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ABSTRACT
We study fundamental aspects related to the efficient processing of
the SPARQL query language for RDF, proposed by the W3C to en-
code machine-readable information in the Semantic Web. Our key
contributions are (i) a complete complexity analysis for all opera-
tor fragments of the SPARQL query language, which – as a cen-
tral result – shows that the SPARQL operator OPTIONAL alone is
responsible for the PSPACE-completeness of the evaluation prob-
lem, (ii) a study of equivalences over SPARQL algebra, including
both rewriting rules like filter and projection pushing that are well-
known from relational algebra optimization as well as SPARQL-
specific rewriting schemes, and (iii) an approach to the semantic
optimization of SPARQL queries, built on top of the classical chase
algorithm. While studied in the context of a theoretically motivated
set semantics, almost all results carry over to the official, bag-based
semantics and therefore are of immediate practical relevance.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query languages

General Terms
SPARQL, RDF, Complexity, Query Optimization, SPARQL Alge-
bra, Semantic Query Optimization

1. INTRODUCTION
The Resource Description Framework (RDF) [29] is a data for-

mat proposed by the W3C to encode information in a machine-
readable way. From a technical point of view, RDF databases are
collections of (subject,predicate,object) triples, where each triple
encodes the binary relation predicate between subject and object
and represents a single knowledge fact. Due to their homogeneous
structure, RDF databases can be understood as labeled directed
graphs, where each triple defines an edge from the subject to the
object node under label predicate [12]. While originally designed
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to encode knowledge in the Semantic Web, RDF has found its way
out of the Semantic Web community and entered the wider dis-
course of Computer Science. Coming along with its application
in other areas, such as bio informatics or data integration, large
RDF repositories have been created (see e.g. [18]) and it has re-
peatedly been observed that the database community is facing new
challenges to cope with the specifics of RDF [6, 16, 19, 3].

With SPARQL [32], the W3C has recommended a declarative
query language to extract data from RDF graphs. SPARQL comes
with a powerful graph matching facility, whose basic construct are
so-called triple patterns. During query evaluation, variables in-
side these patterns are matched against the RDF input graph. The
solution of the evaluation process is then described by a set of
mappings, where each mapping associates a set of variables with
graph components. Beyond triple patterns, SPARQL provides ad-
vanced operators (namely SELECT, AND, FILTER, OPTIONAL, and
UNION) which can be used to compose more expressive queries.

In this work we investigate fundamental aspects that are directly
related to the evaluation of SPARQL queries. In particular, we re-
visit the complexity of the SPARQL query language (considerably
extending and refining previous investigations from [26]) and study
both algebraic and semantic optimization of the query language
from a theoretical perspective. In this line, we present a collection
of results that we have gathered in previous projects on SPARQL
query processing, all of which are important background for under-
standing the basics of the SPARQL query language and for build-
ing efficient SPARQL optimizers. In our study, we abstract from
implementation-specific issues like cost estimation functions, but
rather provide fundamental results, techniques, and optimization
schemes that may be fruitfully applied in virtually every SPARQL
implementation. Accounting for this objective, we partially include
important results from previous investigations (e.g. on the complex-
ity of SPARQL or on algebraic optimization from [26, 1]), to make
this paper an extensive reference for people who are planning to
work in the context of SPARQL or to implement SPARQL engines.

Our first major contribution is a complete complexity analysis,
comprising all possible operator fragments of the SPARQL query
language. Our investigation separates subsets of the language that
can be evaluated efficiently from more complex (and hence, more
expressive) fragments and relates fragments of SPARQL to estab-
lished query models, like e.g. conjunctive queries. Ultimately, our
results deepen the understanding of the individual operators and
their interrelations, and allow to transfer established results from
other data models into the context of SPARQL query evaluation.

In our analysis of SPARQL complexity, we take the combined
complexity of the SPARQL EVALUATION problem as a yardstick:
given query Q, data set D, and candidate solution S as input,
is S contained in the result of evaluating Q on D? Previous in-
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vestigations of SPARQL complexity in [26] have shown that full
SPARQL is PSPACE-complete. Refining this important result, we
show that already operator OPTIONAL alone makes query evalua-
tion PSPACE-hard. From a practical perspective, we observe that
the high complexity is caused by the unlimited nesting of OP-
TIONAL expressions and derive complexity bounds in the polyno-
mial hierarchy for fragments with fixed OPTIONAL nesting depth.
In summary, our results show that operator OPTIONAL is by far the
most involved construct in SPARQL, which suggests that special
care in query optimization should be taken in this specific operator.

Having established these theoretical results we then turn towards
SPARQL optimization. To give some background, the semantics
of SPARQL is formally defined on top of a compact algebra over
mapping sets. In the evaluation process, the SPARQL operators are
first translated into algebraic operations, which are then evaluated
on the data set. More precisely, AND is mapped to a join opera-
tion, UNION to an algebraic union, OPTIONAL to a left outer join
(which allows for the optional padding of information), FILTER to
a selection, and SELECT to a projection. On the one hand, there
are many parallels between these SPARQL algebra (SA) operators
and the operators defined in relational algebra (RA), e.g. the study
in [1] reveals that SA and RA have the same expressive power. On
the other hand, the technical proof in [1] indicates that a semantics-
preserving SA-to-RA translation is far from being trivial and shows
that there are still fundamental differences between both.

Tackling the specific challenges of the SPARQL query language,
over the last years various proposals for the efficient evaluation of
SPARQL have been made, comprising a wide range of optimiza-
tion techniques such as normal forms [26], triple pattern reordering
based on selectivity estimations [20, 23], or RISC-style query pro-
cessing [23]. In addition, indices [13] and storage schemes [30,
34, 6, 3] for RDF have been explored, to provide efficient data ac-
cess paths. Another line of research is the translation of SPARQL
queries into established data models like SQL [5, 9] or datalog [27],
to evaluate them with traditional engines that exploit established
optimization techniques implemented in traditional systems.

One interesting observation is that the “native” optimization pro-
posals for SPARQL (i.e. those that do not rely on a mapping into
the relational context or datalog) typically have a strong focus on
SPARQL AND-only queries, i.e. mostly disregard the optimization
of queries involving operators like FILTER or OPTIONAL (cf. [13,
20, 23, 3]). The efficient evaluation of AND-only queries (or AND-
connected blocks inside queries) is undoubtedly an important task
in SPARQL evaluation, so the above-mentioned approaches are
valuable groundwork for SPARQL optimizers. Still, a comprehen-
sive optimization scheme should also address the optimization of
more involved queries. To give evidence for this claim, the experi-
mental study in [19] reveals severe performance bottlenecks when
evaluating complex SPARQL queries (in particular queries involv-
ing operator OPTIONAL) for both existing SPARQL implementa-
tions and state-of-the-art mapping schemes from SPARQL to SQL.

One reason for these deficiencies may be that in the past only
few fundamental work has been done in the context of SPARQL
query optimization (we resume central results from [26, 27] later
in this paper) and that the basics of SA and its relation towards RA
are still insufficiently understood. We argue that – like in relational
algebra, where the study of algebraic rewriting rules has triggered
the development of manifold optimization techniques – a study of
SPARQL algebra would alleviate the development of comprehen-
sive optimization approaches and therefore believe that a schematic
investigation of SPARQL algebra is long overdue. Addressing this
task, we present an elaborate study of SA equivalences, covering all
its operators and their interrelations. When interpreted as rewriting

rules, these equivalences allow to transfer established RA optimiza-
tion techniques, such as projection and filter pushing, into the con-
text of SPARQL optimization. Going beyond the adaption of ex-
isting techniques, we also tackle SPARQL-specific issues, such as
the simplification of expressions involving negation, which – when
translating SPARQL queries into SA according to the SPARQL se-
mantics – manifests into a characteristic combination of the selec-
tion and left outer join operator. Ultimately, our results improve the
understanding of SPARQL algebra and lay the foundations for the
design of comprehensive optimization schemes.

Complementary to algebraic optimization, we study constraint-
based optimization, also known as semantic query optimization
(SQO), for SPARQL. The idea of SQO, which is well-known from
the context of conjunctive query optimization (e.g., [2]), deductive
database (e.g., [4]), and relational databases (e.g., [15]), is to ex-
ploit integrity constraints over the input database. Such constraints
are valuable input to query optimizers, because they restrict the
state space of the database and often can be used to rewrite queries
into equivalent, but more efficient, ones. Constraints could be user-
specified, automatically extracted from the underlying database, or
– if SPARQL is evaluated on top of an RDFS inference system –
may be implicitly given by the semantics of the RDFS vocabulary.

Our SQO approach splits into two parts. First, we translate AND-
connected blocks inside queries into conjunctive queries, optimize
them using the well-known chase algorithm [21, 14, 2, 8], and
translate the optimized conjunctive queries back into SPARQL. In a
second step, we apply SPARQL-specific rules that allow us to opti-
mize more complex subqueries, such as queries involving operator
OPTIONAL. To give an example, we propose a rule that allows us
to replace operator OPTIONAL by AND in cases where the pattern
inside the OPTIONAL clause is implied by the given constraint set.

We summarize the central contributions of this work as follows.
• We present novel complexity results for SPARQL fragments,

showing as a central result that already the fragment containing
operator OPTIONAL alone is PSPACE-complete (in combined
complexity). Further, we derive tight complexity bounds in the
polynomial hierarchy for expressions with fixed nesting depth
of OPTIONAL subexpressions. Finally, we show that all OP-
TIONAL-free fragments are either NP-complete (whenever op-
erator AND cooccurs with UNION or SELECT) or in PTIME.
• We identify a large set of equivalences over SPARQL algebra.

As a central tool, we develop the concepts of possible and cer-
tain variables, which constitute upper and lower bounds for the
variables that may be bound in result mappings, account for the
characteristics of SPARQL, and allow us to state equivalences
over SPARQL algebra in a clean and compact way. Our in-
vestigation comprises both the study of optimization schemes
known from the relational context (such as filter and projection
pushing) and SPARQL-specific rewriting techniques.
• We present an SQO scheme to optimize SPARQL queries under

a set of integrity constraints over the RDF database. Our opti-
mization approach adheres (yet is not limited) to constraints ob-
tained from the RDFS inference mechanism [29]. It builds upon
the classical chase algorithm to optimize AND-only queries, but
also supports rule-based optimization of more complex queries.
• While established for a theoretically motivated set semantics,

we show that almost all results carry over to the official, bag-
based semantics proposed by the W3C, so both our complexity
and optimization results are of immediate practical interest.

We start with the preliminaries in Section 2, discuss the complex-
ity of SPARQL evaluation in Section 3, study SPARQL algebra in
Section 4, and present our SQO scheme for SPARQL in Section 5.
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2. PRELIMINARIES
We assume that the set of natural numbers N does not include the

element 0 and define N0 := N ∪ {0}. Furthermore, we introduce
the notation i ∈ [n] as a shortcut for i ∈ {1, . . . , n}.

2.1 The RDF Data Format
We follow the notation from [26] and consider three disjoint sets

B (blank nodes), L (literals), and U (URIs) and use the shortcut
BLU to denote the union of B, L, and U . As a convention, we use
quoted strings to denote literals (e.g. “Joe”, “30”) and prefix blank
nodes with “_:”. An RDF triple (v1,v2,v3) ∈ BU × U × BLU
connects subject v1 through predicate v2 to object v3. An RDF
database, also called RDF document, is a finite set of triples.

2.2 The SPARQL Query Language
We now introduce two alternative semantics for SPARQL evalu-

ation, namely a set and a bag semantics. The set-based semantics is
inspired by previous theoretical investigations in [24, 1]; the bag se-
mantics closely follows the W3C Recommendation [32] and [25].

Syntax. Let V be a set of variables disjoint from BLU . We dis-
tinguish variables by a leading question mark symbol, e.g. writing
?x or ?name. We start with an abstract syntax for filter conditions.
For ?x, ?y ∈ V and c, d ∈ LU we define filter conditions recur-
sively as follows. The expressions ?x = c, ?x =?y, c = d, and
bnd(?x) are atomic filter conditions. Second, if R1, R2 are filter
conditions, then ¬R1, R1 ∧R2, and R1 ∨R2 are filter conditions.
By vars(R) we denote the set of variables occurring in filter ex-
pression R. Next, we introduce an abstract syntax for expressions
(where we use OPT as a shortcut for operator OPTIONAL):

DEFINITION 1 (SPARQL EXPRESSION). A SPARQL expres-
sion is an expression that is built recursively as follows. (1) A
triple pattern t ∈ UV × UV × LUV is an expression. (2) If Q1,
Q2 are expressions and R is a filter condition, then Q1 FILTER R,
Q1 UNION Q2, Q1 OPT Q2, and Q1 AND Q2 are expressions. 2

The official W3C Recommendation [32] defines four different
types of queries on top of expressions, namely SELECT, ASK, CON-
STRUCT, and DESCRIBE queries. We will restrict our discussion to
SPARQL SELECT and ASK queries.1 SELECT queries extract the
set of all result mappings, while ASK queries are boolean queries
that return true iff there is one or more result, false otherwise.

DEFINITION 2 (SELECT QUERY, ASK QUERY). Let Q be
a SPARQL expression and let S ⊂ V be a finite set of variables. A
SPARQL SELECT query is an expression of the form SELECTS(Q).
A SPARQL ASK query is an expression of the form ASK(Q). 2

In the remainder of the paper we will mostly deal with SPARQL
SELECT queries. Therefore, we usually denote them as SPARQL
queries, or simply queries. As a notational simplification, we omit
braces for the variable set appearing in the subscript of the SELECT
operator, e.g. writing SELECT?x,?y(Q) for SELECT{?x,?y}(Q).

A Set-based Semantics for SPARQL. Central to the evaluation
process in SPARQL is the notion of so-called mappings, which ex-
press variable-to-document bindings during evaluation. Formally,
a mapping is a partial function µ : V → BLU from a subset of
variables V to RDF terms BLU . ByM we denote the universe of
all mappings. The domain of a mapping µ, dom(µ), is the subset
of V for which µ is defined. We say that two mappings µ1, µ2

are compatible, written µ1 ∼ µ2, if they agree on all shared vari-
ables, i.e. if µ1(?x) = µ2(?x) for all ?x ∈ dom(µ1) ∩ dom(µ2).
1The main challenge of query evaluation (and our focus here) lies
in the core evaluation phase, which is the same for all query forms.

We overload function vars (defined previously for filter conditions)
and denote by vars(t) all variables in triple pattern t. Further,
by µ(t) we denote the triple pattern obtained when replacing all
variables ?x ∈ dom(µ) ∩ vars(t) in t by µ(?x).

EXAMPLE 1. Consider the three mappings µ1 := {?x 7→ a1},
µ2 := {?x 7→ a2, ?y 7→ b2}, and µ3 := {?x 7→ a1, ?z 7→ c1}. It
is easy to see that dom(µ1) = {?x}, dom(µ2) = {?x, ?y}, and
dom(µ3) = {?x, ?z}. Further, we can observe that µ1 ∼ µ3, but
µ1 6∼ µ2 and µ2 6∼ µ3. Given triple pattern t1 := (c, ?x, ?y) we
have vars(t1) = {?x, ?y} and e.g. µ2(t1) = (c, a2, b2). 2

We next define the semantics of filter conditions w.r.t mappings.
A mapping µ satisfies the filter condition bnd(?x) if variable ?x is
contained in the dom(µ); the filter conditions ?x = c, ?x =?y,
and c = d are equality checks that compare the value of µ(?x)
with c, µ(?x) with µ(?y), and c with d, respectively; these checks
fail whenever one of the variables is not bound in µ. The boolean
connectives¬, ∨, and∧ are defined in the usual way. We write µ |=
R iff µ satisfies filter condition R (cf. Appendix A.1 for details).

The solution of a SPARQL expression or query over documentD
is described by a set of mappings, where each mapping represents
a possible answer. The semantics of SPARQL query evaluation is
then defined by help of a compact algebra over such mapping sets:

DEFINITION 3 (SPARQL SET ALGEBRA). Let Ω, Ωl, Ωr be
mapping sets, R denote a filter condition, and S ⊂ V be a finite set
of variables. We define the algebraic operations join (1), union (∪),
minus (\), left outer join (1), projection (π), and selection (σ):

Ωl 1 Ωr := {µl ∪ µr | µl ∈ Ωl, µr ∈ Ωr : µl ∼ µr}
Ωl ∪ Ωr := {µ | µ ∈ Ωl or µ ∈ Ωr}
Ωl \ Ωr := {µl ∈ Ωl | for all µr ∈ Ωr : µl 6∼ µr}
Ωl 1 Ωr:= (Ωl 1 Ωr) ∪ (Ωl \ Ωr)
πS(Ω) := {µ1 | ∃µ2 : µ1 ∪ µ2 ∈ Ω ∧ dom(µ1) ⊆ S∧

dom(µ2) ∩ S = ∅}
σR(Ω) := {µ ∈ Ω | µ |= R}
We refer to these algebraic operations as SPARQL set algebra.2

To define the evaluation result of expressions, SELECT queries,
and ASK queries we follow the compositional semantics from [26]
and define a function J.KD that translates them into SA:

DEFINITION 4 (SPARQL SET SEMANTICS). Let D be an
RDF document, t a triple pattern,Q,Q1,Q2 SPARQL expressions,
R a filter condition, and S ⊂ V a set of variables. We define

JtKD := {µ | dom(µ) = vars(t) and µ(t) ∈ D}
JQ1 AND Q2KD := JQ1KD 1 JQ2KD
JQ1 OPT Q2KD := JQ1KD 1 JQ2KD
JQ1 UNION Q2KD := JQ1KD ∪ JQ2KD
JQ FILTER RKD :=σR(JQKD)

JSELECTS(Q)KD :=πS(JQKD)

JASK(Q)KD :=¬(∅ = JQKD) 2

EXAMPLE 2. Consider the SPARQL SELECT query

Q1:= SELECT?p,?e(((?p, age, ?a) OPT (?p, email , ?e))
FILTER (?a = “30”))

which retrieves all 30-year-old persons (?p) and, optionally (i.e.,
if available), their email address (?e). Further assume that the data-
base D := {(P1, age, “30”), (P2 , age, “29”), (P3, age, “30”),
(P3 , email , “joe@tld.com”)} is given. It is easily verified that
JQ1KD = {{?p 7→ P1}, {?p 7→ P3, ?e 7→ “joe@tld.com”}}. 2
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From Set to Bag Semantics. We next consider the correspond-
ing bag semantics, obtained from the set semantics when interpret-
ing mappings sets as bags of mappings. The bag semantics thus
differs in that mappings can appear multiple times in the evalua-
tion result. Formally, we define the bag semantics using mapping
multi-sets, which associate a multiplicity with each mapping:

DEFINITION 5 (MAPPING MULTI-SET). A mapping multi-set
is a tuple (Ω,m), where Ω is a mapping set and m :M 7→ N0 is a
total function s.t. m(µ+) ≥ 1 for all µ+ ∈ Ω and m(µ−) = 0 for
all µ− 6∈ Ω. Given µ+ ∈ Ω, we refer to m(µ+) as the multiplicity
of µ+ in Ω and say that µ+ occurs m(µ+) times in Ω. 2

We can easily formalize the bag semantics using an adapted ver-
sions of the algebraic operations from Definition 3 that operate on
top of multi-sets and take the multiplicity of the set elements into
account. To give an example, the union operation over multi-sets,
(Ωl,ml) ∪ (Ωr,mr), yields the multi-set (Ωl ∪ Ωr,m), where
m(µ) := ml(µ) + mr(µ) for all µ ∈ M. We call this algebra
over multi-sets SPARQL bag algebra. Given the SPARQL bag al-
gebra, we immediately obtain the bag semantics for SPARQL when
modifying the first rule in Definition 4 (the triple pattern case) such
that it returns a multi-set instead of a set. We use function J.K+D to
denote the mapping multi-set obtained when evaluating a SPARQL
expression or query according to the bag semantics. The interested
will find a proper formalization in Appendix A.2.

EXAMPLE 3. Let Q := (?x, c, c) UNION (c, c, ?x), document
D := {(c, c, c)}, and µ := {?x 7→ c}. Then JQK+D = ({µ},m)
where m(µ) := 2 and m(µ′) := 0 for all µ′ ∈M \ {µ}. 2

If Ω is a mapping set and (Ω′,m′) a mapping multi-set such that
Ω = Ω′ and m(µ′) = 1 for all µ′ ∈ Ω′, we say that Ω equals to
(Ω′,m′) and denote this by Ω ∼= (Ω′,m′). Going one step further,
given a SPARQL query or expressionQwe say that the bag and set
semantics coincide for Q iff it holds that JQKD ∼= JQK+D for every
RDF document D. In general, the two semantics do not coincide,
as witnessed by the previous example (observe that m(µ) > 1).

