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ABSTRACT
Event pattern matching is a query technique where a se-
quence of input events is matched against a complex pat-
tern that specifies constraints on extent, order, values, and
quantification of matching events. The increasing impor-
tance of such query techniques is underpinned by a signifi-
cant amount of research work, the availability of commercial
products, and by a recent proposal to extend SQL for event
pattern matching. The proposed SQL extension includes an
operator PERMUTE, which allows to express patterns that
match any permutation of a set of events. No implementa-
tion of this operator is known to the authors.

In this paper, we study the sequenced event set pattern
matching problem, which is the problem of matching a se-
quence of input events against a complex pattern that spec-
ifies a sequence of sets of events rather than a sequence of
single events. Similar to the PERMUTE operator, events
that match with a set specified in the pattern can occur
in any permutation, whereas events that match with differ-
ent sets have to be strictly consecutive, following the order
of the sets in the pattern specification. We formally define
the problem of sequenced event set pattern matching, pro-
pose an automaton-based evaluation algorithm, and provide
a detailed analysis of its runtime complexity. An empirical
evaluation with real-world data shows that our algorithm
outperforms a brute force approach that uses existing tech-
niques to solve the sequenced event set pattern matching
problem, and it validates the results from our complexity
analysis.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithm and Problems—Pattern
matching ; H.2.4 [Database Management Systems]: Sys-
tems—Query Processing
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1. INTRODUCTION
Event pattern matching is a query technique where a se-

quence of input events is matched against a complex pattern
that specifies constraints on extent, order, values, and/or
quantification of matching events. Due to the wide appli-
cability of event pattern matching in different application
domains such as financial services [3, 11, 23], click stream
analysis [23], RFID-based tracking and monitoring [3, 13],
RSS feed monitoring [11], and health services [19], a signifi-
cant amount of research has recently been conducted in this
field.

The increasing importance of event pattern matching in
practical applications is underpinned by the availability of
commercial products [10, 25] and by a recent SQL change
proposal to extend SQL for pattern matching over sequences
of tuples [27]. In the latter, a PERMUTE operator is pro-
posed to retrieve sequences of input tuples that match any
permutation of a set of variables specified in the pattern.
Multiple PERMUTE operators in series permit to match
sequences of sets of tuples. Only a subset of the pattern
matching operators in the SQL change proposal have been
implemented [13, 23], and no implementation of the PER-
MUTE operator is known.

In this paper, we study the problem of sequenced event set
(SES) pattern matching, which is the problem of matching
a sequence of input events against a complex pattern that
specifies a sequence of sets of events (SES pattern) rather
than a sequence of single events. While the order of the in-
put events that match with the same set is irrelevant (that
is, any permutation of the input events is matched), the or-
der of the input events that match with distinct sets must
correspond to the order of the sets in the pattern. Further-
more, SES patterns allow the specification of a maximal time
interval within which all events that match with a pattern
must occur.

Example 1. As a running example throughout the pa-
per, we consider the analysis of chemotherapy data. A
chemotherapy is a treatment for patients suffering from can-
cer and consists of a sequence of events, such as the adminis-
tration of medications and laboratory examinations accord-
ing to a well-defined protocol. Figure 1 shows a sample
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Event
ID L V U T

e1 1 C 1672.5 mg 9 am 3 Jul
e2 1 B 0 WHO-Tox 10 am 3 Jul
e3 1 D 84 mgl 11 am 3 Jul
e4 1 P 111.5 mg 9 am 4 Jul
e5 2 B 0 WHO-Tox 9 am 5 Jul
e6 2 P 88 mg 10 am 5 Jul
e7 2 D 84 mgl 11 am 5 Jul
e8 2 C 1320 mg 9 am 6 Jul
e9 1 P 111.5 mg 10 am 6 Jul
e10 2 P 88 mg 11 am 6 Jul
e11 2 P 88 mg 9 am 7 Jul
e12 1 B 1 WHO-Tox 9 am 12 Jul
e13 2 B 1 WHO-Tox 9 am 13 Jul
e14 2 B 0 WHO-Tox 9 am 14 Jul

Figure 1: Events of Chemotherapy Treatments.

relation, Event, that records such events. The attributes
represent patient ID (ID), event type (L), value (V ) with
measurement unit (U ), and occurrence time (T ) of an event,
respectively. For instance, event e1 represents the adminis-
tration of 1672.5 mg of Ciclofosfamide to patient 1 at 9 am
on 3 July. To study the effect of medications on the blood
count, physicians might issue the following query:

Q1: For each patient, find the sets of events that
match one administration of Ciclofosfamide (C),
one or more administrations of Prednisone (P),
and one administration of Doxorubicina (D) in
any order, followed by a single blood count (B)
measurement, and all events occur within eleven
days?

Several subsets of events in relation Event match the pat-
tern in Query Q1, e.g., {e1, e3, e4, e12}, {e1, e3, e4, e12}, and
{e1, e3, e4, e9, e12} for patient 1. In this paper, we are inter-
ested in those results which contain (1) the earliest possible
matching events and (2) the maximal number of matching
events. The first restriction corresponds to the skip-till-next-
match event selection strategy [3], and the second one to
the MAXIMAL mode with greedy quantifier [27]. Thus, the
intended results for Query Q1 are {e1, e3, e4, e9, e12} for pa-
tient 1, and {e6, e7, e8, e10, e11, e13} for patient 2. Notice that
the blood count measurements e2 and e5 are ignored because
they are carried out during (and not after) the administra-
tions of C, P, and D.

The need to (partially) ignore the order of events and to
consider all permutations of a set of events occurs if varia-
tions in the order of the input events exist naturally in the
application domain but should be ignored for data analysis
tasks. For instance, the administration of ’C’ and ’P’ occurs
in a different order for patient 1 and 2, yet both patients
should be considered for Query Q1.

Existing solutions for event pattern matching cannot solve
the SES pattern matching problem. They either can only
express sequences of single events or have limitations to ex-
press the full set of SES patterns.

In this paper, we propose a solution for SES pattern
matching. The technical contributions can be summarized
as follows:

• We introduce and formally define SES pattern match-
ing, which allows to express patterns that consist of

sequences of sets of events and match all permutations
of individual sets, while maintaining the order among
sets.

• We propose an automaton-based algorithm to evaluate
SES pattern matching.

• We conduct a detailed complexity analysis of the eval-
uation algorithm, which considers different kinds of
non-determinism and provides upper bounds for the
runtime complexity.

• We report the results of an empirical evaluation using
real-world data. The study validates the complexity
analysis and shows that our solution clearly outper-
forms a brute force approach that is based on existing
techniques.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss related work. In Section 3 we introduce
and define SES pattern matching. In Section 4 we present
an automaton-based evaluation algorithm and analyze its
complexity. Section 5 reports the results of an empirical
evaluation study. Section 6 concludes the paper and points
to future work.

2. RELATED WORK
The SQL change proposal [27] describes an extension to

SQL for pattern matching in sequences of tuples. The SQL
extension is motivated by various use cases for event process-
ing, such as security, financial, fraud detection, and RFID
applications, where a tuple represents an event. The SQL
extension defines the PERMUTE operator and its EXPAND
FACTORS variant, which allow to express a set of events.
Multiple PERMUTE EXPAND FACTORS operators in suc-
cession permit to express SES patterns that do not contain
any Kleene plus quantifier. The SQL extension focuses on
the specification of the language and provides no implemen-
tation of the various operators.

