
Map-Reduce Extensions and Recursive Queries

Foto N. Afrati
National Technical University

of Athens,Greece
afrati@softlab.ntua.gr

Vinayak Borkar
UC Irvine, USA

vborkar@ics.uci.edu

Michael Carey
UC Irvine, USA

mjcarey@ics.uci.edu

Neoklis Polyzotis
UC Santa Cruz, USA
alkis@cs.ucsc.edu

Jeffrey D. Ullman
Stanford University, USA

ullman@cs.stanford.edu

ABSTRACT
We survey the recent wave of extensions to the popular map-
reduce systems, including those that have begun to address
the implementation of recursive queries using the same com-
puting environment as map-reduce. A central problem is
that recursive tasks cannot deliver their output only at the
end, which makes recovery from failures much more compli-
cated than in map-reduce and its nonrecursive extensions.
We propose several algorithmic ideas for efficient implemen-
tation of recursions in the map-reduce environment and dis-
cuss several alternatives for supporting recovery from fail-
ures without restarting the entire job.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—distributed data-
bases, parallel databases, query processing

General Terms
Reliability, Theory, Algorithms, Performance

Keywords
Map-reduce, transitive closure, Datalog, recursion, polyno-
mial fringe, task migration

1. MAP-REDUCE AND ITS EXTENSIONS
The introduction of map-reduce by Dean and Ghemawat

[14] for parallel computation on commodity clusters focused
a great deal of commercial and intellectual interest on this
model and similar approaches to managing large-scale data.
It is useful to reflect on what map-reduce brings to the table.
Map-reduce itself is a convenient way for modestly skilled
programmers to implement many data operations, includ-
ing the operations of relational algebra and operations on
sparse matrices and vectors (which are not too much differ-
ent from joins of relations). However, the resulting parallel

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

algorithms for relational operations are essentially the same
as those known earlier. The secret sauce of map-reduce is
not the algorithms it supports, but rather the way it handles
failures during the execution of a large job.

1.1 Tasks and Compute-Node Failures
It is desirable to use cheap hardware to execute large

parallel jobs, rather than using expensive parallel machines
and/or specialized storage systems. However, in such a com-
puting environment, it is normal to expect failures of the
compute nodes — disk crashes or other component failures.
In many cases there is a significant risk of software failure,
e.g., a task that is written to use the latest version of Java
finds itself running on a compute node whose Java has not
yet been updated.

Map-reduce deals with these failures by restricting the
units of computation in an important way. Both Map tasks
and Reduce tasks have the blocking property:

• A task does not deliver output to any other task until
it has completely finished its work.

The benefit of the blocking property is that if a task T1

fails at any time during its execution, it can be restarted at
another compute node. There is no risk that some output
of the original T1 has been passed to another task T2, which
erroneously will receive the same input from the restarted T1

later. Without the blocking property, it would be necessary
in the worst case to restart the entire job whenever any one
task failed.

The blocking property is not unique to map-reduce; it has
been exploited in a number of recent extensions. The point
at which it breaks down is when the tasks are recursive.
Recursive tasks need to deliver some output before finish-
ing, because the output of a recursive task must have the
opportunity to feed back to its input.

1.2 Generalizations of Map-Reduce
The cluster-computing environment normally is built on a

distributed file system such as GFS [17] or HDFS [5]. These
file systems divide enormous files into chunks of 64MB (typ-
ically), and replicate each chunk three or more times on
different racks. They serve as a reliable storage system for
a map-reduce system such as Google’s original [14] or its
open-source equivalent Hadoop [4].

The most natural extension of map-reduce is to allow
tasks to be more general than the particular two kinds of
tasks (Map tasks and Reduce tasks) found in map-reduce

1

itself. We are thus led to dataflow systems that support any
collection of tasks connected in an acyclic manner. Typ-
ically, a dataflow system uses prototypes for each kind of
task that the job needs, just as Map-Reduce or Hadoop
use prototypes for the Map and Reduce tasks. A dataflow
system replicates the prototype into as many tasks as are
needed or requested by the user. Dataflow systems include
Dryad [20] and its extension DryadLINQ [31] (Microsoft),
Clustera [15] (U. Wisconsin), Hyracks [8] (UC Irvine), and
Nephele/PACT [7] (T. U. Berlin).
Other extensions of map-reduce are high-level languages

that compile into a sequence of map-reduce jobs. PIG [24] is
an implementation of relational algebra from Yahoo!. Hive
[6] (open-source) and SCOPE [12] (Microsoft) are imple-
mentations of limited forms of SQL.

1.3 Recursive Queries
While conventional wisdom may have relegated recursion

to an uninteresting byway, consisting of calculations of an-
cestors or management chains, there are several classes of
problems that have become interesting recently and are true
recursions on very large relations.

1. The original problem for which Map-Reduce was devel-
oped — PageRank — is really a recursive calculation
of the fixpoint of a sparse matrix-vector multiplication.
We tend to think of it as an iteration because normally
it is computed in discrete rounds.

2. The full transitive closure is necessary for studies of
the structure of the Web, as in [10].

3. Several calculations about social networks involve the
transitive closure of the Friends graph. Two examples
are discovering communities or centrality of persons.