3. COMPLEXITY OF SPARQL
We introduce the SPARQL operator shortcuts A := AND, F :=

FILTER, O := OPT, and U := UNION and denote the class of
SPARQL expressions that can be constructed using a set of opera-
tors (plus triple patterns) by concatenating the respective shortcuts.
For instance, class AU comprises all SPARQL expressions built
using only AND, UNION, and triple patterns. By E := AFOU we
denote the full class of SPARQL expressions (cf. Definition 1). We
will use the terms class and fragment interchangeably.

We follow the approach from [26] and take the complexity of
the EVALUATION problem as a reference: given a mapping µ, a
document D, and a SPARQL expression or query Q as input: is
µ ∈ JQKD? The next theorem summarizes results on the combined
complexity of SPARQL from [26], rephrased in our notation.2

THEOREM 1. (see [26]) The EVALUATION problem is (1) in
PTIME for class AF (membership in PTIME for classes A and F
follows immediately), (2) NP-complete for fragment AFU , and
(3) PSPACE-complete for classes AOU , AFO, and E . 2

The theorem (and hence, the study in [26]) leaves several ques-
tions unanswered. In particular, it is not clear whether there are
2[26] contains some more complexity results for the class of so-
called well designed graph patterns, obtained from a syntactic re-
striction for SPARQL expressions, which we do not repeat here.

smaller fragments causing NP-hardness (resp. PSPACE-hardness)
than those listed in Theorem 1(2) (resp. Theorem 1(3)). Further,
projection (in form of SELECT clauses) was not investigated in [26].

Set vs. Bag Semantics. The previous definition of the EVALUA-
TION problem relies on set semantics for query evaluation. Our first
task is to show that all complexity results obtained for set semantics
immediately carry over to bag semantics. We consider the associ-
ated evaluation problem for bag semantics, denoted by EVALUA-
TION+: given a mapping µ, documentD, and SPARQL expression
or query Q as input: let JQK+D := (Ω,m), is µ ∈ Ω?3 The fol-
lowing Lemma shows that the bag semantics differs from the set
semantics at most in the multiplicity associated to each mapping:

LEMMA 1. Let Q be a SPARQL query or expression, D be
an RDF database, and µ be a mapping. Let Ω := JQKD and
(Ω+,m+) := JQK+D . Then µ ∈ Ω⇔ µ ∈ Ω+. 2

It follows easily as a corollary that the set and bag semantics do
not differ w.r.t. to the complexity of the evaluation problem:

COROLLARY 1. Let µ be a mapping, D an RDF document,
and Q be an expression or query. Then EVALUATION(µ,D,Q)⇔
EVALUATION+(µ,D,Q). 2

This result allows us to use the simpler set semantics for our
study of SPARQL complexity, while all results carry over to bag
semantics (and therefore apply to the SPARQL W3C standard).

3.1 OPT-free Expressions
Our first goal is to establish a more precise characterization of

the UNION operator, to improve the understanding of the operator
and its relation to others beyond the known NP-completeness result
for class AFU . The following theorem gives the results for all
OPT-free fragments that are not covered by Theorem 1.

THEOREM 2. The EVALUATION problem is (1) in PTIME for
classes U and FU , and (2) NP-complete for class AU . 2

Proof Sketch. We sketch the NP-hardness part of claim (2), the
remaining parts can be found in Appendix B.2. To prove hardness,
we reduce the SETCOVER problem to the EVALUATION problem
for class AU . SETCOVER is known to be NP-complete, so the re-
duction gives us the desired hardness result. The SETCOVER prob-
lem is defined as follows. Let U := {u1, . . . , uk} be a universe,
S1, . . . Sn ⊆ U be sets overU , and let l be positive integer: is there
a set I ⊆ {1, . . . , n} of size |I|≤ l such that

S
i∈I Si = U?

We use the fixed database D := {(c, c, c)} for our encoding and
represent each set Si := {x1, x2, . . . , xm} by a SPARQL expres-
sion PSi := (c, c, ?X1) AND . . . AND (c, c, ?Xm). Next, to en-
code the set S := {S1, . . . , Sn} of all Si we define the expression
PS := PS1 UNION . . . UNION PSn . Finally we define expression
P := PS AND . . . AND PS , where PS appears exactly l times.

The intuition of the encoding is as follows. PS encodes all sub-
sets Si. A set element, say x, is represented by the presence of
a binding from variable ?X to value c. The idea is that the en-
coding P allows us to “merge” (at most) l arbitrary sets Si. It is
straightforward to show that the SETCOVER problem is true if and
only if µ := {?U1 7→ c, . . . , ?Uk 7→ c} ∈ JP KD , i.e. if the com-
plete universe U can be obtained by merging these sets.2

3An alternative version of the evaluation problem under bag se-
mantics encountered in literature is to ask whether µ ∈ Ω and
m(µ) = c for some c. Here, we disregard the multiplicity of µ.
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3.2 Complexity of Expressions Including OPT
We next investigate the complexity of operator OPT and its in-

teraction with other operators beyond the PSPACE-completeness
results for AOU , AFO, and E stated in Theorem 1(3). The fol-
lowing theorem refines the three previously mentioned results.

THEOREM 3. EVALUATION is PSPACE-complete for AO. 2

Proof Sketch. We reduce QBF, the validity problem for a quanti-
fied boolean formulaϕ := ∀x1∃y1∀x2∃y2 . . . ∀xm∃ymψ, whereψ
is a quantifier-free formula in CNF, to the EVALUATION problem
for fragmentAO. The reduction divides into (i) the encoding of the
inner formula ψ and (ii) the encoding of the surrounding quantifier-
sequence. Part (ii) has been presented in [24], so we discuss only
part (i) here. We illustrate the idea of the encoding by example,
showing how to encode the quantifier-free boolean CNF formula
ψ := C1 ∧ C2 with C1 := (x1 ∨ ¬y1) and C2 := (¬x1 ∨ y1) us-
ing only operators OPT and AND (the technical proof can be found
in Appendix B.3). For this formula, we set up the database

D := {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1),
(a, var1, x1), (a, var1, y1), (a, var2, x1), (a, var2, y1),
(a, x1, x1), (a, y1, y1)},

where the first four tuples are fixed, the next four tuples encode
the variables that appear in the clauses of ψ (e.g., (a, var1, x1)
means that variable x1 appears in clause C1), and the final two
tuples stand for the two variables that appear in ψ. We then define
Pψ := PC1 AND PC2 , where

PC1 :=((a, var1, ?var1)
OPT ((a, x1, ?var1) AND (a, true, ?X1)))

OPT ((a, y1, ?var1) AND (a, false, ?Y1)), and
PC2 :=((a, var2, ?var2)

OPT ((a, y1, ?var2) AND (a, true, ?Y1)))
OPT ((a, x1, ?var2) AND (a, false, ?X1)).

In these expression, variables ?X1, ?Y1 stand for the respective
variables x1, y1 in φ, and a binding ?X1 7→ 1 encodes x1 = true.
The intuition behind PC1 and PC2 is best seen when evaluating
them on the input database D. For instance, for PC1 we have

JPC1KD = ({{?var1 7→ x1}, {?var1 7→ y1}}
1 {{?var1 7→ x1, ?X1 7→ 1}})
1 {{?var1 7→ y1, ?Y1 7→ 0}}

= {{?var1 7→ x1, ?X1 7→ 1}, {var1 7→ y1}}
1 {{?var1 7→ y1, ?Y1 7→ 0}}

= {{?var1 7→ x1, ?X1 7→ 1}, {?var1 7→ y1, ?Y1 7→ 0}}.

We observe that the subexpression Q := (a, var1, ?var1) with
JQKD = {{?var1 7→ x1}, {?var1 7→ y1}} sets up one map-
ping for each variable in C1. When computing the left outer join
of JQKD with {{?var1 7→ x1, ?X1 7→ 1}}, the first mapping
in JQKD is extended by binding ?X1 7→ 1 and the second one is
kept unmodified; in the next step, the second mapping from JQKD
is extended instead. The final result contains two mappings, which
reflect exactly the satisfying truth assignments for C1: it evaluates
to true if x1 is true (binding ?X1 7→ 1 in the first mapping) or if y1
is false (?Y1 7→ 0 in the second mapping). It is easily verified that

JPψKD = {{?var1 7→ x1, ?var2 7→ y1, ?X1 7→ 1, ?Y1 7→ 1},
{?var1 7→ y1, ?var2 7→ x1, ?X1 7→ 0, ?Y1 7→ 0}},

which represents exactly the two satisfying truth assignments for
formula ψ, i.e. ?X1 7→ 1, ?Y1 7→ 1 and ?X1 7→ 0, ?Y1 7→ 0.2

Note that, in contrast to the PSPACE-hardness proofs for AOU ,
AFO, and E in [26] (cf. Theorem 1(3) above), the database used in

the previous reduction from QBF to fragment AO is not fixed, but
depends on the input formula. It is an open question whether the
PSPACE-hardness result for AO carries over to expression com-
plexity (i.e., the evaluation complexity when fixing the database).

So far, tight bounds for fragment O are still missing. The next
theorem gives the central result of our complexity study:

THEOREM 4. EVALUATION is PSPACE-complete for O. 2

Analogously to Theorem 3, the result follows from an encoding
of quantified boolean formulas, now using only operator OPT. The
intuition behind this high complexity is that 1 , the algebraic coun-
terpart of OPT, is defined using 1, ∪, \; the mix of these operations
(in particular the negation operator \) makes evaluation hard. We
conclude this subsection with a corollary of Theorems 1(3) and 4:

COROLLARY 2. The EVALUATION problem for every expres-
sion fragment involving operator OPT is PSPACE-complete. 2

3.3 The Source of Complexity
The proofs of Theorems 3 and 4 both rely on a nesting of OPT

expression that increases with the number of quantifier alternations
encountered in the encoded quantified formula. When fixing the
nesting depth of OPT expressions, lower complexity bounds in the
polynomial hierarchy [33] can be derived. We denote by rank(Q)
the maximal nesting depth of OPT expressions in Q, where OPT-
free expressions have rank zero (see Appendix A.4 for a formal
definition). Given a fragment F , we denote by F≤n the class of
expressions Q ∈ F with rank(Q) ≤ n. Then:

THEOREM 5. For every n ∈ N0, the EVALUATION problem is
ΣPn+1-complete for the SPARQL fragment E≤n. 2

Observe that the EVALUATION problem for class E≤0 is com-
plete for ΣP1 =NP, which coincides with the result for OPT-free ex-
pressions (i.e., class AFU ) stated in Theorem 1. With increasing
nesting-depth of OPT expressions we climb up the polynomial hi-
erarchy. The proof in Appendix B.5 relies on a version of the QBF
problem with fixed quantifier alternations, in which the number of
alternations fixes the complexity class in the polynomial hierarchy.

3.4 From Expressions to Queries
We conclude the complexity study with a discussion of SPARQL

queries, i.e. fragments involving projection in the form of a SELECT
operator (see Definition 2). We extend the notation for classes. For
some expression class F , we denote by Fπ the class of queries
SELECTS(Q), where S ⊂ V is a finite set of variables and Q ∈ F .

It is easily shown that projection comes for free in fragments that
are at least NP-hard. Based on this observation and an additional
study of the remaining query fragments (i.e., those with PTIME
complexity), we obtain the following complete classification:

THEOREM 6. EVALUATION is (1) PSPACE-complete for all
query fragments involving operator OPT, (2) ΣPn+1-complete for
fragment Eπ≤n (for n ∈ N0), (3) NP-complete forAπ ,AFπ ,AUπ ,
and AFUπ , and (4) in PTIME for classes Fπ , Uπ , and FUπ . 2

3.5 Summary of Results
We summarize the complexity results in Figure 1. All fragments

that fall into NP, ΣPi , and PSPACE also are complete for the respec-
tive complexity class. As an extension of previous results, the fig-
ure shows that each ΣPn+1 also contains the fragmentAFO≤n and
the corresponding query fragment AFOπ≤n. These results were
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Figure 1: Summary of Complexity Results

not explicitly stated before, but follow directly from the proof of
Theorem 5 for class Eπ≤n (cf. Appendix B.5), which does not use
the UNION operator in its encoding. Observe that the categoriza-
tion is complete w.r.t. all possible expression and query fragments.

4. ALGEBRAIC SPARQL OPTIMIZATION
Having established the theoretical background, we now turn to-

wards algebraic optimization. We start with two functions that stat-
ically classify the variables that appear in some SPARQL algebra
expression A. The first one, cVars(A), estimates the certain vari-
ables of A and fixes a lower bound for variables that are bound
in every result mapping obtained when evaluating A. The second
one, pVars(A), gives an upper bound for the so-called possible
variables ofA, an overestimation for the set of variables that might
be bound in result mapping. Both functions are independent from
the input document and can be computed efficiently. They account
for the specifics of SPARQL, where variables occurring in the ex-
pression may be unbound in result mappings, and take a central role
in subsequent investigations. We start with the certain variables:

DEFINITION 6 (FUNCTION cVars). Let A be a SPARQL set
algebra expression. Function cVars(A) extracts the set of so-called
certain variables and is recursively defined as

cVars(JtKD) := vars(t)
cVars(A1 1 A2) := cVars(A1) ∪ cVars(A2)
cVars(A1 ∪A2) := cVars(A1) ∩ cVars(A2)
cVars(A1 \A2) := cVars(A1)
cVars(πS(A1)) := cVars(A1 ) ∩ S
cVars(σR(A1)) := cVars(A1 ) 2

Observe that the case A1 1 A2 is not explicitly listed, but fol-
lows by the semantics of operator 1 , i.e. we can rewriteA1 1 A2

into (A1 1 A2) ∪ (A1 \ A2) and apply the rules for 1, ∪, and \
to the rewritten expression. Also note that the function is defined
for set algebra, as witnessed by rule cVars(JtKD) := vars(t). We
can easily transfer the function to bag algebra by replacing this rule
through cVars(JtK+D) := vars(t) and therefore shall also use it for
bag algebra expressions. The key property of certain variables is:

PROPOSITION 1. Let A be a set algebra expression and let ΩA
denote the mapping set obtained when evaluating A on any docu-
ment D. Then ?x ∈ cVars(A)→ ∀µ ∈ ΩA : ?x ∈ dom(µ). 2

The definition of function pVars(A) is similar (see Definition 17
in Appendix A.5). It is simply obtained from the definition of
cVars(A) by replacing ∩ in the right side of the rules for A1 ∪A2

by ∪, because both the variables from A1 and A2 may appear in
result mappings. Possible variables exhibit the following property.

PROPOSITION 2. Let A be a set algebra expression and let ΩA
denote the mapping set obtained when evaluating A on any docu-
ment D. Then for all µ ∈ ΩA : ?x ∈ dom(µ)→?x ∈ pVars(A).2

We note that both Proposition 1 and 2 naturally carry over to bag
semantics and complement the previous discussion with an exam-
ple that illustrates the definition of cVars(A) and pVars(A):

EXAMPLE 4. Consider the SPARQL set algebra expression
A := π?x,?y((J(a, q, ?x)KD 1 J(a, ?y, ?z)KD) ∪ J(a, p, ?x)KD).
We have that pVars(A) = {?x, ?y} and cVars(A) = {?x}. 2

Outline and Related Work. In the remainder of this section
we present a set of algebraic equivalences for SPARQL algebra,
covering all the algebraic operators introduced in Definition 3. In
query optimization, such equivalences are typically interpreted as
rewriting rules and therefore we shall use the terms equivalence
and (rewriting) rule interchangeably in the following. We will first
study rewriting rules for SPARQL set algebra in Section 4.1, see
what changes when switching to bag algebra in Section 4.2, and
discuss practical implications and extensions in Section 4.3.

In the interest of a complete survey, we include equivalences that
have been stated before in [24]. Among the equivalences in Fig-
ure 2, a majority of the rules from groups I and II, as well as
(FDecompI+II), (MJ), and (FUPush) are borrowed from [24]. Fur-
ther, rules (J̃Idem), (FJPush), and (fLJ) generalize Lemma (2),
Lemma 1(2), and Lemma 3(3) from [24], respectively. These gen-
eralizations rely on the novel notion of incompatibility property
(which will be introduced in Section 4.1) and extend the applica-
bility of the original rules. We emphasize that almost three-fourths
of the rules presented in this section are new. In the subsequent
discussion we put a strong focus on these newly-discovered rules.

4.1 Rewriting under Set Semantics
We investigate two fragments of SPARQL set algebra. The first

one, called fragment A, comprises the full class of SPARQL set
algebra expressions, i.e. expressions built using ∪, 1, \, 1 , π, σ,
and triple patterns of the form JtKD . We understand a set algebra
expression A ∈ A as a purely syntactic entity. Yet, according to
the SPARQL set semantics (cf. Definition 4) each set algebra ex-
pressionA implicitly defines a mapping set if document D is fixed.
Therefore, we refer to the mapping set obtained by application of
the semantics as the the result of evaluating A on document D.

In addition to the full fragment of set algebra expressionsA, we
introduce a subfragment eA ⊂ A that has a special property, called
incompatibility property. As we shall see later, expressions that
satisfy the incompatibility property exhibit some rewritings that do
not hold in the general case and therefore are of particular interest.

DEFINITION 7 (INCOMPATIBILITY PROPERTY). A SPARQL
set algebra expression A has the incompatibility property if, for ev-
ery document D and each two distinct mappings µ1 6= µ2 con-
tained in the result of evaluating A on D, it holds that µ1 6∼ µ2. 2
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DEFINITION 8 (FRAGMENT eA). We define class eA ⊂ A re-
cursively as follows. An expression eA ∈ A is contained in eA iff

• eA := JtKD is a triple pattern,

• eA := fA1 1 fA2, where fA1 and fA2 are eA expressions,

• eA := fA1 \ fA2, where fA1 and fA2 are eA expressions,

• eA := fA1 1
fA2, where fA1 and fA2 are eA expressions,

• eA := σR(fA1), where R is a filter condition and fA1 ∈ eA,

• eA := πS(fA1), where S is a set of variables, fA1 ∈ eA, and
S ⊇ pVars(fA1) or S ⊆ cV ars(fA1), or

• eA := fA1 ∪ fA2, where fA1
fA2 are eA expressions and

pVars(fA1)=cVars(fA1)=pVars(fA2)=cVars(fA2). 2

LEMMA 2. Every eA ∈ eA has the incompatibility property. 2

The following example illustrates that expressions outside frag-
ment eA generally do not exhibit the incompatibility property:

EXAMPLE 5. LetD := {(0, f , 0), (1, t , 1), (a, v , 0), (a, v , 1)}
be an RDF database, and A1 := J(0, f , ?x)KD ∪ J(1, t , ?y)KD ,
A2 := π?x,?y((J(a, v, ?z)KD 1 J(?z, f , ?x)KD)1 J(?z, t , ?y)KD)
be set algebra expressions. When evaluating A1 and A2 on D we
obtain the mapping set Ω = {{?x 7→ 0}, {?y 7→ 1}} for both ex-
pressions. Obviously, the two mappings in Ω are compatible. Note
that neither A1 nor A2 are eA expressions. As a positive example,
observe that A3 := π?x(J(a, ?x, ?y)KD ∪ J(b, ?x, ?y)KD) ∈ eA.2

Algebraic Laws. We start our investigation of SPARQL set al-
gebra equivalences with some basic rules that hold with respect to
common algebraic laws in groups I and II in Figure 2, where A
stands for anA expression and eA represents an eA expression. Fol-
lowing common notation, we write A ≡ B if SPARQL algebra
expression A is equivalent to B on every document D. As a no-
tational convention, we distinguish equivalences that specifically
hold for fragment eA by a tilde symbol, e.g. writing (J̃Idem) for
the idempotence of the join operator over expressions in class eA.

Most interesting in group I are rules (J̃Idem) and (L̃Idem),
established for fragment eA. In fact, these rules do not generally
hold for expressions that violate the incompatibility property. To
give a concrete counterexample, substitute for instance expression
A1 (or A2) from Example 5 for eA in either (J̃Idem) or (L̃Idem).

