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ABSTRACT

A Reverse Skyline query returns all objects whose skyline
contains the query object. In this paper, we consider Re-
verse Skyline query processing where the distance between
attribute values are not necessarily metric. We outline real
world cases that motivate Reverse Skyline processing in such
scenarios. We consider various optimizations to develop ef-
ficient algorithms for Reverse Skyline processing. Firstly,
we consider block-based processing of objects to optimize
on IO costs. We then explore pre-processing to re-arrange
objects on disk to speed-up computational and IO costs.
We then present our main contribution, which is a method
of using group-level reasoning and early pruning to micro-
optimize processing by reducing attribute level comparisons.
An extensive empirical evaluation with real-world datasets
and synthetic data of varying characteristics shows that our
optimization techniques are indeed very effective in dramat-
ically speeding Reverse Skyline processing, both in terms of
computational costs and IO costs.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query Pro-
cessing; H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval—Search Process

1. INTRODUCTION

The skyline operator is a useful tool in multi-criteria simi-
larity search [4]. It is used to assess whether an object dom-
inates another with respect to a query object. An object A
is said to dominate another object B with respect to a query
object if A is at least as similar as B to the query object on
all dimensions under consideration and strictly more similar
in at least one dimension. Consider the problem of searching
for cars with preference for cheaper rates and high mileage
(i.e., a hypothetical query object, a car that provides infi-
nite mileage and can be bought for zero units of currency);
a car that is cheaper than another and also provides higher
mileage would dominate the other. The skyline result set for
a query is computed as the set of objects that are not domi-
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nated by any other. In our example, we would choose not to
suggest the latter car since it is not better than the former
on any attribute considered. This is notably different from
the top-k set, where the k objects that are closest to the
query are retrieved. Assessing the top-k similar objects re-
quires, for every object, a single score that is directly related
to its similarity to the query; this score is often computed as
a monotonic aggregation function (e.g., a weighted sum) of
the similarity to the query based on the various dimensions
considered. The skyline set, on the other hand, does not
depend on any aggregation function (such a function would
be quite hard to specify for many scenarios). Interestingly,
for every point in the skyline, there exists a monotone aggre-
gation function that is maximized at that point. Thus, the
skyline set does not contain any object that is not the best
according to some possible monotonic aggregation function.
The Reverse Skyline [9] (RS) set for a particular query,
is defined as the set of objects that have the query in their
skyline set. Informally, an object in the database is part
of the RS for a query, if the query is in the Skyline set for
that object. This is related to the Reverse Nearest Neigh-
bor (RNN) query [15, 25, 27| that retrieves all objects that
have the query object as it’s nearest neighbor. However, the
RNN, similar to the top-k query, is assessed with respect
to a pre-specified aggregation function (most commonly, a
monotonic aggregate). The Reverse Skyline set is the union
of the RNN set across all possible specifications of mono-
tonic aggregation functions. RS is a convenient replacement
for RNN in cases where one specific monotonic aggregate
is hard to specify. In the hotel example, even if the user is
sure about his preference to the proximity criterion than the
tariff, the correct weighting to use may not be obvious.
The car search example (adapted from [9]) is evidently
simplistic since factors that influence the choice of a partic-
ular car are not just price and mileage. Other factors include
Manufacturer, type of fuel used (e.g., choices may vary from
diesel and petrol to electric and LPG), available colors, set of
safety features and entertainment equipments. The diversity
of attributes makes it difficult to specify a weighting scheme
(and thus an aggregation function) across them to quantify
(by means of a single score) how well a user is likely to like
a specific car. When the set of preferences of a user is spec-
ified in the same manner as a car is specified, a user would
intuitively prefer a car over another if the latter is only at
most as similar (as the former) on all preferences under con-
sideration. This being precisely the notion of domination in
skyline, the choice of cars to suggest to the user, in a recom-
mender system, would be from the skyline set with respect



to the user preferences. The influence of a car can then be
assessed based on their Reverse Skyline (RS) set; the RS
set provides the set of users for which the car is likely to be
a good choice. Such influence assessments are critical to a
dealer of pre-owned cars; he/she may want to source more of
the influential cars since they are more likely to be bought
by customers.

We encountered the problem of having to identify the RS
set, in the context of business continuity planning for a ser-
vice delivery organization that employs thousands of system
administrators to manage hundreds of thousands of servers.
System Administrators are specialists in managing servers
and troubleshooting problems in them. Over time, they gain
expertise in solving problems specific to certain software,
operating systems and specific type of hardware. The ex-
pertise of a system administrator would then be represented
as a vector of such acquired expertise grouped into cate-
gories (e.g., operating system, network type etc.). Servers
could also be mapped to such a space with appropriate val-
ues for the various categories. Now, the choice of admins
for a particular server would be from the skyline set for the
server. Highly influential admins (those who are suitable for
many servers, due to having a larger RS set) are then crit-
ical to the business; heavily skewed influence distribution
among admins and attrition of highly influential admins are
all causes of concern due to obvious reasons. We use the
server scenario as the running example in the rest of the
paper.

A similar scenario arises in choosing retail customers to
send promotional mailing to, for a new offer on a particular
product. Since the retail company would want to choose
customers who are most likely to respond positively, the RS
set is a good choice being the set of users whose preference
to the product is not dominated by other products.

1.1 Non-metric Spaces

Points in a metric space need to satisfy the triangle in-
equality, i.e., d(z,y) +d(y, z) > d(z, z). However, many real
life scenarios involve categorical and set-valued attributes,
where the similarity measures may be non-metric. For ex-
ample, attributes of a server could include the DB installed,
operating system and network card details (categorical) and
the set of software installed on a server (set-valued). Similar-
ities between operating systems come from domain knowl-
edge with the domain expert defining the similarities for
each pair of operating systems. While filling in a matrix
of pairwise operating system similarities as assessed using
experience and domain knowledge, the domain expert can-
not be expected to comply with the metric requirement of
triangle inequality. Such similarities, hence, may not even
be arbitrary metric [1]. We will see in Section 2 that such
non-metric similarity measures are often necessary to model
the conceptual notion of similarity. Attributes where the
similarity between values is non-metric do not have a total
ordering among their values. For example, there is no global
ordering of the operating systems available. An ordering of
values for each attribute can be arrived at only when val-
ues are considered with respect to a chosen value for the
attribute (typically, the value of the query object).

Multi-dimensional indexes such as R-tree are applicable
only when there is an ordering of values for each attribute
(Euclidean space). However, in the case of non-metric simi-
larities, different query objects may take different values for
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an attribute leading to different orderings. It is not possible
to create a single index that can be used for different objects
under consideration; this renders such an approach impracti-
cal. M-tree [8] avoids the need for a Euclidean distance, but
requires the triangle inequality property. In the absence of
triangle inequality property, the similarity between a pair of
objects cannot be reasoned about by knowledge about their
separate similarities to a third object. This makes metric
space indezes (e.g., R-Tree [14], kd-tree [3], M-Tree [8] etc.)
for similarity search inapplicable.