The DejaVu system [13] aims to implement pattern
matching in a RDBMS (MySQL) to find matches of patterns
in live and archived data streams. DejaVu implements a sub-
set of the SQL extension [27] using finite state automata; the
PERMUTE operator is not included. Hence, SES patterns
cannot be expressed in a simple way. Multiple patterns are
required, one for each possible match. The number of possi-
ble matches grows exponentially with the cardinality of the
sets of events specified in the SES pattern (cf. Section 5.2).
Clearly, such a solution becomes quickly cumbersome and
inefficient for all but very small sets of events.

SQL-TS [23] extends SQL to process complex sequential
patterns in database systems. For an efficient evaluation
of sequential pattern queries, the Knuth-Morris-Pratt string
matching algorithm is adapted for event pattern matching.
SQL-TS does not implement the PERMUTE operator, and
SES patterns can only be expressed with multiple patterns
similar to DejaVu [13], thus suffering from the same draw-
backs.

ZStream [20] is a cost-based query processor for match-
ing sequential patterns enriched with the operators se-
quence, conjunction, disjunction, negation, and Kleene clo-
sure. ZStream uses tree-based query plans, where each of
the operators is represented as a variant of the join operator,
together with a cost model to find the most efficient query
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plan. Similar to a SES pattern, the conjunction operator al-
lows to express that two events occur within a specified time
window, and their order does not matter. However, when
a conjunction is combined with a Kleene plus quantifier,
all occurrences of the quantified event must be consecutive
without any other matching event in between.

The pattern specification language SASE+ [18, 26] uses
the nondeterministic finite state automaton NFAb [3] to re-
trieve matches from a stream of events. SASE+ and NFAb

support the Kleene plus quantifier and four different match-
ing semantics. NFAb adopts various optimization techniques
to reduce space and runtime requirements for the evaluation
of pattern queries. The specification of SES patterns is sim-
ilar to DejaVu [13] and suffers from the same drawbacks.

Constraint-aware complex event processing (C-CEP) [14]
focuses on a query unsatisfiability checking technique that
detects at runtime optimal points for terminating the eval-
uation of partial query matches that will never be satis-
fied. The implemented C-CEP system employs an automa-
ton that allows to specify only SES patterns with equality
relationships between events. SES patterns with more gen-
eral relationships between events are not addressed.

The publish/subscribe system Cayuga [11, 12] reads an
incoming stream of events (publications) and selects event
sequences according to queries that express user’s interests
(subscriptions). Cayuga uses an algebra that is inspired by
regular expressions to express queries over event streams.
For the evaluation, a query is translated into a corresponding
nondeterministic finite state automaton. Various indexing
techniques are employed to optimize the query evaluation.
Cayuga is unable to express all SES patterns because it can
only specify relationships between consecutive events and
not between arbitrary events in a set of events.

Other publish/subscribe systems [4, 15] have limited ex-
pressiveness, since they are unable to specify a temporal
order and other relationships among (attributes of) events.

SEQ [24] is a sequence database with an SQL-like query
language, called SEQUIN. SEQUIN allows to select event
sequences with a combination of selection, join, and aggre-
gation operations. With the growing length of the retrieved
event sequences, the queries become more and more intricate
due to the increasing number of join and select operations
that are required to specify such sequences. SEQUIN is un-
able to express SES patterns with a Kleene plus quantifier
since the number of join operations must be known at query
time.

Aurora [2, 7], Borealis [1], STREAM [22, 5], and Tele-
graphCQ [9] are data stream management systems that
mainly focus on efficient resource management and load bal-
ancing. Their query languages apply a combination of se-
lection, join, and aggregation operations. As with SEQUIN,
such queries become more and more complicated with the
growing length of the desired event sequence and the speci-
fication of the sets of events, and they are unable to express
SES patterns with Kleene plus quantifiers.

Event Analyzer [19] is a data warehouse component to
analyze event sequences. Its pattern specification language
is able to express patterns that match simultaneous events.
Simultaneous events can be interpreted as a special case of
SES patterns because no total order can be imposed on the
events, and hence, their order should be ignored in a query.
However, the pattern specification language is not able to
express more general SES patterns.

A theoretical study about the CEDR pattern specification
language [6] focuses mainly on the management of stream
imperfections. CEDR does not include any operator to
match sets of events.

Active databases react to events that originate from oper-
ations within the system such as data manipulations. Event
languages of active databases allow to express compositions
of events to which the system should react. Various event
languages have been proposed [8, 16, 17, 21, 28]. They are
unable to express general SES patterns because they are ei-
ther very limited or unable to express relationships between
attributes of events.

3. PROBLEM DEFINITION
In this section we introduce and formally define sequenced

event set pattern matching.

3.1 Event Model
An event is represented as a tuple with schema E =

(A1, . . . , Al,T ), where A1, . . . , Al are non-temporal at-
tributes and T is a temporal attribute that represents the
occurrence time of the event. For T , we assume a discrete
and ordered time domain, T, such as calendar days and hours
as in our running example.

An event relation, E, is a set of events, and we assume the
timestamp attribute, T , defines a total order among events.
Relation Event in Figure 1 is an example of an event relation.

3.2 SES Pattern Matching
An event set pattern is a set of event variables, Vi =
{v1, . . . , vn}, n ≥ 1. By default, an event variable, v ∈ Vi, is
bound to one input event; we call it singleton variable. An
event variable that is followed by a Kleene plus quantifier,
v+, is a group variable and can be bound to one or more
events. We use lowercase letters for event variables, option-
ally followed by a Kleene plus quantifier as superscript, e.g.,
v, v+.

Definition 1. (SES Pattern) A sequenced event set pat-
tern, P , is defined as a triple

P = (〈V1, . . . , Vm〉,Θ, τ) ,

where

• 〈V1, . . . , Vm〉, m ≥ 1, is a sequence of event set patterns
and Vi ∩ Vj = ∅ for 1 ≤ i, j ≤ m, i 6= j,

• Θ = {θ1, . . . , θn}, n ≥ 0, is a set of conditions over the
event variables in the event set patterns, and

• τ is a duration.