Moreover, these recursive calculations are really operations
on relational data. A sparse matrix is naturally represented
as a relation. The same is true of a sparse graph, such as
the graphs of the Web or a social network.

1.4 Overview of the Paper
In this paper, we shall explore the problems of implement-

ing recursion, especially recursive queries, on a computing
cluster. We begin with the data-volume cost model, in which
we can evaluate different algorithms for executing queries on
a cluster, whether recursive or not.
We look at algorithms for implementing recursive queries,

starting with transitive closure as a fundamental example,
and then looking at its generalization to all recursive queries.
Next, we explore the space of approaches to implementing
recursion on a cluster. The central issues are:

1. Execution of a recursion as an iteration may not be
the most efficient way to proceed. We look at some
other options and the problems they present.

2. In Section 1.1 we noted that recursive tasks cannot
have the blocking property. We look at options for
coping with compute-node failures when tasks are re-
cursive.

3. We consider the problem of the endgame: many recur-
sive queries generate most of the answer tuples in the
early rounds, but these productive rounds are followed

by many rounds that each yield only a small number
of new tuples. Because file transfer between compute
nodes involves substantial overhead, there is a need to
cope with the plethora of small files. We address:

(a) Modifying the underlying algorithm to reduce the
number of rounds; see Section 4.

(b) Modifying the behavior of the tasks executing
the recursion as the number of rounds increases.
These approaches include merging tasks, migrat-
ing tasks, and introducing new tasks that allow
the combination of many small files into a few
large files; see Section 7.

2. DATA-VOLUME COST
When evaluating algorithms on a computing cluster, we

need to measure the total running time of all the tasks that
collaborate in the execution of the algorithm. That sum is
the cost of renting time on processors from a public cloud,
and is therefore a fair way to evaluate algorithms in the
cluster-computing environment. As a simplified surrogate
for the running time, we shall focus on the sum of the sizes
of the inputs to all the tasks that collaborate on a job, which
we call the data-volume cost of an algorithm. A discussion
of this model is in [3], where it is called the communication-
cost model.

2.1 Details of the Model
To apply data-volume cost meaningfully, we need to as-

sume there is an upper limit on the amount of data that
can be input to any one task. Without this assumption, the
optimal algorithm would be a single task with no communi-
cation among tasks. But more importantly, there is a great
value in restricting the input size for a task. For example,
this restriction may enable all computation to be done in
main memory.

The model also assumes a significant, fixed overhead cost
for sending any file to a task. Equivalently, there is a lower
bound b which we add to the data-volume even if an input
file is smaller than b. We discuss how to avoid small files as
input in Section 8.

2.2 Other Costs
The execution time of a task could, in principle, be much

larger than its input data volume. However, for the kinds
of algorithms we shall focus on, including all kinds of SQL
operations, there are implementations, e.g., hash join, that
perform operations in time proportional to the input size
plus output size.

The data-volume model counts only input size, not output
size. In justification, the output of each task is either:

1. The input to one or more other tasks, and thus will be
counted as input to that operation, or

2. Output of the job as a whole. In this case, it is likely
that the output will be aggregated or otherwise col-
lapsed to produce a query result that can be read and
used by a human analyst. The cost of generating this
relatively small output can be neglected.

3. DATALOG AND RECURSIVE QUERIES

2

There has been a surprising resurgence of interest in Dat-
alog for large-scale data-processing applications, including
networking [18], analysis of very large programs [22], and
distributed (social) networking [25]. Datalog notation also
allows us to express a rule that gives a lower bound on exe-
cution time for queries, whether recursive or not; this point
is discussed in Section 3.2. We shall use the notation of [29]
to express Datalog queries in what follows.

3.1 Transitive Closure
Each of the recursions mentioned in Section 1 is similar

to the standard calculation of transitive closure (hereafter
TC) on a directed graph. There are several ways to express
TC as a recursive Datalog program. Suppose that E(x, y)
is a relation representing the directed edges of a graph; i.e.,
there is an edge from a to b if and only if (a, b) is a tuple of
E. The nonlinear form of TC rules is:

P(x,y) <- E(x,y)

P(x,y) <- P(x,z) AND P(z,y)

One can also replace the subgoal P (x, z) in the recursive rule
by E(x, z) to get the left-linear version of TC, or replace the
subgoal P (z, y) by E(z, y) to get the right-linear version.
Although the nonlinear form is not even supported by

the SQL standard, and was not considered in the classic
study of TC in [13], when we think about execution on a
computing cluster there is good reason to consider the non-
linear version. The advantage of using a nonlinear TC is
that the number of needed rounds (iterations of the recur-
sive rule, whether synchronous or not) is much smaller than
for the linear versions — O(logn) rather than O(n) on an n-
node graph. Thus, this method helps deal with the endgame
problem where many small files need to be communicated
at many of the rounds of a recursion.

3.2 A Lower Bound on Query Execution Cost
When we take a join, we expect that the execution cost is

no less than the number of pairs of tuples that join success-
fully. This statement is correct only if there is no other way
to execute the same query that avoids taking the join. The
following rule, from [1], expresses this intuition precisely,
in Datalog. Given a Datalog program, the number of its
derivations is the sum, over all the rules in the program, of
the number of ways we can assign values to the variables in
order to make the entire body (right side of the rule) true.
The key property of the count of derivations is that:

• An implementation of a Datalog program that exe-
cutes the rules as written must take time on a single
processor at least as great as the number of deriva-
tions.