1.2 Our Contributions

In this paper, we address the problem of Reverse Sky-
line retrieval on databases of objects composed of multiple
attributes. We assume a setting where the dissimilarity be-
tween pairs of values of the same attribute may be non-
metric i.e., our techniques do not require that the dissimi-
larities confirm to a criterion such as triangle inequality.

Without the metric assumption, the naive method for Re-
verse Skyline retrieval requires scanning the database, once
for each object O, to confirm the absence or presence of an-
other object O’ that could dominate the query object Q with
respect to O. Since the presence of one such O’ would ex-
clude (i.e., prune) O from the Reverse Skyline set, we could
skip scanning the rest of the database as soon as one such
object is found. However, since objects in the Reverse Sky-
line set are characterized by the absence of any such O’,
a full database scan is necessitated for such objects. This
requires n partial/full scans and has a worst case computa-
tional complexity of O(n?) where n is the number of objects;
such an approach evidently incurs very high IO costs too.

In this paper, we devise approaches that employ the fol-
lowing optimizations, to develop more efficient algorithms
for Reverse Skyline retrieval:

1. Considering objects in contiguous batches (according
to their placement in disk), to optimize on IO costs.

2. Pre-sorting of the database to ensure that objects and
those objects that they could prune be kept close to
each other on disk; this increases the likelihood of ob-
jects and pruners being in the same disk page, thus
reducing IO and computational costs.

3. Group-level reasoning and early pruning using an in-
memory AL-Tree [10] to enable faster processing.

Our main contribution is the technique to use group-level
reasoning and early pruning to speed-up the RS search; we
also present how techniques that use a subset of the above
optimizations fare, thus exposing the utility of each. We
present an extensive empirical evaluation on real and syn-
thetic datasets illustrating the efficiency of the tree based
approach, and confirm it as the algorithm of choice for vir-
tually all possible scenarios including those where the user is
given an option to choose a subset of attributes to perform
the Reverse Skyline search on.

2. RELATED WORK

The need for non-metric similarity functions has been ar-
gued in [13], that says that the triangle inequality property
is too restrictive to model the (dis)similarities as perceived
by humans. [19] opines that the conceptual notion of simi-
larity is centered around various aspects, and that different



aspects may be selected for comparing different pairs of ob-
jects. Such choices of aspects to compare pairs cannot be
pre-determined; this makes metric assumptions inapplicable.
Further, non-metric similarity measures have been found to
be useful in similarity search in various kinds of data rang-
ing from images to object trajectories [26, 5]. [24] points out
specific cases in which each of the metric properties (viz., re-
flexivity, symmetry and triangle inequality) may not be in-
tuitively satisfied. Similarity search on arbitrary non-metric
similarity measures has attracted recent attention [10, 21,
20].

The Skyline operator, upon which the concept of Reverse
Skyline is built, was analyzed in detail for the first time in [4].
Two flavors of the skyline problem have been studied in lit-
erature: (1) Retrieving the skyline for the database [22], (2)
Retrieving the skyline from the database for a given query
object (often called dynamic skyline). The former problem
is applicable only in a database where all attributes are from
ordered domains and there is an obvious intuitive query ob-
ject. In the example of choosing a hotel, such a query object
would be a hotel situated right at the conference center and
has a hypothetical tariff of 0 units of currency. Among the
algorithms that address the more general problem of query
based skyline retrieval (dynamic skyline) and can handle
arbitrary non-metric similarity measures are Block Nested
Loops (BNL), Divide & Conquer [4] and SkylineDFS [21].
The Skyline retrieval problem has also been addressed in
the popular middleware setting [12], where the recent BAA
algorithm [21] has been found to be effective over others [2].

The Reverse Skyline query was introduced in [9] wherein
the BBRS and RSSA algorithms for metric-space data were
proposed. Techniques for metric-space Reverse Skyline re-
trieval over uncertain data [17, 18] and streaming data [29]
have also been proposed. To the best of our knowledge, this
is the first work addressing the problem of Reverse Skyline
retrieval under arbitrary non-metric similarity measures.

Since the skyline comprises of all those objects that are the
nearest neighbor according to some monotonic aggregation
function, the Reverse Skyline query is a generalization of the
Reverse Nearest Neighbor (RNN) query where all possible
monotonic aggregation functions are considered. Although
RNN has been well-studied in metric spaces [15, 23], ap-
proaches that work on arbitrary metric [1] and non-metric
spaces [6, 28] have been scant. The only approaches [6, 28]
that consider RNN processing with arbitrary similarity mea-
sures require specifying the aggregation function at index
creation time (as against query time), making it impractical
to generalize them for Reverse Skyline processing.

3. PROBLEM DEFINITION

We will now define the problem formally. Let D be the
set of objects in the database, each of them having m at-
tributes. The dissimilarity function d;, for the ith attribute,
is a function d; : A; x A; — R where A; is the domain of
the ¢*" attribute. An object X is said to dominate another
object Y with respect to a query object @, (represented as
X ¢ Y) if X is at most as dissimilar from the query on
each attribute as Y and there exists at least one attribute
on which X is more similar to ) than Y:

X =q Y iff:

1. Vs, di(vi(X),v:(Q))
2. 3, di(vi(X),v:(Q))

IN

i(vi(Y),v:(Q)) and

d
di(vi(Y),vi(Q))

N
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where v;(0) is the value of the i'" attribute of object O.
For notational convenience, we will use d;(X, Q) instead of
di(vi(X),v:(Q)) whenever the context is clear. The second
condition above ensures that duplicates (i.e., objects that
have the same value for all attributes) do not dominate one
another. The skyline from a database D for an object X,
denoted as Sp(X) is the set of all objects that have not been
dominated by another object with respect to X

Sp(X)={Y|Y €DA(BZED,Z»xY)}

Definition 1. Reverse Skyline Problem: Given a query
@, an object X from D is in the Reverse Skyline of @ (de-
noted as RSp(Q)) iff @ is in the skyline of X.

RSp(Q) = {X|X € DAQ € Spuioy(X)}

Note that () need not belong to the database D. We can
alternatively denote the same set as:

RSp(Q) = {X|X € DA(BY €D,Y »x Q)}

Thus, to confirm the membership of an object X in RSp(Q),
one need not explicitly compute the set Sp(X) and check for
membership of () in it; it is only necessary to verify whether
there exists an object Y that dominates ) with respect to
X. In particular, one can discard X from RSp(Q) on finding
one such Y since that confirms the absence of @ in Sp(X).
We refer to such a Y that dominates @ with respect to X as
a pruner of X, since its presence excludes X from RSp(Q).

4. REVERSE SKYLINE ALGORITHMS

The simplest approach for Reverse Skyline retrieval would
involve checking, for every object X, whether there exists a
Y that dominates the query with respect to X. Such an al-
gorithm is outlined in Algorithm 1. Assuming that data ob-
jects are arranged contiguously on disk, this approach incurs
many scans of the database (upto |D| full scans) although
some scans can end much earlier upon discovery of a Y.