V1, . . . , Vm are sets of event variables. Throughout the
paper, we use V to refer to the set of all event variables
in a SES pattern, i.e., V = V1 ∪ · · · ∪ Vm. Θ is a set of
conditions over the event variables that express constraints
on the values of individual event attributes, which must be
satisfied by the matching input events. A condition, θ ∈ Θ,
has the form v.A φ v′.A′ or v.A φ C, where v and v′ are
(singleton or group) event variables, A and A′ are event
attributes, C is a constant, and φ ∈ {=, <,≤, >,≥} is a
comparison operator. τ is the maximal allowed duration
between the (chronologically) first and the last event that
match P .
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Example 2. Consider Query Q1, which can be formulated
as a SES pattern

P = (〈{c, p+, d}, {b}〉,Θ, 264),

which is composed of two event set patterns. The first event
set pattern, V1 = {c, p+, d}, contains two singleton variables
(c and d), each of which can be bound to one event, and
one group variable (p+), which can be bound to one or more
events. The second event set pattern, V2 = {b}, consists
of one singleton variable. The conditions over the event
variables are given as

Θ = {θ1 ≡ c.L = ’C’, θ2 ≡ d.L = ’D’,

θ3 ≡ p+.L = ’P’, θ4 ≡ b.L = ’B’,

θ5 ≡ c.ID = p+.ID , θ6 ≡ c.ID = d.ID ,

θ7 ≡ d.ID = b.ID}

and constrain the events that can be matched with the event
variables: c matches one administration of Ciclofosfamide
(θ1), p+ matches one or more administrations of Prednisone
(θ3), dmatches one administration of Doxorubicina (θ2), and
b matches one blood count measurement (θ4); the conditions
θ5, θ6, and θ7 require that all matched events refer to the
same patient. The last parameter of the pattern specifies
a maximal duration of 264 hours (eleven days) between the
(chronologically) first event that matches with P and the
last event.

To formalize the matching of a SES pattern P and an
event relation E, we adopt the concept of a substitution. A
substitution, γ = {v1/e1, . . . , vn/en}, is a finite set of pairs
of event variables and events. A pair v/e is a binding for
variable v. A substitution contains exactly one binding for
each singleton variable in P , but one or more bindings for
each group variable in P . All event variables and events in a
substitution are contained in P . All events in a substitution
are contained in E and are distinct.

Let γ = {v1/e1, . . . , vn/en} be a substitution, and let θ
be a condition of a SES pattern. θγ denotes the instantia-
tion of θ by γ, and it is obtained from θ by simultaneously
replacing all occurrences of event variables vi by the corre-
sponding events ei. A substitution, γ, that contains multiple
bindings for a group variable can be decomposed in a set of
substitutions {γ1, . . . , γm}, where each γi contains one bind-
ing for each event variable in γ and there exists a γi for each
combination of bindings with distinct event variables in γ.
The instantiation θγ gives a set of conditions {θγ1, . . . , θγm}.
For the conditions in a SES pattern, Θ = {θ1, . . . , θn}, and
a substitution γ, we have Θγ = θ1γ ∪ · · · ∪ θnγ.

Example 3. Let Θ = {θ1, θ2, θ3, θ4, θ5, θ6, θ7} be the
conditions from the SES pattern in Example 2 and
γ = {c/e1, d/e3, p+/e4, p

+/e9, b/e12} be a substitution,
which contains two bindings for the group variable
p+. Then γ can be decomposed into two substitutions,
{γ1, γ2}, where γ1 = {c/e1, d/e3, p+/e4, b/e12} and γ2 =
{c/e1, d/e3, p+/e9, b/e12}. The instantiation of Θ with γ
gives Θγ = {θ1γ1, . . . , θ7γ1, θ1γ2, . . . , θ7γ2} = {e1.L = ’C’,
e3.L = ’D’, e4.L = ’P’, e12.L = ’B’, e1.ID = e4.ID , e1.ID =
e3.ID , e3.ID =e12.ID , e1.L=’C’, . . . , e9.L=’P’, . . . }.

To define a matching substitution, we use the following
auxiliary function. Let minT (γ) be a function that returns

P = ( 〈 { c, p+, d }, { b } 〉,Θ, 264)

γ = { p+/e6, d/e7, c/e8, p+/e10, p
+/e11, b/e13 }

E ={. . . , e5, e6, e7, e8, e9, e10, e11, e12, e13, e14 }

191 hours ≤ 264 hours

Figure 2: Match of Pattern and Events.

the binding in substitution γ with the earliest occurrence
time, i.e., minT (γ) = v/e such that v/e ∈ γ ∧ @v′/e′ ∈
γ(e′.T < e.T ).

Definition 2. (Matching Substitution) Let E be an event
relation and P = (〈V1, . . . , Vm〉,Θ, τ) be a SES pattern. A
substitution γ = {v1/e1, . . . , vn/en} is a matching substitu-
tion iff the following five conditions hold:

∀θiγj ∈ Θγ ( θiγj is satisfied ) (1)

∀v/e, v′/e′ ∈ γ ( v ∈ Vi ∧ v′ ∈ Vi+1 → e.T < e′.T ) (2)

∀v/e, v′/e′ ∈ γ ( |e.T − e′.T | ≤ τ ) (3)

Let Γ be the set of all substitutions (of event variables in P
by events in E) that satisfy conditions 1–3.

∀v/e, v′/e′ ∈ γ ( @γ′ ∈ Γ, v′′/e′′ ∈ γ′ (

v′′ = v′ ∧ e.T < e′′.T < e′.T ∧ v′′/e′′ 6∈ γ ) )
(4)

∀γ′ ∈ Γ ( minT (γ) = minT (γ′)→ γ 6⊂ γ′ ) (5)

Condition 1 ensures that all events in a matching sub-
stitution satisfy all conditions in Θ. Condition 2 ensures
that all events that match with a variable in set Vi must
occur strictly before all events that match with a variable
in set Vi+1. Notice that no order is imposed on the events
that match with variables from the same event set pattern,
hence any permutation is matched. Condition 3 constrains
all events in a matching substitution to occur within a time
interval τ .

Condition 4 states that after an event e is matched, all
events following e in the event relation are ignored until the
next event matching with P is encountered. This corre-
sponds to skip-till-next-match event selection strategy [3].
Condition 5 states that a matching substitution is not con-
tained in any other substitution that satisfies conditions 1–3
and starts with the same event. This corresponds to MAX-
IMAL mode with greedy quantifier [27].

Example 4. Figure 2 illustrates a matching substitution
for patient 2. All conditions in Θγ are satisfied: e8 is a ’C’
event (i.e., e8.L = ’C’), e6, e10, and e11 are ’P’ events, e7 is a
’D’ event, e13 is a ’B’ event, and all events refer to the same
patient. The events e6, e7, e8, e10, e11 that match the first
event set pattern occur strictly before e13 that matches the
second event set pattern. The time span between the first
(e6) and the last (e13) matching events is less than 264 hours.
Substitution γ contains the earliest events possible. In con-
trast, substitution {p+/e6, d/e7, c/e8, p

+/e10, p
+/e11, b/e14}

satisfies conditions 1–3, but violates condition 4 because
it contains e14 instead of the earlier event e13. Similar,
substitution {p+/e6, d/e7, c/e8, p

+/e10, b/e13} satisfies con-
ditions 1–3, but violates the maximality condition 5 because
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event e11 is not included, though it matches event variable
p+.

4. AUTOMATON-BASED EVALUATION
In this section we present an automaton-based algorithm

for the evaluation of SES pattern queries. The algorithm
first translates a query pattern into a SES automaton, which
is then executed on the input relation.

4.1 Definition of SES Automaton
A SES automaton is a nondeterministic finite state au-

tomaton enriched with a match buffer, β, which during the
execution of the automaton collects bindings for the event
variables in the SES pattern.