Of course, one can sometimes rewrite the rules to do better,
but unless we do so, every derivation must be considered
in a correct execution of the rules. It is known that semi-
naive evaluation of Datalog rules (see [27] for the definition
of seminaive) will take time on a single processor that is
proportional to the number of derivations, since seminaive
evaluation avoids considering any combination of tuples that
have been combined before.

[16] explored parallel implementation of Datalog queries
in a setting that is not too different from a modern cluster
environment. They defined a parallel implementation to be

seminaive nonredundant if (in our terms) the data-volume
cost is proportional to the number of derivations. We shall
see several algorithms for TC that have this property. First,
let us consider some examples of counting derivations.

Example 3.1. Consider the left-linear TC mentioned in
Section 3.1:

P(x,y) <- E(x,y)

P(x,y) <- E(x,z) AND P(z,y)

The body of the first rule is just E(x, y), so the body can
be made true by any substitution for x and y that forms an
edge of the graph. That is, this rule admits |E| derivations.

The second rule body, E(x, z) AND P (z, y), is made true
whenever we can find nodes a, b, and c such that there is
an edge from a to c and a path from c to b. Thus, we can
describe the number of derivations for this rule as the sum
over all nodes c of the in-degree of c times the number of
nodes reachable from c. Typically, the number of derivations
obtained from the second (recursive) rule greatly exceeds the
number from the first (basis) rule. In what follows, we shall
ignore the basis rule and consider only the recursive rule.

For the right-linear version of TC, where the body of the
recursive rule is P (x, z) AND E(z, y), the recursive rule has
a number of derivations equal to the sum over all nodes c
of the number of nodes that can reach c times the out-degree
of c. That figure can be more or less than the figure for
left-linear TC, but it is rarely the same.

The nonlinear TC program has a number of derivations
equal to the sum over all nodes c of the number of nodes
that can reach c times the number of nodes c can reach.
This quantity is different from the numbers of derivations
for either the left- or right-linear TC programs, but is never
less than those and can be much greater. Section 4.2 dis-
cusses ways to lower the derivation count for nonlinear TC
significantly. When we consider the inherent advantages, in
the cluster environment, of reducing the number of rounds,
the nonlinear version of TC can be superior in practice.

4. TRANSITIVE CLOSURE ALGORITHMS
We shall now consider two specific algorithms for taking

the transitive closure. The first is a direct implementation
of the nonlinear TC program, and the second is the im-
provement, promised above, that greatly cuts down on the
data-volume cost.

4.1 An Implementation of Nonlinear TC
We use two kinds of tasks: Join tasks and Dup-elim tasks.

Each task receives inputs from tasks of the one kind and
delivers input to the tasks of the other kind.1 We require
two hash functions, h and g. The first, h, takes a node of the
graph as an argument and produces a bucket number. Each
Join task corresponds to one bucket. The hash function g
takes a pair of nodes and produces a bucket number, which
corresponds to one Dup-elim task.

Initialization: Each tuple (a, b) in the relation E is sent
to the Dup-elim task g(a, b), where it is treated as a tuple
of the relation P .
1We could combine the two kinds of tasks into one kind, but using
both kinds allows us to recover from single task failures in a way
we could not do if we used only one kind of task. In particular,
we can restart tasks of either kind using the outputs of tasks of
the other kind.

3

Join tasks: Join task i receives all and only the tuples
(a, b) such that either h(a) or h(b), or both, is i. This task:

1. Adds (a, b) to its local store. It will never be the case
that this tuple is already stored.

2. Searches its store for tuples (b, c), provided h(b) = i.
For each such tuple found, it sends (a, c) to the Dup-
elim task g(a, c).

3. Searches its store for tuples (c, a), provided h(a) = i.
For each such tuple found, it sends (c, b) to the Dup-
elim task g(c, b).

Dup-elim tasks: These store all received tuples locally.
When (a, b) is received, it checks whether this tuple was
recieved previously. If so, the tuple is ignored. If not, the
tuple is stored and sent to Join tasks h(a) and h(b).

The data-volume cost for this algorithm is of the same
order as the number of derivations of the nonlinear Datalog
program. To see why, suppose the graph has a path from
node a to node c and a path from node c to node b. Then
there is a derivation in which a, b, and c substitute for x,
y, and z, respectively, in the recursive rule. The Join task
numbered h(c) will eventually receive the tuples P (a, c) and
P (c, b). When the second of these arrives, it will discover
P (a, b) and communicate this tuple to the Dup-elim task
g(a, b). No other Join task receives both P (a, c) and P (c, b),
so this derivation is never again used (although there may
be other derivations of the same fact P (a, b)).
When the Dup-elim task g(a, b) receives P (a, b) for the

first time, it transmits it to two Join tasks h(a) and h(b).
But if received a second time, P (a, b) is ignored. Thus, each
derivation causes the communication of between one and
three tuples, but never causes more than three. Thus, the
data-volume cost is proportional to the number of deriva-
tions. Additionally, if sensible data structures are used for
the various tasks, the execution time at each task is propor-
tional to the number of tuples received or sent. Thus, total
cost is linear in the number of derivations.