Alg. 1 Naive

1. Result = ¢

2.vX eD

3. pruned = false

4. VY €eD)Y #X

5. if (Y >=xQ)

6. pruned = true; break;

7. if (Ipruned) Result = Result U{X}

In this paper, we propose the following optimizations to
Reverse Skyline retrieval and propose algorithms to use such
optimizations in an effective manner to improve performance.

1. Block-based Accesses: Data on disk is accessed in
term of pages. Even if only one specific object needs to
be retrieved, typical systems retrieve the entire page
that the object resides in, from disk. Thus, making
full use of objects in a page, when accessing it, would
help reduce IO costs. Accessing disk pages sequentially
would help further reduce IO costs since sequential IOs
are cheaper than random IOs.



2. Pre-Sorting: An arrangement of objects in disk such
that objects that could prune them from the RSp(Q)
set be found closer on disk would reduce the IO costs
(objects may be pruned upon doing fewer page I0s) as
well as computational costs (since objects get pruned
earlier while doing sequential accesses).

3. Group-level Reasoning and Early Pruning: Con-
sider an object X, having a value a for the first at-
tribute A;. No object that takes value b for A; can
dominate Q) with respect to X if b is farther away from
a than is v1(Q), according to di(.,.) (since domination
requires it to be at least as close to X on each at-
tribute, as the query Q). Such group-level reasoning
on objects that share the same value for a specific at-
tribute, eliminates the need to check whether each of
them can dominate () separately; this could lead to
significant speed-ups.

The search for a pruner for any object X can stop as
soon as the first pruner is found (see Line 6 in Algo-
rithm 1). Thus finding a pruner early can significantly
save on computational costs. Group level reasoning en-
ables removing groups of useless candidates. We can
further speed up processing by ordering the checks to
guide the search along more promising paths.

In the rest of this section, we develop algorithms to use
such optimizations to speed up Reverse Skyline processing.
While our main contribution is the technique to do group-
level reasoning and early pruning (leading to many factors
of speed-up as we will see in Section 5), we analyze how each
of the above optimizations contribute to the speed-up.

We will use the dataset in Table 1 and the distance func-
tions in Figure 1 as a running example for the rest of this
paper. This hypothetical dataset of servers has three at-
tributes, the Operating System, Processor and the Database,
taking three, two and three values respectively. It can be
seen that di(.,.) is non-metric; di (M SW, SL)=1.0 is greater
than the sum of the distances di(MSW, RHL)=0.8 and
di(RHL,SL)=0.1. The dissimilarities between Processors,
d> is specified as da(AM D, AM D) = 0, d2(Intel, Intel) = 0
and d2(AMD, Intel) = 0.5. The ds(.,.) function lists dis-
similarities between the various D Bs. Now, consider a query
object Q = [MSW,Intel, DB2]; the fifth column in Ta-
ble 1 lists the membership of each object in RSp(Q) for
this query. For each object marked as not in the result, the
pruners are also listed. For example, it is possible to prune

Oy = [RHL, AM D, Informiz] by Oy = [MSW, AMD, DB2),

since O2 is closer than the query to O; on the second at-
tribute (i.e., do(AM D, AMD) < d2(AM D, Intel) from Fig-
ure 1) and at the same distance as the query to O; on the
remaining. Thus, O; is listed a pruner for Os. The result
set for this query is {Os,Og}, since they do not have any
pruners.

dq MSwW RHL SL dg Informix DB2 Oracle
MSW 0.0 0.8 1.0 Informix 0.0 0.5 0.9
RHL 0.8 0.0 0.1 DB2 0.5 0.0 0.4

SL 1.0 0.1 0.0 Oracle 0.9 0.4 0.0

Figure 1: Distance Functions.

1d OS Name Processor DB Name in RSp(Q)?
01 | MS Windows (MSW) AMD DB2 x {4}

Oy | RedHat Linux (RHL) AMD Informix x{1,4,5}
O3 SuSE Linux (SL) Intel Oracle v

04 | MS Windows (MSW) AMD DB2 x{1}

O5 | RedHat Linux (RHL) AMD Informix x{1,2,4}
Og MS Windows (MSW) Intel DB2 v

Table 1: Sample dataset and RS for Q = [MSW, Intel, D B2]

Alg. 2 BRS

1. / x first phase * /
2. while(D has not been fully processed)
load next batch of objects into memory
VX loaded into memory
VY loaded into memory,Y # X
if(Y =x Q)
mark X as pruned; break;
8. write unpruned objects into disk
9. / * second phase * |
10. let R = objects written to disk in first phase
11. while(R has not been fully processed)

No ok w

12. load next batch of objects(R') into memory

13. for each disk page of D

14. load the objects in that page D', into memory
15. VX e R

16. VY eD.Y #£X

17. if(Y =x Q)

18. remove X from R'; break;

19. output R’

4.1 Block Reverse Skyline (BRS)

When the available memory is sufficient to hold the entire
database, Algorithm 1 may be employed in memory after a
single scan to load the entire database into memory. How-
ever, typical databases are too large to fit in memory. Now,
we describe an approach that performs block-wise accesses
to reduce IO costs. Our block based approach, BRS is il-
lustrated in Algorithm 2 and operates in two phases.

First Phase: BRS, works in batches and loads as much
of the database as possible, into memory, during each such
batch (line 3). Once such a batch is loaded, objects within
it, that have pruners within the batch itself (verified by do-
ing intra-batch pairwise comparisons) are marked (lines 4-7).
The remaining objects are then written out into a separate
area on disk (line 8). When the entire database has been
processed in such batches, the writing area would have a su-
perset of RSp(Q) (denoted as R in line 10). This is because
only intra-batch pruning has been performed; objects for
whom all pruners were outside its own batch would still find
themselves in the writing area. The false positives among
them are then filtered in the second phase.

Second Phase: This phase also works in batches, by
loading as many of objects from the first phase results as
possible, into memory (line 12). For each such batch of first
phase results, objects from the original database are read
page by page (lines 13-14) and any objects that they can
prune from among the first phase results are excluded (lines
17-18). At the end of the complete sequential scan of the
original database to affect such pruning, only true positives
remain. These form a subset of RSp(Q), and are output



(line 19). Upon processing all of the first phase results in
such batches, we would have output the entire result set.
One page memory is used to scan the original database and
the rest of the memory is used to load the first phase results.

Consider a hypothetical page size that can hold only one
object, and a memory size of 3 pages, on our running exam-
ple. Thus, the first batch in the first phase would consider
the first three objects. Os is pruned by O; by intra-batch
pruning, whereas O; and O3z are carried forward to the next
phase. Similarly, the intra-batch pruning in the second batch
can only prune Os. Thus, the set of first phase results, R
would be {O1,03,04,06}. In the second phase, since we
want to leave one page for scanning the database, we would
process the partial result in batches of at most 2 pages (and
hence, 2 objects), {O1, 03} and {O4, Og}. Among them, O
would get pruned when O, is encountered in the scan of the
database, whereas O3 would be output. Similarly, Os is the
output in the second batch, thus completing the full result
set (i.e., {O3,06}).