Definition 3. (SES Automaton) Let P be a SES pat-
tern and V be the set of all event variables in P . A
SES automaton, N , is a five-tuple

N = (Q,∆, qs, qf , τ)

where

• Q = {q1, . . . , qn}, qi ⊆ V , is a finite set of states,

• ∆ = {δ1, . . . , δm} is a finite set of transitions of the
form δ = (q, v,Θδ),

• qs ∈ Q is the start state,

• qf ∈ Q is the accepting state, and

• τ is a duration.

Each state in Q is defined as a subset of the event vari-
ables, i.e., qi ⊆ V . A transition, δ = (q, v,Θδ), leads from
a source state, q ∈ Q, to a target state, q ∪ {v} ∈ Q, if the
transition condition, Θδ, is satisfied. Set Θδ contains con-
ditions that constrain the events bound to event variable v
with respect to a constant or with respect to other events
bound to event variables in q. The start state, qs, marks the
state in which the execution of an automaton begins. The
accepting state, qf , marks the acceptance of the bindings in
buffer β as a matching substitution. Duration τ is the max-
imal time interval that can be spanned by the events in β.
The match buffer, β, collects variable bindings during the
execution of the automaton. Whenever a transition, δ ∈ ∆,
is taken, a binding is added to β. The execution of an au-
tomaton expires if the time interval spanned by the earliest
event in β and the current input event is larger than τ . If
then the automaton is in the accepting state, qf , β contains
bindings that determine a matching substitution.

A SES automaton can be graphically represented as a
graph. Nodes represent states, and edges represent tran-
sitions. An edge is labeled with the event variable that is
bound by the transition and the corresponding transition
condition. The start state is marked with an incoming ar-
row, the accepting state is doubly circled.

Example 5. Figure 3 shows the SES automaton for the
SES pattern P = (〈{b}〉,Θ, 264) with Θ = {b.L = ’B’}, that
is the event set pattern V2 (in isolation) of our running ex-
ample. The corresponding automaton is ({∅, {b}},∆, ∅, {b}).
It has two states, the start state ∅ and the accepting state
{b}, respectively. To facilitate reading, in the graphical
illustration we denote states by the concatenation of the

corresponding event variables, e.g., the node labeled with
b represents state {b}. There is a single transition, ∆ =
{(∅, {b}, {b.L = ’B’})} with a condition that constrains vari-
able b to match a blood count measurement. Notice that
no other conditions are involved, since V2 is considered in
isolation.

∅ b
b,Θ1

Θ1 = {b.L = ’B’}

Figure 3: SES Automaton for P = (〈{b}〉,Θ, 264).

4.2 Construction of SES Automaton
The construction of a SES automaton for a pattern, P ,

is a two-step process: (1) each individual event set pattern,
Vi ∈ P , is transformed into a SES automaton and (2) the
individual automata from step 1 are concatenated according
to the order of the event set patterns in P .

4.2.1 Translation of a Single Event Set Pattern
Let P = (〈V1, . . . , Vm〉,Θ, τ) be a SES pattern, and con-

sider a single event set pattern, Vi ∈ P . For each subset of
Vi, the corresponding SES automaton contains a state, i.e.,
Q = {q | q ∈ P (Vi)}. For each state, q ∈ Q, and (sin-
gleton and group) event variable, v ∈ Vi \ q, a transition
δ = (q, v,Θδ) is built with condition Θδ = {θ | θ ∈ Θ ∧ (θ ≡
v.A φ C ∨ (θ ≡ v.A φ v′.A′∧v′ ∈ V1∪· · ·∪Vi−1∪ q∪{v}))}.
That is, Θδ is defined as the set of all conditions from Θ that
constrain events bound to event variable v (which is bound
by δ) with respect to a constant or with respect to events
bound to event variables from preceding event set patterns
in P , and the current state. For each state, q, and group
variable, v+ ∈ q, a transition δ = (q, v+,Θδ) is created,
which loops at state q since q ∪ {v+} = q for v+ ∈ q; Θδ is
constructed as before.

Example 6. Figure 4 shows the SES automata N1 and
N2 for the event set patterns V1 and V2, respec-
tively. The automaton for the first pattern is N1 =
(Q1,∆1, ∅, {c, d, p+}, 264), where Q1 = {∅, {c}, {d}, {p+},
{c, d}, {c, p+}, {d, p+}, {c, d, p+}}. The transitions ∆1 and
the corresponding transition conditions can be inferred from
Figure 4(a). The automaton for the second event set pat-
tern is N2 = (Q2,∆2, ∅, {b}, 264), where Q2 = {∅, {b}}. The
transitions ∆2 and the corresponding transition conditions
can be inferred from Figure 4(b).

4.2.2 Concatenation of SES Automata
The second step is to concatenate the individual automata

N1, . . . , Nm from step 1. For two consecutive automata
Ni, Ni+1, this means essentially to merge the accepting state
of Ni with the start state of Ni+1 plus some renaming and
additional constraints which need to be added.

More formally, let N1 = (Q1,∆1, qs1 , qf1 , τ) and N2 =
(Q2,∆2, qs2 , qf2 , τ) be the automata for the event set pat-
terns V1 and V2, respectively. The concatenation of N1

and N2 yields an SES automaton N = (Q1 ∪ Q∗2,∆1 ∪
∆∗2, qs1 , qf2 ∪V1), which is constructed as follows. The states
in Q2 are renamed to include the event set pattern V1, i.e.,
Q∗2 = {q ∪ V1 | q ∈ Q2}. The states in the transitions
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∅ d

c

p+

cp+

cd

dp+

cdp+

c,Θ1

d,Θ2

p+,Θ3

d,Θ4

p+,Θ5

c,Θ6

p+,Θ7

c,Θ8

d,Θ9

p+,Θ10

p+,Θ11

d,Θ12

p+,Θ13 c,Θ14

p+,Θ15

p+,Θ16

Θ1 = {c.L = ’C’}
Θ2 = {d.L = ’D’}

Θ3 = {p+.L = ’P’}
Θ4 = {d.L = ’D’, c.ID = d.ID}

Θ5 = {p+.L = ’P’, c.ID = p+.ID}
Θ6 = {c.L = ’C’, c.ID = d.ID}

Θ7 = {p+.L = ’P’}

Θ8 = {c.L = ’C’, c.ID = p+.ID}
Θ9 = {d.L = ’D, c.ID = d.ID}

Θ10 = {p+.L = ’P’}

Θ11 = {p+.L = ’P’, c.ID = p+.ID}
Θ12 = {d.L = ’D’, c.ID = d.ID}

Θ13 = {p+.L = ’P’, c.ID = p+.ID}

Θ14 = {c.L = ’C’, c.ID = d.ID, c.ID = p+.ID}

Θ15 = {p+.L = ’P’}

Θ16 = {p+.L = ’P’, c.ID = p+.ID}

(a) N1 for V1 = {c, p+, d}

∅ b
b,Θ17

Θ17 = {b.L = ’B’, d.ID = b.ID}

(b) N2 for V2 = {b}

Figure 4: Automata for Event Set Patterns.

are renamed in an analogous way, i.e., for each transition
(q, v,Θδ) ∈ ∆2 we have a transition (q ∪ V1, v,Θδ) in ∆∗2.
Additionally, for each transition δ(qs2 , v,Θδ) ∈ ∆2, the con-
dition of the corresponding transition in ∆∗2 is extended as
follows: Θδ = Θδ ∪ {v′.T < v.T | v′ ∈ V1}. These time
constraints enforce all events that are bound to V2 to occur
later than the events that are bound to V1. The start state
of the concatenated automaton is qs1 (the start state of N1),
and the accepting state is qf2 ∪ {V1} (the accepting state of
N2 after appropriate renaming).