4.2 TC by Recursive Doubling
Recall that the motivation for considering the nonlinear

version is that the lower the number of rounds, the less likely
it is that the overhead of delivering a large number of tiny
files will dominate the total cost. However, the linear ver-
sions of TC have an advantage over the nonlinear TC in
that the former discover each shortest path only once. That
is not the same as discovering each P-fact only once, but it
seems the most restrictive exploration of paths that we can
do in general.
It is, in fact, possible to implement nonlinear TC in a way

that discovers each shortest path only once. The algorithm
Smart Transitive Closure appears in [30] and [19]. In [21]
it was shown to be highly efficient as a serial algorithm.
Intuitively, Smart-TC breaks each path into a prefix, whose
length is a power of 2 and a suffix whose length is no greater
than the length of the prefix. The details are shown in Fig. 1.
There are other options, which we shall not discuss in detail,
for forcing paths to be discovered only once. For example,
we could insist that the length of the prefix be exactly equal
to the length of the suffix (plus 1 for odd lengths).
To simplify the description of the Smart-TC algorithm, we

shall assume that the graph is first made acyclic by collaps-
ing strong components into single nodes, as was suggested

in the analysis of TC algorithms [13]. The algorithm shown
in Fig. 1 is an iteration, where in round i ≥ 0 we compute:

1. Pi(x, y) = the pairs of nodes (x, y) whose shortest path
from x to y is of length between 0 and 2i − 1.

2. Qi(x, y) = the pairs of nodes (x, y) such that the short-
est path from x to y is of length exactly 2i.

1) Q0 := E;

2) P0(X,X) := {(x, x)|x is a graph node};
3) i := 0;

4) repeat {
5) i := i + 1;

6) Pi(x, y) := πx,y

(
Qi−1(x, z) ◃▹ Pi−1(z, y)

)
;

7) Pi := Pi ∪ Pi−1;

8) Qi(x, y) := πx,y

(
Qi−1(x, z) ◃▹ Qi−1(z, y)

)
;

9) Qi := Qi − Pi;

}
10) until (Qi == ∅)

Figure 1: Transitive closure by recursive doubling

The basis is lines (1) through (3). Line (1) initializes Q0

to be the edges of the graph, i.e., those pairs of nodes whose
shortest path is of length 20 = 1.2 Line (2) initializes P0 to
be the paths of length 0, that is, all tuples P0(x, x). Finally,
line (3) sets i, the iteration counter, to 0.

Lines (4) through (10) form a loop that iterates until at
some stage no more Q-tuples are discovered. After incre-
menting i at line (5), we compute Pi at lines (6) and (7).
Line (6) joins Qi−1 and Pi−1, thereby discovering all paths
of length between 2i−1 and 2i − 1. Line (7) then adds in
the P -facts discovered on previous rounds, i.e., those paths
of length less than 2i−1. Line (8) computes Qi to be the
join of Qi−1 with itself. That will surely discover all paths
of length 2i. However, it also will include some pairs that
have a path of length 2i but also have a shorter path. These
pairs are eliminated by line (9).

To implement this algorithm, we can use one collection
of the Join and Dup-elim tasks mentioned in Section 4.1
for P and a distinct collection of the same kinds of tasks
for Q. The data-volume cost of this implementation is no
greater than the sum, over all nodes c and integers i, of the
number of nodes that can reach c by a shortest path whose
length is 2i, times the number of nodes c can reach by a
path that is no longer. This quantity is surely less than the
cost of the straightforward nonlinear TC algorithm. More
importantly, it shares with the implementations of the left-
or right-linear versions of TC the good property that each
path can be constructed in only one way.

5. THE GENERAL ITERATIVE SOLUTION
The organization of recursive tasks from Section 4.1 car-

ries over to every Datalog program, recursive or not. Here
is an outline of how to do so.

2Note we assume the graph is acyclic, and thus has no loops. If
not, we would have to remove Q0(x, x) whenever there is a loop
from x to itself.

4

5.1 Implementing Any Datalog Program
For each rule we create a collection of tasks that are re-

sponsible for applying that rule and producing new facts for
the head of the rule. Some hashing scheme is used to divide
the work among tasks. This scheme must identify buckets
by vectors of values, and each component of the vector is
obtained by hashing a certain variable that appears in the
body of the rule. Suppose P (· · ·) is a subgoal of the rule,
and this subgoal has k arguments. A task receives all facts
P (a1, a2, . . . , ak) discovered by any task, provided that each
component ai meets a constraint: if the ith position of the
subgoal corresponds to a variable that participates in the
hashing scheme for the rule, then ai has a hash value that
agrees with the ith component of the vector associated with
that task. If the ith position’s variable does not participate
in the hashing scheme, then ai can be any value.

Example 5.1. Consider a rule

P(x,y) <- Q(x,z) AND R(z,w) AND S(w,y)

Suppose we use 100 tasks to evaluate this rule. We might
choose to hash z five ways and w 20 ways, while x and y
do not participate in the hashing scheme. If a new Q-fact,
say Q(a, b) is discovered by some other task, then this fact
is sent to all those tasks for the rule above whose bucket
is identified by a vector [h(b), v]. Here, h(b) is the hash
function for variable z applied to b (resulting in one of five
possible values), and v is any of the 20 values into which w
can be hashed. I.e., Q-facts are sent to 20 tasks; R-facts are
sent to one task, and S-facts are sent to five tasks.

