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ABSTRACT 
In this paper we apply the aspect-oriented programming (AOP) 
paradigm to the relational algebra. AOP is a way to add support 
for cross-cutting concerns to existing code without directly 
modifying that code. Data, like code, also has cross-cutting con-
cerns such as versioning, privacy, and reliability. AOP techniques 
can be used to weave metadata around an application’s data. The 
metadata imbues the data with additional semantics that must be 
observed in constraint and query processing. In this paper we 
show how to modify the relational algebra to process data woven 
together with metadata. We also analyze the overhead on 
evaluating an aspect-enhanced query. 

Categories and Subject Descriptors 
H.2.3 [Database Management]: Relational algebra, metadata. 

General Terms 
Management, Languages. 

Keywords 
Aspect-oriented, relational algebra, cross-cutting concerns. 

1. INTRODUCTION 
A cross-cutting concern is a universal program behavior, one that 
is potentially needed in many disparate parts of a program, but is 
often developed and modeled separately. Common cross-cutting 
concerns in programming include object versioning, event log-
ging, and memory management: such functionality is used to 
enhance, instrument, or debug an application, making it more 
robust, portable, and reliable. Cross-cutting concerns can be 
quickly and easily added to an application using a new 
programming paradigm called aspect-oriented programming 
(AOP). In AOP each concern is modeled as an aspect. An aspect 
couples advice, which is code from the implementation of a cross-
cutting concern, with a point cut, which specifies where and when 
in the execution of the application the advice is woven or placed.  

Figure 1 gives an overview of AOP. In the figure an aspect 
weaver, e.g., AspectJ, weaves a program (Program.java) with 
two cross-cutting concerns, one that implements object persist-
ence (Persist.java) and another that implements event log-

ging (Log.java). Each aspect combines advice from a concern 
with a point cut. The aspect weaver injects the advice into the 
program’s behavior, at the model-level (e.g., in the UML), the 
code-level (e.g., in Java), or at a low-level (e.g., in the JVM). 
AOP supports the separation of concerns in program design and 
development, modularizes implementation of cross-cutting con-
cerns, and promotes code reuse. AOP promotes aspect independ-
ence which is the principle that a cross-cutting concern  is inde-
pendent of an application and can be added ex post facto to en-
hance an application without reprogramming the application, e.g., 
in Figure 1 without modifying Program.java. 

Data, like code, also has important cross-cutting concerns. Data 
can be annotated with descriptions of where it came from, who 
inserted or changed it, and what its quality is [4],[19]. The 
provenance of the data, what manipulations were performed on it 
to get it to this point, can also be recorded [6],[7]. Similarly, the 
accuracy and lineage of the data can be captured [5],[30]. 
Security and privacy introduce additional cross-cutting concerns, 
such as who has access to the data and to whom information has 
been released. Reliability and performance requirements are also 
potential cross-cutting concerns. 

But current DBMSs offer little support for cross-cutting data 
concerns, though research has addressed using AO techniques to 
program databases [25], and using a relational database to support 
AOP [24]. In this paper we propose adapting the AOP paradigm 
to relational data, creating aspect-oriented relations and queries. 
(We do not consider aspect-oriented schemas in this paper [10].) 
The AOP paradigm modifies dynamic program behavior, so has to 
be adapted to include data, which is (largely) static.  

Figure 2 gives an overview of the process of creating aspect-
oriented relations and queries. In the figure a temporal concern 
(temporal.rel) and a privacy concern (privacy.rel) are 
woven into the data (data.rel) and to a query (query.sql). 
The advice in each concern is a relation of metadata, that is, the 
advice is data about data. The advice could describe who has 
access to the data, how the data was measured, and when the data 
is current, among other things. For a temporal cross-cutting con-
cern, the advice will be a relation of timestamps, where each time-
stamp describes (part of) the data’s lifetime. For a privacy 
concern it could be a relation of privacy groups or privileges. The 
advice is bound to data (or a query) at a data cut, which specifies 
where the advice should be woven. The data cut together with the 
advice forms a data aspect. A data aspect weaver weaves the 
advice into the data yielding an aspect-oriented relation or around 
a query yielding an aspect-oriented query. 

The three notions that we borrow from AOP for aspect-oriented 
data are  

1) that aspects can be developed independent of 
applications,  
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2) that aspects can be woven into already existing 
applications, and  

3) that there needs to be some system (DBMS) support for 
implementing aspects. 

Previously we described how to model data aspects in a relational 
database [11]. In this paper we focus on the relational algebra. 
The main contribution of this paper is an extension of each 
relational algebraic operator to support queries on the data 
aspects. We introduce new operations to filter, regulate, and 
synchronize the data aspects. We also briefly describe how 
constraints in the relational model can be augmented. 

This paper is organized as follows. The next section develops a 
motivating example. After that, aspects are described in detail. 
The paper then focuses on query weaving by developing a rela-
tional algebra for aspect-oriented relations and queries. The last 
three sections cover performance, related work and future work. 

2. MOTIVATING EXAMPLE 
Assume that a company records information about its employees 
in a relational database. The database is designed well and has an 
extensive set of integrity constraints. Many applications, such as a 
payroll application, have been built to query, update, and manage 
the database. A portion of the database, the Employees relation, 
is shown in Table 1. Each tuple in Employees records a name 
(Name), department where employed (Dept), salary (Sal), and a 
key (ID) (note that we adopt a very simple key only for 
expository purposes, any key will suffice). 