The concatenation of a sequence of automata,
N1, . . . , Nm, is done in the same order as the corre-
sponding event set patterns, V1, . . . , Vm, are specified
in the SES pattern. N1 and N2 are concatenated into
an intermediate automaton N ′ = N1N2, which is then
concatenated with N3 to give N ′′ = (N1N2)N3, and so on.

Example 7. The SES automaton in Figure 5 is the result
of concatenating N1 and N2 from Figure 4, and it corre-
sponds to the SES pattern in our running example. The
states of N are given as Q = {∅, {c}, {d}, {p+}, {c, d},

∅ d

c

p+

cp+

cd

dp+

cdp+ cdp+b

c,Θ1

d,Θ2

p+,Θ3

d,Θ4

p+,Θ5

c,Θ6

p+,Θ7

c,Θ8

d,Θ9

p+,Θ10

p+,Θ11

d,Θ12

p+,Θ13 c,Θ14

p+,Θ15

b,Θ′
17

p+,Θ16

Θ′
17 = {b.L = ’B’, d.ID = b.ID, c.T < b.T , d.T < b.T , p+.T < b.T}

N1 N2

Figure 5: Automaton for P = (〈{c, p+, d}, {b}〉,Θ, 264).

{c, p+}, {d, p+}, {c, d, p+}, {c, d, p+, b}}, where the accept-
ing state {c, d, p+, b} originates from state {b} in N2 ex-
tended by V1 = {c, d, p+}, and the state {c, d, p+} originates
from the “merging” of the accepting state of N1 and the
start state of N2. The conditions, Θi, are essentially identi-
cal to the conditions in Figure 4, except Θ′17 which extends
Θ17 with time constraints to ensure the correct chronologi-
cal order between events that match with different event set
patterns.

4.3 Execution of SES Automaton
To describe the execution of a SES automaton, we first

define the concept of an automaton instance.

Definition 4. (Automaton Instance) An automaton in-

stance, Ñ , describes a SES automaton N during execution
and is a pair

Ñ = (qc, β)

where qc ∈ Q is the state Ñ is currently in and β is the
corresponding match buffer.

Algorithm 1 shows function SESExec for the execution
of a SES automaton. It has two input parameters: a
SES automaton, N , which represents a SES pattern, P , and
an event relation, E. The function returns all matching sub-
stitutions of P in E. The algorithm iterates over all input
events, e ∈ E. Each automaton instance Ñ = (qc, β) ∈ Ω
consumes e. If the duration of the maximal time interval
spanned by e and any event in β exceeds τ , Ñ expires. If
the expired Ñ is in the accepting state, β is a matching
substitution, which is added to the result set R, and Ñ is
removed from Ω. Otherwise, if Ñ does not expire, it con-
sumes e by calling function ConsumeEvent, which returns a
set of automaton instances derived from Ñ . Finally, after
all automaton instances in Ω are processed, the updated and
newly created automaton instances Ω′ replace Ω.

Algorithm 2 shows function ConsumeEvent, which takes
as input parameters an automaton, N , an automaton in-
stance, Ñ , and an event, e, and returns a set consisting of
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Algorithm 1: SESExec(N,E)

Input: SES automaton N = (Q,∆, qs, qf , τ), event relation E
Output: set of matching substitutions

R← ∅;1
Ω← ∅;2
foreach e ∈ E do3

Ω← Ω ∪ {(qs, ∅)};4

Ω′ ← ∅;5

foreach Ñ = (qc, β) ∈ Ω do6
if max. time span between e and any event in β > τ7
then

if qc = qf then8
R← R ∪ {β};9

end10

else11

Ω′ ← Ω′ ∪ ConsumeEvent(N, Ñ, e);12
end13

end14

Ω← Ω′;15

end16
return R;17

automaton instances derived from Ñ . The algorithm iter-
ates over all outgoing transitions, δ ∈ ∆, from the current
state, qc. In each iteration, e is bound to event variables
v in the transition and stored in β′ together with the cur-
rent buffer. Next, Θδ is instantiated by the bindings in β′

and evaluated. If Θδβ
′ is satisfied, an automaton instance

(q ∪ {v}, β′) is created and added to the result set Ω. If the
transition conditions, Θδ, of several transitions are satisfied,
nondeterminism arises, and several new automata branch
from Ñ . If none of the transitions fires (Ω = ∅) the event

e is ignored, and if the original automaton instance Ñ is
in the start state an empty set is returned, otherwise a set
containing only Ñ is returned.

Algorithm 2: ConsumeEvent(N, Ñ, e)

Input: SES automaton N = (Q,∆, qs, qf , τ), automaton

instance Ñ = (qc, β), and event e
Output: set of automaton instances

Ω← ∅;1
foreach δ = (q, v,Θδ) ∈ ∆ such that q = qc do2

β′ ← β ∪ {v/e};3

if Θδβ
′ is satisfied then4

Ω← Ω ∪ {(q ∪ {v}, β′)};5
end6

end7
if Ω = ∅ ∧ qc 6= qs then8

Ω← {Ñ};9
end10
return Ω;11

Example 8. Figure 6 shows seven selected steps of
the execution algorithm with relation Event and the
SES automaton N from our running example. The steps
refer to the automaton instance, Ñ , that produces a match-
ing substitution for patient 1. Each step shows the transi-
tion of the automaton instance ({} if Ñ does not take any

transition), the current state and match buffer of Ñ , and
the transition graph. The black node represents the current
state of Ñ before taking the transition, thick edges represent
the transitions that Ñ takes, and gray nodes represent states
which Ñ traversed before. For example, in Figure 6(e) the
automaton instance is in state {c, d}, and input event e4 trig-
gers transition ({c, d}, p+,Θ11). The transition moves the

automaton instance to state {c, d, p+} and adds the binding
p+/e4 to the match buffer β.

qc = 0

β = {}

{
Ñ

(a) Newly created

qc = {c}

β = {c/e1}

{
Ñ

{(∅, c,Θ1)}

(b) Read e1, match
starts

qc = {c}

β = {c/e1}

{
Ñ

{}

(c) Read e2, ignored

qc = {c, d}

β = {c/e1, d/e3}

{
Ñ

{({c}, d,Θ4)}

(d) Read e3, matched

qc = {c, d, p+}

β = {c/e1, d/e3, p
+/e4}

Ñ

{({c, d}, p+,Θ11)}

(e) Read e4, matched

qc = {c, d, p+}

β = {c/e1, d/e3, p
+/e4}

Ñ

{}

(f) Read e6, ignored

qc = {c, d, p+}

β = {c/e1, d/e3, p
+/e4, p

+/e9}

Ñ

{({c, d, p+}, p+,Θ16)}

(g) Read e9, repetition matched

qc = {c, d, p+, b}

β = {c/e1, d/e3, p
+/e4,

p+/e6, b/e12}

Ñ

{({c, d, p+}, b,Θ′
17)}

(h) Read e12, accepting state
reached

Figure 6: Execution of the SES Automaton N for
Pattern P =(〈{c, p+, d}, {b}〉,Θ, 264).