IO Costs: The first phase is a simple sequential scan of
the database, in addition to random accesses to go and write
out the results at the end of processing each batch and to
return to resume the scan of the next batch. The second
phase incurs one sequential scan of the database for each
batch of first phase results considered, and a random access
to return to resume scanning the next batch.

4.2 Sort Reverse Skyline (SRS)

In the BRS approach, an object not in the result could
be either pruned in the first phase by objects in the same
batch or in the second phase where we scan for pruners in the
entire database. Pruning more number of objects in the first
phase itself would reduce the computational cost (since we
only compare them to same batch objects in the first phase)
and the IO cost (since fewer objects have to be processed in
the second phase, which could save on database scans).

It can be observed that the chance of an object pruning
another increases if they share the same value for some of
their attributes. This is due to the fact that the dissimilarity
of a value and itself is intuitively zero (i.e., d;(x,z)=0) for
most dissimilarity functions. Thus, if two objects take the
same value for an attribute, they have the smallest possible
dissimilarity (i.e., 0) on that attribute. Whether one can
prune another with respect to any query is decided based
only on the other attributes. Since the first and sixth objects
in our running example take the same value for the OS and
DB attributes, the following is the condition upon which Og
can be pruned by O1, for any query Q:

ds(Intel, AM D) < d3(Intel,v3(Q))

Reducing the number of attributes upon which pruning de-
pends, increases the chances of pruning since only fewer con-
ditions need be satisfied. Thus, it is useful to keep objects
that share the same value for many attributes together on
disk as they could be part of the same batch and get pruned
in the first phase.

In order to achieve this, we employ a simple mechanism,
a simple multi-attribute sort of the database.The database
is ordered according to the first attribute values , and the
objects that take the same value for the first attribute are
ordered according to the second attribute values and so on.
The actual ordering among different values of an attribute
is immaterial while sorting. This sorting is only to ensure
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Approach 15t Phase R 27d phase #27d Phase
Pruning Pruning Batches
BRS {02}, {05} {01,03,04,06} | {O1},{04} 2
SRS {01,04},{02,05} {03, 06} {3 1

Table 2: Performance on Running Example

that objects that take the same values for the attributes are
clustered together. After such a sort, the order of object ids
in our running example would be {O1, O4, Og, O2,Os5,Os3}.
It may be noted that this serves a different purpose than the
sort in Sort-First-Skyline [7], where the sort is done on nu-
merical attributes to ensure that an object cannot be pruned
by an object occurring after it. In our case, objects beyond
one can potentially prune it and vice versa, since there is no
inherent order among the values due to the non-metric na-
ture. This sort is a one-time effort, done as a pre-processing
step, using any of the external sorting algorithms?.

The query time processing for SRS is very similar to the
BRS approach, so we haven’t listed it explicitly. The only
difference is that while searching for pruners of X (lines 5-
7), we consider Y in the order of their similarities to X, to
enable finding the pruner early. Thus, for each X we first
consider the objects immediately next to it in either direc-
tion of the sorted order, followed by objects at separation
distance of 2 in the sorted order and so on.

To facilitate understanding of the performance of SRS
on our running example, we reproduce the pruning relation-
ships (a — B suggesting that a can prune each object in
B): {01 = {02,04,05}, O2 — {05}, Os — {01,02, 05},
Os — {O2}}. With a memory size of 3 pages, one per object,
and the sorted ordering {O1,04,06,02,05,03}, {01,04,02,05}
are pruned by intra-batch prunings. Thus, we are left with
R={03,0¢}. These are considered in one batch in the sec-
ond phase; however, since they do not have pruners in D,
they get output. Table 2 contrasts the approaches on the
running example. Pre-sorting improves 1°* phase pruning
and SRS is able to execute the 2"? phase in one batch,
incurring one less database scan as compared to BRS.

4.3 Tree Reverse Skyline (TRS)

Consider Oy ([MSW, AM D, DB2]) and Og ([MSW, Intel,
DB2)]) in our running example and the process of checking
whether O; would prune Os for our query, [MSW, Intel,
DB2]. Our objective is to check whether the following prun-
ing condition holds:

Vi, di(Os, 01) < di(Os, Q) A Fi,di(Os, 01) < di(Os, Q)

While checking whether this condition holds across attributes,
we could abort as soon as we find an attribute j where
d;(O6,01) > d;(Os, Q) since that entails that O1 would not
prune Og (the above condition can no longer be satisfied).
If we start examining attributes from the first, such a con-
dition arises at the 2"¢ attribute since dz(Intel, AM D) >
da(Intel, Intel). Thus, we process this check in 2 compar-
isons, instead of 3 (the number of attributes). It can be
observed that any other object that shares the same first
two attribute values as O1, would also not satisfy the prun-
ing condition. In the example, Os shares the same prefix
of length 3 as O;. Upon performing two comparisons, and
failing at the second, we would conclude that no object that
shares the same length 2 prefix (in our case, neither O; or

1
http://en.wikipedia.org/wiki/External_sorting



Alg. 3 TRS

1. /* first phase  /
2. while(D has not been fully processed)
load next batch of objects from D into tree M
Ve loaded into memory

if (IsPrunable(c, M \ c))

mark ¢ as pruned

write unpruned objects into disk
8. / * second phase * /|
9. let R = objects written to disk in first phase
10. while(R has not been fully processed)

N otk w

11. load next batch of objects from R into tree M
12. for each disk page of D

13. load the objects in that page D', into memory
14. Ve € D

15. M = prune(e, M)

16. output objects remaining in M

O4) would prune Og. Thus, our check for whether either of
01 or O4 would prune Og is complete in 2 checks, as against
4 in the object-by-object approach. To achieve this, we need
to organize the objects according to their prefixes, so that
we can use common checks to reason about groups of ob-
jects. By using a structure where objects share paths from
the root, as long as they share attribute values, we optimize
on the number of comparisons. We expand this illustrative
case to a full-fledged approach herein.

The overall framework of the approach remains similar
to Block-RS and is presented in Algorithm 3; similar to
SRS, TRS works on a sorted dataset. The crux of the
optimization lies in the pruning, different kinds of which
occur in the first and second phases (line 5 and 15); we
describe these in detail.

We facilitate group level reasoning based on shared pre-
fixes to aid pruning using an in-memory variant of the AL-
Tree [10]. Consider the database D and the chosen ordering
of attributes OS, Processor and DB. The AL-Tree for D
and the chosen ordering is then precisely the prefix tree? for
the ordered database. For usage in Reverse Skyline process-
ing, we are not concerned with sibling ordering and disk-
packing and will use it as an in-memory data structure. To
allow for duplicates, we will store a count in each leaf node
denoting the number of objects that take the specific choice
of values for various attributes as is denoted by the leaf. In
our running example where we consider objects in batches of
3 each, the prefix trees generated are illustrated in Figure 2.