The rules for associativity, commutativity, and distributivity in
group II speak for themselves. An outstanding question is whether
they are complete w.r.t. all possible operator combinations. The
lemma below rules out all combinations that are not explicitly stated:

LEMMA 3. LetO1 := {1, \,1} andO2 := O1∪{∪} be sets
of operators. Then (1) operators \ and 1 are neither associative
nor commutative; (2) neither \ nor 1 are left-distributive over ∪;
(3) if o1 ∈ O1, o2 ∈ O2, and o1 6= o2, then operator o2 is neither
left- nor right-distributive over operator o1. 2

Projection Pushing. Next, we shortly discuss the rules for pro-
jection pushing in group III of Figure 2. These rules are moti-
vated by the desideratum that a good optimization scheme should
include the possibility to choose among evaluation plans where pro-
jection is applied at different positions in the operator tree.

The first two rules in group III, (PBaseI) and (PBaseII), are
general-purpose rewritings for projection expressions. (PBaseI)
shows that, when projecting a variable set that contains all possible
variables (and possibly some additional variables S), the projection
can be dropped. (PBaseII) complements (PBaseI) by showing that

all variables in S that do not belong to pVars(A) can be dropped
when projecting S. The main benefit of these two rules stems
from a combination with the other equivalences from group III,
which may introduce such redundant variables within the rewriting
process (cf. Example 6 below). The remaining six rules address
the issue of pushing down projection expressions. Equivalence
(PFPush) covers projection pushing into filter expressions, while
(PMerge) shows that nested projection expression can be merged
into a single projection. The four rules for the binary operations
build upon the notion of possible variables. To give an example,
rule (PJPush) relies on the observation that, when pushing projec-
tions inside join subexpressions, we must keep variables that may
occur in both subexpressions, because such variables may affect the
result of the join (as they might cause incompatibility). Therefore,
we define S′ := S ∪ S′′ = S ∪ (pVars(A1) ∩ pVars(A2)) as an
extension of S and project the variables in S′ in the two subexpres-
sions. (PMPush) and (PLPush) exhibit similar ideas. Note that we
generally cannot eliminate the topmost projection, because S′ ⊇ S.

EXAMPLE 6. Using rules (PBaseI), (PBaseII), and (PJPush),
we can easily prove that expressions B1 and Bopt

1 below, which se-
lect all persons that know at least one other person, are equivalent:

B1 := π?person,?name(π?person,?name(J(?person, name, ?name)KD) 1

π?person,?name(J(?person, knows, ?person2)KD))

Bopt
1 := J(?person, name, ?name)KD 1

π?person(J(?person, knows, ?person2)KD)

One may expect that Bopt
1 is more efficient than B1 on databases

containing many knows relationships, where the early projection
removes duplicates and accelerates the join operation. 2

Filter Manipulation. Groups IV and V in Figure 2 contain rules
to decompose, eliminate, and rearrange filter conditions. They form
the basis for transferring relational algebra filter pushing techniques
into the context of SPARQL. We emphasize, though, that these
rules are more than simple translations of existing relational algebra
equivalences: firstly, they rely on the SPARQL-specific concepts
of possible and certain variables and, secondly, address specifics of
SPARQL algebra, such as predicate bnd (cf. (FBndI)-(FBndIV)).

The first three equivalences in group IV cover decomposition
and reordering of filter conditions, exploiting connections between
SPARQL operators and the boolean connectives ∧ and ∨. The sub-
sequent four rules (FBndI)-(FBndIV) are SPARQL-specific and ad-
dress the predicate bnd. They reflect the intuition behind the con-
cepts of possible and certain variables. To give an example, precon-
dition ?x ∈ cVars(A1) in rule (BndI) implies that ?x is bound in
each result mapping (by Proposition 1), so the filter can be dropped.

Finally, the rules in group V cover the issue of filter pushing. Par-
ticularly interesting are (FJPush) and (FLPush), which crucially
rely on the notions of possible and certain variables: the filter can
be pushed inside the first component of a join A1 1 A2 (or left
outer join A1 1 A2) if each variable used inside the filter is a cer-
tain variable of A1 (i.e., bound in every left side mapping) or is not
a possible variable ofA2 (i.e., not bound in any right side mapping).
This ultimately guarantees that the join (respectively left outer join)
does not affect the validity of the filter condition. In general, the
equivalences do not hold if this precondition is violated:

EXAMPLE 7. Consider the SPARQL algebra expressionsA1 :=
J(?x, c, c)KD 1 J(?x, d, ?y)KD , A2 := J(?y, c, c)KD and the doc-
ument D := {(c, c, c)}. We observe that ?y 6∈ cVars(A1) and
?y ∈ pVars(A2), so neither (FJPush) nor (FLPush) are applica-
ble. Indeed, we have that σ?y=c(A1 1 A2) and σ?y=c(A1 1 A2)
evaluate to {{?x 7→ c, ?y 7→ c}} on D, whereas σ?y=c(A1) 1 A2

and σ?y=c(A1)1 A2 both evaluate to ∅. 2
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I. Idempotence and Inverse

A ∪A ≡A (UIdem)
eA 1 eA ≡ eA (J̃Idem)
eA1 eA≡ eA (L̃Idem)
A \A ≡∅ (Inv)

II. Associativity, Commutativity, Distributivity

(A1 ∪A2) ∪A3 ≡A1 ∪ (A2 ∪A3) (UAss)
(A1 1 A2) 1 A3≡A1 1 (A2 1 A3) (JAss)

A1 ∪A2 ≡A2 ∪A1 (UComm)
A1 1 A2 ≡A2 1 A1 (JComm)

(A1 ∪A2) 1 A3 ≡ (A1 1 A3) ∪ (A2 1 A3) (JUDistR)
A1 1 (A2 ∪A3) ≡ (A1 1 A2) ∪ (A1 1 A3) (JUDistL)
(A1 ∪A2) \A3 ≡ (A1 \A3) ∪ (A2 \A3) (MUDistR)
(A1 ∪A2)1 A3≡ (A1 1 A3) ∪ (A2 1 A3) (LUDistR)

III. Projection Pushing

πpVars(A)∪S(A) ≡A (PBaseI)
πS(A) ≡ πS∩pVars(A)(A) (PBaseII)
πS(σR(A)) ≡ πS(σR(πS∪vars(R)(A))) (PFPush)
πS1 (πS2 (A)) ≡ πS1∩S2 (A) (PMerge)

Let S′′ := pVars(A1) ∩ pVars(A2) and S′ := S ∪ S′′. Then

πS(A1 ∪A2) ≡ πS(A1) ∪ πS(A2) (PUPush)
πS(A1 1 A2) ≡ πS(πS′ (A1) 1 πS′ (A2)) (PJPush)
πS(A1 \A2) ≡ πS(πS′ (A1) \ πS′′ (A2)) (PMPush)
πS(A1 1 A2) ≡ πS(πS′ (A1)1 πS′ (A2)) (PLPush)

IV. Filter Decomposition and Elimination

σR1∧R2 (A) ≡ σR1 (σR2 (A)) (FDecompI)
σR1∨R2 (A) ≡ σR1 (A) ∪ σR2 (A) (FDecompII)
σR1 (σR2 (A)) ≡ σR2 (σR1 (A)) (FReord)

σbnd(?x)(A) ≡ A, if ?x ∈ cVars(A) (FBndI)
σbnd(?x)(A) ≡ ∅, if ?x 6∈ pVars(A) (FBndII)
σ¬bnd(?x)(A) ≡ ∅, if ?x ∈ cVars(A) (FBndIII)
σ¬bnd(?x)(A) ≡ A, if ?x 6∈ pVars(A) (FBndIV)

V. Filter Pushing

σR(A1 ∪A2) ≡ σR(A1) ∪ σR(A2) (FUPush)
σR(A1 \A2) ≡ σR(A1) \A2 (FMPush)

If for all ?x ∈ vars(R) : ?x ∈ cVars(A1) ∨ ?x 6∈ pVars(A2), then

σR(A1 1 A2) ≡ σR(A1) 1 A2 (FJPush)
σR(A1 1 A2) ≡ σR(A1)1 A2 (FLPush)

VI. Minus and Left Outer Join Rewriting

(A1 \A2) \A3 ≡ (A1 \A3) \A2 (MReord)
(A1 \A2) \A3 ≡ A1 \ (A2 ∪A3) (MMUCorr)
A1 \A2 ≡ A1 \ (A1 1 A2) (MJ)
fA1 1

fA2 ≡ fA1 1 (fA1 1 fA2) (fLJ)

Let ?x ∈ V such that ?x ∈ cVars(A2) \ pVars)(A1). Then

σ¬bnd(?x)(A1 1 A2) ≡ A1 \A2 (FLBndI)
σbnd(?x)(A1 1 A2) ≡ A1 1 A2 (FLBndII)

Figure 2: Algebraic Equivalences, where A,A1, A2, A3 ∈ A; eA ∈ eA; S, S1, S2 ⊂ V ; R, R1, R2 Denote Filter Conditions

We conclude our discussion of filter manipulation with two ad-
ditional rules to make atomic equalities in filter conditions explicit:

LEMMA 4. Let A be a SPARQL set algebra expression built
using only operators 1, ∪, and triple patterns of the form JtKD .
Further let ?x, ?y ∈ cVars(A). By A ?y

?x
we denote the expression

obtained from A by replacing all occurrences of ?x in A by ?y;
similarly, A c

?x
is obtained from A by replacing ?x by URI or lit-

eral c. Then the following two equivalences hold.

(FElimI) πS\{?x}(σ?x=?y(A))≡ πS\{?x}(A ?y
?x

)
(FElimII) πS\{?x}(σ?x=c(A)) ≡ πS\{?x}(A c

?x
) 2

(FElimI) and (FElimII) allow to eliminate atomic filter condi-
tions of the form ?x =?y and ?x = c, by replacing all occurrences
of ?x in the inner expression by ?y and c, respectively. Observe
that in both equivalences the filter expression must be embedded in
a projection expressions that projects variable set S \ {?x}, i.e. not
including variable ?x that is to be replaced (otherwise, ?x might
appear in left side result mappings but not in right side mappings).
Given our complete rewriting framework, this is not a major re-
striction: using the projection pushing rules from group III, we
can push projections down on top of filter expressions and subse-
quently check if rule (FElimI) or (FElimII) applies.

We conclude our discussion of filter manipulation with an exam-
ple that illustrates the filter manipulation rules and their possible
interplay with the previous rules from groups I-III in Figure 2:

EXAMPLE 8. Consider the SPARQL algebra expression

π?p,?e(σ?sn6=“Smith”∧?gn=“Sue”(
(J(?p, givenname, ?gn)KD 1

J(?p, surname, ?sn)KD 1 J(?p, rdf:type,Person)KD)
1 J(?p, email, ?e)KD))

which extracts persons (?p) with givenname (?gn) “Sue”, sur-
name (?sn) different from “Smith”, and optionally their email (?e).
It is left as an exercise to the reader to verify that, using rules from
groups I-V in Figure 2, the expression can be transformed into

π?p,?e((σ?sn6=“Smith”(J(?p, surname, ?sn)KD)
1 J(?p, givenname, “Sue”)KD 1 J(?p, rdf:type,Person)KD

)1 J(?p, email, ?e)KD)

We may assume that the latter expression can be evaluated more
efficiently than the original expression, because both filters are ap-
plied early; the atomic filter condition ?gn = “Sue” has been em-
bedded into the triple pattern J(?p, givenname, ?gn)KD . 2

The example illustrates that the rewriting rules provided so far
establish a powerful framework for finding alternate query evalua-
tion plans. It should be clear that further techniques like heuristics,
statistics about the data, knowledge about data access paths, and
cost estimation functions are necessary to implement an efficient
and comprehensive optimizer on top of these rules, just like it is
the case in the context of relational algebra (see e.g. [31]). The
study of such techniques is beyond the scope of this work.

Rewriting Closed World Negation. We conclude the discus-
sion of SPARQL set algebra optimization with an investigation of
operator \. First recall that an expression A1 \ A2 retains exactly
those mappings from A1 for which no compatible mapping in A2

exists (cf. Definition 3), so the minus operator essentially imple-
ments closed world negation. In contrast to the other algebraic op-
erations, operator \ has no direct counterpart at the syntactic level,
but – in SPARQL syntax – is only implicit by the semantics of op-
erator OPT (i.e., OPT is mapped into 1 and the definition of 1
relies on operator \). As argued in [1], the lack of a syntactic coun-
terpart complicates the encoding of queries involving negation and,
as we shall see soon, poses specific challenges to query optimizers.
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We also stress that, as discussed in Section 3.2, it is mainly the
operator \ that is responsible for the high complexity of the (syn-
tactic) operator OPT. Therefore, at the algebraic level special care
should be taken in optimizing expressions involving \. We start our
discussion with the observation from [1] that operator \ can be en-
coded at the syntactic level using operators OPT, FILTER, and (the
negated) filter predicate bnd. The following example illustrates the
idea behind the encoding of negation in SPARQL.

EXAMPLE 9. The SPARQL expressionQ1 and the correspond-
ing algebra expression C1 := JQ1KD below select all persons for
which no name is specified in the data set.

Q1 := ((?p, type, Person) OPT
((?p, type, Person) AND (?p, name, ?n))) FILTER (¬bnd(?n))

C1 := σ¬bnd(?n)(J(?p, type, Person)KD 1
(J(?p, type, Person)KD 1 J(?p, name, ?n)KD)) 2

From an optimization point of view it would be desirable to have
a clean translation of the operator constellation in query Q1 using
only operator \, but the semantics mapsQ1 intoC1, which involves
a comparably complex construction using operators σ, 1 , 1, and
predicate bnd (thus using operator \ implicitly, according to the
semantics of 1). This translation seems overly complicated and
we will now show that better translations exist for a large class of
practical queries, using only \, without 1 , σ and predicate bnd.

We argue that the rewriting rules in Figure 2, group VI can ac-
complish such a rewriting in many practical cases. Most impor-
tant in our context are rule (fLJ), which allows to eliminate redun-
dant subexpressions in the right side of 1 expressions (over frag-
ment eA), and rule (FLBndI). The idea is as follows. In a first step,
we apply rule (fLJ) to C1 from Example 9, which gives us expres-
sion C′1 := σ¬bnd(?n)(J(?p, type, Person)KD 1 J(?p, name, ?n)KD).
In a second step, we apply rule (FLBndI) to expression C′1 and ob-
tain Copt

1 := J(?p, type, Person)KD \ J(?p, name, ?n)KD .
The construction in C1, involving operators 1 , 1, σ, and pred-

icate bnd, has been replaced by a simple minus expression in Copt
1 .

4.2 From Set to Bag Semantics
We now switch from set to bag algebra. Analogously to our

discussion of SPARQL set algebra, we define a fragment calledA+

that contains all bag algebra expressions. It differs from set algebra
fragmentA in that triple patterns are of the form JtK+D and therefore
all operations are interpreted as operations over multi-sets. The
ultimate goal in our analysis is to identify those equivalences from
Section 4.1 that hold for bag algebra expressions.

We modify the definition of the incompatibility property (cf. Def-
inition 7) as follows for bag semantics. A bag algebra expressionA
has the incompatibility property if, for every document D and re-
sult multi-set (ΩD ,mD) obtained when evaluating A on D it holds
that (i) each two distinct mappings in ΩD are incompatible and
(ii) mD(µ) = 1 for all µ ∈ ΩD . The constraint (ii) arises from the
fact that duplicate mappings are always compatible to each other
(i.e., µ ∼ µ) and may harm equivalences that – under set algebra –
hold for expressions that exhibit the incompatibility property.

It turns out that we also need to adjust the definition of the frag-
ment that satisfies the incompatibility property. We define the bag
algebra class gA+ (the natural counterpart of set algebra class eA)
as the set of expressions built using operators 1, \, 1 , σ, and
(bracket-enclosed) triple patterns of the form JtK+D . Then, in anal-
ogy to Lemma 2 for set semantics, we can show the following.

LEMMA 5. Every fA+ ∈gA+ has the incompatibility property.2

Given a set algebra equivalence (E), we say that (E) carries
over from set to bag algebra if either (E) was specified for expres-
sions A,A1, A2, A3 ∈ A and it also holds for all bag algebra ex-
pressions A,A1, A2, A3 ∈ A+ or (E) is specified for expressions
from fragment eA and also holds for expressions from gA+.

EXAMPLE 10. Equivalence (UIdem) from Figure 2 does not
carry over to bag algebra. To see why, consider D := {(c, c, c)}
and A := J(c, c, ?x)KD ∈ A+. The result of evaluating A on D is
({{?x 7→ c}},m) with m({?x 7→ c}) := 1, but A ∪ A evaluates
to ({{?x 7→ c}},m′) with m′({?x 7→ c}) := 2. 2

To keep the discussion short, we will not go to deep into detail,
but only present the final outcome of our investigation.

THEOREM 7. All equivalences from Figure 2 except (UIdem)
and (FDecompII) carry over to bag algebra. Further, rules (FElimI)
and (FElimII) from Lemma 4 carry over to bag algebra. 2

4.3 Extensions and Practical Implications
We conclude with a discussion of implications for SPARQL en-

gines that build upon the official W3C (bag) semantics. To this
end, we switch from the algebraic level back to the syntax level
and discuss conclusion we can draw for engines that follow the bag
semantics approach. We start with a result on ASK queries:

LEMMA 6. Let Q, Q1, Q2 be SPARQL expressions. Then
• JASK(Q)KD ⇔ JASK(Q)K+D
• JASK(Q1 UNION Q2)KD ⇔ JASK(Q1)KD ∨ JASK(Q2)KD
• JASK(Q1 OPT Q2)KD ⇔ JASK(Q1)KD
• If pVars(JQ1KD) ∩ pVars(JQ2KD) = ∅ then
JASK(Q1 AND Q2)KD ⇔ JASK(Q1)KD ∧ JASK(Q2)KD . 2

The first bullet states that for ASK queries the set and bag se-
mantics coincide. The remaining three rewritings are optimiza-
tion rules, designed to reduce evaluation costs for ASK queries.
For instance, the rule for operator OPT shows that top-level OPT-
expressions can simply be replaced by the left side expression, thus
saving the cost for computing the right side expression.

Like SQL, the SPARQL standard [32] proposes a set of solution
modifiers. Our focus here is on the solution modifiers DISTINCT
and REDUCED. The DISTINCT modifier removes duplicates from
the result set, i.e. the result of evaluating SELECT DISTINCTS(Q)
under bag semantics is obtained from (Ω,m) := JSELECTS(Q)K+D
by replacing m by m′ defined as m′(µ) := 1 for all µ ∈ Ω and
m′(µ) := 0 otherwise (DISTINCT and REDUCED queries make
only sense under bag semantics, where duplicate answers may oc-
cur). While SELECT DISTINCT queries ensure that duplicates are
eliminated, SELECT REDUCED queries permit to eliminate them;
the idea is that optimizers can freely choose whether to eliminate
duplicates or not, based on their internal processing strategy. We
describe the result of SELECT REDUCED queries as the set of all
valid answers, i.e. a set of mapping sets. We clarify the idea by
example here; the interested reader will find a formal definition of
both DISTINCT and REDUCED queries in Appendix A.6.

EXAMPLE 11. Let Q := (?x, c, c) UNION (c, c, ?x) and con-
sider Q1 := SELECT?x(Q), Q2 := SELECT DISTINCT?x(Q),
Q3 := SELECT REDUCED?x(Q), and D := {(c, c, c)}. Then

JQ1K+D = ({{?x 7→ c}},m1) where
m1({?x 7→ c}) := 2 and m1(µ) := 0 otherwise,

JQ2K+D = ({{?x 7→ c}},m2) where
m2({?x 7→ c}) := 1 and m2(µ) := 0 otherwise,

JQ3K+D = {({{?x 7→ c}},m1), ({{?x 7→ c}},m2)}. 2
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We next summarize relations between modifiers and semantics:

LEMMA 7. Let Q be a SPARQL expression and S ⊂ V . Then
• JSELECTS(Q)KD ∼= JSELECT DISTINCTS(Q)K+D
• JSELECT DISTINCTS(Q)K+D ∈ JSELECT REDUCEDS(Q)K+D
• There is some (Ω,m) ∈ JSELECT REDUCEDS(Q)K+D such

that JSELECTS(Q)KD ∼= (Ω,m). 2

The first bullet shows that the (bag) semantics of SELECT DIS-
TINCT queries coincides with the set semantics for the correspond-
ing SELECT query. Bullets two and three imply that set semantics
can also be used to evaluate SELECT REDUCED queries.

