
Unraveling Multi-Dimensional Data using pDView

Luigi Di Caro
Universita’ di Torino
Dip. di Informatica

dicaro@di.unito.it

Maria Luisa Sapino
Universita’ di Torino
Dip. di Informatica

mlsapino@di.unito.it

K. Selçuk Candan
Arizona State University

Comp. Sci. and Eng

candan@edu.asu

ABSTRACT
We present the pattern development view (pDView) system
for multidimensional scientific data visualization. The pDView
system relies on a novel pattern development tree (pDTree)
structure to unravel patterns in multidimensional data with-
out having to rely on visualizations that require either sig-
nificant degrees of projections that eliminate certain dimen-
sions at the expense of the others or introduce significant vi-
sual overhead due to overly-rich multi-dimensional graphic
interfaces. Instead, pDView maps data along all its relevant
dimensions onto a pDTree structure, capturing and visual-
izing the underlying fundamental relationships. The user is
able to vary contextual parameters to observe the strength
and robustness of these relationships under different situa-
tions.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases;
H.5.2 [User Interfaces]: Graphical user interfaces

General Terms
Algorithms, experimentation

Keywords
Reasoning with scientific data, taxonomy, query language,
data visualization

1. MOTIVATION
It is very common in scientific inquiry and other forms
of data analysis (such as business intelligence) for the
analysts having to look for relationships and patterns
across certain data attributes with respect to a con-
text defined by other attributes. For example consider
an archaeologist making a study on animal bone speci-
mens collected at various sites (possibly for understand-
ing the eating habits of the residents of these sites)
using a database boneCollectionDB(specimen_number,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

lot_number, species, date). For her analysis, this scien-
tist may want to look for the relationships among the species
of the animal bones in the context of the places where bones
are found.

Existing techniques (multi-variate analysis roll-up/drill-
down operations in OLAP, multi-dimensional data visual-
ization schemes, such as [11, 6]) for visualizing such multi-
dimensional data require either significant degrees of pro-
jections to cross out (even relevant) dimensions at the ex-
pense of the others or introduce significant visual overhead
due to overly-rich multi-dimensional graphic interfaces. Re-
search on effective use of 2D spaces for multidimensional
data visualization focus on careful selection of the relevant
dimensions [10] and organizing data in hierarchical visual-
ization structures along the relevant dimensions and map-
ping these to 2D spaces [2]. In this demonstration, we
present a novel pattern development view (pDView) system
to visualize multidimensional data without having to rely
on high-dimensional visualization mechanisms. We first de-
scribe how the underlying pattern development tree (pDTree)
structures are created and then provide the demonstration
scenario for pDView (Figure 1).

2. PDVIEW AND PDTREE
Let R(A1,An) be a table containing the data to be visual-
ized. Without loss of generality, let us take A1 through Ak as
the context attributes: they describe the dimensions within
which the relationships between the values corresponding to
the visualization attributes are to be studied. Let also Ak+1

through Am denote the visualization attributes (attributes
Am+1 through An do not have impact on the analysis and
visualization). pDView queries have the following SQL-like
form:

CREATE pDVIEW view_name AS

FREQ Ak+1, . . . , Am

FROM R

WHERE ...

INCONTEXT A1, . . . , Ak

Intuitively, as in SQL’s GROUP BY, the context attributes
A1 through Ak are used for clustering the values cor-
responding to the visualization attributes, Ak+1 through
Am. For example given an archaeological database,
with the schema boneCollectionDB(specimen_number,

lot_number, species, date), having specimen_number as
the context attribute and species as the visualization at-
tribute would mean that the user would like to study the
relationships between the species of the animals, correspond-

570

0.862

Coding Sheet

2: Small Mammal: Rabbit/Rodent-sized
11: Indeterminate Artiodactyl
16: Pronghorn
31: Indeterminate Rabbit
32: Cottontail
36: Jackrabbit
41: Indeterminate Rodents
46: Pocket Gopher
57: White-footed Mouse
73: Prairie Dog
200: Indeterminate Fishes
220: Sucker Fish
501: Indeterminate Small Bird
502: Indeterminate Medium Bird
503: Indeterminate Large Bird
521: Duck
522: Mallard Duck
560: Quail
565: Turkey
588: StellerŠs Jay