We can avoid having to send newly discovered facts to
more than one task of a collection if we rewrite the rules
to have bodies of at most two subgoals (i.e., we force all
joins to be binary). Additionally, the results from several
rules for the same predicate must be combined, using tasks
that perform a union. The implementation must make sure
that facts discovered more than once are not propagated the
second or subsequent times, using tasks like the Dup-elim
tasks from Section 4.1. If we handle these aspects correctly,
then we can claim that the data-volume cost of the algorithm
is proportional to the number of derivations for the rules.

5.2 The Polynomial-Fringe Property
It is highly unlikely that all Datalog programs can be im-

plemented in parallel in polylog time (time a power of the
logarithm of the input size). The division between those that
can and those that (almost surely) cannot was addressed
in [28], which defined the polynomial-fringe property (here-
after PFP). A program has the PFP if all true facts have
a proof tree with a number of leaves that is polynomial in
the data size. For example, all linear recursions have the
PFP. [28] showed that all Datalog programs with the PFP
can be parallelized in polylog time. [2] examined the com-
mon case of single chain-rule Datalog programs and divided
them completely between those that have polylog-time par-
allel algorithms and those that are P-complete and therefore
almost surely cannot be parallelized.
Using the algorithm of [28], we can implement any Datalog

program with the PFP in only log2 n parallel computation
steps (n is the data size). Most of the work involves log n
executions of TC, which can be done in the efficient way
suggested by Section 4.2. This figure does not exactly match

the logn rounds needed for transitive closure, but it does
suggest that we can do much better than O(n) rounds that
might be needed in general.

6. IMPLEMENTATIONS OF RECURSION
Several software systems have addressed the problem of

implementing recursions in a cluster environment while cop-
ing efficiently with failures. We discuss each briefly, with an
eye toward how they deal with failures during a recursion.

6.1 The HaLoop Approach
HaLoop [11] replaces recursion by an iteration of map-

reduce passes. This system tries to minimize communica-
tion by considering how data is passed from tasks at one
pass to the next and locating intermediate files and tasks
appropriately. Since tasks exist for only a single pass, the
problem of recursive tasks disappears. That is, the ordinary
failure-recovery methods of a map-reduce implementation
can be relied on to handle failures. The problem with this
approach is that tasks must operate in synchronous rounds,
and the output of one task must still be passed, even if lo-
cally, to its successor task in the next map-reduce phase.

6.2 The Pregel Approach
Pregel [23] assumes a recursive algorithm executes on a

graph. Tasks correspond to nodes of the graph and can send
data to any other task. These messages are organized into
supersteps, which are essentially rounds. Pregel checkpoints
the state of all tasks periodically, after some chosen number
of supersteps. When a task fails, all tasks are rolled back to
the previous checkpoint, and the failed task(s) are restarted
at different compute nodes. That approach not only throws
away perfectly good computation, but it does not scale com-
pletely. That is, the more compute nodes are involved, the
more frequently we must checkpoint if we want a fixed prob-
ability of failure between consecutive checkpoints.

7. DEALING WITH TASK FAILURES
Now we turn our attention to the fact that recursive tasks

do not have the blocking property, yet we need to be able to
cope with failures of compute nodes or tasks without restart-
ing the entire job. First, we look at options for managing
the intermediate files that communicate data among recur-
sive tasks. Then, we examine options for restarting tasks
that have failed, especially how we deal with data that was
already transmitted by the failed task.

7.1 File Management for Recursions
From the discussion of Section 4.1, you might imagine that

tuples are passed among tasks as soon as they are gener-
ated. However, passing single tuples incurs severe overhead.
Roughly, it is only economical to send tuples in packages of
thousands. We assume that each task has an input queue of
tuples, which from time to time is passed new input tuples
by other tasks, or in some cases, by itself. Each task main-
tains one output file for each of the other tasks, into which
it places discovered tuples destined for that task.3

3More realistically, there is only a need for one file per pair of
compute nodes. That file can send data from all the tasks located
at the source node to all the tasks located at the destination node.
However, since our general desire for low wall-clock time implies
that we should use many compute nodes, we shall tend to think
of files as communicating from one task to another.

5

Because we must deal with failures, it is essential that
each of these intermediate files be recoverable. They could
be stored in the surrounding distributed file system, which
will replicate them sufficiently that they are very unlikely
to be lost. However, that solution is probably more than
needed. An option, which we shall assume at the minimum,
is that each task stores locally all the files it ever generates.
Thus, if one task fails, its inputs can be reconstructed from
the other tasks, as long as the failed task does not feed input
to itself. However, we can design tasks to avoid self-feeding.
An example should suggest the general technique.

Example 7.1. Let us recall the TC implementation of
Section 4.1, where we used two kinds of tasks: Join and
Dup-elim. Notice that each task feeds data only to tasks
of the other kind. If we locate the Join tasks on different
racks from those used by the Dup-elim tasks, then we can
even survive a rack failure. If any number of Join tasks
fail simultaneously, their inputs can be constructed from the
Dup-elim tasks, and vice-versa.

There are several other issues regarding file management.
Section 8 will deal with the problem of small files. Here, we
examine some options regarding how to decide when to pass
files from one task to another.