2.1 Cross-cutting Concerns 
Companies continually evolve, over time new database require-
ments arise. A new tax law makes it mandatory to retain the 
salary history of each employee, so that auditors can ascertain the 
pay-roll at any given time. Another requirement comes from 
applica-tion coders who need to test their code with the “live” 
system, mixing live data with “test” data, that is, data that should 
be used only for testing. A third requirement emerges out of a 
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Figure 1 An overview of aspect-oriented programming 
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Figure 2 Creating aspect-oriented relations and queries 
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new privacy policy adopted by the company. The policy 
establishes a hierarchy (complete partial order) of privacy groups, 
with the most privi-leged, super user at the top and the general 
public at the base. Data for each group will be available only to 
users of that group (or to users in groups above that group in the 
hierarchy). 

To accommodate the new requirements, all cross-cutting con-
cerns, the designers need to add new data and functionality to 
their existing database and its applications. Ideally, the designers 
will be able to add the new data and functionality without chang-
ing a line of application code, database query code, or integrity 
constraint code.  

2.2 Aspect-oriented Relations 
In an aspect-oriented approach, the database designers “tag” data 
in the database with advice, creating aspects. Figure 3 shows the 
employee data in Table 1 together with several aspects. There are 
three kinds of aspects in the figure: temporal aspects, test aspects, 
and privacy aspects. Each aspect binds advice to data. A temporal 
aspect binds a timestamp(s) to data to signify when an employee 
is employed, i.e., the valid time lifetime of the employee. Test 
advice is a number identifying a test suite, and a test aspect 
identifies the test suite to which the data belongs. Finally, privacy 
advice is the name of a group established by the privacy policy.  

Aspects are developed and applied independently, but several 
aspects can be simultaneously woven to data to act in concert. For 
instance, in Figure 3 the privacy and temporal advice woven to 
the fact that Joe worked in Admin earning 100K means that he 
was employed from 2007 to now and that only people in at least 
the administrators group can see this fact. We will call the com-
bined aspects a perspective [9]. Alternatively, the aspects can be 
treated independently, in which case each aspect forms its own 
perspective. 

2.3 Aspect-oriented Queries 
Aspects can also be applied to intensional data, i.e., queries. 
Consider a query to retrieve the salary of each employee named 
Joe. In the relational algebra this query can be expressed as 
follows: 

πSal(σName = 'Joe' (Employees)). 

The query can be aspected to retrieve different aspects of Joe’s 
salary. For instance, if the query were “aspected” with the 
temporal advice ‘(2002, 2002)’, then its evaluation would 
produce the salaries of employees named Joe who worked during 
2002. If it were instead aspected with the test advice ‘test 
suite 20’, then data in that test suite would be used to compute 
a result (test data is excluded by default). 

While describing data using tags is common at social networking 
sites, such as flickr.com, an aspect-oriented approach has to go 
further because each kind of advice imposes a semantics for using 
the data in a query or view, to satisfy a constraint, or when the 
data is modified in an update, insertion, or deletion. For instance, 
temporal advice should impose sequenced semantics [28]. In se-
quenced semantics an operation is logically applied at every 
snapshot. Figure 4 sketches the time period of the result for four 
binary operations in the relational algebra using sequenced 
semantics; r and s are the time periods of the operands, e.g., 
tuples can join only on times that they both exist in the database. 

Constraints, like queries, can also be aspected. For instance, 
suppose that the key of the Employees relation is a foreign key 
in some other relation. Then the valid time advice of any tuple 
that references Joe’s employment in Shoes has to contain (at 
least) the lifetime of Joe’s employment in Shoes; otherwise some 
snap-shot of the database violates a temporal referential integrity 
constraint. 

 Employees  
 Name Dept Sal ID  
 Joe Shoes 40K 1  
 Joe Admin 100K 2  
 Sue Shoes 50K 3  
 Fred Admin 90K 4  
     

Table 1 Some data about employees  
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Figure 3 Adding advice to the data 
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Finally, we do not discuss in this paper GUI tools that would help 
designers quickly and easily tag data and queries with advice, or 
tools to help designers specify or implement an aspect’s seman-
tics. Though we believe such tools are critical to aspect-oriented 
relations and queries, they are beyond the scope of this paper. 

3. WHAT IS AN ASPECT? 
In AOP an aspect enhances the dynamic, run-time behavior of a 
program; hence the advice in an aspect is implemented as a body 
of code. A data aspect on the other hand enhances static data. So a 
data aspect is, in part, a body of data, or more precisely in the 
relational model, a relation. As an example Table 2 shows the 
temporal advice for facts in the Employees relation of Table 1. 
Each tuple in the Temporal Advice relation is a time period 
from TTBeg to TTEnd. Multiple time periods may advise a 
single employee. Note that no data cuts have been specified (yet), 
so the advice has not been woven to the data. 

Some data will not be explicitly woven to advice by a data aspect 
or will be aspected by only a few kinds of advice, in which case 
default advice will be used for each cross-cutting concern. The 
default advice for the example relation in Table 1 is that the data’s 
lifetime is assumed to encompass only the time now, the data is 
“live” data not inserted or modified as a result of testing, and the 
data is public without any special privacy restrictions. 

3.1 Tuple Data Cuts 
In AOP, the code in the aspect is woven into a program’s code at 
point cuts. A point cut is a place or event in a program’s execu-
tion. Possible point cuts include entry to a function, exit from a 
loop, entry to an assignment statement, and lookup of a variable’s 
value. In adapting AOP to the relational model, far fewer data 
cuts are discernable, in fact, only three are readily apparent: a 
value, a tuple, and a relation.  