Summarizing all previous results, we observe that the (simpler)
set semantics is applicable in the context of a large class of queries
(i.e. all ASK, SELECT DISTINCT, and SELECT REDUCED queries).
Engines that rely on SPARQL bag algebra for query evaluation may
opt to implement a separate module for set semantics and switch
between these modules based on the results above. We conclude
with a lemma that identifies another large class of queries that can
be evaluated using set semantics in place of bag semantics:

LEMMA 8. Let Q ∈ AFO and let S ⊇ pVars(JQKD). Then
JSELECTS(Q)KD ∼= JSELECTS(Q)K+D . 2

5. SEMANTIC SPARQL OPTIMIZATION
We assume that the reader is familiar with the concepts of first-

order logic, relational databases, and conjunctive queries. To be
self-contained, we summarize the most important concepts below.

Conjunctive Queries. A conjunctive query (CQ) is an expres-
sion of the form q : ans(x) ← ϕ(x, y), where ϕ is a conjunction
of relational atoms, x and y are tuples of variables and constants,
and every variable in x also occurs in ϕ. The semantics of q on
database instance I is defined as q(I) := { a | I |= ∃yϕ(a, y) }.

Constraints. We specify constraints in form of first-order sen-
tences over relational predicates. As special cases, we consider the
well-known classes of tuple-generating dependencies (TGDs) and
equality-generating dependencies (EGDs) [2], which cover most
practical relations between data entities, such as functional and in-
clusion dependencies. Abstracting from details, TGDs and EGDs
have the form ∀x(ϕ(x)→ ∃yψ(x, y)) and ∀x(ϕ(x)→ xi = xj),
respectively. Technical background can be found in Appendix A.3.

Chase. We assume familiarity with the basics of the chase al-
gorithm (cf. [21, 2, 14]), a useful tool in semantic query optimiza-
tion [14, 8]. In the context of SQO, the chase takes a CQ q and a set
of TGDs and EGDs Σ as input. It interprets the body of the query,
body(q), as database instance and successively fixes constraint vi-
olations in body(q). We denote the output obtained when chasing q
with Σ as qΣ. It is known that body(qΣ) |= Σ and that qΣ is equiva-
lent to q on every instanceD |= Σ. Note that qΣ may be undefined,
since the chase may fail or not terminate (see Appendix A.3). Still,
there has been work on chase termination conditions that guarantee
its termination in many practical cases (e.g. [28, 7, 22]).

Our SQO scheme builds on the Chase & Backchase (C&B) al-
gorithm [8], which uses the chase as a subprocedure. Given a CQ q
and a set of TGDs and EGDs Σ as input, the C&B algorithm re-
turns the set of minimal rewritings (w.r.t. the number of atoms in
the body) of q that are equivalent to q on every instance D |= Σ.
We denote its output as cbΣ(q), if it is defined (the result is unde-
fined if and only if the underlying chase result is undefined).

Constraints for RDF. We interpret an RDF database D as a
ternary relation T that stores all the RDF triples and express con-
straints for RDF as first-order sentences over predicate T . For in-
stance, the TGD ∀x(T (x, rdf:type, C) → ∃yT (x, p, y)) asserts

that each resource that is typed with C also has the property p.
When talking about constraints in the following, we always mean
RDF constraints that are expressed as first-order sentences.

Before presenting our SQO scheme for SPARQL, we shortly
investigate the general capabilities of SPARQL in the context of
RDF constraints. More precisely, we are interested in the question
whether the SPARQL query language can be used to express (i.e.,
check and encode) RDF constraints. An intuitive way to check if
a constraint ϕ holds on some RDF document is by writing an ASK
query that returns true on document D if and only if D |= ϕ.
To be in line with previous investigations on the expressiveness of
SPARQL, we extend our fragment by so-called empty graph pat-
terns of the form {} (which may be used in place of triple pat-
terns), and a syntactic MINUS operator; we define their semantics
as J{}KD := {∅} and JQ1 MINUS Q2KD := JQ1KD \ JQ2KD .4

Empty graph patterns are supported by the current W3C standard
and operator MINUS is planned as a future extension.5 Both con-
structs were also used in [1], where it is shown that SPARQL has
the same expressiveness as Relational Algebra. Given the latter re-
sult and the close connection between RA and first-order logic, one
may expect that (first-order logic) constraints can be expressed in
SPARQL. The next theorem confirms this expectation:

THEOREM 8. Let ϕ be an RDF constraint. There is an ASK
queryQ s.t. for every documentD it holds that JQKD ⇔ D |= ϕ.2

The constructive proof in Appendix D.1 shows how to encode
RDF constraints in SPARQL and makes the connection between
SPARQL and first-order logic explicit. From a practical perspec-
tive, the result shows that SPARQL is expressive enough to deal
with first-order constraints and qualifies SPARQL for extensions to
encode user-defined constraints, e.g. in the style of SQL CREATE
ASSERTION statements. In the remainder of the paper, we switch
back to the original SPARQL fragment from Definitions 1 and 2.

5.1 SQO for SPARQL
The key idea of semantic query optimization is, given a query

and a set of integrity constraints, to find minimal (or more efficient)
queries that are equivalent to the original query on each database
instance that satisfies the constraints. We define the problem for
SPARQL as follows: given a SPARQL expression or query Q and
a set of TGDs and EGDs Σ over the RDF database, we want to
enumerate (minimal) expressions or queries Q′ that are equivalent
to Q on every database D such that D |= Σ. In that case, we say
that Q and Q′ are Σ-equivalent and denote this by Q ≡Σ Q′.

The constraints that are given as input might have been specified
by the user, automatically extracted from the underlying database,
or – in our setting – may be implicitly given by the semantics of
RDFS when SPARQL is coupled with an RDFS inference system.
In fact, one aspect that served as a central motivation for the in-
vestigation of SQO for SPARQL is the close connection between
constraints and the semantics of RDF and RDFS [29]. To be con-
crete, RDF(S) comes with a set of reserved URIs with predefined
semantics, such as rdf:type for typing entities, or rdfs:domain and
rdfs:range for fixing the domain and range of properties (cf. [12]).
As an example, let us consider the fixed RDF database

D := {(knows, rdfs:domain, Person), (knows, rdfs:range, Person),
(P1, knows, P2)}.

According to the semantics of rdfs:domain (rdfs:range), each
URI or blank node that is used in the subject (object) position of
4The extension is necessary to obtain the result in Theorem 8, see
Remark 1 in Appendix D.1 for more background information.
5
http://www.w3.org/TR/2009/WD-sparql-features-20090702/
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triples with predicate knows is implicitly of type Person, i.e. for D
the semantics implies two fresh triples t1 := (P1, rdf:type,Person)
and t2 := (P2, rdf:type,Person). The SPARQL query language ig-
nores the semantics of this vocabulary and operates on the RDF
database “as is”, thus disregarding triples that are not explicitly
contained in the database but only implicit by the RDF(S) seman-
tics. Still, when SPARQL is coupled with an RDF(S) inferencing
system, it implicitly operates on top of the implied database, which
satisfies all the constraints imposed by RDF(S) vocabulary. For
instance, implied databases always satisfy the two constraints

ϕd := ∀p, c, x, y(T (p, rdfs:domain, c), T (x, p, y)→ T (x, rdf:type, c)),
ϕr := ∀p, c, x, y(T (p, rdfs:range, c), T (x, p, y)→ T (y, rdf:type, c)),

which capture the semantics of rdfs:domain (ϕd) and rdfs:range
(ϕr). Thus, whenever SPARQL is evaluated on top of an RDFS
inferencing engine, we can use these constraints (and others that
are implicit by the semantics of RDF(S) [12, 11]) for SQO.

We note that constraint-based query optimization in the context
of RDFS inference has been discussed before in [11]. Our approach
is much more general and supports constraints beyond those im-
plied by the semantics of RDFS, i.e. it also works on top of user-
defined or automatically extracted constraints. In [17], for instance,
we proposed to carry over constraints from relational databases,
such as primary and foreign keys, when translating relational data
into RDF. Also the latter may serve as input to our semantic op-
timization scheme. As another difference to [11], our approach
addresses the specifics of SPARQL, e.g. we also provide rules for
the semantic optimization of queries that involve operator OPT.

Outline. We now come to the discussion of our SQO scheme.
The basic idea of our approach is as follows. Given a SPARQL
query and a set of constraints, we first translate AND-only sub-
queries of the input query into conjunctive queries. In a second
step, we use the C&B algorithm to minimize these CQs, translate
the minimized CQs (i.e., the output of C&B) back into SPARQL,
and substitute them for the initial subqueries. By default, the C&B
algorithm returns Σ-equivalent queries that are minimal w.r.t. the
number of atoms in the body of the query. Yet, as described in [8],
the C&B algorithm also can be coupled with a cost estimation func-
tion and in that case would return queries that are minimal w.r.t. the
cost function. In the absence of a cost measure, we focus on the
minimality property in the following, but point out that the ap-
proach per se also supports more sophisticated cost measures.

The optimization scheme described above, which is restricted to
AND-only queries or AND-only subqueries, will be described in
more detail in Section 5.1.1. Complementarily, in Section 5.1.2
we discuss SPARQL-specific rules that allow for the semantic opti-
mization of complex queries involving operators FILTER and OPT.

5.1.1 Optimizing AND-only Blocks
We start with translation functions that map SPARQL AND-only

queries to conjunctive queries and vice versa:

DEFINITION 9. Let S ⊂ V and let Q ∈ Aπ be defined as

Q := SELECTS((s1, p1, o1) AND . . . AND (sn, pn, on)).

We define the translation cq(Q) := q, where q is defined as

q := ans(s)← T (s1, p1, o1), . . . , T (sn, pn, on)

and tuple s contains exactly the variables from S.
Further, we define the back-translation cq−1(q) as follows. It

takes a CQ in the form of q and returns Q if it is a valid SPARQL
query, i.e. if (si, pi, oi) ∈ UV × UV × LUV for all i ∈ [n]; in
case Q is not a valid SPARQL query, cq−1(q) is undefined. 2

EXAMPLE 12. Consider the SPARQL AND-only query
Q := SELECT?p1,?p2((?p1, knows, ?p2) AND

(?p1, rdf:type, Person) AND (?p2, rdf:type, Person)). Then

cq(Q) = ans(?p1, ?p2)← T (?p1, knows, ?p2), T (?p1, rdf:type, Person),
T (?p2, rdf:type, Person)

and cq−1(cq(Q)) = Q. As another example, we can observe
that cq−1(ans(?x)← T (“a”, p, ?x)) is undefined, because expres-
sion SELECT?x((“a”, p, ?x)) has literal “a” in subject position. 2

Although defined forAπ queries, the translation scheme can eas-
ily be applied to A expressions (i.e., AND-blocks in queries): ev-
ery Q ∈ A is equivalent to the Aπ query SELECTpVars(JQKD)(Q).

Our first result is that, when coupled with the C&B algorithm,
the forth-and-back translations cq and cq−1 provide a sound ap-
proach to semantic query optimization for AND-only queries when-
ever the underlying chase algorithm terminates regularly:

LEMMA 9. Let Q be an Aπ query, let D be an RDF database,
and let Σ be a set of EGDs and TGDs. If cbΣ(cq(Q)) is defined,
q ∈ cbΣ(cq(Q)), and cq−1(q) is defined, then cq−1(q) ≡Σ Q. 2

Lemma 9 formalizes the key idea of our SQO scheme: given that
the chase result for cq(Q) with Σ is defined for some AND-only
query Q, we can apply the C&B algorithm to cq(Q) and trans-
late the resulting minimal queries back into SPARQL, to obtain
SPARQL AND-only queries that are Σ-equivalent to Q.

EXAMPLE 13. Consider query Q from Example 12 and query
Qopt := SELECT?p1,?p2((?p1, knows, ?p2)). Further consider the
constraints ϕd, ϕr from Section 5.1 and define Σ := {ϕd, ϕr}.
We have cq(Qopt) ∈ cbΣ(cq(Q)) and it follows from Lemma 9
that cq−1(cq(Qopt)) = Qopt ≡Σ Q. An engine that builds upon an
RDFS inference engine thus may evaluate Qopt in place of Q. 2

Lemma 9 states only soundness of the SQO scheme for AND-
only queries. In fact, one can observe that under certain circum-
stance the scheme proposed in Lemma 9 is not complete:

EXAMPLE 14. Consider the SPARQL queries

Q1 := SELECT?x((?x, a, “l”)),
Q2 := SELECT?x((?x, a, “l”) AND (?x, b, c)),

and Σ := {∀x, y, z(T (x, y, z) → T (z, y, x))}. It holds that
Q1 ≡Σ Q2 because the answer to both Q1 and Q2 is always
the empty set on documents that satisfy Σ: the single constraint
in Σ enforces that all RDF documents satisfying Σ have no lit-
eral in object position, because otherwise this literal would appear
in subject position, which is invalid RDF. Contrarily, observe that
cq(Q1) 6≡Σ cq(Q2). To see why, consider for example the rela-
tional instance I := {T (a, a, “l”), T (“l”, a, a)}, where I |= Σ,
(cq(Q1))(I) = {(a)}, but (cq(Q2))(I) = ∅. Therefore, our
scheme would not detect Σ-equivalence between Q1 and Q2. 2

Arguably, Example 14 presents a constructed scenario and it
seems reasonable to assume that such situations (which in some
sense contradict to the type restrictions of RDF) barely occur in
practice. We next provide a precondition that guarantees complete-
ness for virtually all practical scenarios. It relies on the observa-
tion that, in the example above, (cq(Q1))

Σ and (cq(Q2))
Σ (i.e.,

the queries obtained when chasing cq(Q1) and cq(Q2) with Σ, re-
spectively) do not reflect valid SPARQL queries. We can guarantee
completeness if we explicitly exclude such cases:

LEMMA 10. Let D be an RDF database and let Q be an Aπ
query such that cq−1((cq(Q))Σ) ∈ Aπ . If cbΣ(cq(Q)) terminates
then for all Q′ ∈ Aπ such that cq−1((cq(Q′))Σ) ∈ Aπ then Q′ ∈
cq−1(cbΣ(cq(Q)))⇔ Q′ ≡Σ Q and Q′ minimal. 2
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5.1.2 SPARQL-specific Optimization
By now we have a mechanism to enumerate equivalent minimal

queries of AND-only (sub)queries. Next, we present extensions
beyond AND-only queries. We start with the FILTER operator:

LEMMA 11. LetQ1, Q2 ∈ A, S ⊂ V \{?y} a set of variables,
Σ be a set of TGDs and EGDs, D be a document s.t. D |= Σ, and
?x, ?y ∈ pVars(JQ2KD). By Q2

?x
?y

we denote the query obtained
from Q2 by replacing each occurrence of ?y through ?x. Then:

(FSI) If Q2 ≡Σ Q2 FILTER (?x =?y), then
SELECTS(Q2) ≡ SELECTS(Q2

?x
?y

).
(FSII) If Q2 ≡Σ Q2 FILTER (?x =?y), then

JQ2 FILTER (¬(?x =?y))KD = ∅.
(FSIII) If Q1 ≡Σ SELECTpVars(JQ1KD)(Q1 AND Q2), then

J(Q1 OPT Q2) FILTER (¬bnd(?x))KD = ∅. 2

The intended use of Lemma 11 is as follows. Using standard
chase techniques we can check if the preconditions hold; if this is
the case, we may exploit the equivalences in the conclusion. In-
formally, (FSI) states that, if the constraints imply equivalence be-
tween ?x and ?y, we can replace each occurrence of ?y by ?x if ?y
is projected away (observe that S ⊂ V \{?y}). Under the same pre-
condition, (FSII) shows that a filter ¬(?x =?y) is never satisfied.
Finally, (FSIII) detects contradicting filters of the form ¬bnd(?x ).
Our next results are semantic rewriting rules for operator OPT:

LEMMA 12. Let Q1, Q2, Q3 ∈ A and S ⊂ V . Then

(OSI) If Q1 ≡Σ SELECTpVars(JQ1KD)(Q1 AND Q2) then
Q1 OPT Q2 ≡Σ Q1 AND Q2.

(OSII) If Q1 ≡Σ Q1 AND Q2 then
Q1 OPT (Q2 AND Q3) ≡Σ Q1 OPT Q3. 2

Rule (OSI) shows that OPT can be replaced by AND if the OPT
subexpression is implied by the constraint set; (OSII) eliminates
redundant AND expressions in OPT clauses. We illustrate (OSI):

EXAMPLE 15. Consider patterns t1 := (?p, rdf:type,Person),
t2 := (?p, name, ?n), and t3 := (?p, age, ?a) and define Qo :=
SELECT?p,?n,?a(t1 OPT (t2 AND t3)). Let Σ := {α1, α2} with

α1 := ∀x(T (x, rdf:type,Person)→ ∃yT (x, name, y)),
α2 := ∀x(T (x, rdf:type,Person)→ ∃yT (x, age, y)).

It is easily verified that t1 ≡Σ SELECT?p(t1 AND (t2 AND t3)),
so rewriting rule (OSI) is applicable. Therefore, we shall conclude
that SELECT?p,?n,?a(t1 AND (t2 AND t3)) ≡Σ Qo. 2

The rules in Lemma 11 and 12 exemplify an approach to rule-
based semantic SPARQL optimization and can be extended on de-
mand by user-defined optimization rules. Particularly rule (OSI)
seems useful in practice: in the Semantic Web, queries are often
submitted to databases hidden behind SPARQL endpoints, so users
may not be aware of integrity constraints that hold in the database.
In such cases, they may specify parts of the query as optional, not
to miss relevant answers. If there are constraints that guarantee
the presence of such data, the engine can replace the OPT operator
by AND, which may accelerate query processing.

We conclude with the remark that optimization schemes may
couple our algebraic and semantic techniques, e.g. by decomposing
and moving filter conditions using the rules for filter manipulation
in Figure 2 to create situations in which the above lemmas apply.
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APPENDIX
A. ADDITIONAL DEFINITIONS

We give some background definitions that are not relevant for the
understanding of the paper itself, but are important for the under-
standing of the proofs in the remainder of the appendix and clarify
technical issues that were left out in the main section of the paper.

A.1 Semantics of Filter Conditions

DEFINITION 10 (FILTER SEMANTICS). Given a mapping µ,
filter conditions R, R1, R2, variables ?x, ?y, and c, d ∈ LU , we
say that µ satisfies R, written as µ |= R, if and only if one of the
following conditions holds.
• R is of the form bnd(?x ) and ?x ∈ dom(µ).
• R is of the form c = d and c equals to d.
• R is of the form ?x = c, ?x ∈ dom(µ), and µ(?x) = c.
• R is of the form ?x = ?y, {?x, ?y} ⊆ dom(µ), and it holds

that µ(?x) = µ(?y).
• R is of the form ¬R1 and it is not the case that µ |= R1.
• R is of the form R1 ∨R2 and µ |= R1 or µ |= R2.
• R is of the form R1 ∧R2 and µ |= R1 and µ |= R2. 2

A.2 SPARQL Bag Semantics
Implementing the ideas sketched in Section 2, we formally de-

fine the bag semantics for SPARQL as follows. First, we overload
the algebraic operations from Definition 3:

DEFINITION 11 (SPARQL BAG ALGEBRA). Let R be a fil-
ter condition, S ⊂ V a finite set of variables, and M := (Ω,m),
Ml := (Ωl,ml), Mr := (Ωr,mr) be mapping multi-sets We de-
fine the operations join (1), union (∪), set minus (\), left outer join
(1), projection (π), and selection (σ) over mapping multi-sets:

Ml 1 Mr := (Ω′,m′), where
Ω′ := {µl ∪ µr | µl ∈ Ωl, µr ∈ Ωr : µl ∼ µr} and
m′(µ) :=

P
(µl,µr)∈{(µ∗

l
,µ∗r)∈Ωl×Ωr|µ∗l ∪µ∗r=µ}

(ml(µl) ∗mr(µr))
for all µ ∈M.

Ml ∪Mr := (Ω′,m′), where
Ω′ := {µlr | µlr ∈ Ωl or µlr ∈ Ωr} and
m′(µ) := ml(µ) +mr(µ) for all µ ∈M.

Ml \Mr := (Ω′,m′), where
Ω′ := {µl ∈ Ωl | for all µr ∈ Ωr : µl 6∼ µr} and
m′(µ) := ml(µ) if µ ∈ Ω′, and m′(µ) := 0 otherwise.