In each of the phases when we load objects, we incremen-
tally build up a prefix tree of loaded objects. It may be
noted that we are still dealing in batches of objects; a tree
is built per batch, and at no point are we holding the tree
corresponding to the entire database in memory. Adding an
object to a prefix tree is simple; we follow the path in the
tree (starting from the root) corresponding to the sequence
of values taken by the object, creating a new child when a
child is not already available for a particular attribute value.
Upon reaching an existent leaf (in which case an exact du-
plicate of that object is already present in the tree), the
counter at the leaf is incremented.

Pruning operations happen in both the phases:

2
http://en.wikipedia.org/wiki/Trie
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Alg. 4 IsPrunable(c = [c1,...,cm],tree M)
1. Stack = ¢
2. Root.FoundCloser = false
3. Stack.push(Root)
4. while(Stack # ¢)
5. s = Stack.pop()
6. if(s.isLeaf() A s.FoundCloser)
7. return true
8. Vp € s.children,
(in increasing order of number of descendants)
9. if(dp.level (C> p) S dple'uel (07 q))
10. p.FoundCloser = s.FoundCloser
\/(dp.le'uel (C7 p) < dplevel (07 q))
11. Stack.push(p)

12. return false

e First Phase: After a batch of objects from D has been
loaded into a tree, we assess, for each object, whether
it could be pruned by other objects in the tree. The
IsPrunable(c, M) function determines whether ¢ can
be pruned by objects in M. During this operation, we
avoid the obvious special case of the occurrence of ¢ in
M from pruning itself by removing ¢ from M before
calling IsPrunable (line 5).

e Second Phase: When a batch of first phase results
have been loaded into a tree, we identify, for each ob-
ject in D, the set of objects in the tree that it could
prune. The Prune(e, M) function modifies M to ex-
clude all objects that can be pruned by e (other than
e itself, if present in M).

T - -
R1Rooj RZROO}\ R3RO(},\
o b I A
I\ o Rfi\\ 7(sL) ( < 75«’?\;;\)
1(Msw) NN/ ;st) U
PO D
/ / \ y N
2(AMD)  4(Intel ) 8(AMD)  (Intel | 73(intel) 16(Intel )
N/ N4 N S~ 4 A 4
X I I T T
N N N N N
3(pB2) 5(DB2) 10{ntormi)  77(racte) 14{orac) 17(DB2)
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2 i 2 1 Kl T
Batch 1 Batch 2 Phase 2

Figure 2: Trees for 15¢ phase batches and 2% phase.

IsPrunable(c,M): We now describe our approach to check
whether an object ¢ = [c1, ¢2,. .., cm] can be pruned by ob-
jects in the tree M (Algorithm 4). To enable faster pro-
cessing, our strategy is to eliminate useless paths quickly
(through group level reasoning) and prioritize promising paths
while checking for domination. The traversal proceeds in a
depth-first style, where nodes are popped from the stack
(line 5) and replaced by their children (lines 8-11). We also
associate with each stack entry, a flag, FoundCloser. Con-
sider an internal node, n at level n; which has fixed the
values [u1,usg, ..., un,] for the first n; attributes. Now, the
FoundCloser flag would be set to the following condition:

di(c1,u1) < di(er,vi(Q))V. . .dn,(Cny, Un;) < dn,(cny, vn, (Q))

Thus, the FoundCloser flag, for an internal node, records
whether a value that is strictly closer to the corresponding
value in ¢ than that in @, has been encountered yet.



Alg. 5 Prune(e = [e1,...,em], tree M)

. Stack = ¢
. Root.FoundCloser = false
. Stack.push(Root)
while(Stack # ¢)
s = Stack.pop()
if(s.isLeaf() A s.FoundCloser)
remove s from the tree
Vp € s.children
if(dp.lez)el (p, 6) S dp.level (P, q))
0. p.FoundCloser = s.FoundCloser
V(dpAlevel (p; 6) < dpAleuel (p7 q))
11. Stack.push(p)
12. return M

200N DU N

FEarly elimination of useless paths is achieved by pushing
only such children to the stack that do not have an attribute
that is more dissimilar to ¢ than the query value for the at-
tribute (line 9). Among the qualifying children, those that
have more descendants are more promising, since the prob-
ability of finding a pruner among them is correspondingly
higher. Thus, we push children on the stack in the increas-
ing order of number of descendants (line 8), so that the ones
with more descendants gets processed earlier (LIFO order).
Before pushing a child on to the stack, the FoundCloser flag
is set accordingly (line 10) using the additional information
available from the newly considered attribute. Upon en-
countering a leaf node to process that has its FoundCloser
flag set (lines 6-7), we can be sure that it can prune ¢ since
it has a value that is strictly closer to ¢ than the query is
(since the FoundCloser flag is set) and it doesnt have any
attribute that is farther away than the query is (since it was
pushed into the stack in a previous step).

Prune(e,M): The Prune(.,.) function (Algorithm 5), al-
though similar to Algorithm 4, performs a very different
task; that of removing all objects from M that can be pruned
by e. The traversal is in depth first manner; however, we do
not enforce any ordering while pushing nodes to the stack.
This is because we intend to prune all nodes that are prun-
able by e, unlike in Algorithm 4 where our objective was to
find one pruner as soon as possible. The FoundCloser flag,
however, has a different semantics. For an internal node
n at level n; taking values [ui,...,un,], the FoundCloser
represents the condition:

dl(U1, 61) < d; (u17 vl(Q))\/. .

Corresponding modifications are illustrated in lines 9 and
10. Upon encountering a leaf node with its FoundCloser
set, we would remove it from the tree (as against returning
from the function as in Algorithm 4).

TRS on the Running Example: Now, we analyze the
gains achieved by the T'RS approach on our running exam-
ple, for query Q = [MSW,Intel, DB2]. Having built the
first batch tree in Figure 2, we now would like to check
whether each of the first batch objects can be pruned by
others in the tree. Consider checking for pruners of O
[MSW,AM D, DB2]; lines 4-8 would process R1, 1, 2, 3
and 4, in that order. The distance check in line 10 happens
as long as FoundCloser is false; thus, it happens only for
nodes 1 and 2, since it is set to false upon considering 2. 3
would then get popped first, and since the conditions on line

<y (Uny eny) < dny (Ung, vn (Q))
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1D TRS SRS
Phl | Ph2 | Total | Ph 1 | Ph2 | Total

0, 3 4 7 3 4 7
Oy 3 4 7 3 4 7
Og 2 3 5 4 3 7
Oy 1 3 4 3 3 6
O3 1 3 4 3 3 6
O3 2 1 3 4 1 5
Total 30 38

Table 3: Performance on Running Example (# Checks)

6 are satisfied, the IsPruned(.,.) procedure would return
true. Thus, the checking for pruners of [MSW,AMD,DB2]
involves three distance checks, one each when nodes 1, 2 and
4 are pushed on to the stack. While checking for pruners of
[MSW, Intel, DB2] (Og), lines 4-8 would push just R and
1 into the stack. Note that nodes 4 and 5 would have been
removed from the tree prior to calling IsPrunable (line 5
of Algorithm 3).Similar to the earlier case, we incur 1 dis-
tance check while pushing 1. When 1 is popped and pro-
cessed, we check whether its child 2 could be pushed to the
stack; however the condition at line 9 fails in this case, and
2 is not added to the stack. Thus, the check for pruners of
[MSW,Intel, DB2] incurs 2 checks, as against 4 checks re-
quired in SRS (see Table 3). In our second phase, our tree
M is built out of the objects {Os,Os}. The tree is use-
ful to save on checks when multiple objects share parts of
their paths (from the root) in the tree. However, since the
paths for these two objects are distinct in the tree construc-
tion (Ref. Figure 2), the Prune(.,.) method makes as many
checks as SRS. We enumerate the checks made, in Table 3.
The number of checks made by T'RS is seen to be 21% lesser
than those made by SRS. We will see that the savings is
more pronounced in larger datasets in Section 5.