In this paper, we focus on tuple data cuts, that is, we assume 
advice will be woven to a tuple. Let’s consider a single data rela-
tion, RD, consisting of a set of tuples t1, …, tn. Assume further that 
the advice is a relation RA consisting of tuples m1, …, mn. A data 
cut for a tuple, ti, weaves tuples mj … mk to ti. Figure 3 illustrates 
many data cuts. For example in the figure, the advice tuples, 
(2003, 2003) and (2005, 2006), are woven to a tuple in the 
data, (Joe, Shoes, 40K), by a data cut. The advice represents 
the valid time lifetime of Joe’s employment in Shoes. 

Many data cuts are concretely represented in Table 3 and Table 4 
which extend and refine the company database example of the 
previous section. Table 3 shows the aspected Employees 
relation (combining Table 1 with Table 2), and Table 4 extends 
the database with an aspected Departments relation. An advice 
tuple shaded in grey denotes default advice. The Data Cuts 
relation weaves advice, identified by the RF column, to data. An 
employee can be aspected in three ways.  

1. By temporal aspects that record the valid time lifetime 
of each employee. 

2. By test aspects that mark tuples which are used only for 
testing purposes. 

3. By privacy aspects that record the privacy group for a 
tuple, established by the privacy policy. The groups are 
in a complete partial order from the lowest level 
(public) to the top secret level (top). The admin 
and coder groups are at the same level in the partial 
order, below top and above public. 

Each tuple in the advice has an RF column, which identifies the 
perspective to which the tuple belongs. A single perspective can 
have several tuples of the same kind of advice, and different 
perspectives can be woven to the same data tuple. For instance, 
perspectives W and Z are woven to Departments tuple 6. 

3.2 Advice Behavior 
The advice for a tuple becomes active whenever a tuple is used in 
a query or view, used to satisfy a constraint, or modified in an 
update. Advice can play (at least) three roles when it becomes 
active as described below. 

First, advice can regulate an operation. Query operations, such as 
the unary and binary operations of the relational algebra, 
(logically) produce data. The advice can regulate this production, 
turning it off for some tuples. For example, suppose we evaluate a 
query to project the names of all employees. Such a query is 
traditionally interpreted (in a temporal database) to involve only 
employees currently employed, i.e., those whose time of employ-
ment overlaps now. When the projection is applied to the 
Employees relation of Table 1, the advice for each tuple regu-
lates whether it is included in the result. In Joe’s case, Figure 3 
shows that the lifetime of his employment in Shoes ends prior to 
the current time as neither timestamp contains the current time 
(assumed to be 2008). So the name Joe is not included in the 
result of the projection (though Joe may be included from the 
projection applied to other tuples). 

Second, advice can mutate data before or after an operation. The 
mutation modifies the tuple, either changing attribute values, or 
appending new values. For example, suppose that we want to 
append the time of Joe’s employment in Shoes to the projection of 
employee names, i.e., convert the advice to data. An aspect can 
play a mutator role and compose the temporal advice for each 
tuple in the projection with its advice after it is projected. A 
mutator role for an aspect would also be useful in translating 
along attribute data cuts, e.g., when values in a column of data 
advised by an English aspect are compared to data advised by a 
Spanish aspect, the English can be translated to Spanish with the 
help of a dictionary. 

Third, an aspect can construct data and advice. The construction 
can be done prior to or after an operation. As an example, suppose 
that some tuples in Employees do not have temporal advice. 
Over what times are these tuples current? One possibility is that 
they are only current now. To enforce this in query semantics, 
prior to an operation on the Employees relation the temporal 
aspect could construct new advice for each unadvised employee. 
As a second example, suppose we want to track the lineage of 
tuples produced by a query, where the lineage is defined as the 

Temporal Advice 
TTBeg TTEnd 
2003 2003 
2005 2006 
2007 now 
2006 now 

 

  

 

Table 2 A relation of temporal advice 
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data tuples involved in producing a query result. Lineage data 
aspects can be dynamically constructed to track the lineage. 

 

3.3 Weaving Behavior into Queries 
An advice’s behavior has to be woven into the evaluation of a 
query, and around other events in a DBMS. This requires support 
from the DBMS, specifically, opening the DBMS’s event stream 
to weaving. Figure 5 shows an architecture for a data aspect 
weaver. In the figure the DBMS event stream is depicted as a 
dashed arrow representing a sequence of discrete events. One 
particular event, a restriction operation applied to relation R, is 
highlighted. The operation has to be woven together with aspect-
specific behaviors as described in Section 4, but in general, each 
aspect has a special behavior when involved in a join, union, 
intersection, filter (evaluating a query aspect), or difference 

operation. Prior to the operation, the aspect can mutate or 
construct R (it depends on the semantics of the advice), as 
represented by the pre edge in the figure. After the operation R 
can be regulated by the aspect, as represented by the post edge in 
the figure. The advice and data cuts relations are heavily involved 
in the evaluation of a query operation like restriction. 

4. ASPECT-ORIENTED QUERIES 
This section develops an algebra for aspect-oriented relations. We 
model a complete set of relational algebra operators, showing how 
each is redefined to support data aspects. Each operation is 
redefined using the (non-aspect-oriented) relational algebra to 
illustrate that current DBMS software can be used to become 
aspect-oriented. We focus on the regulatory role of aspects. Only 
data aspects are initially considered; in Section 4.2 query aspects 
are introduced. 

4.1 Aspect-oriented Relational Algebra 
In the following definitions, without loss of generality, we assume 
that a data relation, RD, has a single advice relation, RA, and as 
single data cuts relation, RC. 