4.4 Complexity Analysis
In this section, we analyze the complexity of SESExec, i.e.,

the execution of a SES automaton, N , for a pattern, P . The
complexity of SESExec predominantly depends on the num-
ber of simultaneous active automaton instances in Ω, which
is determined by the number of automaton instances created
in the start state of N (line 4 in Algorithm 1) and the num-
ber of automaton instances created as a consequence of non-
determinism (line 5 in Algorithm 2). An active automaton
instance is aborted if the actual input event and any event
in the match buffer span an interval which exceeds duration
τ . Therefore, Ω contains only automaton instances that are
created while reading events from a time window of width
τ .
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We begin with the definition of a few concepts, which will
be helpful for the complexity analysis.

Definition 5. (Window Size W ) Let P = (〈V1, . . . , Vm〉,
Θ, τ) be a SES pattern and E be an event relation. The
window size, W , is defined as the maximal number of events
in a time window of size τ sliding over E event-by-event.

The definition of window size W is similar to the size of
the partition window [3].

Example 9. In our running example, we have τ =
264 hours, which yields a window size W = 14 (from e1
to e14).

Definition 6. (Mutually Exclusive Event Variables) Let
P = (〈V1, . . . , Vm〉,Θ, τ) be a SES pattern and e be an event.
Two event variables v, v′ ∈ V are mutually exclusive iff

∃v.A φ C, v′.A φ′ C′ ∈ Θ ( v 6= v′ ∧ @e (

(e.A φ C) and (e.A φ′ C′) are satisfied ))

Example 10. In our running example, all event variables
are pairwise mutually exclusive, since Θ contains the condi-
tions c.L = ’C’, d.L = ’D’, p+.L = ’P’, and b.L = ’B’, that
are all of the form v.AφC and there does not exist an event
that satisfies any two conditions.

Lemma 1. Let P = (〈V1, . . . , Vm〉,Θ, τ) be a SES pattern
and N be the corresponding SES automaton. If all event
variables in P are pairwise mutually exclusive, nondeter-
minism cannot occur in any state during the execution of
N .

Proof. If all event variables in a SES pattern P are pair-
wise mutually exclusive, Θ contains a condition of the form
v.A φ C for each event variable v, that cannot be satisfied
by the same event. In the corresponding SES automaton N ,
each two transitions, δ = (q, v,Θδ) and δ′ = (q, v′,Θ′δ), that
leave a state q have in their sets of conditions, Θδ and Θ′δ,
conditions of the form v.AφC and v′.AφC′, that cannot be
satisfied by the same event. Therefore, the set of conditions
Θδ and Θ′δ cannot be satisfied contemporarily for the same
input event, which excludes nondeterminism.

In the following analysis we assume a SES automaton, N ,
for a SES pattern, P = (〈V1〉,Θ, τ), with a single event set
pattern, V1. Furthermore, we assume that only one automa-
ton instance is started in the start state ofN . We distinguish
three cases of different patterns and provide for each pattern
an upper bound for the cardinality of automaton instances,
|Ω|.

Case 1. The event variables in the SES pattern P are pair-
wise mutually exclusive.

Theorem 1. If the variables v ∈ V1 are pairwise mutu-
ally exclusive, the upper bound of |Ω| is O(1).

Proof. According to Lemma 1, if the event variables in
P are pairwise mutually exclusive, nondeterminism cannot
occur in N . Consequently, the number of automaton in-
stances in Ω stays constant which leads to a constant upper
bound O(1).

Figure 7 shows the SES automaton translated from our
assumed SES pattern P with |V1| = 3. It illustrates that in
case 1 only one automaton instance traverses the automaton.
The path from the start state to the accepting state was
chosen arbitrarily; any other path would be valid as well.

Ñ
Ñ

Ñ
Ñ

Figure 7: Case 1

Case 2. The event variables in the SES pattern P are not
pairwise mutually exclusive, and V1 does not contain any
group variable.

Theorem 2. If the variables v ∈ V1 are not pairwise mu-
tually exclusive and V1 does not contain any group variable,
the upper bound of |Ω| is O(|V1|!).

Proof. Since variables v ∈ V1 are not pairwise mutu-
ally exclusive, Lemma 1 does not apply and nondeterminism
might occur during the execution of N . In the worst case,
each automaton instance that reaches a state q ∈ Q branches
to a number of automaton instances equal to the number of
transitions that leave q. If t is the number of transitions that
leave q, t− 1 new automaton instances are created, whereas
one transition is taken by the original automaton instance.
Thus, there exists an automaton instance for each path from
the start state to the accepting state. The number of paths
in a SES automaton translated from a SES pattern with one
event set pattern V1 is |V1|!. Thus, the upper bound of |Ω|
is O(|V1|!).

Figure 8 shows the SES automaton translated from our
assumed SES pattern P with |V1| = 3. It illustrates how
automaton instances branch and which path each one takes
to reach the accepting state. Each path in N is used by one
automaton instance Ñi.

Ñ1

Ñ1

Ñ2

Ñ3

Ñ1

Ñ4

Ñ2

Ñ5

Ñ3

Ñ6

Ñ1, Ñ2

Ñ3, Ñ4

Ñ5, Ñ6

Figure 8: Case 2

Case 3. The event variables v ∈ V1 are not pairwise mutu-
ally exclusive, and V1 contains group variables.

Theorem 3. If the variables v ∈ V1 are not pairwise mu-
tually exclusive and V1 contains k group variables, the upper
bound of |Ω| is{

O((|V1| − 1)! ·W |V1|) k = 1

O(k · (|V1| − 1)! · kW ·|V1|) k > 1

Proof. Since the variables v ∈ V1 are not pairwise mutu-
ally exclusive, Lemma 1 does not apply and nondeterminism
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might occur during the execution of N . Further, with group
variables in V1, N has transitions that loop at a state, i.e.,
source state q and target state q ∪ {v} of the transition are
the same.

As in case 2, each automaton instance that reaches a state
q might branch to a number of automaton instances equal
to the number of transitions that leave q. However, if there
is a transition that loops at q, the automaton instance that
takes this transition returns immediately to q and might
cause another branching of automaton instances at q when
the next input event is consumed.

Let rqout(Wq) be a function that returns the number of
automaton instances that originate from one automaton in-
stance and that leave q through one transition that does not
loop at q. Parameter Wq is the number of events consumed
by an automaton instance at q. Function rqout(Wq) differs
depending on the number of transitions that loop at q:

• rqout(Wq) = 1, for a state without any transition that
loops,

• rqout(Wq) = Wq, for a state with k = 1 transition that
loop, and

• rqout(Wq) = kWq , for a state with k > 1 transitions
that loop.