7.1.1 Operation in Rounds
We can wait until each task has exhausted its input. At

that time, all tasks transmit all their files to the proper
destination task. This approach treats the recursion as an
iteration. It is commonly used in map-reduce implemen-
tations. For example, we can see the common PageRank
calculation, which is technically a recursion, as an iteration
in which each step is carried out by a separate map-reduce
job, with distribution of data interspersed. It is also the su-
perstep approach used by Pregel. The disadvantage is that
some tasks may finish early and must idle while other tasks
finish.

7.1.2 Tasks Choose to Send Data
An alternative is to allow each task to decide when it is

ready to send a file. It might send a file as soon as that
file has reached a certain size, or send all its files after
the total amount of output it has generated has reached
a limit. There are two advantages of this approach. First,
it is more likely that each task will have some input avail-
able at all times. Second, the communication network will
be busy more of the time, rather than being idle between
synchronous rounds.

7.1.3 A Global Decision
The controller for the tasks (master in the parlance of

Hadoop) can decide when to pass data. It could call for
data to be sent at regular time intervals, or it could monitor
the total amount of data generated and call for transmission
when the total amount of data reaches a set limit.

7.2 Recovery from Task Failures
A task can fail for many reasons, including software fail-

ures (e.g., the node on which it runs has the wrong version
of Java), failure of the compute node itself, and failure of
the communication facility for an entire rack of nodes. Here
we discuss the approaches that can be used in an implemen-
tation of recursion on a computing cluster. No strategy, can

eliminate the possibility of restart altogether. For example,
a Hadoop job needs to be restarted when the node executing
the master controller fails. However, a reasonable criterion
for failure-management strategies is that the probability of
having to restart the largest imaginable job is close to 0.

Pure Datalog, unlike most forms of recursion, has an idem-
potence property due to its reliance on the set model of data.
That is, generating a tuple a second time has no effect on the
eventual outcome of the recursion. Thus, if a task fails, we
can restart it at a different node without affecting the global
computation. Since the repeated task must (typically) run
from the beginning, we need a mechanism to supply it with
the same inputs that were received by the failed task. As
discussed in Section 7.1, there are several options for mak-
ing it almost certain that these files are still available to the
restarted task.

Unfortunately, many recursions involve nonidempotent op-
erations. For example, we may want the normal bag-model
semantics of SQL. Or we may have an aggregation involved
in a Datalog recursion, such as counting the number of paths
in a graph or the number of nodes reachable from each node
in a graph. If so, we not only need to reconstruct the inputs
to a restarted task. We need to know which output files
from the corresponding failed task were delivered to their
destination, so we do not send the same data again. There
are again several approaches.

7.2.1 Responsibility With the Master Controller
The master records the location of each file ever shipped

from one task to another. A restarted task is told by the
master which files the original task received as input.

There must be a way to reproduce the timing of the gen-
eration of output files; for example, if output files are gener-
ated in rounds, the restarted task can produce the same out-
put files as the original version of the task, since it is given
the same input files in the same sequence. The restarted
task must execute the same steps as the original, in order
to develop the same internal state as the original. However,
when it generates an output file that was previously sent by
the original version of the restarted task, the master does
not deliver it; this file is “thrown away.”

7.2.2 Responsibility With the Recipient
Instead of giving the master the responsibility for throw-

ing away repeated output files, the recipients can be given
that responsibility. Each task must record all the files it ever
receives. It may not be necessary to record the file contents,
but certainly it must record enough information to know if
it receives an identical file, e.g., an identifier of the task and
the round at which that file was sent.

8. THE ENDGAME
Recall that in later rounds of a recursion, the number of

new facts derived at a round may drop considerably. There
is significant overhead in transmitting files, so it is desired
that each of the recursive tasks have thousands of tuples for
each of the other tasks whenever we distribute data among
the tasks. We are thus motivated to consider how to reduce
the number of files needed, and that question in turn forces
us to consider methods for migrating recursive tasks from
one compute node to another.

6

8.1 Dealing With Small Files
The large number of tasks needed for early rounds of the

recursion may lead to very small files at later rounds. Thus,
in at least some applications there is need for an “endgame”
strategy, where as the sizes of files shrink, the algorithm
used to implement the recursion changes. We consider two
possibilities here.

8.1.1 Using Fewer Compute Nodes
We may reduce the number of compute nodes used for

the tasks and therefore cause many tasks to execute at the
same node. Collect all the tuples at a compute node that
are destined for tasks at a single other compute node into a
single file (typical implementations do this step routinely).
Ship that file to the destination and have that node sort the
input into separate files for each of the tasks at that node.
This option is an important motivation for considering the
matter of task consolidation in Section 8.2.

8.1.2 Using Hub Tasks
We may create one or more Hub tasks whose only job is to

receive files from the operational tasks and consolidate them
into files destined for each task. As in the first strategy,
each task can bundle the tuples destined for each other task
(labeling the tuples by destination, of course) into a single
file and ship them as one file to a Hub task.