[Aspect-Oriented (AO) Restriction] Select the tuples that meet a 
condition, P. As the restriction may remove some tuples, the data 
cuts and advice should be synchronized with the data, removing 
extraneous advice, following the selection: 

σP([RD, RC, RA]) = synch([σP(RD), RC, RA]). 

The synchronization operation removes the advice that no longer 
advises any tuple in the data. 

[Synchronize] Synchronize the advice with the data by removing 
extraneous advice tuples, i.e., those that do not advise any data: 

     synch([RD, RC, RA]) = [RD, RC  RD, RA  (RC  RD)]. 

As an example, consider a query to select employees in Shoes. 
The result is shown in Table 5. Joe and Sue are in Shoes so their 
tuples are selected, and synchronized with the advice to retain 
only their data cuts and advice tuples. 

Employees  Data 
Cuts 

 Temporal Advice  Test 
Advice 

 Privacy 
Advice 

Name Dept Sal ID  ID RF  RF TTBeg TTEnd  RF Suite  RF Group 
Joe Shoes 40K 1  1 A  A 2003 2003  C 20  B admin 
Joe Admin 100K 2  2 B  A 2005 2006  A 0  C coder 
Sue Shoes 50K 3  3 C  B 2007 now  B 0  A public 
Fred Admin 90K 4  4 D  D 2006 now  D 0  D public 

        C now now       
                 

Table 3 Aspected Employees 

Departments  Data Cuts  Temporal Advice  Test 
Advice 

 Privacy 
Advice 

Loc Dept ID  ID RF  RF TTBeg TTEnd  RF Suite  RF Group 
E104 Shoes 5  5 W  W 2000 2003  W 15  W coder 
A2 Admin 6  6 X  X 2002 now  Z 20  X public 
F77 Shoes 7  7 Y  Y 2007 now  X 0  Y public 
   6 Z  Z now now  Y 0  Z public 
               

Table 4 Aspected Departments 
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Figure 5 An architecture for the query weaver 
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Projection is straightforward if it does not require duplicate 
elimination (i.e., when a key is projected). 

[AO Projection without duplication elimination] Project using 
the list of attributes B, which has a key. The advice is unchanged. 

πB([RD, RC, RA]) = [πB(RD), RC, RA] 

[AO Projection with duplicate elimination] Project using the 
list of attributes B. After projecting, duplicates should be 
eliminated, and their advice combined. 

πB([RD, RC, RA]) = dup-elim([πB(RD), πB,ID(RC), RA]) 

Duplicate elimination is more complex with aspects since data 
cuts on duplicate tuples must be transferred to tuples that remain. 

[AO Duplicate-elimination] Duplicate elimination changes the 
data cuts for some advice, while removing duplicates: 

dup-elim([RD, RC, RA]) = [RD, RC − D, DA] 

where  

D = πT.B,T.ID(σS.B=T.B ∧ S.ID<T.ID(C)) 

is a relation of duplicate data tuples,  

C = ρS(RD  RC) × ρT(RD  RC)  

and  

DA = πRC.ID,A(RC  RC.B=D.B (D  RA)) U RA  (RC − D) 

is the advice for the duplicates, with affiliations switched to the 
remaining tuples. 

As an example, consider the projection of employee names. The 
result is shown in Table 6. The tuple with ID 2 has been elimi-
nated as a duplicate, and the advice for that tuple has switched to 
refer to the tuple with ID 1. Note that there appears to be a 
privacy policy violation in the projection. The privacy advice for 
the tuple with ID 2 is admin in Table 3 but in the projection, the 
privacy advice for Joe is public as well as admin. Since the 
temporal advice for the tuple with ID 2 is part of the new advice 
for Joe, in effect Joe’s time in Admin becomes visible to all as a 
result of the projection. But this apparent violation is because the 
query aspect was not applied (see Section 4.2, in effect, this query 
was asked from the perspective of the top privacy group). 

[AO Joins and Cartesian Product] Let ⊗ be , θ, , or ×. 
When tuples are composed, their advice must be as well. For 
every combination of data, manufacture a combined perspective: 

 [RD, RC, RA] ⊗ [SD, SC, SA] =  
          synch(regulate([RD ⊗ SD, (RC × SC)  JA, JA])) 

where  

       JA = advice-join(RA, SA)  

is a join of the advice. 

The regulate operation ensures that each data tuple has advice. 

[Regulate] This operation removes from the data those tuples that 
do not have any advice: 

regulate([RD, RC, RA]) = [RD  RC, RC, RA)]. 

[Advice join] Advice join (advice-join) computes the “join” of 
pairs of advice tuples using an aspect-specific join. Example 
advice-specific joins are listed below. 

• Temporal advice – Computes the temporal join for pairs 
of time periods, i.e., the time when the periods overlap. 

    temporal-join({(i, t, u)}, {(j, v, w)})  

           = 
⎩⎪
⎨
⎪⎧ {(i, j, max(t, v), min(u, w))}
                  if (t, u) overlaps (v, w)
 {}             otherwise

 

• Test advice – Test suite x joins test suite y if both are 
the same test or either is live data (assumes test data is 
mixed with live data in a test). 

    test-join({(i, x)}, {(j, y)})  

           = 
⎩⎪
⎨
⎪⎧ {(i, j, x)}  if x = y or y = 0
 {(i, j, y)}  if x = 0
 {}            otherwise (if x ≠ y)

 

• Privacy advice – A partial order join is performed by 
keeping the most private group.  

    privacy-join({(i, x)}, {(j, y)}) 

           = 
⎩⎪
⎨
⎪⎧ {(i, j, lca(x, y))}
         if lca(x, y) = x or lca(x, y) = y
 {}    otherwise