(a) (b)

Figure 1: (a) A sample (angular) pDTree created using an archaeological database (Upper Little Colorado prehistory

project [1]). The database contains different animal bone specimens collected at an archaeological sites. In this

example, the context attribute is the element_number (i.e., codes describing types of bones collected at a site; e.g., 43 for

“Unidentified skull fragment” and 59 for “Lumbar vertebrae”) and the visualization attribute is the species_number (i.e.,

the code for the corresponding species as identified by the archaeologist). Note that, except for a few mis-associations

(which secondary linkage analysis -the dashed line- can reveal), the apDTree is almost a valid taxonomy of the species

ing to the bones collected within an archaeological study, as
a function of their distribution across various specimen col-
lections.

2.1 Data Preparation
Given a pDView query, first, the relevant attributes of the
data specified in the query are projected, clustered, and
the counts for the unique combinations are computed. Let
αi = 〈a1,i, . . . , ak,i〉 be an instance of R[A1, . . . , Ak]. αi is re-
ferred to as a context-instance. Let R(αi)[Ak+1, . . . , Am] de-
note the portion of the table R containing the visualization-
instances corresponding to the context αi. Given a
visualization-instance βj = 〈ak+1,j , . . . , am,j〉 of the portion
R(αi)[Ak+1, . . . , Am], the value of count(i, j) is computed as
| R(αi)[Ak+1 = ak+1,j , . . . , Am = am,j] |. A visualization-
instance frequency matrix VF, then, reports the frequency
(normalized between 0 and 1) of each visualization-instance,
βj = 〈ak+1,j , . . . , am,j〉, for each context instance, αi =
〈a1,i, . . . , ak,i〉: VF(i, j) = count(i, j)/maxh{count(h, j)}.

The second step in preparing the data for pDTree construc-
tion involves the identification of a basis consisting of a
set of mutually independent unit vectors. This basis de-
fines a space on which the relationships among visualization-
instances as well as context-instances can be studied. For
this purpose, we use the well known Singular Value Decom-
position approach (SVD [3]) on the VF matrix. SVD splits
the input matrix into three matrices, VF = UΣV t, such that
U and V are column orthonormal matrices and Σ is a diag-
onal matrix. The advantage of SVD is that mutually inde-
pendent columns of U and V can be considered as basis of
the space on which visualization- and context-instances can
be studied. Also, the weights of the diagonal entries of Σ
can be considered as the significance of the corresponding

Multidimensional Visualization along the First Two
Significant Dimensions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
Dim1

D
im

2

Figure 2: A multidimensional visualization (along the

most significant two dimensions) for the data set in Fig-

ure 1. Despite major dimensional losses, patterns (easily

visible in the pDTree) are hard to discern.

columns in U and V .

2.2 Pattern Development Tree (pDTree)
SVD underlies many data analysis and dimensionality re-
duction techniques (such as latent semantic analysis [4]).
On the other hand, while such principal component based
study is highly common we note that it is not sufficient
in itself for effective visualization of the data. In partic-
ular, the significance values computed by SVD enable re-
duction in the number of dimensions, but in many cases,
the number of relevant dimensions is still beyond what can
be visualized effectively. Furthermore, even if the data is
compressed to very low-dimensional spaces (2D- or 3D-) to
be displayed on screen, simply presenting the data points

571

A(1)B(2)

C(3)

D(4)

E(5)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C(3)

B(2)B(2)

x-std diff. y-std diff. ang. diff avg.