On a path from the start state to the accepting state,
the maximal number of automaton instances that are cre-
ated from one automaton instance and that leave a state
is |Ω|pathi =

∏
q∈pathi rqout(Wq). The maximal number of

automaton instances created on all paths is then |Ω|out =∑|V1|!
i=1 |Ω|pathi .
The start state, ∅, is the first state of each path through

N . Its function r∅out(W∅) = 1 because ∅ does not contain
any group variable, and hence no transition loops at state
∅. The paths which match a group variable in their first
transition contain the most states with transitions that loop.
The number of such paths is k · (|V1| − 1)! because k path
start with a group variable, and after a group variable is
matched in the first transition, there are (|V1| − 1)! paths to
the accepting state. The upper bound of |Ω|, with Wq ≤W ,
and k group variables is therefore{

O((|V1| − 1)! ·W |V1|) k = 1

O(k · (|V1| − 1)! · kW ·|V1|) k > 1

Figure 9 shows the SES automaton translated from our
assumed SES pattern P with |V1| = 3 and one group vari-
able. The label on the transitions are the results of the
functions rqout, i.e., the number of automaton instances that
leave state q. Thick edges emphasize paths which contain
the largest number of states with looping transitions.

For a SES pattern P with n event set patterns, the upper
bound of |Ω| is

O(W · (|Ω|max)n)

where |Ω|max is the worst upper bound among the event set
patterns in P .

4.5 Filtering Events
Events in an event relation E, which do not satisfy any

of the conditions in Θ in a SES pattern, do not cause any
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Figure 9: Case 3

transition. Though, they are consumed by each single au-
tomaton instance in Ω, and the automaton remains in its
current state.

To reduce the number of iterations over automaton in-
stances Ñ ∈ Ω, we only allow iterations over automaton
instances if the input event satisfies at least one of the con-
ditions of the form v.A φ C in set Θ. All other events are
filtered out immediately after they are read. In Algorithm 1,
this additional filter is inserted after line 3. Notice, that this
optimization does not reduce the number of automaton in-
stances but only the number of iterations over the set of
automaton instances Ω.

5. EXPERIMENTS
In this section, we report the results of an empirical eval-

uation using real-world data.
The experiments have three purposes. The first purpose

is to compare the SES automaton algorithm to a brute force
approach that matches sequences of sets of events by using a
set of automata, each of which matches a sequence of single
events. The second purpose is to evaluate the results of the
complexity analysis in Section 4.4. The third purpose is to
show the effect of filtering events as described in Section 4.5
on the runtime of the SES automaton algorithm.

The three hypotheses corresponding to our purposes are
the following. First, the SES automaton algorithm is more
efficient in terms of the maximal number of simultaneous au-
tomaton instances than the brute force approach. Second,
the number of simultaneous automaton instances is upper-
bounded according to the theorems in Section 4.4. Third,
filtering events is an effective strategy to decrease the run-
time of the SES automaton algorithm.

5.1 Setup and Data
For the experiments, we implemented the automaton-

based evaluation algorithm in C. The relation with the input
events is stored in an Oracle database, Enterprise Edition
11.1, which is accessed over the OCI API. The experiments
were performed on a PC with four AMD Opteron 285 pro-
cessors with 2.6 GHz and 16 GB memory, on which a 64-bit
Linux 2.6.32 is installed.

The event relation used in our experiments is a real-world
data set with chemotherapy events from the Department
of Haematology at the Hospital Meran-Merano. To obtain
event relations with different characteristics, we generated
from the original data set the following five data sets with
corresponding window size W :

• D1 is the original data set with W = 1322;

• D2 contains each event twice and has W = 2644;

41



• D3 contains each event three times and has W = 3966;

• D4 contains each event four times and has W = 5288;

• D5 contains each event five times and has W = 6610.

5.2 Brute Force Algorithm
We compare our SES automaton that uses one automaton

to match sequences of sets of events with a brute force algo-
rithm that uses a set of automata, each of which matches a
sequence of single events. The brute force algorithm gener-
ates all possible sequences (orderings) of event variables of
an event set pattern, creates a SES automaton for each of
these sequences, and executes all automata over the event
relation.

Let P be a SES pattern with event set patterns
〈V1, . . . , Vn〉, where all event set patterns contain only sin-
gleton variables. A sequence of all event variables in P is a
concatenation of one permutation of each event set pattern
Vi. The number of all possible sequences of event variables
is |V1|! · |V2|! · · · |Vn|!. The brute force algorithm creates for
each of these sequences an automaton and executes all au-
tomata in parallel, i.e., iterates for each input event over
these automata. By specifying each event variable as an
event set pattern with exactly one singleton variable, we
can use SES automata. The brute force algorithm essen-
tially corresponds to straightforward extensions of the au-
tomata in [13, 3, 11]. We do not consider any optimizations
of the automata described in these papers, rather our aim is
to compare the efficiency of the plain automata to solve SES
pattern matching. The optimization of the SES automaton
and its comparison to related approaches remains future
work.

Example 11. Consider a slight modification of the SES
pattern in our running example, where all event variables are
singleton variables, i.e., (〈{c, p, d}, {b}〉,Θ, 264). The possi-
ble sequences of event variables are given as follows:

P1 = 〈c, d, p, b〉 P2 = 〈c, p, c, b〉 P3 = 〈d, c, p, b〉
P4 = 〈d, p, c, b〉 P5 = 〈p, c, d, b〉 P6 = 〈p, d, c, b〉

Figure 10 shows the corresponding SES automaton that
is created by our evaluation algorithm and the set of
SES automata that are created by the brute force algorithm.

If an event set pattern Vi in P contains group variables,
the number of different event sequences, and hence the num-
ber of automata created by the brute force algorithm, con-
siderably increases.

5.3 Experiment 1
The purpose of experiment 1 is to compare the

SES automaton algorithm to the brute force (BF) algorithm.
Our hypothesis is that the SES automaton algorithm pro-
duces less simultaneous automaton instances than the brute
force algorithm, and the difference is increasing with the size
of the event set pattern.

We use the following two SES patterns with identical event
set patterns, but different conditions:

• P1 = (〈V1 = {c, d, p, v, r, l}, V2 = {b}〉,Θ1, 264)

• P2 = (〈V1 = {c, d, p, v, r, l}, V2 = {b}〉,Θ2, 264)

∅ d

c

p

cp

cd

dp

cdp cdpb

(a) SES Automaton

∅ c cd cdp cdpb

∅ c cp cdp cdpb

∅ d cd cdp cdpb

∅ d dp cdp cdpb

∅ p cp cdp cdpb

∅ p dp cdp cdpb

1

2

3

4

5

6

(b) Brute Force Algorithm

Figure 10: SES Automaton and Set of Automata
Created by the Brute Force Algorithm.

Θ1 specifies that each event variable in V1 matches a dis-
tinct medication administration event, thus all event vari-
ables are pairwise mutually exclusive. Θ2 specifies that all
event variables in V1 match the same type of medication ad-
ministration events, thus all event variables are not pairwise
mutually exclusive. Data set D1 is used as event relation.

We vary the number of event variables in V1 from two
to six in steps of one, i.e., {c, d}, {c, d, p}, . . . , {c, d, p, v, r, l}.
The measured parameter is the maximal number of automa-
ton instances that are simultaneously active during the ex-
ecution, i.e., |Ω| in Algorithm 1.