 

As an example, consider the natural join of Employees with 
Departments. The result is shown in Table 7. The data relation 
contains four tuples. Note that the ID column has a composed 
identifier, which also serves to indicate which tuples were joined 
from Table 3 and Table 4 to produce a tuple in the join result. 
Some tuples have been “regulated,” for instance, tuples 1 and 7 
would join if only the data were considered, but by inspecting 
their temporal advice we can determine that the tuples were never 
in the database at the same valid time, and hence their combin-

Employees  Data Cuts 
Name Dept Sal ID  ID RF 
Joe Shoes 40K 1  1 A 
Sue Shoes 50K 3  3 C  

Temporal Advice  Test 
Advice 

 Privacy 
Advice 

RF TTBeg TTEnd  RF Test  RF Group 
A 2003 2003  C 20  C coder 
A 2005 2006  A 0  A public 
C now now        

Table 5 Employees in Shoes and their advice 

Names  Data Cuts 
Name ID  ID RF 
Joe 1  1 A 
Sue 3  3 C 
Fred 4  4 D  

Temporal Advice  Test 
Advice 

 Privacy 
Advice 

RF TTBeg TTEnd  RF Test  RF Group 
A 2003 2003  C 20  A public 
A 2005 2006  A 0  A admin 
A 2007 now  D 0  C coder 
D 2006 now     D public 
C now now        

Table 6 Employee names and their advice 
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ation should not be in the join result. Similarly tuples 3 and 5 are 
from different test suites, so are not in the join result. 
 
[AO Intersection] The aspects regulate the intersection by 
keeping only tuples whose advice also intersects. The intersection 
can be computed using a semi-join, which was previously 
defined. 

 [RD, RC, RA] I [SD, SC, SA] =  [RD, RC, RA]  [SD, SC, SA] 

As an example, consider the intersection of the Names relation in 
Table 6 with the Aliases relation in Table 8. The result is the 
AliasNames relation in Table 9. Joe is in the result, but Sue 
is not since the intersection of her test advice produces no result. 

[AO Union] In a union operation, the advice for each pair of 
unioned tuples must also be computed, and if duplicate tuples are 
present in the union, then their advice should be combined. 

[RD, RC, RA] U [SD, SC, SA] =  
         dup-elim([RD U SD, RC U SC, advice-union(RA, SA)]) 

The union utilizes an advice union. 

[Advice union] Advice union (advice-union) computes the union 
of advice relations. The union utilizes an advice-specific union; 
examples are listed below for each kind of advice. 

• Temporal advice – Computes the temporal union as a 
single period if the two time periods overlap, otherwise, 
each time period is kept. 

    temporal-union({(i, t, u)}, {(j, v, w)}) 

       = 
⎩⎪
⎨
⎪⎧ {(i, min(t, v), max(u, w))}
                       if (t, u) overlaps (v, w)
 {(i, t, v), (j, v, w)}   otherwise

 

• Test advice – Test suite x always unions with test suite 
y, i.e., all test advice is retained. 

    test-union({(i, x)}, {(j, y)}) 

       = { {(i, x)}              if  x = y
 {(i, x), (j, y)}    otherwise 

• Privacy advice – The idea is to keep the least private 
group of the pair, by determining if one group is an 
ancestor in the partial order, otherwise, both groups 
should be retained. 

 

 

    privacy-union({(i, x)}, {(j, y)}) 

       = 
⎩⎪
⎨
⎪⎧ {(i, x)}              if  lca(x, y) = y or x = y
 {(i, y)}              if  lca(x, y) = x
 {(i, x), (j, y)}    otherwise

 

As an example, consider the union of the Names relation in Table 
6 with the Aliases relation in Table 8. The result is the 
AliasOrNames relation in Table 10. The union adds only 
advice to the result, in particular increasing the valid time of tuple 
3 and adding a new test advice tuple. 

The difference operation is the most complicated operation 
because advice tuples may potentially be “trimmed.” For instance, 
suppose we take the difference of Jennifer’s employment in Shoes 
from 2005-2006 with her employment in Shoes from 2004-2005. 
Jennifer’s advice tuple should be trimmed in the result to 
represent that she was employed from 2006-2006. 

[AO Difference] An aspect-oriented difference operation 
removes the intersection of the two relations:  

 [RD, RC, RA] − [SD, SC, SA] =  
             regulate([RD U ID, RC U IC, advice-diff(RA, IA])  

where  

        [ID, IC, IA] = dup-elim([RD, RC, RA] I [SD, SC, SA])  

EmployeesInDepartments  Data Cuts 
Name Dept Sal Loc ID  ID RF 
Joe Shoes 40K E104 1 5  1 5 A.W 
Joe Admin 100K A2 2 6  2 6 B.X 
Sue Shoes 50K F77 3 7  3 7 D.X 
Fred Admin 90K A  2 4 6  4 6 C.Y  

Temporal Advice  Test 
Advice 

 Privacy 
Advice 

RF TTBeg TTEnd  RF Suite  RF Group 
A W 2003 2003  A W 15  A W coder 
B X 2007 now  B X 0  B X admin 
D X 2007 now  C Y 0  C Y coder 
C Y now now  D X 0  D X public  

Table 7 Joining employees with departments 

Aliases  Data Cuts 
Name ID  ID RF 
Joe 8  8 G 
Sue 9  9 H  

Temporal Advice  Test 
Advice 

 Privacy 
Advice 

RF TTBeg TTEnd  RF Suite  RF Group 
G 2008 now  G 15  G top 
H 2000 now  H 15  H public  