8.2 Task Migration
Historically, task migration in multiprocessor systems has

been discussed from the point of view of how compute nodes
can inform other nodes of their load efficiently; see, e.g., [26].
However, in the environment we have been studying, there is
typically a master controller that pings all tasks periodically
anyway and can gather load information as it does. Never-
theless, there are some new issues that arise, especially for
recursive tasks and tasks that deal with relational data. In
the following sections we shall address two broad issues:

1. What are the mechanics of migrating tasks?

2. When should we choose to migrate tasks?

8.3 Merging and Splitting Relational Tasks
When we divide a relational operation among tasks, the

normal way to do so is to use a hash function on some of
the data. The buckets of the hash function correspond to
the tasks, as in Example 5.1. If we are going to vary the
number of tasks cooperating to perform an operation, we
use a hash function h that generates a large number of bits,
say 32. For any fixed number of tasks, say 64 tasks, we use
only a prefix of the bit string produced by h; in this case,
the first six bits would be used.
We need to manage indexes on the data as we merge and

split tasks. When tuples of a relation are sent to only one
task in the group (unlike Example 5.1), we can support
merging and splitting of tasks easily. For an example, con-
sider the natural join R(A,B) ◃▹ S(B,C). Tuples of both R
and S are hashed on their B-values. We also need an index
on B for both relations, so we can retrieve tuples of one re-
lation that join with a given tuple from the other relation.
Thus, suppose we have a hash function h(b) that maps B-
values to 32-bit strings, and assume the first six bits of that
string determine which of 64 Join tasks gets a given tuple.

At a given Join task T , store the tuples of R and S in B-
trees with key equal to the entire 32-bit string h(b). That is,
tuples of R, say (a, b), appear in the B-tree according to the
order given by h(b). Of course, all the R-tuples at T share
the same first six bits, but the other 26 bits will order all
the R-tuples at T . If we need to find all the tuples of R that
have a particular B-value b, just search in the B-tree with
key h(b), and we shall find them quite efficiently. Tuples of
S are stored analogously in another B-tree.

Now, suppose we decide to double the number of tasks,
so there are 128 tasks. We identify each task by the first
seven bits of h(b), which means that the tuples for which T
is responsible are divided into two groups — those with 0 in
the seventh bit and those with 1. Say those with 0 remain
at T , while those with 1 go to a new task U .

The benefit of the B-tree organization is now apparent.
All the tuples that stay at T precede all those that are moved
to U in the order. We must split the B-tree down the middle,
which may involve restructuring at all levels, but the total
work is proportional only to the number of levels, not to the
number of tuples stored at task T .

Conversely, suppose that instead, we decide to reduce the
number of tasks, merging our 64 tasks into 32 tasks. We
start using only the first five bits of h(b), which has the effect
of merging all pairs of tasks identified with 6-bit strings that
differ only in the sixth bit. Suppose that the bit-string for
T has a 0 in its sixth bit, and V is the task whose bit-
string agrees except for a 1 in the sixth bit. Then we must
merge T and V . However, the keys for all the B-values at
T will precede the keys for all the B-values at V . Thus,
building an index for the merged task requires only that we
stitch together two B-trees; no merging of values from the
two trees is required. Again, the stitching may need some
restructuring at each level, but the work is proportional to
the levels, not the data size.

Matters are somewhat more complex when tuples have
several components that together determine the task to which
the tuple is assigned. Example 5.1 is typical; there, the hash
function combines values corresponding to rule variables z
and w. If we want, say, a hash function of 32 bits, then we
need to interleave bits from a hash function that applies to
z and another hash function that applies to w. Note that
some tuples to not involve z or do not involve w, so in these
tuples the bits from the missing attribute can be arbitrary
and are determined only by the bit string associated with
the task in question. We shall suggest the necessary ex-
tension in a concrete example, from which the general idea
should be apparent.

Example 8.1. Suppose that we have 64 tasks implement-
ing the Datalog rule from Example 5.1, and we wish to split
tasks by taking the seventh bit of the hash function h(w, z)
into account. Consider the tuples for subgoal Q(x, z) stored
at task T , which we shall split into T and U . These tuples
are arranged in a B-tree whose key is all the bits of h that
come from z. If the seventh bit of h is a bit that comes from
w, then the B-tree from T for tuples of Q is copied to U as
well as remaining at T . However, if the seventh bit comes
from z, then this B-tree is split as we described above.

Conversely, if we merge T with another task V that differs
only in the sixth bit of h, then we must again consider two
cases, depending on whether the sixth bit comes from w or z.
If from w, then the B-trees for Q at T and V are identical,
since they contain exactly the same Q-tuples. We therefore

7

throw away one and keep the other. If the sixth bit is from
z, then we concatenate the two B-trees as above.

8.4 When and How Should We Migrate?
We obviously need a strategy to determine when to mi-

grate tasks. In this direction, we may leverage existing work
in online computation and specifically the field of task sys-
tems [9]. The gist is to monitor the current performance of
the computation and to run what-if scenarios on different
possible configurations (migrating tasks to different nodes,
scaling-up/down the degree of parallelism). Given this in-
formation, there are algorithms that can decide in a robust
fashion (i.e., with a bounded competitive ratio) when to
switch configuration based on the performance gains and
also the cost of doing the switch.