Ml 1Mr := (Ml 1 Mr) ∪ (Ml \Mr)

πS(M) := (Ω′,m′), where
Ω′ := {µ1 | ∃µ2 : µ1 ∪ µ2 ∈ Ω ∧ dom(µ1) ⊆ S

∧ dom(µ2) ∩ S = ∅} and
m′(µ) :=

P
µ+∈{µ∗+∈Ω|πS({µ∗+})={µ}}

m(µ+) for all µ ∈M.

σR(M) := (Ω′,m′), where
Ω′ := {µ ∈ Ω | µ |= R} and
m′(µ) := m(µ) if µ ∈ Ω′, and m′(µ) := 0, otherwise.

We refer to the above algebra as SPARQL bag algebra. 2

The above definition exactly corresponds to Definition 3 w.r.t. the
mappings that are contained in the result set (i.e., the definition
of Ω′ in each rule mirrors the definition of SPARQL set algebra),
but additionally fixes the multiplicities for generated set members

(cf. function m′). It is easily verified that the above definition al-
ways returns multi-sets valid according to Definition 5. Now we
are in the position to the define the bag semantics for SPARQL:

DEFINITION 12 (SPARQL BAG SEMANTICS). Let D be an
RDF database, t be a triple pattern, Q1, Q2 denote SPARQL ex-
pressions, R a filter condition, and S ⊂ V be a finite set of vari-
ables. We define the bag semantics recursively as follows.

JtK+D := (Ω := {µ | dom(µ) = vars(t) and µ(t) ∈ D},m),
where m(µ) := 1 for all µ ∈ Ω, and m(µ) := 0 otherwise.

JQ1 AND Q2K+D := JQ1K+D 1 JQ2K+D
JQ1 OPT Q2K+D := JQ1K+D 1 JQ2K+D
JQ1 UNION Q2K+D := JQ1K+D ∪ JQ2K+D
JQ1 FILTER RK+D :=σR(JQ1K+D)

JSELECTS(Q1)K+D :=πS(JQ1K+D)

JASK(Q1)K+D :=¬(∅ ∼= JQ1K+D) 2

Note that this definition is identical to Definition 4, except for
the case of triple pattern evaluation, where we represent the result
of evaluating a triple pattern as a multi-set. Hence, when evaluating
a SPARQL expression bottom-up using bag semantics, algebraic
operations will always be interpreted as multi-set operations.

A.3 TGDs, EGDs, and Chase
We fix three pairwise disjoint infinite sets: the set of constants ∆,

the set of labeled nulls ∆null, and the set of variables V . Often
we will denote a sequence of variables, constants or labeled nulls
by a. A database schema R is a finite set of relational symbols
{R1, ..., Rn}. To every R ∈ R we assign a natural number ar(R)
called its arity. A database instance I is a finite set of R-atoms
that contains only elements from ∆∪∆null in their positions. The
domain of I , dom(I), is the set of elements appearing in I .

DEFINITION 13 (TUPLE-GENERATING DEPENDENCY).
A tuple-generating dependency (TGD) is a first-order sentence

α := ∀x(φ(x)→ ∃yψ(x, y))

such that (a) both φ and ψ are conjunctions of atomic formulas
(possibly with parameters from ∆), (b) ψ is not empty, (c) φ is
possibly empty, (d) both φ and ψ do not contain equality atoms and
(e) all variables from x that occur in ψ must also occur in φ. We
denote by pos(α) the set of positions in φ. 2

DEFINITION 14 (EQUALITY-GENERATING DEPENDENCY).
An equality-generating dependency (EGD) is a first-order sentence

α := ∀x(φ(x)→ xi = xj),

where xi, xj occur in φ and φ is a non-empty conjunction of
equality-free R-atoms (possibly with parameters from ∆). We de-
note the set of positions in φ by pos(α). 2

DEFINITION 15 (HOMOMORPHISM). A homomorphism from
a set of atoms A1 to a set of atoms A2 is a mapping µ : ∆ ∪
V → ∆ ∪ ∆null such that the following conditions hold: (i)
if c ∈ ∆, then µ(c) = c and (ii) if R(c1, ..., cn) ∈ A1, then
R(µ(c1), ..., µ(cn)) ∈ A2. 2

We are now in the position to introduce the chase algorithm. Let
Σ be a set of TGDs and EGDs and I an instance, represented as a
set of atoms. We say that a TGD ∀xϕ ∈ Σ is applicable to I if there
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is a homomorphism µ from body(∀xϕ) to I and µ cannot be ex-
tended to a homomorphism µ′ ⊇ µ from head(∀xϕ) to I . In such

a case the chase step I
∀xϕ,µ(x)−→ J is defined as follows. We define

a homomorphism ν as follows: (a) ν agrees with µ on all univer-
sally quantified variables in ϕ, (b) for every existentially quantified
variable y in ∀xϕ we choose a "fresh" labeled null ny ∈ ∆null and
define ν(y) := ny . We set J to I ∪ ν(head(∀xϕ)). We say that
an EGD ∀xϕ ∈ Σ is applicable to I if there is a homomorphism µ
from body(∀xϕ) to I and it holds that µ(xi) 6= µ(xj). In this case

the chase step I
∀xϕ,µ(x)−→ J is defined as follows. We set J to

• I except that all occurrences of µ(xj) are substituted by µ(xi) =:
a, if µ(xj) is a labeled null,
• I except that all occurrences of µ(xi) are substituted by µ(xj) =:
a, if µ(xi) is a labeled null,
• undefined, if both µ(xj) and µ(xi) are constants. In this case

we say that the chase fails.
A chase sequence is an exhaustive application of applicable con-

straints

I0
ϕ0,a0−→ I1

ϕ1,a1−→ I2
ϕ2,a2−→ . . .,

where we impose no strict order on what constraint must be applied
in case several constraints are applicable. If the chase sequence is
finite, say Ir being its final element, the chase terminates and its re-
sult IΣ

0 is defined as Ir . Although different orders of application of
applicable constraints may lead to different chase results, it is folk-
lore that two different chase orders always lead to homomorphi-
cally equivalent results, if these exist. Therefore, we write IΣ for
the result of the chase on an instance I under Σ. It has been shown
in [21] that IΣ |= Σ. If a chase step cannot be performed (e.g.,
because a homomorphism would have to equate two constants) or
in case of an infinite chase sequence, the chase result is undefined.

A.4 OPT-rank
Formally, the rank of an expression is defined as follows.

DEFINITION 16 (OPT-RANK). The nesting depth of OPT ex-
pressions in SPARQL expression Q, called OPT-rank rank(Q), is
defined recursively on the structure of Q as

rank(t) := 0,
rank(Q1 FILTER R) := rank(Q1),
rank(Q1 AND Q2) := max(rank(Q1),rank(Q2)),
rank(Q1 UNION Q2):= max(rank(Q1),rank(Q2)),
rank(Q1 OPT Q2) := max(rank(Q1),rank(Q2)) + 1,

where max(n1,n2) returns the maximum of n1 and n2. 2

A.5 Function pVars(A)
We provide a formal definition of function pVars(A):

DEFINITION 17 (FUNCTION pVars). LetA be a SPARQL set
algebra expression. Function pVars(A) extracts the set of so-
called possible variables from a SPARQL algebra expression:

pVars(JtKD) := vars(t)
pVars(A1 1 A2):= pVars(A1) ∪ pVars(A2)
pVars(A1 ∪A2) := pVars(A1) ∪ pVars(A2)
pVars(A1 \A2) := pVars(A1)
pVars(πS(A1)) := pVars(A1) ∩ S
pVars(σR(A1)) := pVars(A1) 2

A.6 DISTINCT and REDUCED Queries
We provide a definition of DISTINCT and REDUCED queries.

DEFINITION 18 (SELECT DISTINCT QUERY). Let Q be
a SPARQL expression and S ⊂ V . A SPARQL SELECT DISTINCT
query is an expression of the form SELECT DISTINCTS(Q). We
extend the bag semantics from Definition 12 to SELECT DISTINCT
queries as follows. Let (Ω+,m+) := JSELECTS(Q)K+D . We de-
fine JSELECT DISTINCTS(Q)K+D := (Ω+,m), where m is defined
as m(µ) := 1 if m+(µ) ≥ 1 and m(µ) := 0 otherwise. 2

DEFINITION 19 (SELECT REDUCED QUERY). Let Q be
a SPARQL expression and S ⊂ V . A SPARQL SELECT REDUCED
query is an expression of the form SELECT REDUCEDS(Q). We
extend the bag semantics from Definition 12 to SELECT REDUCED
queries. Let (Ω+,m+) := JSELECTS(Q)K+D . The solution to
query SELECT REDUCEDS(Q) is the set of mapping sets of the
form (Ω+,m) s.t. for all µ ∈ M it holds that (i) m+(µ) = 0 →
m(µ) = 0 and (ii)m+(µ) > 0→ m(µ) ≥ 1∧m(µ) ≤ m+(µ).2

B. PROOFS OF COMPLEXITY RESULTS

B.1 Proof of Lemma 1
We prove the lemma by induction on the structure of Q. To sim-

plify the notation, we shall write µ ∈ JQK+D if and only if µ ∈ Ω+

for JQK+D := (Ω+,m+). This notation is justified by the property
that m+(µ) ≥ 1 for each µ ∈ Ω+. Note that the SPARQL bag
algebra operators introduced in Definition 3 maintain this property,
i.e. whenever an algebraic operation generates a mapping µ, then
the multiplicity that is associated with µ is at least one.

The induction hypothesis is µ ∈ JQKD ⇔ µ ∈ JQK+D . For
the basic case, let us assume that Q := t is a triple pattern. Let
Ω := JtKD and (Ω+,m+) := JtK+D be the results obtained when
evaluatingQ onD using set and bag semantics, respectively. From
Definitions 3 and 11 it follows immediately that Ω = Ω+ and thus
µ ∈ JQKD ⇔ µ ∈ JQK+D , which completes the basic case. We
therefore may assume that the hypothesis holds for each expression.

Coming to the induction step, we distinguish five cases. (1) Let
Q := P1 AND P2. ⇒: Let µ ∈ JP1 AND P2KD = JP1KD 1

JP2KD . Then, by definition of operator 1, there are µ1 ∈ JP1KD ,
µ2 ∈ JP2KD s.t. µ1 ∼ µ2 and µ1 ∪ µ2 = µ. By application
of the induction hypothesis, we have that µ1 ∈ JP1K+D and µ2 ∈
JP2K+D , and consequently µ = µ1 ∪ µ2 ∈ JP1K+D 1 JP2K+D =
JP1 AND P2K+D . Direction “⇐” is analogical. We omit the proof
for case (2) Q := P1 UNION P2, which is similar to case (1).
Next, (3) let Q := P1 OPT P2. We exemplarily discuss direction
“⇒”, the opposite direction is similar. Let µ ∈ JP1 OPT P2KD =
(JP1KD 1 JP2KD) ∪ (JP1KD \ JP2KD). Then µ is generated (i) by
the subexpression JP1KD 1 JP2KD or (ii) by JP1KD \ JP2KD .
The argumentation for (i) is identical to case (1), i.e. we can show
that µ is then generated by JP1 OPT P2K+D = (JP1K+D 1 JP2K+D)∪
(JP1K+D \ JP2K+D), namely by the left side of the union. For case
(ii), we argue that µ ∈ JP1KD \ JP2KD → µ ∈ JP1K+D \ JP2K+D . So
let us assume that µ ∈ JP1KD \ JP2KD . Then µ ∈ JP1KD and there
is no compatible mapping µ′ ∼ µ in JP2KD . We have µ ∈ JP1K+D
by induction hypothesis. Assume for the sake of contradiction that
there is a compatible mapping µ′ ∼ µ in JP2K+D . Then, again by in-
duction hypothesis, we have that µ′ ∈ JP2KD , which contradicts to
the assumption that there is no compatible mapping to µ in JP2KD .
This completes case (3). Finally, cases (4) Q := SELECTS(P ) and
(5) Q := P FILTER R are easily obtained by application of the
induction hypothesis.2
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B.2 Proof of Theorem 2
Theorem 2(1): We provide a PTIME-algorithm that solves the

EVALUATION problem for fragment FU . It is defined recursively
on the structure of the input expression P and returns true if µ ∈
JP KD , false otherwise. We distinguish three cases. (a) If P := t is
a triple pattern, we return true if and only if µ ∈ JtKD . (b) If P :=
P1 UNION P2 we (recursively) check if µ ∈ JP1KD ∨ µ ∈ JP2KD
holds. (c) If P := P1 FILTER R for some filter condition R, we
return true if and only if µ ∈ JP1KD ∧ R |= µ. It is easy to see
that the above algorithm runs in polynomial time. Its correctness
follows from the definition of the algebraic operators ∪ and σ.

Theorem 2(2): To prove that the EVALUATION problem for frag-
ment AU is NP-complete we need to show membership and hard-
ness. The hardness part was sketched in Section 3.1, so we re-
strict on proving membership here. Let P be a SPARQL expres-
sion composed of operators AND, UNION, and triple patterns, D
a document, and µ a mapping. We provide an NP-algorithm that
returns true if µ ∈ JP KD , and false otherwise. Our algorithm is
defined on the structure of P : (a) if P := t is a triple pattern then
return true if µ ∈ JtKD , false otherwise; (b) if P := P1 UNION P2,
return the truth value of µ ∈ JP1KD ∨ µ ∈ JP2KD; finally, (c) if
P := P1 AND P2, then guess a decomposition µ = µ1∪µ2 and re-
turn the truth value of µ1 ∈ JP1KD ∧µ2 ∈ JP2KD . The correctness
of the algorithm follows from the definition of the algebraic oper-
ators 1 and ∪. Clearly, this algorithm can be implemented by a
non-deterministic Turing Machine that runs in polynomial time.2

B.3 Proof of Theorem 3
We reduce QBF, a prototypical PSPACE-complete problem, to

EVALUATION for class AO. The hardness part of the proof is in
parts inspired by the proof of Theorem 1(3) stated before, which
has been formally proven in [24]: there, QBF was encoded us-
ing operators AND, OPT, and UNION. Here, we encode the prob-
lem using only AND and OPT, which turns out to be considerably
harder. Membership in PSPACE, and hence completeness, then fol-
lows from the PSPACE membership of classAOU ⊃AO (cf. The-
orem 1(3)). Formally, QBF is defined as follows.6

QBF: given a quantified boolean formula
ϕ := ∀x1∃y1∀x2∃y2 . . . ∀xm∃ymψ as input, where ψ is a
quantifier-free formula in conjunctive normal form (CNF):
is the formula ϕ valid?

Let us start the discussion with a quantified boolean formula

ϕ := ∀x1∃y1∀x2∃y2 . . . ∀xm∃ymψ

and assume that the inner formula ψ of the quantified formula is
in conjunctive normal form, i.e. ψ := C1 ∧ · · · ∧Cn where the Ci
(i ∈ [n]) are disjunctions of literals7. By Vψ we denote the set of
(boolean) variables in ψ and by VCi the set of variables in clause
Ci. For our encoding, we use the polynomial-size database

D :={(a, false, 0), (a, true, 1), (a, tv, 0), (a, tv, 1)} ∪
{(a, vari, v) | v ∈ VCi} ∪ {(a, v, v) | v ∈ Vψ},

where the second and the third part of the union should be under-
stood as a syntactic replacement of v by variable names in VCi and
Vψ , respectively (and the variable names are understood as URIs).
6Note that, like the proof in [24], we assume that the inner formula
of the quantified formula is in CNF. It is known that also this variant
of the QBF problem is PSPACE-complete.
7A literal is a boolean variable x or a negated boolean variable ¬x.

For instance, if VC1 = Vψ = {x}, the second and the third part
of the union would generate the triples (a, var1, x) and (a, x, x),
respectively, where x is a fresh URI for the boolean variable x.

For each clause Ci := v1 ∨ · · ·∨ vj ∨¬vj+1 ∨ · · ·∨¬vk, where
v1, . . . , vj are positive and vj+1, . . . , vk are negated variables, we
define a separate SPARQL expression

PCi := (. . . ((. . . ((a, vari, ?vari)
OPT ((a, v1, ?vari) AND (a, true, ?V1)))
. . .

OPT ((a, vj , ?vari) AND (a, true, ?Vj)))
OPT ((a, vj+1, ?vari) AND (a, false, ?Vj+1)))
. . .

OPT ((a, vk, ?vari) AND (a, false, ?Vk))),

where v1, . . . , vk stand for the URIs that are associated with the
respective variables according to D. We then encode formula ψ as
Pψ := PC1 AND . . . AND PCn .

It is straightforward to verify that ψ is satisfiable iff there is a
mapping µ ∈ JPψKD . Even more, each mapping µ ∈ JPψKD
represents a set of truth assignments, where each assignment ρµ is
obtained as follows: for each vi ∈ Vψ we set ρµ(vi) := µ(?Vi)
if ?Vi ∈ dom(µ), or define either ρµ(vi) := 0 or ρµ(vi) := 1 if
?Vi 6∈ dom(µ); vice versa, for each truth assignment ρ that satis-
fies ψ there is µ ∈ JPψKD that defines ρ according to the construc-
tion rule for ρµ above. Note that the definition of ρµ accounts for
the fact that some ?Vi may be unbound in µ; then, the value of the
variable is not relevant to obtain a satisfying truth assignment and
we can randomly choose a value for vi in truth assignment ρµ.

Given Pψ , we can encode the quantifier-sequence using a series
of nested OPT statements as shown in [24]. To make the proof
self-contained, we shortly summarize this construction. We use
SPARQL variables ?X1, . . . , ?Xm and ?Y1, . . . Ym to represent
variables x1, . . . xm and y1, . . . , ym, respectively. In addition, we
use fresh variables ?A0, . . .?Am, ?B0, . . .?Bm, and operators AND,
OPT to encode the quantifier sequence ∀x1∃y1 . . . ∀xm∃ym. For
each i ∈ [m] we define Pi and Qi as

Pi := ((a, tv, ?X1) AND . . . AND (a, tv, ?Xi) AND
(a, tv, ?Y1) AND . . . AND (a, tv, ?Yi−1) AND
(a, false, ?Ai−1) AND (a, true, ?Ai)),

Qi := ((a, tv, ?X1) AND . . . AND (a, tv, ?Xi) AND
(a, tv, ?Y1) AND . . . AND (a, tv, ?Yi) AND
(a, false, ?Bi−1) AND (a, true, ?Bi)).

Using these expressions, we encode the quantified boolean for-
mula ϕ as

Pϕ:= (a, true, ?B0) OPT (P1 OPT (Q1

OPT (P2 OPT (Q2

. . .
OPT (Pm OPT (Qm AND Pψ)) . . . )))).

It can be shown that µ := {?B0 7→ 1} ∈ JPϕKD if and only if
ϕ is valid, which completes the reduction. We do not restate this
technical part of the proof here, but refer the interested reader to
the proof of Theorem 3 in [24] for details.2

B.4 Proof of Theorem 4
Adapting the idea from the proof of Theorem 3, we present a

reduction from QBF to the EVALUATION problem for SPARQL
queries, where the challenge is to encode the quantified boolean
formula using only operator OPT. Rather than starting from scratch,
our strategy is to take the proof of Theorem 3 as a starting point and
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to replace all AND expressions by OPT-only constructions. As we
will see later, most of the AND operators in the encoding can sim-
ply be replaced by OPT without changing the semantics. However,
for the innermost AND expressions in the encoding of Pϕ it turns
out that the situation is not that easy. We therefore start with a
lemma that will later help us to solve this situation elegantly.

LEMMA 13. Let
• Q,Q1, Q2, . . . , Qn (n ≥ 2) be SPARQL expressions,
• S denote the set of all variables in Q, Q1, Q2, . . . , Qn,
• D := {(a, false, 0), (a, true, 1), (a, tv, 0), (a, tv, 1)} ∪ D′ be

an RDF database such that dom(D′) ∩ {true, false} = ∅,
• ?V2, ?V3, . . . , ?Vn be a set of n− 1 variables distinct from the

variables in S.
Further, we define the expressions

Q′ :=((. . . ((Q OPT V2) OPT V3) . . . ) OPT Vn),
Q′′:=((. . . ((Q1 OPT (Q2 OPT V2))

OPT (Q3 OPT V3))
. . . )

OPT (Qn OPT Vn)), where
Vi := (a, true, ?Vi) and V i := (a, false, ?Vi).