Table 8 Aliases relation 

AliasNames  Data Cuts 
Name ID  ID RF 
Joe 1 8  1 8 A G  

Temporal Advice  Test 
Advice 

 Privacy 
Advice 

RF TTBeg TTEnd  RF Suite  RF Group 
A G 2008 now  A G 15  A G top  

Table 9 Intersection results 
AliasOrNames  Data Cuts 
Name ID  ID RF 
Joe 1  1 A 
Sue 3  3 C 
Fred 4  4 D  

Temporal Advice  Test 
Advice 

 Privacy 
Advice 

RF TTBeg TTEnd  RF Test  RF Group 
A 2003 2003  C 20  A public 
A 2005 2006  C 15  A admin 
A 2007 now  A 0  C coder 
C 2000 now  D 0  D public 
D 2006 now        

Table 10 Union results 
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is the intersection of the two relations. It may seem odd that we 
are increasing the “data” tuples, but the tuples will be regulated 
by the difference applied to the advice. 

[Advice difference] Advice difference (advice-diff) computes the 
“difference” in advice tuples as follows. First, compute the 
portion of each advice tuple which is different than an advice 
tuple in the intersection. 

     PossiblePortions = advice-diff (RA, IA) 

The aspect-specific difference, advice-diff, is described in detail 
below. Next, find the intersection tuples that overlap some 
possible portion: 

     OverlapPortions = advice-semijoin(PossiblePortions, IA) 

where advice-semijoin is an advice-specific semi-join, similar to 
the advice join described earlier in this paper. Finally, just keep 
the possible portions that do not overlap. 

      advice-diff(RA, IA) = PossiblePortions − OverlapPortions 

Below are some advice-specific difference operations. 

• Temporal advice – Computes the temporal difference, 
which is the portion that does not overlap. 

    temporal-difference({(i, t, u)}, {(j, v, w)})  

         = 
⎩⎪
⎨
⎪⎧

 {(i, j, min(t, v), min(u, w)−1),
   (i, max(t, v)+1, max(u, w))}
                 if (t, u) overlaps (v, w)
 {(i, j, t, u)}  otherwise

 

• Test advice – Test suite x is different from test suite y as 
follows. 

    test-difference({(i, x)}, {(j, y)}) 

         = { {}             if x = y
 {(i, j, x)}  otherwise 

• Privacy advice – A partial order difference determines 
if the subtractor is more private; if so then we keep the 
privacy advice. 

    privacy-difference({(i, x)}, {(j, y)}) 

         = { {}
 {(i, j, x)} 

 if lca(x, y) = x
 otherwise  

As an example, consider taking the difference of the Names 
relation of Table 6 and the Aliases relation of Table 8. The 
result is shown in Table 11. First the intersection is computed 

(Table 9). Only Joe is in the intersection. Next Joe’s advice is 
trimmed, removing the intersecting advice from Names; in this 
case, only his valid time is trimmed reducing his time in Admin to 
just 2007. 

4.2 Query Aspects 
A query (or parts thereof) can also be aspected. A query aspect 
represents a constraint on the relations that participate in the 
query.  

[Filter] Let a query, Q, involve a relation, [RD, RC, RA], and be 
aspected by a perspective, QA. Then the filter operation constrains 
RD to tuples that have advice consistent with the query 
perspective prior to evaluating the query as follows.  

filter(Q, QA, [RD, RC, RA]) =  
   Q(synch(regulate([RD, RC  ao-filter(RA, QA), RA]))) 

Each advice tuple passes through an advice-specific filter 
operation, which leaves the tuple unchanged, trims the tuple, or 
regulates it. 

[Advice filter] Advice filter (advice-filter) filters advice tuples. 
The filtering is aspect-specific. Example filters are listed below. 

• Temporal advice – Computes the temporal overlap, if 
any, as follows. 

    temporal-filter({(i, t, u)}, {(v, w)})  

                       = 
⎩⎪
⎨
⎪⎧ {(i, max(t, v), min(u, w))}
                  if (t, u) overlaps (v, w)
 {}             otherwise

 

• Test advice – Test suite x is filtered by test suite y as 
follows. 

    test-filter({(i, x)}, {(y)}) 

           = { {(i, x)}  if x = y or x = 0
 {}            otherwise (if x ≠ y) 

• Privacy advice – Privacy group x is filtered by privacy 
group y as follows.  

   privacy-filter({(i, x)}, {(y)}) 

           = { {(i, x)}  if lca(x, y) = x
 {}    otherwise   

For example, suppose the following query is evaluated from the 
default aspect perspective, P (time is now, test suite 0, and 
privacy group public). 

πSal(σName = ‘Joe’ (Employees)) 

The query is translated to the corresponding aspect-oriented 
query, where Employees is [ED, EC, EA], and with selection and 
projection pushed as far as possible into the query. 

    dup-elim( 
      synch( 
        regulate( 
           [πB,ID(σName=‘Joe’(ED)), EC  ao-filter(EA, P), EA] 
         )  
      ) 
   ) 
 

NamesNotAliases  Data Cuts 
Name ID  ID RF 
Joe 1 8  1 8 A G 
Sue 3 9  3 9 C H 
Fred 4 @  4 @ D @  

Temporal Advice  Test 
Advice 

 Privacy 
Advice 

RF TTBeg TTEnd  RF Suite  RF Group 
A G 2003 2003  C H 20  A G public 
A G 2005 2006  A G 0  A G admin 
A G 2007 2007  D @ 0  C H coder 
D @ 2006 now      D @ public 
C H now now          

Table 11 Difference results 
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Evaluating the query yields the empty result. Both of Joe’s tuples 
are filtered because Joe worked in Shoes only prior to now, and 
Joe’s current employment in Admin is visible only to the privacy 
group admin. 