Figure 11 shows the results of this experiment. With
pattern P1, the SES automaton algorithm produces sig-
nificantly less simultaneous automaton instances than the
brute force algorithm. The reason is that when the
SES automaton algorithm creates one automaton instance
for an event that matches an event variable in V1, the brute
force algorithm creates (|V1| − 1)! automaton instances be-
cause (|V1|−1)! automata start with the same event variable
(see Figure 10(b)). Since all event variables are pairwise
mutually exclusive, nondeterminism does not occur in both
algorithms, hence automaton instances never branch dur-
ing the execution. This can also be seen in Table 1, which
shows the ratio of the maximal number of automaton in-
stances that are produced by the two algorithms.

With P2, the SES automaton algorithm creates between
9% and 20% less automaton instances than the brute force
algorithm. The SES automaton algorithm creates |V1| au-
tomaton instances when it consumes an event that matches
all event variables in V1 and then if other events that
match all event variables in V1 are encountered the num-
ber increases to maximal |V1|! (see Theorem 2) due to
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Figure 11: Experiment 1

nondeterminism. The brute force algorithm, instead, cre-
ates |V1|! automaton instances at once and keeps this num-
ber of instances until they expire, independently of other
events that match all event variables in V1. To summarize,
the SES automaton algorithm creates automaton instances
when they are needed and the brute force algorithm creates
possibly needed automaton instances in advance duplicating
execution steps.

|V1| |Ω|BF |Ω|SES (Ω)BF
Ω)SES

(|V1| − 1)!

2 45 45 1 1
3 101 50 2 2
4 341 56 6.1 6
5 2414 99 24.4 24
6 14150 116 122 120

Table 1: Ratio of Numbers of Automaton Instances

5.4 Experiment 2
The purpose of experiment 2 is to validate Theorem 2 and

Theorem 3. Our hypothesis is that the maximal number of
automaton instances that are simultaneously active is upper-
bounded as stated in Theorem 2 and Theorem 3.

We use the following two SES patterns:

• P3 = (〈V1 = {c, d, p+}, V2 = {b}〉,Θ, 264)

• P4 = (〈V1 = {c, d, p}, V2 = {b}〉,Θ, 264)

Θ is identical for both patterns and constrains all event vari-
ables in V1 to match the same type of medication adminis-
tration events. Hence, the event variables are not pairwise
mutually exclusive.

We vary the window size, W , by using the data sets D1

to D5. The measured parameter is the maximal number of
simultaneous automaton instances during the execution.

The graph in Figure 12 shows the number of simultaneous
automaton instances depending on the window size, W . The
results show for P3 a polynomial trend of the number of
automaton instances with an increasing W , which validates
Theorem 3. For P4, the results show a linear trend of the
number of automaton instances with increasing W , which
validates Theorem 2.

5.5 Experiment 3
The purpose of experiment 3 is to show the effect of filter-

ing events as described in Section 4.5 on the runtime. Our
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Figure 12: Experiment 2

hypothesis is that filtering events decreases the runtime of
the SES automaton algorithm.

We use the following two SES patterns:

• P5 = (〈V1 = {c, d, p+}, V2 = {b}〉,Θ1, 264)

• P6 = (〈V1 = {c, d, p+}, V2 = {b}〉,Θ2, 264)

The set of conditions, Θ1, specifies that each event variable
in V1 matches distinct medication administration events,
hence all event variables are pairwise mutually exclusive.
The set Θ2 specifies that all event variables in V1 match
the same type of medication administration events, and all
event variables are not pairwise mutually exclusive.

We vary window sizeW similar to the previous experiment
in Section 5.4. The measured parameter is the execution
time of SES automaton algorithm.

The graph in Figure 13 shows the execution time depend-
ing on the window size, W . Filtering events reduces the
execution time by an order of magnitude for our test data
set, independently whether the event variables are pairwise
mutually exclusive or not.
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6. CONCLUSION
In this paper we introduced and formally defined se-

quenced event set pattern matching, which is the problem of
matching a sequence of input events against a pattern that
allows to specify a sequence of sets of events. The order of
events that match with the same set in the pattern is irrele-
vant, i.e., any permutation of the events is matched, whereas
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events that match distinct sets are strictly consecutive. We
proposed an automaton-based evaluation algorithm and pro-
vided a detailed complexity analysis for different types of
patterns. We conducted an experimental evaluation study
using real-world data. The results of the experiments val-
idate the complexity analysis and show that our algorithm
clearly outperforms a brute force approach, which is based
on existing techniques. The study shows also that event
filtering is effective to reduce the number of simultaneous
automaton instances.

Future work is possible in various directions, including
the following ones: investigate in detail the expressiveness of
SES automata, enhance SES automata to support a broader
class of SES patterns, and study space and runtime op-
timizations [3] for our algorithm, including indexing tech-
niques for automaton instances [11].
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[13] N. Dindar, B. Güç, P. Lau, A. Ozal, M. Soner, and
N. Tatbul. Dejavu: declarative pattern matching over
live and archived streams of events. In SIGMOD,
pages 1023–1026, 2009.

[14] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura,
W.-P. Hsiung, and K. S. Candan. Runtime semantic
query optimization for event stream processing. In
ICDE, pages 676–685, 2008.

[15] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira,
K. A. Ross, and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe
systems. In SIGMOD, pages 115–126, 2001.

[16] S. Gatziu and K. R. Dittrich. Events in an active
object-oriented database system. In Rules in Database
Systems, pages 23–39, 1993.

[17] N. H. Gehani, H. V. Jagadish, and O. Shmueli.
Composite event specification in active databases:
Model & implementation. In VLDB, pages 327–338,
1992.

[18] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman.
On supporting Kleene closure over event streams. In
ICDE, pages 1391–1393, 2008.

[19] L. Harada and Y. Hotta. Order checking in a CPOE
using event analyzer. In CIKM, pages 549–555, 2005.

[20] Y. Mei and S. Madden. Zstream: a cost-based query
processor for adaptively detecting composite events. In
SIGMOD, pages 193–206, 2009.

[21] R. Meo, G. Psaila, and S. Ceri. Composite events in
Chimera. In EDBT, pages 56–76, 1996.

[22] R. Motwani, J. Widom, A. Arasu, B. Babcock,
S. Babu, M. Datar, G. S. Manku, C. Olston,
J. Rosenstein, and R. Varma. Query processing,
approximation, and resource management in a data
stream management system. In CIDR, 2003.

[23] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi.
Expressing and optimizing sequence queries in
database systems. ACM Trans. Database Syst.,
29(2):282–318, 2004.

[24] P. Seshadri, M. Livny, and R. Ramakrishnan. The
design and implementation of a sequence database
system. In VLDB, pages 99–110, 1996.

[25] StreamBase. http://www.streambase.com.

[26] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In SIGMOD,
pages 407–418, 2006.

[27] F. Zemke, A. Witkowski, M. Cherniak, and L. Colby.
Pattern matching in sequences of rows. Technical
report, 2007.

[28] D. Zimmer and R. Unland. On the semantics of
complex events in active database management
systems. In ICDE, page 392, 1999.

44