The following claims hold.

(1) JQ′KD = {µ ∪ {?V2 7→ 1, . . . , ?Vn 7→ 1} | µ ∈ JQKD}
(2) JQ′ OPT (Q1 AND Q2 AND . . . AND Qn)KD =

JQ′ OPT ((. . . ((Q′′ OPT V 2) OPT V 3) . . . ) OPT V n)KD2

Informally speaking, claim (2) of the lemma provides a mecha-
nism to rewrite an AND expression that is encapsulated in the right
side of an OPT expression by means of an OPT expression. It is
important to realize that there is a restriction imposed on the left
side expression Q′, i.e. Q′ is obtained from Q by extending each
result mapping in JQKD by {?V2 7→ 1, . . . , ?Vn 7→ 1}, as stated in
claim (1). Before proving the lemma, let us illustrate the construc-
tion by means of a small example:

EXAMPLE 16. Consider the database

D := {(a, false, 0), (a, true, 1), (a, tv, 0), (a, tv, 1)}

and the expressions

Q := (a, tv, ?a) , so JQKD = {{?a 7→ 0}, {?a 7→ 1}},
Q1:= (a, tv, ?b) , so JQ1KD= {{?b 7→ 0}, {?b 7→ 1}},
Q2:= (a, true, ?b), so JQ2KD= {{?b 7→ 1}}.

Concerning claim (1) of Lemma 13, we observe that

JQ′KD= JQ OPT V2KD
= JQ OPT (a, true, ?V2)KD
= {{?a 7→ 0, ?V2 7→ 1}, {?a 7→ 1, ?V2 7→ 1}},

so JQ′KD differs from JQKD only in that each mapping contains
an additional binding ?V2 7→ 1. As for claim (2) of the lemma, we
observe that the left expression

JQ′ OPT (Q1 AND Q2)KD
= JQ′KD 1 {{?b 7→ 1}}
= {{?a 7→ 0, ?b 7→ 1, ?V2 7→ 1}, {?a 7→ 1, ?b 7→ 1, ?V2 7→ 1}}

is equal to the right side expression

JQ′ OPT ((Q1 OPT (Q2 OPT V2)) OPT V2)KD
= JQ′KD 1 ((JQ1KD 1 (JQ2KD 1 JV2KD))1 JV2KD)
(1)
= JQ′KD 1 ((JQ1KD 1 {{?b 7→ 1, ?V2 7→ 1}})1 JV2KD)
(2)
= JQ′KD 1 ({{?b 7→ 0}, {?b 7→ 1, ?V2 7→ 1}}1 JV2KD)
(3)
= JQ′KD 1 {{?b 7→ 0, ?V2 7→ 0}, {?b 7→ 1, ?V2 7→ 1}}
(4a)
= {{?a 7→ 0, ?V2 7→ 1}, {?a 7→ 1, ?V2 7→ 1}}

1 {{?b 7→ 0, ?V2 7→ 0}, {?b 7→ 1, ?V2 7→ 1}}
(4b)
= {{?a 7→ 0, ?b 7→ 1, ?V2 7→ 1}, {?a 7→ 1, ?b 7→ 1, ?V2 7→ 1}}.
The right side expression simulates the inner AND expression

from the left side using a series of OPT expressions. The idea of
the construction is as follows. In step (1) we extend each map-
ping in JQ2KD by an additional binding ?V2 7→ 1. Now recall that
Ω1 1 Ω2 := (Ω1 1 Ω2) ∪ (Ω1 \ Ω2). When computing the left
outer join between JQ1KD and the mapping set from step (1) in
step (2), the binding ?V2 7→ 1 will be carried over to mappings that
result from the 1 part of the left outer join (cf. mapping {?b 7→
1, ?V2 7→ 1}), but does not appear in mappings that are generated
from the \ part of the left outer join (cf. mapping {?b 7→ 0}). Next,
in step (3) we extend all mappings from the prior set for which ?V2

is not bound by a binding ?V2 7→ 0. This extension affects only the
mapping obtained from the \ part, while the mapping from the 1

part is left unchanged. In the final steps (4a) and (4b), the bindings
?V2 7→ 1 in each µ ∈ JQ′KD serve as filters, which reject all map-
pings that come from the \ part. Thus, only those mappings that
have been created by the 1 part are retained. Hence, we simulated
the behavior of the AND expression (the syntactic counterparts of
operator 1) using OPT operators. 2

Proof of Lemma 13
Lemma 13(1): First, we observe that all ?Vi are unbound in each

µ ∈ JQKD , because by assumption the ?Vi are fresh variables that
do not appear in Q. Next, given that dom(D′) does not contain the
URI true it follows that no triple in D′ matches the triple pattern
Vi := (a, true, ?Vi), so we have that JViKD = {{?Vi 7→ 1}}.
Hence, what expression Q′ does is to successively extend each
mapping µ ∈ JQKD by the (compatible) mappings {?V2 7→ 1},
. . . , {?Vn 7→ 1}, so the claim holds.

Lemma 13(2): We study the evaluation of the right side expres-
sion and argue that it yields exactly the same result as the left side
expression. Rather than working out all details, we give the in-
tuition of the equivalence. We start the discussion with the right
side subexpression Q′′. First observe that the result of evaluating
Qi OPT Vi corresponds to the result of Qi, except that each result
mapping is extended by binding ?Vi 7→ 1. We use the abbreviation
QVi
i := Qi OPT Vi, which allows us to compactly denote Q′′ by

((. . . ((Q1 OPT QV2
2 ) OPT QV3

3 ) OPT . . . ) OPT QVn
n ). By appli-

cation of semantics and algebraic laws, such as distributivity of 1

over ∪ (cf. Figure 2) we bring JQ′′KD into the form

JQ′′KD
= J((. . . ((Q1 OPT QV2

2 ) OPT QV3
3 ) OPT . . . ) OPT QVn

n )KD
= . . .

= JQ1 AND QV2
2 AND QV3

3 AND . . . AND QVn
n KD ∪ PD ,

where we call the left subexpression of the union join part and
PD at the right side is an algebra expression (over databaseD) with
the following property: for each mapping µ ∈ PD there is at least
one ?Vi (2 ≤ i ≤ n) s.t. ?Vi 6∈ dom(µ). We observe that, in
contrast, for each mapping µ that is generated by the join part, we
have that dom(µ) ⊇ {?V2, . . . , ?Vn} and, even more, µ(?Vi) =
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1, for 2 ≤ i ≤ n. Hence, these mappings are identified by the
property µ(?V2) = µ(?V3) = · · · = µ(?Vn) = 1. Going one step
further, we next consider the larger right side subexpression

P ′ := ((. . . ((Q′′ OPT V 2) OPT V 3) OPT . . . ) OPT V n).

It is easily verified that, when evaluating expression P ′, we ob-
tain exactly the mappings from JQ′′KD , but each mapping µ ∈
JQ′′KD is extended by ?Vi 7→ 0 for all variables ?Vi 6∈ dom(µ).
As argued before, all mappings in the join part of Q′′ are com-
plete in the sense that all ?Vi are bound to 1, so these mappings
are not modified. The remaining mappings (i.e. those originating
from PD) will be extended by bindings ?Vi 7→ 0 for at least one
?Vi. The resulting situation can be summarized as follows: first, for
each µ ∈ JP ′KD it holds that dom(µ) ⊇ {?V2, . . . , ?Vn}; second,
for those µ ∈ JP ′KD that evolve from the join part of JQ′′KD we
have that µ(?V2) = · · · = µ(?Vn) = 1; third, for those µ ∈ JP ′KD
that evolve from the subexpression PD (i.e., not from the join part)
there is i ∈ {2, . . . , n} such that µ(?Vi) = 0.

Going one step further, we finally consider the whole right side
expression, namely JQ′ OPT P ′KD . From claim (1) of the lemma
we know that each mapping in JQ′KD maps all ?Vi to 1. Hence,
when computing JQ′ OPT P ′KD = JQ′KD 1 JP ′KD , the bindings
?Vi 7→ 1 for all i ∈ {2, . . . , n} in every µ ∈ JQ′KD assert that the
mappings in JQ′KD are pairwise incompatible with those mapping
from JP ′KD that bind one or more ?Vi to 0. As discussed before,
the condition that at least one ?Vi maps to 0 holds for exactly those
mappings that originate from PD , so all mappings originating from
PD do not contribute to the result of JQ′ OPT P ′KD . Hence,

JQ′ OPT P ′KD = JQ′KD 1 JP ′KD
= JQ′KD 1 JQ1 AND QV2

2 AND QV3
3 AND . . . AND QVn

n KD
= JQ′ OPT (Q1 AND QV2

2 AND QV3
3 AND . . . AND QVn

n )KD .

Even more, we know from claim (1) of the lemma that all ?Vi
are bound to 1 for each µ ∈ JQ′KD . It follows that we can replace
QVi
i := Qi OPT Vi by Qi in P ′, without changing the semantics

of expression JQ′ OPT P ′KD:

JQ′ OPT P ′KD
= JQ′ OPT (Q1 AND QV2

2 AND QV3
3 AND . . . AND QVn

n )KD
= JQ′ OPT (Q1 AND Q2 AND Q3 AND . . . AND Qn)KD
The final step in our transformation corresponds exactly to the

left side expression of the original claim (2). Thus, we have shown
that the equivalence holds.2

Proof of Theorem 4
Having established Lemma 13 we are ready to prove PSPACE-

completeness for fragmentO. As before in the proof of Theorem 3,
it suffices to show hardness. Following the idea discussed before,
we show that each AND expression in the proof of Theorem 3 can
be replaced by a construction using only OPT expressions. Let us
again start with a quantified boolean formula

ϕ := ∀x1∃y1∀x2∃y2 . . . ∀xm∃ymψ,

where ψ is a quantifier-free formula in conjunctive normal form,
i.e. ψ is a conjunction of clauses ψ := C1 ∧ · · · ∧ Cn where the
Ci (i ∈ [n]), are disjunctions of literals. As before, by Vψ we
denote the set of variables inside ψ, by VCi the variables in clause
Ci (either in positive of negative form), and we define the database

D :={(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)} ∪
{(a, vari, v) | v ∈ VCi} ∪ {(a, v, v) | v ∈ Vψ}.

The first modification of the proof for class AO concerns the
encoding of clauses Ci := v1 ∨ · · · ∨ vj ∨ ¬vj+1 ∨ · · · ∨ ¬vk. In
the prior encoding we used both AND and OPT operators to encode
such clauses. It is easy to see that we can simply replace each AND
operator there by OPT without changing semantics. The reason is
simply that, for all subexpressions P1 OPT P2 in the prior encoding
of PCi , it holds that vars(P1) ∩ vars(P2) = ∅ and JP2KD 6= ∅.
To be more precise, each AND expression in the encoding PCi of a
clauseCi is of the form (a, vj , ?vari) AND (a, false/true, ?Vj), so
the right side triple pattern generates one result mapping {?Vj 7→
0/1}, which is compatible with the single mapping {?vari 7→ vj}
obtained when evaluating the left pattern. Clearly, in this case the
left join is identical to the join. When replacing all AND operators
by OPT, we obtain an O-encoding P OPT

Ci
for clauses Ci:

P OPT
Ci

:= (. . . ((. . . ((a, vari, ?vari)
OPT ((a, v1, ?vari) OPT (a, true, ?V1)))
. . .

OPT ((a, vj , ?vari) OPT (a, true, ?Vj)))
OPT ((a, vj+1, ?vari) OPT (a, false, ?Vj+1)))
. . .

OPT ((a, vk, ?vari) OPT (a, false, ?Vk))).

This encoding gives us a preliminary encoding P ′ψ for formula ψ
(as a replacement for Pψ from the proof for Theorem 3), defined as
P ′ψ := P OPT

C1 AND . . . AND P OPT
Cn

; we will tackle the replacement
of the remaining AND expressions in P ′ψ later. Let us next consider
the Pi and Qi used for simulating the quantifier alternation. With a
similar argumentation as before, we can replace each occurrence of
operator AND by OPT without changing the semantics. This modi-
fication results in the equivalent OPT-only encodings P OPT

i (for Pi)
and QOPT

i (for Qi), i ∈ [m], defined as

P OPT
i := ((a, tv, ?X1) OPT . . . OPT (a, tv, ?Xi) OPT

(a, tv, ?Y1) OPT . . . OPT (a, tv, ?Yi−1) OPT
(a, false, ?Ai−1) OPT (a, true, ?Ai)),

QOPT
i := ((a, tv, ?X1) OPT . . . OPT (a, tv, ?Xi) OPT

(a, tv, ?Y1) OPT . . . OPT (a, tv, ?Yi) OPT
(a, false, ?Bi−1) OPT (a, true, ?Bi)).

Let us shortly summarize what we have achieved so far. Given
all modifications before, our preliminary encoding P ′ϕ for ϕ is

P ′ϕ:= (a, true, ?B0) OPT (P OPT
1 OPT (QOPT

1

. . .
OPT (P OPT

m−1 OPT (QOPT
m−1

OPT P∗)) . . . )), where

P∗ :=P OPT
m OPT (QOPT

m AND P ′ψ)
= P OPT

m OPT (QOPT
m AND P OPT

C1 AND . . . AND P OPT
Cn

).

Expression P∗ is the only subexpression of Pϕ that still contains
AND operators (whereQOPT

m , P OPT
C1 , . . . , P OPT

Cn
are OPT-only expres-

sions). We now exploit the rewriting from Lemma 13 and replace
P∗ by the O expression P OPT

∗ defined as

P OPT
∗ :=
Q′ OPT ((. . . ((Q′′ OPT V 2) OPT V 3) OPT . . . ) OPT V n+1)),

where

Q′ := ((. . . ((P OPT
m OPT V2) OPT V3) . . . ) OPT Vn+1),

Q′′:= ((. . . ((QOPT
m OPT (P OPT

C1 OPT V2))
OPT (P OPT

C2 OPT V3))
. . .
OPT (P OPT

Cn
OPT Vn+1))),

Vi := (a, true, ?Vi), V i := (a, false, ?Vi),
and the ?Vi (i ∈ {2, . . . , n+ 1}) are fresh variables.
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Let P OPT
ϕ denote the expression obtained from P ′ϕ by replacing

the subexpression P∗ by P OPT
∗ . First observe that P OPT

ϕ is an O
expression. From Lemma 13(2) it follows that JP OPT

∗ KD equals
to JQ′ OPT (QOPT

m AND P OPT
Ci

. . . AND P OPT
Cn

)KD , where the eval-
uation result JQ′KD is obtained from JP OPT

m KD by extending each
µ ∈ JP OPT

m KD with bindings ?V2 7→ 1, . . . , ?Vn+1 7→ 1, according
to Lemma 13(1). Consequently, the result obtained when evaluat-
ingP OPT

∗ is identical to JP∗KD except for the additional bindings for
(the fresh) variables ?V2, . . . , ?Vn+1. It is straightforward to verify
that these bindings do not harm the overall construction, i.e. we can
show that {?B0 7→ 1} ∈ JP OPT

ϕ KD iff ϕ is valid.2

B.5 Proof of Theorem 5
We start with a more general form of the QBF problem, which

will be required later in the main proof of Theorem 5. The new
version of QBF differs from the QBF versions used in the proofs
of Theorems 3 and 4 (cf. Section 3.2) in that we relax the condition
that the inner, quantifier-free part of the formula is in CNF. We call
this generalized version QBF* and define it as follows.

QBF*: given a quantified boolean formula
ϕ := ∀x1∃y1∀x2∃y2 . . . ∀xm∃ymψ, as input, where ψ is a
quantifier-free formula: is ϕ valid?

LEMMA 14. There is a polynomial-time reduction from QBF*
to the SPARQL EVALUATION problem for class AFO.8 2

Proof of Lemma 14
The correctness of this lemma follows from the observations that

(i) QBF* is known to be PSPACE-complete (like QBF), (ii) the
subfragment AO ⊂ AFO is PSPACE-hard and (iii) the superfrag-
ment E ⊃ AFO is contained in PSPACE. Thus, AFO also is
PSPACE-complete, which implies the existence of a reduction.

We are, however, interested in some specific properties of the re-
duction, so we will shortly sketch the construction. We restrict our-
selves on showing how to encode the inner, quantifier-free boolean
formula ϕ (which is not necessarily in CNF) using operators AND
and FILTER. The second part of the reduction, namely the encoding
of the quantifier sequence, is the same as in the proof of Theorem 3.

Let us start with a quantified boolean formula of the form

ϕ := ∀x1∃y1∀x2∃y2 . . . ∀xm∃ymψ,

whereψ is a quantifier-free boolean formula. We assume w.l.o.g. as-
sume that formula ψ is constructed using boolean connectives ∧, ∨
and ¬. By Vψ := {v1, . . . , vn} we denote the set of boolean vari-
ables in formula ψ. We fix the database

D := {(a, false, 0), (a, true, 1), (a, tv, 0), (a, tv, 1)}

and encode the formula ψ as

Pψ := ((a, tv, ?V1) AND . . . AND (a, tv, ?Vn)) FILTER f (ψ),

where ?V1, . . . , ?Vn represent the boolean variables v1, . . . , vn
and function f (ψ) generates a SPARQL condition that precisely
mirrors the boolean formula ψ. Formally, function f (ψ) is defined
recursively on the structure of ψ as follows.

8The same result was proven in [26]. This lemma, however, was
developed independently from [26]. We informally published it
already one year earlier, in a same-named technical report.

f(vi) := ?Vi = 1
f(ψ1 ∧ ψ2):= f(ψ1) ∧ f(ψ2)
f(ψ1 ∨ ψ2):= f(ψ1) ∨ f(ψ2)
f(¬ψ1) :=¬ f(ψ1)

In the expression Pψ , the AND-block generates all possible val-
uations for the variables in ψ, while the FILTER-expression retains
exactly those valuations that satisfy formula ψ. It is straightforward
to verify that ψ is satisfiable iff there is a mapping µ ∈ JPψKD .
Even more, for each µ ∈ JPψKD the truth assignment ρµ defined
as ρµ(v) := µ(?V ) for all variables v ∈ Vψ satisfies the formula
ψ and, vice versa, for each truth assignment ρ that satisfies ψ there
is a mapping µ ∈ JPψKD that defines ρ. The rest of the proof (i.e.,
the encoding of the surrounding quantifier sequence) is the same
as in the proof of Theorem 3. Ultimately, this gives us a SPARQL
expression Pϕ (which contains Pψ above as a subexpression) such
that the formula ϕ is valid if and only the mapping µ := {B0 7→ 1}
is contained in JPϕKD .2

The next lemma follows essentially from the previous one:

LEMMA 15. Let

D := {(a, false, 0), (a, true, 1), (a, tv, 0), (a, tv, 1)}
be an RDF database and ϕ := ∀x1∃y1 . . . ∀xm∃ymψ (m ≥ 1)

be a quantified boolean formula, where ψ is quantifier-free. There
is an encoding enc(ϕ) such that

1. enc(ϕ) ∈ E≤2m,
2. ϕ is valid iff {?B0 7→ 1} ∈ Jenc(ϕ)KD , and
3. ϕ is invalid iff for each µ ∈ Jenc(ϕ)KD it holds that µ ⊇
{?B0 7→ 1, ?A1 7→ 1}. 2

We omit the technical proof and state a last result before turning
towards the proof of Lemma 5:

LEMMA 16. Let P1 and P2 be SPARQL expressions for which
the evaluation problem is in ΣPi , i ≥ 1, and let R be a FILTER
condition. The following claims hold.

1. The EVALUATION problem for P1 UNION P2 is in ΣPi .
2. The EVALUATION problem for P1 AND P2 is in ΣPi .
3. The EVALUATION problem for P1 FILTER R is in ΣPi . 2

Proof of Lemma 16
Lemma 16(1): According to the semantics we have that µ ∈

JP1 UNION P2KD if and only if µ ∈ JP1KD or µ ∈ JP2KD . By
assumption, both conditions can be checked individually by a ΣPi -
algorithm, and so can both checks in sequence.

Lemma 16(2): It is easy to see that µ ∈ JP1 AND P2KD iff µ can
be decomposed into two mappings µ1 ∼ µ2 such that µ = µ1∪µ2

and µ1 ∈ JP1KD and µ2 ∈ JP2KD . By assumption, both testing
µ1 ∈ JP1KD and µ2 ∈ JP2KD is in ΣPi . Since i ≥ 1, we have
that ΣPi ⊇ ΣP1 = NP. Hence, we can guess a decomposition
µ = µ1 ∪ µ2 and check the two conditions one after the other. It is
easy to see that the whole procedure is in ΣPi .