Query aspects are powerful and we assume that the default 
perspective is managed by the DBMS rather than by a user. A 
user acquires a default perspective when they first log in (so only 
via a log in procedure can a user be a part of any privacy group 
other than public). The user can subsequently change various 
aspects of their default perspective by setting session environment 
variables, for instance, the user should be able to change the 
temporal component of their default query aspect. Suppose for 
instance that the user changes their default temporal aspect to be 
(2000, now), and re-evaluates the query given above. The result 
is shown in Table 12. 

Independent of the default query perspective, a query can also 
have data aspects, in which case the aspects are composed with 
the perspective to filter the data prior to evaluating the query. For 
instance, suppose the query is part of a test suite. Then the query 
would be aspected with test advice, e.g., (test suite 20). 
When evaluated, the query would produce an empty result since 
Joe’s tuple is not part of the test suite. 

4.3 Complexity Analysis 
The increased modeling power of aspect-oriented data comes with 
an increased cost. In this section we analyze the worst-case time 
complexity, assuming that all of the aspect-oriented operations 
like synch, are implemented in the relational algebra. Let D be the 
size of each data relation, C be the size of a data cuts relation, and 
A be the size of an advice relation. Typically A will be much 
smaller than D, and if there is a lot of default advice, C will also 
be much smaller than D.  

An aspect-oriented selection incurs a synch operation, which 
involves three semi-joins raising the cost from O(D) without 
aspects to O(D) + O(max(A,C)*D) where O(max(A,C)*D) is the 
cost of the largest semi-join in the synch.  

The complexity of a projection that does not eliminate duplicates 
remains unchanged, but duplicate elimination adds a cost of 
O((C*D)2) + O(C*A) to compute the duplicate data tuples and the 
advice relation.  

Joins and Cartesian product involve additional synch and regulate 
operations and aspect-specific behaviors for pairs of advice 
tuples, which we assume can be computed in constant time (like 
all of the behaviors given in this paper). The cost of a join 
increases from O(D2) to O(D2) + O(max(A,C)*D) + 
O((C2*A2)*D), where the latter term is the cost of a regulate. 

Finally, union and difference also potentially involve duplicate 
elimination adding a term of O((C*D)2) + O(C*A) to their 
complexity. 

4.4 Query Optimization 
There are several possibilities for query optimization in the 
aspect-oriented relational algebra. Standard optimization rules 
remain largely unaffected, for instance, restrictions can be pushed 
into binary operations, such as joins, and the order of restrictions 
can be permuted. Several query optimization rules (a non-
exhaustive list) for aspect-oriented operations are listed below. 

• Synchronizations can be collapsed. 

     synch(synch([RD, RC, RA])) =  
           synch([RD, RC, RA])) 

• Synchronizations can be delayed. 

                     F(synch([RD, RC, RA])) =  
                   synch(F([RD, RC, RA])) 

• Synchronizations can be eliminated (extraneous advice 
plays no role in query evaluation). 

              synch(F([RD, RC, RA])) = F([RD, RC, RA]) 

• Regulation can be collapsed. 

                     regulate(regulate([RD, RC, RA])) = 
                   regulate([RD, RC, RA]) 

• Regulation can be pushed into duplicate elimination. 

                      regulate(dup-elim([RD, RC, RA])) =  
                   dup-elim(regulate([RD, RC, RA])) 

4.5 Aspect-oriented Constraints 
Constraints can also be aspected to specify the range of advice for 
which the constraint holds. All constraints, by default, apply only 
to the default perspective of the data. Consider a primary key 
constraint. When the constraint is evaluated after a data insertion 
or modification, it ensures that each tuple in a data relation can be 
uniquely identified. For example, suppose that the key of the 
Departments relation in Table 4 is the Dept attribute. At first 
glance, this does not appear to be a valid key as two tuples have 
the same Dept value (Shoes). But the key constraint is 
aspected, by default, to apply only to live data, at the current time, 
and with no privacy. Prior to evaluating the constraint, the 
Departments relation is filtered to remove tuples not in the 
default perspective, and then the constraint is evaluated.  

By aspecting a constraint, it can be changed to apply to a different 
data set. For example, suppose that the key of the Departments 
relation in Table 4 is extended to include the Loc attribute, and 
that the database designers decide to add the constraint that the 
new key is applicable at all times. The new key would be 
aspected with the temporal advice (beginning, forever), 
asserting that it applies to, from a temporal perspective, all of the 
data. 

Finally, each constraint can have aspect-specific behavior. For 
instance when specifying a temporal key, the temporal advice can 
add a restriction that no two tuples can have the same key value(s) 
at the same time, allowing the possibility that the key could be the 
same at different times. 

Salary  Data Cuts 
Sal ID  ID RF 
40K 1  1 A  

Temporal Advice  Test 
Advice 

 Privacy 
Advice 

RF TTBeg TTEnd  RF Test  RF Group 
A 2003 2003  A 0  A public 
A 2005 2006        

Table 12 Joe’s public salary history 
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In summary, to the evaluation of a constraint is added 1) a filter 
that applies a constraint aspect to remove tuples from 
consideration prior to the evaluation of the constraint, and 2) an 
aspect-specific check that is performed after evaluation of the 
constraint to further check the data. 

