved. More important, the object set for the query is 
incomplete that leads to the drill-down link detection for those 
result pages may fail. Nevertheless, the recall still reaches 0.80. 

Table 4. Performance on a small data set with different 

thresholds 

Threshold 
Zappos Amazon 

Precision Recall Precision Recall 

2 0.97 0.84 1.0 0.58 

3 0.97 0.90 0.99 0.77 

4 0.97 0.96 0.99 0.80 

5 0.82 0.96 0.99 0.84 

6 0.64 0.96 0.39 0.84 

 

Table 5. Performance on total data set 

Data Set 
Discovered object-

attributes 
Precision Recall 

Zappos 2155059 0.98 0.97 

Amazon 1853145 0.98 0.80 

 

The factor affects precision is that the result Pages detected by 
page type identification algorithm contain some fake result page. 
Some unrelated pages contain links to recommended product 
pages. If the object set of an unrelated page, for example “Brands” 
taxonomy page, happens to be subset of the other object set which 
derives from a query, then hyperlink to the “Brand” taxonomy 
page will be detected as useful query link. As a result, our 
algorithm will label "Brands" to the recommendation products. 
However, "Brands" is not a meaningful attribute value, but an 
attribute name. So the results on entire Website pages can’t 
achieve 100%. But the number of taxonomy pages is quite smaller 
than result pages. Thus, the number of recommended products is 
small. And many hypertexts of taxonomy page hyperlinks make 
sense, such as “Women”, “Beauty” on Zappos and “Books”, 
“Electronics” on Amazon. 

The performance of our approach is stable. As shown in Figure 4 
and Figure 5, the precision and recall are stable, don’t warp over 
0.01, on various object sets whose sizes are from 20 thousands to 
600 thousands. 

The main cost of our approach is to check Web pages and our 
goal is to discover object-attribute pairs. So we estimate the 
overhead by checking the how many object-attributes can be 
discovered on different numbers of Web pages.  

On complete data set, Zappos, our approach can discover most of 
the object-attributes fast. As we can see in Figure 6, the number of 
discovered object-attributes grows rapidly with the number of 
scanned Web pages increases at the beginning, and about 84% 
object-attributes are discovered when 110 thousands of Web 
pages are checked. But the curve grows slowly after the number of 
scanned Web pages larger than 110 thousands. This is because 
most of the object-attributes contained by the last Web pages have 
been discovered in the previous Web pages. This result valid our 
assumption that lots of Web pages contain repeated information. 

On incomplete data set, Amazon, our approach can discover 
object-attributes at a stead speed, as shown in Figure 7. Although 
many Web pages are missed in Amazon data set, the number of 
object-attributes discovered by our approach linearly relates to the 
scale of scanned Web pages. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we build an interaction model named Exploratory 
Search Model and propose a unsupervised approach to discover 
attributes, especially hidden attributes doesn’t exist on static Web 
pages from links among Web pages. The main foundation of our 
work as presented in the built model is the semantic embedded in 
link structure of exploratory Websites. In our unsupervised 
approach, the hidden attributes contained in hyperlinks, which 
can’t be extracted from static pages using existing technologies, 
can be discovered automatically without any template; only a 
clustering threshold and a pattern for detecting object page need 
to set. Our experiments on large data sets, one of which is 
complete and the other one of which is incomplete, validate the 
effectiveness, general, efficiency of our approach. 

However, there are still much works to do in future. Firstly, even 
if we can crawl entire Website, there are too many repeated 
information in the whole page set that a lot of Web pages need to 
check after 84% object-attributes are discovered. Secondly, it is 
hard to crawl entire Website in fact that will decrease the recall. 
Thirdly, the Websites may maintain their objects so as to decrease 
the recall. The approach to cover above problems is combine our 
unsupervised approach and crawling technologies to implement a 
online system, and develop more heuristic methods in order to 
avoid checking repeated information. 
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