Lemma 16(3): The condition µ ∈ JP1 FILTER RKD holds iff
µ ∈ JP1KD (which can be tested in ΣPi by assumption) and R
satisfies µ (which can be tested in polynomial time). We have that
ΣPi ⊇ NP ⊇ PTIME for i ≥ 1, so the procedure is in ΣPi .2

Proof of Theorem 5
We are now ready to tackle Theorem 5. The completeness proof

divides into two parts, namely hardness and membership. We start
with the hardness part, which is a reduction from QBFn, a variant
of the QBF problem used in previous proofs where the number n
of quantifier alternations is fixed. We formally define QBFn:
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Figure 3: (a) AND-expression with Increased OPT-rank; (b) Associated Complexity Classes for OPT-expressions and Triple Patterns

QBFn: given a quantified boolean formula
ϕ := ∃x1∀x2∃x3 . . . Qxnψ as input, where ψ is a
quantifier-free formula, Q := ∃ if n is odd, and
Q := ∀ if n is even: is the formula ϕ valid?

It is known that QBFn is ΣPn -complete for n ≥ 1.

(Hardness) Recall that our goal is to show that fragment E≤n
is ΣP≤n+1-hard. To prove this claim, we present a reduction from
QBFn+1 to the EVALUATION problem for class E≤n, i.e. we en-
code a quantified boolean formula with n+1 quantifier alternations
by an E expression with OPT-rank ≤ n. We distinguish two cases.

(1) Let Q := ∃, so the quantified boolean formula is of the form

ϕ := ∃y0∀x1∃y1 . . . ∀xm∃ymψ.

Formula ϕ has 2m + 1 quantifier alternations, so we need to
find an E≤2m encoding for this expressions. We rewrite ϕ into an
equivalent formula ϕ := ϕ1 ∨ ϕ2, where

ϕ1 :=∀x1∃y1 . . . ∀xm∃ym(ψ ∧ y0), and
ϕ2 :=∀x1∃y1 . . . ∀xm∃ym(ψ ∧ ¬y0).

According to Lemma 15 there is a fixed document D and E≤2m

encodings enc(ϕ1) and enc(ϕ2) (for ϕ1 and ϕ2, respectively)
s.t. Jenc(ϕ1)KD (Jenc(ϕ2)KD) contains the mapping µ := {?B0 7→
1} iffϕ1 (ϕ2) is valid. It is easy to see that the expression enc(ϕ) :=
enc(ϕ1) UNION enc(ϕ2) then contains µ if and only if ϕ1 or ϕ2

is valid, i.e. iff ϕ := ϕ1 ∨ ϕ2 is valid. Given that both enc(ϕ1)
and enc(ϕ2) are E≤2m expressions, it follows that enc(ϕ) :=
enc(ϕ1) UNION enc(ϕ2) is in E≤2m, which completes part (1).

(2) Let Q := ∀, so the quantified boolean formula is of the form

ϕ := ∃x0∀y0∃x1∀x1 . . . ∃xm∀ymψ.

ϕ has 2m+2 quantifier alternations, so we need to find a reduc-
tion to the E≤2m+1 fragment. We eliminate the outer ∃-quantifier
by rewriting ϕ as ϕ := ϕ1 ∨ ϕ2, where

ϕ1 :=∀y0∃x1∀y1 . . . ∃xm∀ym(ψ ∧ y0), and
ϕ2 :=∀y0∃x1∀y1 . . . ∃xm∀ym(ψ ∧ ¬y0).

Abstracting from the details of the inner formula, both ϕ1 and
ϕ2 are of the form

ϕ′ := ∀y0∃x1∀y1 . . . ∃xm∀ymψ′,
where ψ′ is a quantifier-free boolean formula. We proceed as

follows: we show how to (*) encode ϕ′ by an E≤2m+1 expression
enc(ϕ′) that, when evaluated on a fixed documentD, yields a fixed
mapping µ iffϕ′ is valid. This is sufficient, because then expression
enc(ϕ1) UNION enc(ϕ2) is an E≤2m+1 encoding that contains µ
iff the original formula ϕ := ϕ1 ∨ ϕ2 is valid. We first rewrite ϕ′:

ϕ′ :=∀y0∃x1∀y1 . . . ∃xm∀ymψ′
= ¬∃y0∀x1∃y1 . . . ∀xm∃ym¬ψ′
= ¬(ϕ′1 ∨ ϕ′2), where

ϕ′1 :=∀x1∃y1 . . . ∀xm∃ym(¬ψ′ ∧ y0), and
ϕ′2 :=∀x1∃y1 . . . ∀xm∃ym(¬ψ′ ∧ ¬y0).

According to Lemma 15, each ϕ′i can be encoded by an E≤2m

expressions enc(ϕ′i) such that, on the fixed databaseD given there,
(1) µ := {?B0 7→ 1} ∈ Jϕ′iKD iff ϕ′i is valid and (2) if ϕ′i is not
valid, then all mappings Jenc(ϕ′i)KD bind both variable ?A1 and
?B0 to 1. It follows that (1’) µ ∈ enc(ϕ′1) UNION enc(ϕ′2) iff
ϕ′1 ∨ϕ′2 and (2’) all mappings µ ∈ enc(ϕ′1) UNION enc(ϕ′2) bind
both ?A1 and ?B0 to 1 iff ¬(ϕ′1 ∨ ϕ′2). Now consider the ex-
pression Q := ((a, false, ?A1) OPT (enc(ϕ′1) UNION enc(ϕ′2)).
From claims (1’) and (2’) it follows that µ′ := {?A1 7→ 0} ∈
JQKD iff ¬(ϕ′1 ∨ ϕ′2). Now recall that ϕ′ = ¬(ϕ′1 ∨ ϕ′2) holds,
hence µ′ ∈ JQKD iff ϕ′ is valid. We know that both enc(ϕ′1) and
enc(ϕ′2) are E≤2m expressions, soQ ∈ E≤2m+1. This implies that
claim (*) holds and completes the hardness part of the proof.

(Membership) We next prove membership of E≤n expressions in
ΣPn+1 by induction on the OPT-rank. Let us assume that for each
E≤n expression (n ∈ N0) EVALUATION is in ΣPn+1. As stated in
Theorem 1(2), EVALUATION is ΣP1 = NP-complete for OPT-free
expressions (i.e., E≤0), so the hypothesis holds for the basic case.
In the induction step we increase the OPT-rank from n to n+1 and
show that, for the resulting E≤n+1 expression, the EVALUATION
problem can be solved in ΣPn+2. We consider an expressionQ with
rank(Q) := n+ 1 and distinguish four cases.

(1) Assume that Q := P1 OPT P2. By assumption, Q ∈ E≤n+1

and from the definition of the OPT-rank (cf. Definition 16) it fol-
lows that both P1 and P2 are in E≤n. Hence, by induction hypoth-
esis, both P1 and P2 can be evaluated in ΣPn+1. By semantics, we
have that JP1 OPT P2KD = JP1 AND P2KD ∪ (JP1KD \ JP2KD),
so µ ∈ JP1 OPT P2KD iff it is generated by (i) JP1 AND P2KD
or (i) JP1KD \ JP2KD . According to Lemma 16(2), condition (i)
can be checked in ΣPn+1. The more interesting part is to check if
(ii) holds. Applying the semantics of operator \, this check can
be formulated as C := C1 ∧ C2, where C1 := µ ∈ JP1KD and
C2 := ¬∃µ′ ∈ JP2KD : µ and µ′ are compatible . By induc-
tion hypothesis, C1 can be checked in ΣPn+1. We now argue that
¬C2 = ∃µ′ ∈ JP2KD : µ and µ′ are compatible can be evaluated
in ΣPn+1: we can guess a mapping µ′ (because ΣPn+1 ⊇ NP) and
then check if µ ∈ JP2KD (which, by application of the induction
hypothesis, can be done by a ΣPn+1-algorithm), and test if µ and µ′

are compatible (in polynomial time). Checking the inverse prob-
lem, i.e. if C2 holds, is then possible in coΣPn+1 = ΠP

n+1. Sum-
marizing cases (i) and (ii) we observe that (i) ΣPn+1 and (ii) ΠP

n+1

are both contained in ΣPn+2. Therefore, the two checks in sequence
can be executed in ΣPn+2, i.e. the whole algorithm is in ΣPn+2. This
completes case (1) of the induction.

22



(2) Assume that Q := P1 AND P2. Figure 3(a) shows the struc-
ture of a sample AND expression, where the • symbols represent
non-OPT operators (i.e. AND, UNION, or FILTER), and t stands
for triple patterns. Expression Q has an arbitrary number of OPT
subexpressions (which might, of course, contain OPT subexpres-
sions themselves). Each of these subexpressions has OPT-rank
≤ n + 1. Using the same argumentation as in case (1), the eval-
uation problem for all of them is in ΣPn+2. Further, each leaf
node of the tree carries a triple pattern, which can be evaluated
in PTIME ⊆ ΣPn+2. Figure 3(b) illustrates the tree that is obtained
when replacing all OPT-expressions and triple patterns by the com-
plexity of their EVALUATION problem. This simplified tree is now
OPT-free, i.e. carries only operators AND, UNION, and FILTER.
We then proceed as follows. We apply Lemma 16(1)-(3) repeat-
edly, folding the remaining AND, UNION, and FILTER subexpres-
sions bottom up. The lemma guarantees that these folding oper-
ations do not increase the complexity class, so it follows that the
EVALUATION problem falls in ΣPn+2 for the whole expression.

Finally, it is easily verified that the two remaining cases, namely
(3) Q := P1 UNION P2 and (4) Q := P1 FILTER R follow by
analogical arguments as used in case (2).2

B.6 Proof of Theorem 6
Before proving the theorem, we show the following:

LEMMA 17. Let C be a complexity class and F a class of ex-
pressions. If EVALUATION is C-complete for F and C ⊇ NP then
EVALUATION is C-complete for Fπ . 2

Proof of Lemma 17
Let F be a fragment for which the EVALUATION problem is C-

complete, where C is a complexity class such that C ⊇ NP. We
show that, for a query Q ∈ Fπ , document D, and mapping µ,
testing if µ ∈ JQKD is contained in C (C-hardness follows trivially
from C-completeness of fragment F ). By definition, each query
in Fπ is of the form Q := SELECTS(Q′), where S ⊂ V is a
finite set of variables and Q′ ∈ F . According to the semantics of
SELECT, we have that µ ∈ JQKD iff there is a mapping µ′ ⊇ µ in
JQ′KD such that πS({µ′}) = {µ}. We observe that the domain of
candidate mappings µ′ is bounded by the set of variables in Q′ and
dom(D). Hence, we can first guess a mapping µ′ ⊇ µ (recall that
we are at least in NP) and subsequently check if πS({µ′}) = {µ}
(in polynomial time) and µ′ ∈ JQ′KD (using a C-algorithm, by
assumption). This completes the proof.2

Proof of Theorem 6
Theorem 6(1): Follows from Lemma 17 and Corollary 2.
Theorem 6(2): Follows from Lemma 17 and Theorem 5.
Theorem 6(3): NP-completeness for fragment AUπ follows di-

rectly from Lemma 17 and Theorem 2 and NP-completeness for
AFUπ follows from Lemma 17 and Theorem 1. Therefore, it re-
mains to show that fragments Aπ and AFπ are NP-complete.

First, we show that EVALUATION for AFπ-queries is contained
in NP (membership for Aπ queries then follows). By definition,
each query in AFπ is of the form Q := SELECTS(Q′), where
S ⊂ V is a finite set of variables and Q′ is an AF expression.
We fix a document D and a mapping µ. To prove membership,
we follow the approach taken in proof of Lemma 17 and eliminate
the SELECT-clause. More precisely, we guess a mapping µ′ ⊇
µ s.t. πS({µ′}) = µ and check if µ′ ∈ JQ′KD (cf. the proof of
Lemma 17). The size of the mapping to be guessed is bounded,
and it is easy to see that the resulting algorithm is in NP.

To prove hardness for both classes we reduce 3SAT, a prototyp-
ical NP-complete problem, to the EVALUATION problem for class

Aπ . The subsequent proof was inspired by the reduction of 3SAT
to the evaluation problem for conjunctive queries in [10]. It nicely
illustrates the relation between AND-only queries and conjunctive
queries. We start with a formal definition of the 3SAT problem:

3SAT: given a boolean formula ψ := C1 ∧ · · · ∧ Cn in
conjunctive normal form as input, where each clause Ci is a
disjunction of exactly three literals: is the formula ψ satisfiable?

Let ψ := C1 ∧ · · · ∧ Cn be a boolean formula in CNF, where
each Ci is of the form Ci := li1 ∨ li2 ∨ li3 and the lij are literals.
For our encoding we use the fixed database

D := {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0),
(1, 0, 1), (1, 1, 0), (1, 1, 1), (0, c, 1), (1, c, 0)},

where we assume that 0, 1 ∈ U are URIs. Further let Vψ =
{x1, . . . xm} denote the set of variables occurring in formula ψ.
We define the AND-only expression

P ′ := (L∗11, L
∗
12, L

∗
13) AND . . . AND (L∗n1, L

∗
n2, L

∗
n3)

AND (?X1, c, ?X1) AND . . . AND (?Xm, c, ?Xm)
AND (0, c, ?A),

where L∗ij :=?Xk if lij = xk, and L∗ij :=?Xk if lij = ¬xk.

Finally, define P := SELECT?A(P ′). It is easily verified that
µ := {?A 7→ 1} ∈ JP KD if and only if formula ψ is satisfiable.

Theorem 6(4): We prove membership in PTIME for fragment
FUπ , which implies PTIME-membership for Fπ and Uπ . Let D
be an RDF database, µ be a mapping, and Q := SELECTS(Q′)
be an FUπ expression. We show that there is a PTIME-algorithm
that checks if µ ∈ JQKD . Let t1, . . . , tn be all triple patterns
occurring inQ. Our strategy is as follows: we process triple pattern
by triple pattern and check for each µ′ ∈ JtiKD if the following two
conditions hold: (1) all filter conditions that are defined on top of ti
in Q′ satisfy µ′ and (2) πS({µ′}) = {µ}. We return true if there
is a mapping that satisfies both conditions, false otherwise.

The idea behind this algorithm is that condition (1) implies that
µ′ ∈ JQ′KD , while (2) asserts that the top-level projection gener-
ates mapping µ from µ′. It is easy to show that µ ∈ JQKD if and
only if there is some i ∈ [n] such that JtiKD contains a mapping
µ′ that satisfies both conditions, and clearly our algorithm (which
checks all candidates) would find such a mapping, if it exists. The
number of triple patterns is linear to the size of the query, the num-
ber of mappings in each JtiKD is linear to the size ofD (where each
mapping is of bounded size); further, conditions (1) and (2) can be
checked in PTIME, so the algorithm is in PTIME.2

C. PROOFS OF ALGEBRAIC RESULTS

C.1 Proof of Lemma 2
We prove the lemma by induction on the structure of eA expres-

sions, thereby exploiting the structural constraints imposed by Def-
inition 8. The basic case is eA := JtKD . By semantics (see Def-
inition 4), all mappings in the result then bind exactly the same
set of variables, and consequently the values of each two distinct
mappings must differ in at least one variable, which makes them
incompatible. We assume that every eA ∈ eA has the incompatibil-
ity property and distinguish six cases.

(1) Consider an expression eA := fA1 1 fA2. By Definition 8,
both fA1, fA2 are eA expressions and by induction hypothesis both
have the incompatibility property. We observe that each mapping
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µ ∈ eA is of the form µ = µ1 ∪ µ2 with µ1 ∈ fA1, µ2 ∈ fA2,
and µ1 ∼ µ2 (by semantics of 1). We fix µ and show that each
mapping µ′ ∈ eA that is distinct from µ is incompatible. Any dis-
tinct mapping µ′ ∈ eA is of the form µ′1 ∪ µ′2 with µ′1 ∈ fA1,
µ′2 ∈ fA2, and it holds that µ′1 is different from µ1 or that µ′2 is
different from µ2 (because µ is distinct from µ′). Let us assume
w.l.o.g. that µ′1 is different from µ1. We know that fA1 ∈ eA, so it
holds that µ1 is incompatible with µ′1. It follows that µ = µ1 ∪ µ2

is incompatible with µ′ = µ′1 ∪ µ′2, since µ1 and µ′1 disagree in
the value of at least one variable. (2) Let eA := fA1 \ fA2 where
fA1 ∈ eA, so each two distinct mappings in fA1 are pairwise in-
compatible by induction hypothesis. By semantics of \, eA is a
subset of fA1, so the incompatibility property trivially holds for
eA. (3) Let eA := fA1 1

fA2, where both fA1 and fA2 are eA ex-
pressions. We rewrite the left outer join according to its seman-
tics: eA = fA1 1

fA2 = (fA1 1 fA2) ∪ (fA1 \ fA2). Following
the argumentation in cases (1) and (2), the incompatibility prop-
erty holds for both subexpressions eA1 := fA1 1 fA2 and eA\ :=
fA1 \ fA2, so it suffices to show that the mappings in eA1 are pair-
wise incompatible to those in eA\. First note that eA\ is a subset of
fA1. Further, by semantics each mapping µ ∈ eA1 is of the form
µ = µ1 ∪ µ2, where µ1 ∈ fA1, µ2 ∈ fA2, and µ1 ∼ µ2. Ap-
plying the induction hypothesis, we conclude that each mapping
in fA1 and hence each mapping µ′1 ∈ eA\ is (3a) either incompat-
ible with µ1 or (3b) identical to µ1. (3a) If µ′1 is incompatible
with µ1, then it follows that µ′1 is incompatible with µ1 ∪ µ2 = µ
and we are done. (3b) Let µ1 = µ′1. By assumption, mapping
µ2 (which is generated by fA2) is compatible with µ1 = µ′1. We
conclude that fA1 \ fA2 does not generate µ′1, which is a contra-
diction (i.e., assumption (3b) was invalid). (4) Let eA := σR(fA1),
where fA1 ∈ eA. By semantics of σ, eA is a subset of fA1, so the
property trivially follows by application of the induction hypothe-
sis (5) Let eA := πS(fA1), where fA1 ∈ eA and by Definition 8 it
holds that (5a) S ⊇ pVars(fA1) or (5b) S ⊆ cVars(fA1). (5a) If
S ⊇ pVars(fA1) then, according to Proposition 2, the projection
maintains all variables that might occur in result mappings, so eA is
equivalent to fA1. The claim then follows by induction hypothesis.
Concerning case (5b) S ⊆ cVars(fA1) it follows from Proposi-
tion 1 that each result mapping produced by expression eA binds all
variables in S ⊆ cVars(fA1), and consequently all result mappings
bind exactly the same set of variables. Recalling that we assume
set semantics, we conclude that two distinct mappings differ in
the value of at least one variable, which makes them incompatible.
(6) Let eA := fA1∪fA2, where fA1, fA2 are eA expressions and it holds
that pVars(fA1) = cVars(fA1) = pVars(fA2) = cVars(fA2).
From Propositions 1 and 2 it follows that each two mappings gen-
erated by fA1∪fA2 bind exactly the same set of variables. Following
the argumentation in case (5b), two distinct mapping then disagree
in at least one variable and thus are incompatible.2

C.2 Proofs Equivalences Figure 2
Rules in Group I

(UIdem). Follows trivially from the Definition of operator ∪.
(J̃Idem). Let eA be an eA expression. We show that both direc-

tions of the equivalence hold.⇒: Consider a mapping µ ∈ eA 1 eA.
Then µ = µ1∪µ2 where µ1, µ2 ∈ eA and µ1 ∼ µ2. From Lemma 2
we know that each eA expression has the incompatibility property,

so each pair of distinct mappings in eA is incompatible. It follows
that µ1 = µ2 and, consequently, µ1 ∪ µ2 = µ1, which is gener-
ated by eA, and hence by the right side expression. ⇐: Consider a
mapping µ ∈ eA. Choose µ for both the left and right expression
in eA 1 eA. By assumption, µ ∪ µ = µ is contained in the left side
expression of the equation, which completes the proof.