4.6 Experiment to Measure Cost 
We implemented (part of) an SQL-to-SQL translator that takes an 
SQL query (written in the MySQL dialect of SQL) and translates 
it to an aspected SQL query, i.e., a layered approach to imple-
mentation of aspected-oriented relations and queries. We used the 
translator to translate four simple queries, listed below, on a 
scaled-down version of the Internet Movie Database. The 
database has only two tables, an Actor table with information 
about actors and a Casting table, which relates an actor to a movie 
in which the actor was cast. Both tables are approximately 0.5GB 
in size, and there are indexes for the keys of each table. 

1) Select the actor with id 12 (point query using an index). 

2) Select the actor with name ‘Bruce Willis’ (no index). 

3) Join the actor and casting tables on the actor id. 

4) Project the name of each actor. 

We experimented with the aspected queries as follows. We varied 
the percentage of aspected data, from 0% to 100%. The 0% case 
is the “unaspected” case, i.e., the queries are the original SQL 
queries. In the 100% case, every tuple was aspected with a single 
aspect. In the 100% case, the advice and data cuts added 0.8GB. 
We also created indexes for the data cuts and advice tables. 

We then evaluated the four queries and measured the logical 
block I/O (which is a much better measure of the actual cost of 
the query than time since it factors out caching effects, a query 
that logically reads half as many blocks as another query often 
runs in the same time since the time is driven by the number of 
physical vs. logical reads, in other words, we are using the 
“worst-case” measure for showing the cost of aspect-oriented 
data). The raw results are given in Table 13, and a chart of the 
results in Figure 6. The “slowdown” is the ratio of the block I/O 
in the aspected case vs. the unaspected case. So a slowdown of 25 
represents twenty-five times more block I/O. 

The slowdown is reasonable for the selection and the join, but the 
cost blows out for projection. The culprit is duplicate elimination 
in the projection. MySQL lacks a difference operator, so a 
difference has to be implemented using a subquery, and the 
subquery involves the Cartesian product of two joins.  The 
indexed-based selection is also expensive, but mostly because a 

point query using an index is extremely fast; observe that the raw 
cost of an aspected-indexed select is still very low. 

5. RELATED WORK 
There is a little previous research on support for manifold kinds of 
metadata in database management systems. Most closely related 
to this paper is the AUCQL language for querying different kinds 
of metadata in a semi-structured data model [9], which was later 
developed into a query language, MetaXQuery, for XML data  
[16],[17],[18]. This paper in contrast focuses on the relational 
model. 

The database research community has researched models and 
support for specific kinds of metadata, or in our terminology, 
specific kinds of aspects. One of the most important and most 
widely researched kinds is temporal. Temporal extensions of 
every data model exist, for instance, relational [26], object-
oriented [27], and XML [12]. This paper generalizes the work in 
relational temporal databases by proposing an infrastructure that 
supports many kinds of advice, not just temporal advice. More 
specifically we extend tuple-timestamped models [15], whereby 
the temporal metadata modifies the entire tuple. Other tuple-level, 
relational model extensions to support security, privacy, proba-
bilities, uncertainty, and reliability have been researched, but no 
general framework or infrastructure exists which can support all 
the disparate varieties. 

There are several systems that have aspect-like support for 
combining different kinds of metadata. Mihaila et al. suggest 
annotating data with quality and reliability metadata and discuss 
how to query the data and metadata in combination [22]. The 
SPARCE system wraps or superimposes a data model with a layer 
of metadata [23]. The metadata is active during queries to direct 
and constrain the search for desired information. Systems that 
provide mappings between metadata (schema) models are also 
becoming popular [3],[21]. Our approach differs from these 
systems by focusing on the relational data model and relational 
algebra extensions to support AOP, and by building a framework 
whereby the behavior of individual data aspects can be specified 
as “plug-in” components. 

The information retrieval community has been very active in 
researching descriptive metadata, in particular metadata that is 
used to classify knowledge [29]. The Dublin Core is a commonly 

 0% 33% 66% 100% 

index select 2 25 25 25 

select 1550 1573 1573 1573 

join 37913 55343 181368 314226 

projection 1550 21814 41949 89505 
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used classification standard [8]. Commercial [1] and research 
systems [2] to manage (descriptive) metadata collections have 
been developed. Methods to automatically extract content-related 
metadata have also been researched [14],[20]. The focus of the 
information retrieval research is on how to best use, manage, and 
collect metadata to describe data to improve search [13]. In 
contrast, our focus is on modeling data aspects which impose a 
semantics on the use of the data, i.e., they go beyond the simple, 
descriptive tagging of data with metadata. 

6. CONCLUSIONS AND FUTURE WORK 
This paper proposes adapting a popular software engineering 
design technique to database management. Aspect-oriented 
programming is used to add cross-cutting concerns to an already 
existing application, without having to reprogram the application. 
Cross-cutting concerns are also present in data management. We 
presented a design for aspect-oriented relations and queries, 
which allow a database to be re-engineered with cross-cutting 
data concerns. We proposed annotating or tagging data using data 
aspects. A data aspect binds advice (metadata) to data. The advice 
also has semantics that must be observed when the data is used in 
a query. We showed how relational algebra queries could be 
woven with aspect-specific behaviors to correctly implement a 
cross-cutting concern. 

We have several ideas for future work. The first is to clarify the 
mutator and constructor roles for aspects, in particular, designing 
new query syntax to specify mutators for converting advice to 
data. Second we have not yet considered how aspects impact 
grouping for aggregates (e.g., grouping and aggregation in 
temporal relational databases have been extensively researched 
[31]). Third, we have yet to consider data modification. And, 
finally, we believe that GUI tools are critical to making aspects 
easy to use. 
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