S. EXPERIMENTAL EVALUATION

We now describe our experimental study where we com-
pare the proposed RS algorithms on real and synthetic data.

5.1 Experimental Setup

Our experiments were run on an IBM X Series with Win-
dows Server 2003 having a Pentium 3.4 GHz processor with
2.0GB RAM. We compare the algorithms based on disk ac-
cess (I0) costs, computational costs and response times. 10
Costs are measured in terms of page I0s. Random IO is
costlier than sequential 10; we plot these separately and con-
sistently use a page size of 32KB in our experiments. The
computational time is the sole indicator of the cost when the
database can be held in memory. To isolate the computa-
tional costs from the IO costs, we use a scenario where all
the objects are loaded in memory; all costs become purely
computational (since IO is eliminated) then. The response
time, which indicates the total time for a query, is the most
significant measure, being the measure visible to the user.
We measure this as the running time of a program where
all the disk writes and reads are performed as necessary, by
writing and reading from files on disk.

AL-Tree requires an ordering of attributes. Arranging the
attributes in the increasing order of number of distinct values
would enable better group level reasoning due to larger sized
groups towards the root. Top-k query processing benefits
from such an ordering [10]; we use the same strategy here.
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5.2 Datasets

The ForestCover dataset® contains data of the Forest
Cover type for 581012 cells, each of size 30x30 meters over
regions in the US. The attributes chosen from the dataset
had 67,551,2,700,2,7 and 2 distinct values (there were as
many as 44 binary attributes among the 55 attributes present)
leading to a very low data density of 0.04%. The Census-
Income dataset” is a denser containing census data for 199523
people from the Los Angeles area. We choose a subset of at-
tributes, namely Age, Education, Number of Minor Family
Members, Number of Weeks Worked and Number of Em-
ployees from the dataset, based on their utility in measur-
ing similarities between people. The attributes chosen have
91,17,5,53 and 7 distinct values respectively, leading to a
high density of 6.9%. The similarity between different values
of attributes are chosen randomly from the interval [0 — 1].

Usage of synthetic data allows us to vary dataset param-
eters such as number of distinct values per attribute, num-
ber of data points etc. We generate synthetic data from a
normal distribution, since normal distributions are said to
characterize real data. Normal data is characterized by a
high density around the middle values; this makes it tricky
to generate non-metric space data since there is no global
ordering of values. However, we assume an ordering of val-
ues for each attribute, and generate data to ensure that the
distribution is normal and hence is concentrated around the
middle values in the chosen ordering. We still generate sim-
ilarities between values randomly; hence values around the
middle of the chosen ordering are not designed to have high
similarities to each other. We use a uniform random number
generator and rejection sampling®. We choose the variance
to be 3, and the mean to be the index of the middle attribute
in the ordering chosen for data generation.

3
http://archive.ics.uci.edu/ml/datasets/Covertype
http://kdd.ics.uci.edu/databases/census-income/census-income.html

http://en.wikipedia.org/wiki/Rejection_Sampling
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Figure 8: Resp Time (ms) vs. % Mem-
ory (FC)

5.3 Performance on Real Data

This section details our analyses of the techniques on the
real datasets, Census-Income (CI) and ForestCover (FC).

Computational Costs

The computational costs of the various techniques, across
varying memory sizes (as percentage of dataset size), are il-
lustrated in Figures 3 and 4 respectively. The relative trends
are similar across the datasets; TRS is roughly 3 times and
6 times faster than SRS and BRS respectively. The group
level reasoning and early pruning help reduce the computa-
tional costs for TRS significantly. The CI dataset is rela-
tively dense, and small, both contributing to lesser compu-
tational costs. Thus, TRS takes just 2 seconds of CPU to
complete processing. On the other hand, TRS takes upto 25
seconds on the sparser and bigger FC dataset, since sparse-
ness makes it harder to find pruners. Extremely small mem-
ory sizes may impede loading a reasonable sample of the
dataset in a batch in the first phase, thus making the first
phase redundant since pruning would be ineffective within
small batches. However, even with memory sizes of 4%,
these effects are not visible, and computation costs remain
consistent across increasing memory sizes thereon.

10 Costs

SRS is designed to have better first phase pruning, due to
sorting. Thus, it is expected to have fewer first phase results,
leading to lesser iterations in the second phase as compared
to BRS. TRS further reduces the IO cost by virtue of using
a compact structure to represent the in memory data. The
AL-Tree, being a prefix tree, has only one node to represent
each value of the first attribute, regardless of the number of
objects that have that value. By maintaining objects as a
tree, TRS is able to accommodate more objects using the
same amount of available memory. Since we include objects
in a batch as long as we have free memory, batch sizes in the
TRS approach could potentially be higher than those in BRS
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Figure 10:

and SRS. This is expected to lead to fewer batches in the
first phase, fewer first phase results and consequently fewer
iterations in the second phase, leading to IO savings. Inter-
estingly, in each of our experiments, the first phase pruning
for all the approaches was effective enough to lead to a very
small number of results to be processed in the second phase;
thus, the second phase was always completed in a single
pass since the intermediate results were small enough and
could be loaded entire into memory. Thus, all the algorithms
needed to perform just two sequential scans; consequently,
sequential IO costs of all of them were found to be similar.
However, the increased number of partial results in BRS and
SRS as compared to TRS reflects as increased random 10
costs for them. We present the 1O cost charts for CI and FC
datasets in Figures 5 and 6 respectively. In these charts, the
sequential access costs (black lines) are plotted on the left
Y-axis whereas the random accesses incurred (grey lines) are
plotted on the right Y-axis. The random IO costs are seen
to reduce with increasing memory sizes due to larger batch
sizes and consequent reduction in intermediate results.

It may also be worth noting that IO costs contribute upto
65% of the total response time for queries on the CI dataset,
whereas it is much lesser for the FC dataset. This increased
contribution of IO costs to the total running time gets more
pronounced with increasing density of datasets. This is ex-
pected since increased density improves the chances of find-
ing pruners in the same block, resulting in better pruning
and thus significantly reduced computational costs. In the
very sparse synthetic datasets that we experiment with, in
the next section, the total running times will be seen to be
dominated largely by the computational expenses.