9. FURTHER DEVELOPMENTS
We have argued that extending the map-reduce model

of cluster computing to recursive jobs requires considerable
work. Thought must be given to the underlying algorithms,
including the possibility that nonlinear recursions offer sub-
stantial advantages in this environment. Conversion of lin-
ear to nonlinear recursions is easy in some cases, such as
transitive closure, but may be impossible in others. Open
questions include exploring where nonlinear recursion is pos-
sible and minimization of the data-volume cost for cases
other than TC where the conversion is possible.
We have also explored a number of important implemen-

tation issues. One of these is the matter of how best to
schedule the transmission of data among the various recur-
sive tasks. Methods of recovery from task or compute-node
failures needs to be explored and evaluated, especially in the
case where the operations being performed are not idempo-
tent. The problem of the “endgame,” where recursions at
the end require many rounds that produce little data, was
proposed. There is a need to explore solutions involving file
merging and task merging in various combinations.

10. REFERENCES
[1] F. Afrati, V. Borkar, M. Carey, N. Polyzotis, and

J. Ullman. Cluster computing, recursion and datalog. To
appear in a book based on the Datalog 2.0 Workshop
(March, 2010), Oxford GB, to be published by Springer in
2011.

[2] F. N. Afrati and C. H. Papadimitriou. The parallel
complexity of simple chain queries. In PODS, 1987.

[3] F. N. Afrati and J. D. Ullman. Optimizing joins in a
map-reduce environment. In EDBT, 2010.

[4] Apache. Hadoop. http://hadoop.apache.org/, 2006.

[5] Apache. Hdfs. http://hadoop.apache.org/hdfs/, 2008.
[6] Apache. Hive. http://wiki.apache.org/hadoop/Hive, 2008.
[7] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and

D. Warneke. Nephele/pacts: a programming model and
execution framework for web-scale analytical processing. In
SoCC ’10: Proceedings of the 1st ACM symposium on
Cloud computing, pages 119–130, New York, NY, USA,
2010. ACM.

[8] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica.
Hyracks: A flexible and extensible foundation for
data-intensive computing. In Proceedings of the IEEE
International Conference on Data Engineering, to appear,
2011.

[9] A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press, 1998.

[10] A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. L. Wiener.
Graph structure in the web. Computer Networks,
33(1-6):309–320, 2000.

[11] Y. Bu, B. Howe, M. Balazinska, and M. Ernst. Haloop:
efficient iterative data processing on large clusters. In
VLDB Conference, 2010.

[12] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: easy and efficient parallel
processing of massive data sets. In VLDB, 2008.

[13] S. Dar and R. Ramakrishnan. A performance study of
transitive closure algorithms. In SIGMOD Conference,
pages 454–465, 1994.

[14] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[15] D. J. DeWitt, E. Paulson, E. Robinson, J. F. Naughton,
J. Royalty, S. Shankar, and A. Krioukov. Clustera: an
integrated computation and data management system.
PVLDB, 1(1):28–41, 2008.

[16] S. Ganguly, A. Silberschatz, and S. Tsur. A framework for
the parallel processing of datalog queries. SIGMOD Rec.,
19:143–152, May 1990.

[17] S. Ghemawat, H. Gobioff, , and S.-T. Leung. The google
file system. In 19th ACM Symposium on Operating
Systems Principles, 2003.

[18] J. M. Hellerstein. Datalog redux: experience and
conjecture. In PODS, pages 1–2, 2010.

[19] Y. E. Ioannidis. On the computation of the transitive
closure of relational operators. In Proceedings of the 12th
International Conference on Very Large Data Bases,
VLDB ’86, pages 403–411, San Francisco, CA, USA, 1986.
Morgan Kaufmann Publishers Inc.

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequential
building blocks. In EuroSys ’07, 2007.

[21] R. Kabler, Y. E. Ioannidis, and M. J. Carey. Performance
evaluation of algorithms for transitive closure. Inf. Syst.,
17(5):415–441, 1992.

[22] M. Lam and et al. Bdd-based deductive database.
bddbddb.sourceforge.net, 2008.

[23] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. horn,
N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. In SIGMOD Conference,
2010.

[24] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In SIGMOD Conference, 2008.

[25] S.-W. Seong, M. Nasielski, J. Seo, D. Sengupta, S. Hangal,
S. K. Teh, R. Chu, B. Dodson, and M. S. Lam. The
architecture and implementation of a decentralized social
networking platform.
http://prpl.stanford.edu/papers/prpl09.pdf, 2009.

[26] T. Suen and J. Wong. Efficient task migration algorithm
for distributed systems. Parallel and Distributed Systems,
IEEE Transactions on, 3(4):488 –499, jul. 1992.

[27] J. D. Ullman. Principles of Database and Knowledge-Base
Systems, Volume II. Computer Science Press, 1989.

[28] J. D. Ullman and A. V. Gelder. Parallel complexity of
logical query programs. In FOCS, 1986.

[29] J. D. Ullman and J. Widom. A first course in database
systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1997.

[30] P. Valduriez and H. Boral. Evaluation of recursive queries
using join indices. In Expert Database Conf., pages
271–293, 1986.

[31] Y. Yu, M. Isard, D. Fetterly, M. Budiu, lfar Erlingsson,
P. K. Gunda, and J. Currey. Dryadlinq: A system for
general-purpose distributed data-parallel computing using
a high-level language. In R. Draves and R. van Renesse,
editors, OSDI, pages 1–14. USENIX Association, 2008.

8