A → B vs.
A → B → E 0.066 0.115 0.667 0.283

A → B → C vs..
A → B → C → E 0.011 0.068 0.808 0.296
A → D vs..
A → D → E 0.066 0.082 0.833 0.327
A vs. A → E 0.191 0.141 0.638 0.323

Figure 3: An example fpDTree of line segments: The

new visualization instance, E, is connected to the a tree

based on its compatibility to the existing branches. Here,

E is most compatible with A → B

for scientist’s visual interpretation is not effective: in many
cases, it is hard for the user to view the data from all rel-
evant points-of-view to identify patterns implying strong
relationships among the visualization-instances and/or the
context-instances (Figure 2). Therefore, unlike most tech-
niques which effectively amount to dimensionality reduction
based on the available significance information, we go fur-
ther and use the U , V , Σ matrices obtained through SVD
to obtain a pattern development tree (pDTree), which does
not suffer from the visualization shortcomings of the multi-
dimensional spaces. Let us consider the matrix V which
maps the visualization-instances onto a multidimensional
space defined by the independent basis vectors. Let us call
this space, S. For each visualization-instance, ~vi, on S, we
compute a dominance value (dom(~vi)), which describes how
dominant the visualization-instance is in space S. We define
the dom(~vi) as follows: dom(~vi) = |~vi − 〈0, 0, . . . , 0〉|. Intu-
itively, those visualization-instances that occur frequently
(i.e., further away from the null point 〈0, 0, . . . , 0〉) dom-
inate the others. This interpretation is consistent with
the observation that the extended boolean model of vec-
tor spaces [5] enables one to treat those vectors that are
further away from the origin as being also more general [7].
This enables us to order the visualization-instances into a
tree (where nodes higher up in the hierarchy are more gen-
eral/dominant) based on their dominance values: the dom-
inant visualization-instances (away from 〈0, 0, . . . , 0〉) are
mapped closer to the root.

pDView can use two different strategies to create pDTrees:
The free pattern development tree (fpDTree) strategy relies
on the assertion that each branch of the tree represents a set
of instances that collectively define a coherent (in terms of
overall direction in the space and distribution of instances)
pattern in the space. Therefore, new branches are created
where instances violate existing patterns. The angular pat-
tern development tree (apDTree) strategy, on the other hand,
gives more emphasis on the relative value-compositions of

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

node1

node2

node3

node4

node5
node6

node7

node8

node9

node10

(boundary #1)

(boundary #2)

(boundary #3)

(boundary #4)

Trend before

segmentation

Figure 4: Partitioning of a non-uniform branch (from

node1 to node10) into segments: each partition acts as a

coherent pattern in the data and only boundaries are

considered for new branches

the instances and only places visualization-instances with
similar compositions as part of the same branch.

2.2.1 Free Pattern Development Tree (fpDTree)
While dominance helps us order visualization-instances, it
does not determine how branching is created in a pDTree.
Intuitively, if two visualization-instances are related to each
other within the current context of analysis, they need to be
part of the same branch. In fpDTrees, each root-to-instance
path is analyzed for pattern developments and shifts (includ-
ing slope, concentration). For each visualization-instance,
considered during the construction of the fpDTree, the most
compatible branch of the current fpDTree is chosen as the
connection point. Pattern development analysis underlying
the branching decisions involves (a) analysis of the hyper-
curves (linear, planar, etc.) defined by branches of the trees,
before and after the insertion of the new visualization in-
stance, and (b) checking whether attaching the new visual-
ization instance to that branch will cause a large deviation
from the current characteristics of the branch. See Figure 3
for an example fpDTree of line segments. Note that, while
this figure only illustrates fpDTree construction in terms
of line segments, pDView analyzes planar and hyper-planar
pattern developments simultaneously (without requiring ex-
ponential growth in analysis time). The user of pDView,
then can pick the dimensionality of the pattern develop-
ments or have pDView to scale the number of dimensions
needed to create the fpDTree as appropriate.

For reducing the computational complexity of branching
analysis during fpDTree construction as well as to prevent
very long branches from causing deformations, fpDTree par-
titions long branches into coherent segments, using multi-
dimensional hyper-curvature analysis [9, 8]. It considers
only those identified segment boundaries as candidates for
branching (Figure 4).