Response Times

The Reverse Skyline algorithms work by doing efficient pair-
wise comparisons; the pairwise comparison approach makes
them quadratic in complexity. Thus, unlike linear algo-
rithms for other similarity search operators [10, 21], the re-
sponse time is dominated by the computational costs. Hence,
the relative margins and absolute response times remain sim-
ilar to those observed for computational costs, as seen in
Figures 7 and 8 for CI and FC respectively. The TRS ap-
proach is seen to respond many times faster than the other
approaches on varying memory sizes and datasets confirm-
ing it is the algorithm of choice for most scenarios.

5.4 Performance on Synthetic Data

‘We now compare the the approaches on synthetic normal
data of varying characteristics. Unless otherwise mentioned,
the available memory size is kept at 10% of the dataset size.

Resp Time (ms) vs.
Memory (Synthetic Normal Data)
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15 20 0.00132 0.00232 0.00332

0.00032
% Figure 11: Computation (ms) vs. Den-
sity (Varying Dataset Size)
Varying Memory Sizes

Similar to our studies on real-world datasets, we study the
trends with varying memory sizes on a dataset of 1 million
objects and 5 attributes, with 50 values per attribute; we
vary the available memory from 5% to 20%. The IO trends
(Figure 9) are very similar to those observed for the real
datasets in Figures 5 and 6. Relative behavior of the tech-
niques in terms of response times as shown in Figure 10 is
also similar to those observed for the real datasets.

Varying Dataset Sizes

For this experiment, we vary the dataset size from 0.1 to
1.2 million keeping the number of attributes and number of
values per attribute constant at 5 and 50 respectively. This
varies the data density from 0.0003 to 0.003. The compu-
tational time, IO costs and response times are plotted in
Figures 11, 12 (the BRS line closely follows the SRS line in
certain charts making it hardly visible) and 13 respectively.
Computational time, as expected, is seen to take the bulk of
the response time for each of the techniques. TRS is seen to
outperform BRS by upto an order of magnitude and SRS by
a factor of 5 in terms of computational costs and response
time. BRS and SRS are seen to follow each other closely in
terms of sequential IO costs whereas TRS outperforms the
others (as expected) in terms of random IOs; TRS is less
expensive in terms of IO too and incurs half as much of 10
costs as the other approaches on the average.

Varying Number of Values per Attribute

We now keep the dataset size constant at 1 million and and
vary the number of values per attribute from 45 to 70 in
steps of 5 in a 5-attribute dataset, thus varying the density
from 0.0005 to 0.005. With changing number of values per
attribute, the dataset itself changes, thus leading to different
result sets and result set sizes. This leads to widely varying
computational costs (Ref. Figure 14); however, TRS is seen
to outperform BRS and SRS by factors of 6 and 3 on an
average. The IO behavior (Figure 15) is similar to ones ob-
served earlier; the gap between TRS and others on random
1Os, however, is seen to be wider here. The Response Times
are once again dominated by computational expenses (Ref.
Figure 16) with TRS outperforming the other approaches
by upto 3-6 times.

Varying Number of Attributes

TRS relies on the effectiveness of a prefix-tree based struc-
ture whose depth is the number of attributes; deeper struc-
tures enable reasoning based on smaller groups closer to the
leaf, whereas shallower structures have larger subsets at each
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node. The possibility of finding pruners is significantly re-
duced with increased number of attributes since there are
more conditions to be satisfied to enable pruning. We now
analyze the performance of the techniques on a dataset size
of 1 million, with 50 values per attribute, varying the num-
ber of attributes from 3 to 7 (in the process, varying the
density from 8 to 1.28E-6). IO costs (Figure 17) show sim-
ilar trends as in earlier experiments, with the techniques
incurring similar sequential IO costs and TRS faring better
in terms of random IOs. As in other cases, the response
time (Figure 18, in logarithmic scale) follows the computa-
tional expense trends and TRS responds upto 5 times faster
than SRS and upto 8 times faster than BRS, on the average.
This shows that the incremental gains of group level reason-
ing and early pruning enabled by TRS scales well with the
number of attributes.

5.5 Pre-processing Costs

SRS and TRS both have an additional pre-processing step
of sorting the database. The sorting is independent of the
query and is an one-time operation. External sorting® algo-
rithms sort huge databases that cannot be loaded entirely
into memory by loading parts of the database to perform an
in-memory sort, and then merging the partial results effi-
ciently. External Sorting algorithms of today can sort GBs of
data within a few minutes’. We used the SmallText toolkit®
to gauge the pre-processing costs over the datasets that we
used in our experiments. With the memory set to 10% of
the dataset size, the SmallText external sorting procedure
took 3.2 seconds to sort the ForestCover dataset and 2.1
seconds to sort the Census-Income dataset. The synthetic
normal 5-attribute dataset of 1 million objects took 4.2 sec-
onds to get sorted. Thus, the pre-processing costs are seen
to be negligible, for all practical settings.

5.6 Alternative Data Orderings and Querying
on Attribute Subsets

In the SRS and TRS methods, the objects are sorted so
that objects that share attribute values are clustered close
to each other. We use a simple multi-dimensional sort based
on an attribute ordering. When the number of values per at-
tribute vary widely across attributes, the multi-dimensional
sort with attributes that take lesser number of values at the
top enables good group level reasoning. Additionally, the
multi-dimensional sort has been found to be beneficial in
top-k[10] and skyline query processing[21].

6
http://en.wikipedia.org/wiki/External_sorting
http://brie.di.unipi.it/smalltext/utils.html

http://brie.di.unipi.it/smalltext/

Figure 13: Resp Time (ms) vs. Density
(Varying Dataset Size)
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In certain cases, users may want to perform Reverse Sky-
line queries on subsets of attributes; for example, among the
many attributes of hotels, a user may be interested in only
the price and proximity to the beach. The TRS and SRS
approaches can be trivially adapted to consider only the
chosen subset of attributes while processing Reverse Sky-
line queries. However, the chosen sort order may not match
the order according to the subsets of the attributes cho-
sen. For example, consider 5 attributes and the ordering
[A1, Aa, A3, A4, As] for multi-dimensional sort in SRS and
TRS. The subset of attributes {Ai, A2, A3} matches this
order, whereas the subset {As, A4, A5} does not. Resorting
the objects based on the chosen subset of attributes at query
time is very expensive and not a feasible option. Among
two subsets of attributes { A1, Az, As} and {As, A4, As} that
could be chosen by the user, SRS/TRS would perform bet-
ter on the first set since the chosen attributes occur at the
top of the ordering in the multi-dimensional sort. In the sec-
ond case, the chosen sort order is not favorable since objects
having the same values for { A3, A4, As} are not clustered to-
gether.In summary, the SRS/TRS approaches are expected
to suffer when the chosen attributes do not form a prefix
of the chosen attribute ordering. It may be noted that the
ordering is more critical to the SRS approach. For exam-
ple, if an object and its pruner are located 100 objects away,
0O(100) comparisons are required in SRS since the search for
a pruner radiates away from the object in consideration un-
til a pruner is found. On the other hand, TRS would need
only as many comparisons as the number of attributes as
long as an object and its pruner are in the same block.

To address this issue, we need to cluster the objects in
a way that is fair to all the dimensions. Multi-dimensional
tiling [11] has been found to be effective in affecting such
multi-dimensional clustering of objects. Tiles are hyper-
rectangles in the multi-dimensional space, formed by di-
viding the range of attribute values along each dimension.
We explore the utility of tiling as an alternative to multi-
dimensional sort, in our approaches for Reverse Skyline search.
The objects within a tile are sorted as before and the tiles
are ordered using a Z-order’. Such an ordering is expected
to be less sensitive to the exact choice of the subset of
attributes under consideration. We now compare the dif-
ferent orderings (multi-dimensional sort and tile based or-
dering) and the block and tree approaches that use them.
We refer to the block based and tree-based approaches on
the tile based ordering as T-SRS and T-T RS respectively.
The analogous approaches on data ordered according to the
multi-dimensional sort are simply the SRS and T RS ap-

“http://en.wikipedia.org/wiki/Z-order_(curve)



250000

1200

200000
1000

150000

Seq IO
1

—-BRS
- SRS
—4—TRS

~*=BRS 100000 [
&SRS
400 --BRS
200 —+TRS 50000 /_J\-f\- 400 — &SRS
200

0

—4—TRS

0.0054 0.0032 0.002 0.0013 0.0009 0.0006

Figure 15: IO Cost vs. Density (Vary-

ing # values) (Varying # values)

proaches. Response times on a dataset with 100k objects
with 7 attributes each (50 values per attribute) are plot-
ted against various selections of attribute subsets (for the
query), in Figure 19. For the SRS method, the sort or-
der used is [A1, A2, Az, Aa, As, Ag, A7]. As expected, SRS is
seen to deteriorate when attributes that are at the top of
the sorting order are omitted. The analogous approach, T-
SRS is seen to be more insensitive to the attribute ordering.
Similar is the case with T-TRS where the response times do
not vary much across attribute selections. However, more
interestingly, the TRS is able to give similar response times
as T-TRS and even outperforms it when the first attribute
in the sorted order is among the selected attributes. In sum-
mary, for querying on attribute subsets, tiling is effective for
the SRS method, whereas the simple multi-dimensional sort
is good enough for the TRS method. It also confirms the
effectiveness of TRS across varying selections of attribute
subsets to perform the Reverse Skyline Search on.

5.7 Applicability of Metric Space Approaches

TRS (as well as BRS and SRS) is a multi-pass algorithm,
incurring one pass in the first phase and as many passes as
there are intermediate result batches, in the second. How-
ever, empirically, the intermediate result sets are seen to be
always small enough to be loaded into memory in one batch,
thus necessitating just one pass in the second phase. Reverse
skyline result sets are often small (often of cardinality 10-
100, similar to observations in [9]) and intermediate results
were found to be ranging only upto 4-5 times of that; thus
each of our experiments needed just two passes in total.

We now consider the applicability of metric space ap-
proaches in our setting. Once a query is specified, the ob-
jects in the database can now be thought of as being in
a euclidean space with the query object at the origin, and
the co-ordinates being represented by the distance from the
query object, on the respective dimension. Usage of metric
space approaches on this Euclidean space (that is formed
at query-time) requires construction of metric space indexes
(e.g., R-tree) at query time. Recent R-tree construction ap-
proaches [16] work by reading the database in batches, cre-
ating batch-wise R-trees and merging them with global disk-
resident R-tree. At the minimum, this involves reading the
database once, and writing out as much information as twice
of the database size (the data & index); thus incurs IO costs
equivalent to three sequential scans of the database even in
the hypothetical case where R-tree creation involves only
sequential accesses. In practice, updating the disk-resident
R-tree with another would require many random accesses,
since the access pattern is not inherently sequential. This
expensive query-time step of creating R-trees rules out the
applicability of metric space approaches in our setting.
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6. HANDLING NUMERIC ATTRIBUTES

If all the attributes are numeric (and thus metric), existing
techniques for Reverse Skyline retrieval [9] can be used. The
TRS algorithm presented in this paper is useful for categor-
ical attributes that have non-metric dissimilarity measures.
However, many real-world datasets have a combination of
numeric and categorical attributes; thus it would be benefi-
cial if TRS could handle numeric attributes as well. Group
level reasoning, as enabled by TRS, becomes useful when
many objects take the same value for an attribute. Such
cases are common in the case of categorical attributes whose
values come from a finite domain. However, this rarely holds
in the case of continuous spaces (infinite domains) like nu-
meric attributes, thus diminishing the effectiveness of rea-
soning on groups. We now briefly outline how discretiza-
tion is an effective method to leverage group-level reasoning
within the Tree-RS framework.

First Phase: Let the lower and upper bounds of the
buckets to which attribute ¢ of an object o is mapped to
be denoted by o0;.l and o;.u respectively, post-discretization.
Consider checking whether an object ¢ could have pruners
under an internal node p (as in Algorithm 4). The condition
in line 9 (and similar conditions) could now be replaced by:

maz{d;(c;.l, piu), di(ciu,pil)} <
min{d;(ci.l,q.u),di(ci-u,¢.1)}

This checks whether the maximum dissimilarity between
buckets to which v;(c) and v;(p) are mapped to is less than
the minimum dissimilarity between the buckets of v;(c) and
vi(gq). This, obviously, is stronger than a check on the dis-
similarities between the actual values. Thus, there could
be more false positives among first phase results; these are
refined in the second phase.

Second Phase: In order to ensure that each object that
could be pruned by e be removed from M, we maintain,
at each leaf node, the actual numeric values assumed by
each object that maps to the leaf node. Upon reaching a
leaf, all such entires of objects that could be pruned by e
are evicted from the leaf by means of exact checks on the
numeric attributes, thus completing the operation.

7. CONCLUSIONS

In this paper, we proposed the first techniques for effi-
cient Reverse Skyline retrieval under arbitrary non-metric
similarity measures. We present various optimizations and
propose techniques that use such optimizations to speed up
Reverse Skyline processing. Block-based accesses are helpful
in drastically reducing the number of disk scans and thus
IO cost. A pre-processing step of sorting the database is
seen to be helpful in keeping objects closer to their pruners,
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thus enabling faster pruning, eventually leading to 3-5 times
speedup in Reverse Skyline Processing. Our main contri-
bution, that of leveraging group level reasoning and early
pruning to micro-optimize pruning checks, is seen to further
optimize the processing to speed-up processing by upto 3-5
factors. Extensive empirical analysis over real and synthetic
datasets confirm these results in many different situations.
Further, TRS is seen to be consistently better than the other
approaches in terms of 1O costs, computational costs and re-
sponse times separately, and thus is the algorithm of choice
for virtually all possible scenarios.
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