2.2.2 Angular Pattern Development Tree (apDTree)
Unlike the fpDTree which analyzes the pattern development
along the various branches explicitly using multiple pattern
development parameters, apDTree treats two visualization-
instances to be related only when they have similar com-
positions with respect to the basis of the underlying multi-
dimensional space: while their dominance in the data set

572

Figure 5: Selection of context- and visualization-
attributes.

Figure 6: Dynamic fish-eye view of the angular Pat-
tern Development Tree created with the settings
shown in Figure 5.

may differ significantly, such a pair of entries are related
to the underlying context-instances in a similar manner.
Thus, in apDTrees, for branch differentiation, we rely on
the angular differences (i.e. difference in compositions)
of the visualization-instances. Visualization-instances with
similar compositions are part of the same branch of the
apDTree, while visualization-instances with different com-
positions should be mapped onto different branches. To
achieve this, we incrementally construct the apDTree by con-
sidering the visualization-instances in the decreasing order
of their dominance values (as in fpDTrees) and by connect-

ing each visualization-instance, ~vii, to the one, ~vij , most

similar (in terms of their compositions; i.e., cosine(~vii, ~vij))
already included in the apDTree. See Figure 1(a) for a sam-
ple angular pDTree created using a database containing dif-
ferent animal bone specimens collected at an archaeological
site. Note that, except for a few mis-associations (which
secondary linkage analysis -the dashed line- provided by
pDView can reveal), the apDTree is almost a valid taxon-
omy of the species.

3. DEMO SCENARIO
We demonstrate the pattern development view system for vi-
sualization of multidimensional data through its use in an ar-
chaeological domain. Specifically, we will use the Upper Lit-

Figure 7: The selection of a visualization-instance
(Cottontail rabbit) triggers the ranking of the
context-instances based on cosine similarity.

tle Colorado prehistory project data set [1], consisting of a
relation with ∼30,000 tuples on 20 attributes, and show how
(a) the context of interest and the visualization attributes
are interactively selected, as shown in Figure 5, (b) how
the patterns on the visualization attributes are visualized in
fPDTrees and aPDTrees as a function of the context (Figure
6 shows a fish-eye exploration view), and (c) how the user
can focus on a node of the pDTree for further exploration
tasks like manual or automatic selections of dimensions rel-
evant to the pattern selected and visualized, or ranking of
context-instances based on cosine similarity (Figure 7).

4. ACKNOWLEDGMENTS
We thank Prof. Keith Kintigh for the data set and his help
with the interpretations of the results.

5. REFERENCES
[1] T.C.Clark. Assessing Room Function Using

Unmodified Faunal Bone: A Case Study from
East-central Arizona. Kiva64(1): 1998.

[2] G.Chintalapani, C. Plaisant, B.Shneiderman:
Extending the Utility of Treemaps with Flexible
Hierarchy. IV, 2004.

[3] C. Eckart, G. Y. The Approximation of One Matrix
by Another of Lower Rank. Psychometrika, 1936.

[4] S. Deerwester, S. Dumais, G.Furnas, R. Harshman, T.
Landauer, K. Lochbaum and L. Streeter. Computer
Information Retrieval using latent semantic Structure,
US Patent, 1989.

[5] G. Salton, E.A. Fox, and H. Wu. Extended Boolean
Information Retrieval. CACM, 26(11). 1983.

[6] T. Jirka. Multidimensional Data Visualization,
Technical Report (DCSE/TR-2003-03), 2003.

[7] J.W. Kim and K.S. Candan. CP/CV: Concept
Similarity Mining without Frequency Information
from Domain Describing Taxonomies. CIKM, 2006.

[8] David G. Lowe. Three-dimensional object recognition
from single two-dimensional images. AI, 1987.

[9] Y. Qi, K. S. Candan: CUTS: CUrvature-based
Development Pattern Analysis and Segmentation for
Blogs and other Text Streams. Hypertext, 2006.

[10] J.Seo and B.Shn. A Rank-by-Feature Framework for
Unsupervised Multidimensional Data Exploration
Using Low Dimensional Projections. IV 2004..

[11] K. Techapichetvanich, A. Datta, Interactive
Visualization for OLAP, LNCS, Vol. 3482, 2005.

573