(L̃Idem). Let eA ∈ eA. We rewrite the left side expression
schematically:

eA1 eA = ( eA 1 eA) ∪ ( eA \ eA) [semantics]
= ( eA 1 eA) ∪ ∅ [(Inv)]
= eA 1 eA [semantics]
= eA [(J̃Idem)]

(UIdem). Follows trivially from the Definition of operator \.2

Rules in Group II
Equivalences (UAss), (JAss), (UComm), (JComm), (JUDistL),

and (LUDistR) have been shown in [24] in Proposition 1 (the results
there are stated at syntactic level and easily carry over to SPARQL
algebra). (JUDistR) follows from (JComm) and (JUDistL).

(MUDistR). We show that both directions of the equation hold.
⇒: Consider a mapping µ ∈ (A1∪A2)\A3. Hence, µ is contained
in A1 or in A2 and there is no compatible mapping in A3. If µ ∈
A1 then the right side subexpression A1 \ A3 generates µ, in the
other case A2 \ A3 generates does. ⇐: Consider a mapping µ in
(A1 \ A3) ∪ (A2 \ A3). Then µ ∈ (A1 \ A3) or µ ∈ (A2 ∪ A3).
In the first case, µ is contained in A1 and there is no compatible
mapping in A3. Clearly, µ is then also contained in A1 ∪ A2 and
(A1 ∪A2) \A3. The second case is symmetrical.2

Rules in Group III
We introduce some notation. Given a mapping µ and variable set

S ⊆ V , we define µ|S as the mapping obtained by projecting for
the variables S in µ, e.g. {?x 7→ 1, ?y 7→ 2}|{?x} = {?x 7→ 1}.
Further, given two mappings µ1, µ2 and a variable ?x we say that
µ1 and µ2 agree on ?x iff either it holds that ?x ∈ dom(µ1) ∩
dom(µ2) ∧ µ1(?x) = µ2(?x) or ?x 6∈ dom(µ1) ∪ dom(µ2).

(PBaseI). Follows from the definition of the projection operator
and the observation that pVars(A) extracts all variables that are
potentially bound in any result mapping, as stated in Proposition 2.

(PBaseII). For each set of variables S∗ it holds that S = (S ∩
S∗) ∪ (S \ S∗), so we can rewrite the left side of the equation
as π(S∩pVars(A))∪(S\pVars(A))(A). This shows that, compared to
the right side expression of the equation, the left side projection
differs in that it additionally considers variables in S \ pVars(A).
However, as stated in Proposition 2, for each mapping µ that is gen-
erated by A we have that dom(µ) ⊆ pVars(A), so S \ pVars(A)
contains only variables that are unbound in each result mapping
and thus can be dropped without changing the semantics.

(PFPush). Follows from the semantics of operator π and opera-
tor σ in Definition 4. The crucial observation is that filtering leaves
mappings unchanged, and – if we do not project away variables that
are required to evaluate the filter (which is implicit by the equation)
– then preprojection does not change the semantics.

(PMerge). Follows trivially from the definition of operator π.

(PUPush). Follows easily from the definition of the projection
and the union operator. We omit the details.
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(PJPush). ⇒: We show (Claim1) that, for each mapping µ that
is generated by the left side subexpression A1 1 A2, there is a
mapping µ′ generated by the right side subexpression πS′(A1) 1

πS′(A2) such that for all ?x ∈ S either µ(?x) = µ′(?x) holds
or ?x is unbound in both µ and µ′. It is easy to see that, if this
claim holds, then the right side generates all mappings that are gen-
erated by the left side: the mapping that is generated by the left
side expression of the equation is obtained from µ when projecting
for variables in S, and this mapping is also generated by the right
side expression when projecting for S in µ′. So let us consider a
mapping µ ∈ A1 1 A2. By semantics of 1, µ is of the form
µ := µ1 ∪ µ2, where µ1 ∈ A1, µ2 ∈ A2, and µ1 ∼ µ2 holds. We
observe that, on the right side, πS′(A1) then generate a mapping
µ′1 ⊆ µ1, obtained from µ1 ∈ A1 by projecting on the variables S′;
similarly, πS′(A2) generates a mapping µ′2 ⊆ µ2, obtained from
µ2 by projecting on the variables S′. Then µ′1 (µ′2) agrees with
µ1 (µ2) on variables in S (where “agrees” means that they either
map the variable to the same value or the variable is unbound in
both mappings), because S′ ⊇ S holds and therefore no variables
in S are projected away when computing πS′(A1) and πS′(A2).
It is easy to see that µ1 ∼ µ2 → µ′1 ∼ µ′2, so the right side ex-
pression µS′(A1) 1 µS′(A2) generates µ′ := µ′1 ∪ µ′2. From the
observation that µ1 (µ2) agrees with mapping µ′1 (µ′2) on all vari-
ables in S it follows that µ′ agrees with µ on all variables in S and
we conclude that (Claim1) holds. ⇐: We show (Claim2) that, for
each mapping µ′ that is generated by the right side subexpression
πS′(A1) 1 πS′(A2) there is a mapping µ ∈ A1 1 A2 such that
for all ?x ∈ S either µ(?x) = µ′(?x) or ?x is unbound in both µ
and µ′. Analogously to the other direction, it then follows immedi-
ately that all mappings generated by the right side also are gener-
ated by the left side of the equation. So let us consider a mapping
µ′ ∈ πS′(A1) 1 πS′(A2). Then µ′ is of the form µ′ := µ′1 ∪ µ′2,
where µ′1 ∈ πS′(A1), µ′2 ∈ πS′(A2), and µ′1 ∼ µ′2 holds. Assume
that µ′1 is obtained from mapping µ1 ∈ A1 by projecting on S′, and
similarly assume that µ′2 is obtained from µ2 ∈ A2 by projecting on
S′. We distinguish two cases: (a) if µ1 and µ2 are compatible, then
µ := µ1∪µ2 is the desired mapping that agrees with µ′ := µ′1∪µ′2
on variables in S, because µ1 ⊇ µ′1 and µ2 ⊇ µ′2 holds. Other-
wise, (b) if µ1 and µ2 are incompatible this means there is a vari-
able ?x ∈ dom(µ1)∩dom(µ2) such that µ1(?x) 6= µ2(?x). From
Proposition 2 we know that ?x ∈ pVars(A1)∩pVars(A2), which
implies that ?x ∈ S′ ⊇ pVars(A1) ∩ pVars(A2). Hence, ?x is
bound in µ′1 and in µ′2 and it follows that µ′1(?x) 6= µ′2(?x), which
contradicts the assumption that µ′1 ∼ µ′2 (i.e., assumption (b) was
invalid). This completes the proof.

(PMPush). ⇒: Let µ ∈ πS(A1 \ A2). By semantics, µ is
obtained from some mapping µ1 ∈ A1 that is incompatible with
each mapping in A2, by projecting on the variables S, i.e. µ =
µ1|S . We show that µ is also generated by the right side expression
πS(πS′(A1) \ πS′′(A2)). First observe that πS′(A1) generates a
mapping µ′1 ⊆ µ1 that agrees with µ1 on all variables in S and also
on all variables in pVars(A1)∩pVars(A2), becauseA1 generates
µ1 and S′ := S∪ (pVars(A1)∩pVars(A2)). We distinguish two
cases. (a) Assume that µ′1 is incompatible with each mapping gen-
erated by πS′′(A2). Then also πS′(A1) \ πS′′(A2) generates µ′1.
Going one step further, we observe that the whole expression at the
right side (i.e., including the outermost projection for S) generates
the mapping µ′1|S . We know that µ′1 agrees with µ1 on all vari-
ables in S, so µ′1|S = µ1|S = µ. Hence, the right side generates µ.
(b) Assume there is a mapping µ′2 ∈ πS′′(A2) that is compatible
with µ′1, i.e. for all ?x ∈ dom(µ′1)∩dom(µ′2) : µ′1(?x) = µ′2(?x).
From before we know that µ1 ⊇ µ′1 and that µ1 agrees with µ′1 on
all variables in pVars(A1) ∩ pVars(A2). From µ′2 ∈ πS′′(A2) it

follows that there is a mapping µ2 ∈ A2 such that µ2 ⊇ µ′2 and µ2

agrees with µ′2 on all variables in S′′ := pVars(A1)∩pVars(A2).
Taking both observations together, we conclude that µ1 ∼ µ2, be-
cause all shared variables in-between µ1 and µ2 are contained in
pVars(A1) ∩ pVars(A2) and each of these variables either maps
to the same value in µ1 (µ2) and µ′1 (µ′2) or is unbound in both.
This is a contradiction to the initial claim that µ1 is incompatible
with each mapping in A2, so assumption (b) was invalid.
⇐: Assume that µ′ ∈ πS(πS′(A1)\πS′′(A2)). We show that µ′

is also generated by the left side of the equivalence. By semantics,
µ′ is obtained from a mapping µ′1 ∈ πS′(A1) that is incompatible
with each mapping in πS′′(A2) by projecting on the variables S,
i.e. µ′ = µ′1|S . First observe that the left side subexpression A1

generates a mapping µ1 ⊇ µ′1 that agrees with µ′1 on all variables
in S′. From the observation that µ′1 is incompatible with each map-
ping in πS′′(A2) we conclude that also µ1 ⊇ µ′1 is incompatible
with each mapping in A2 (which contains only mappings of the
form µ2 ⊇ µ′2 for some µ′2 ∈ πS′′(A2)). Hence, also the left side
expression A1 \ A2 generates µ1. From µ1 ⊇ µ′1 and the obser-
vation that µ1 and µ′1 agree on all variables in S′ we conclude that
µ1 and µ′1 also agree on the variables in S ⊆ S′. Consequently,
µ1|S = µ′1|S = µ′ and we conclude that the left side expression
generates mapping µ′. This completes the proof.

(PLPush). The following rewriting proves the claim, where we
use the shortcuts S′ := S∪(pVars(A1)∩pVars(A2)) and S′′ :=
pVars(A1) ∩ pVars(A2).

πS(A1 1 A2)
= πS((A1 1 A2) ∪ (A1 \A2)) [semantics]
= πS(A1 1 A2) ∪ πS(A1 \A2) [(PUPush)]
= πS(πS′ (A1) 1 πS′ (A2))∪

πS(πS′ (A1) \ πS′′ (A2)) [(PJPush),(PMPush)]
= πS(πS′ (A1) 1 πS′ (A2))∪

πS(πS′ (A1) \ πS′ (A2)) [∗]
= πS((πS′ (A1) 1 πS′ (A2))∪

(πS′ (A1) \ πS′ (A2))) [(PUPush)]
= πS(πS′ (A1)1 πS′ (A2)) [semantics]

Most interesting is step ∗, where we replace S′ by S′′. This
rewriting step is justified by the equivalence

πS(πS′(A1) \ πS′′(A2)) ≡ πS(πS′(A1) \ πS′(A2)).

The idea behind the latter rule is the following. First note that
S′ can be written as S′ = S′′ ∪ (S \ (pVars(A1) ∪ pVars(A2)),
which shows that S′ and S′′ differ only by variables contained in S
but not in pVars(A1) ∩ pVars(A2). These variables are harmless
because they cannot induce incompatibility between theA1 and the
A2-part on either side of the equivalence, as they occur at most in
one of both mapping sets. We omit the technical details.2

Group IV
(FDecompI). Follows from Lemma 1(1) in [24].

(FDecompII). Follows from Lemma 1(2) in [24].

(FReord). Follows from (FDecompI) and the commutativity of∧.

(FBndI). Follows from Proposition 1.

(FBndII). Follows from Proposition 2.

(FBndIII). Follows from Proposition 1.

(FBndIV). Follows from Proposition 2.2
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Group V
(FUPush). Follows from Proposition 1(5) in [24].

(FMPush). ⇒: Let µ ∈ σR(A1 \ A2). By semantics, µ ∈ A1,
there is no µ2 ∈ A2 compatible with µ1, and µ |= R. From these
preconditions it follows immediately that µ ∈ σR(A1) \ A2. ⇐:
Let µ ∈ σR(A1) \ A2. Then µ ∈ A1, µ |= R, and there is no
compatible mapping in A2. Clearly, then also µ ∈ A1 \ A2 and
µ ∈ σR(A1 \A2).

(FJPush). ⇒: Let µ ∈ σR(A1 1 A2). By semantics, µ |= R
and we know that µ is of the form µ = µ1 ∪ µ2, where µ1 ∈ A1,
µ2 ∈ A2, and µ1 ∼ µ2. Further, by assumption each variable
?x ∈ vars(R) is (i) contained in cVars(A1) or (ii) not contained
in pVars(A2) (or both). It suffices to show that (Claim1) µ1 |= R
holds, because this implies that the right side generates µ. Let us,
for the sake of contradiction, assume that µ1 6|= R. Now consider
the semantics of filter expressions in Definition 10. and recall that
µ1 ⊆ µ. Given that µ |= R, it is clear that µ1 does not satisfy
R if and only if there is one or more ?x ∈ vars(R) such that
?x ∈ dom(µ), ?x 6∈ dom(µ1) and ?x causes the filter to evaluate
to false. We now exploit the constraints (i) and (ii) that are imposed
on the variables in vars(R): if variable ?x satisfies constraint (i),
then it follows from Proposition 1 that ?x ∈ dom(µ1), which is
a contradiction; otherwise, if ?x satisfies constraint (ii) we know
from Proposition 2 that ?x 6∈ dom(µ2). Given that ?x ∈ dom(µ),
this implies that ?x must be contained in dom(µ1), which is again
a contradiction. We conclude that µ1 |= R, hence (Claim1) holds.
⇐: Let µ ∈ σR(A1) 1 A2, so µ is of the form µ = µ1∪µ2, where
µ1 ∈ A1, µ2 ∈ A2, and µ1 |= R. Further, by assumption each
variable ?x ∈ vars(R) is (i) contained in cVars(A1) or (ii) not
contained in pVars(A2) (or both). It suffices to show that (Claim2)
µ |= R holds, because this implies that the left side generates µ.
Let us, for the sake of contradiction, assume that µ 6|= R. Consider
the semantics of filter expressions in Definition 10 and recall that
µ ⊇ µ1. Given that µ1 |= R, we can easily derive that µ does not
satisfyR if and only if there is one or more ?x ∈ vars(R) such that
?x ∈ dom(µ), ?x 6∈ dom(µ1) and ?x causes the filter to evaluate
to false. The rest is analogous to the proof of direction⇒.

(FLPush). We rewrite the expression:

σR(A1 1 A2)
= σR((A1 1 A2) ∪ (A1 \A2)) [semantics]
= σR(A1 1 A2) ∪ σR(A1 \A2) [(FUPush)]
= (σR(A1) 1 A2) ∪ (σR(A1) \A2) [(FJPush),(FMPush)]
= σR(A1)1 A2 [semantics]

The rewriting proves the equivalence.2

Group VI
(MReord). We fix a mapping µ and show that it is contained in

the left side expression if and only if it is contained in the right
side expression. First observe that if µ is not contained in A1, then
it is neither contained in the right side nor in the left side of the
expressions (both are subsets ofA1). So let us assume that µ ∈ A1.
We distinguish three cases. Case (1): consider a mapping µ ∈ A1

and assume there is a compatible mapping in A2. Then µ is not
contained in A1 \ A2, and also not in (A1 \ A2) \ A3, which by
definition is a subset of the former. Now consider the right-hand
side of the equation and let us assume that µ ∈ A1 \A3 (otherwise
we are done). Then, as there is a compatible mapping to µ in A2,
the expression µ ∈ (A1 \ A3) \ A2 will not contain µ. Case (2):
The case of µ ∈ A1 being compatible with any mapping from
A3 is symmetrical to (2). Case (3): Let µ ∈ A1 be a mapping

that is not compatible with any mapping in A2 and A3. Then both
(A1 \ A2) \ A3 on the left side and (A1 \ A3) \ A2 on the right
side contain µ. In all cases, µ is contained in the right side exactly
if it is contained in the left side.

(MMUCorr). We show both directions of the equivalence. ⇒:
Let µ ∈ (A1 \ A2) \ A3. Then µ ∈ A1 and there is neither a
compatible mapping µ2 ∈ A2 nor a compatible mapping µ3 ∈
A3. Then both A2 and A3 contain only incompatible mappings,
and clearly A2 ∪A3 contains only incompatible mappings. Hence,
the right side A1 \ (A2 ∪ A3) produces µ. ⇐: Let µ ∈ A1 \
(A2 ∪ A3). Then µ ∈ A1 and there is no compatible mapping in
A2 ∪ A2, which means that there is neither a compatible mapping
in A2 nor in A3. It follows that A1 \ A2 contains µ (as there is no
compatible mapping in A2 and µ ∈ A1). From the fact that there
is no compatible mapping in A3, we deduce µ ∈ (A1 \A2) \A3.

(MJ). See Lemma 3(2) in [24].

(fLJ). Let fA1, fA2 be eA-expressions. The following sequence of
rewriting steps proves the equivalence.

fA1 1
fA2

= (fA1 1 fA2) ∪ (fA1 \ fA2) [by semantics]
= (fA1 1 (fA1 1 fA2)) ∪ (fA1 \ (fA1 1 fA2)) [(J̃Idem),(JAss),(MJ)]
= (fA1 1 (fA1 1 fA2)) [by semantics]

(FLBndI). Let A1, A2 beA expressions and ?x ∈ cVars(A2 ) \
pVars(A1) be a variable, which implies that ?x ∈ cVars(A1 1

A2) and ?x 6∈ pVars(A1 \A2). We transform the left side expres-
sion into the right side expression:

σ¬bnd(?x)(A1 1 A2)
= σ¬bnd(?x)((A1 1 A2) ∪ (A1 \A2)) [semantics]
= σ¬bnd(?x)(A1 1 A2) ∪ σ¬bnd(?x)(A1 \A2) [(FUPush)]
= ∅ ∪ σ¬bnd(?x)(A1 \A2) [(FBndIII)]
= σ¬bnd(?x)(A1 \A2) [semantics]
= A1 \A2 [(FBndIV)]

(FLBndII). By assumption ?x ∈ cVars(A2)\pVars(A1), which
implies that ?x 6∈ pVars(A1 \ A2) and ?x ∈ cVars(A1 1 A2).
The following step-by-step rewriting proves the equivalence.

σbnd(?x)(A1 1 A2)
= σbnd(?x)((A1 1 A2) ∪ (A1 \A2)) [semantics]
= σbnd(?x)(A1 1 A2) ∪ σbnd(?x)(A1 \A2) [(FUPush)]
= σbnd(?x)(A1 1 A2) ∪ ∅ [(FBndII)]
= σbnd(?x)(A1 1 A2) [semantics]
= A1 1 A2 [(FBndI)]2

C.3 Proof of Lemma 3
Proof of Lemma 3(1): Trivial (by counterexample).
Proof of Lemma 3(2): We provide counterexamples that rule out

distributivity of operators 1 and \ over ∪, all of which are de-
signed for the fixed database D := {(0, c, 1)}:
• Equivalence A1 \ (A2 ∪A3) ≡ (A1 \A2)∪ (A1 \A3) does

not hold, as witnessed by expressions A1 := J(0, c, ?a)KD ,
A2 := J(?a, c, 1)KD , and A3 := J(0, c, ?b)KD .
• Equivalence A1 1 (A2 ∪ A3) ≡ (A1 1 A2) ∪ (A1 1 A3)

does not hold, as witnessed by expressionsA1 := J(0, c, ?a)KD ,
A2 := J(?a, c, 1)KD , and A3 := J(0, c, ?b)KD .

Proof of Lemma 3(3): We provide counterexamples for all op-
erator constellations that are listed in the lemma. As before, the
counterexamples are designed for the database D := {(0, c, 1)}.
We start with invalid distributivity rules over operator 1:
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• EquivalenceA1∪(A2 1 A3) ≡ (A1∪A2) 1 (A1∪A3) does
not hold, as witnessed by expressions A1 := J(?a, c, 1)KD ,
A2 := J(?b, c, 1)KD , and A3 := J(0, c, ?b)KD .

• Equivalence (A1 1 A2) ∪ A3 ≡ (A1 ∪ A3) 1 (A2 ∪ A3)
does not hold (symmetrical to the previous one).

• EquivalenceA1 \ (A2 1 A3) ≡ (A1 \A2) 1 (A1 \A3) does
not hold, as witnessed by expressions A1 := J(?a, c, 1)KD ,
A2 := J(?b, c, 1)KD , and A3 := J(0, c, ?b)KD .

• Equivalence (A1 1 A2)\A3 ≡ (A1 \A3) 1 (A2 \A3) does
not hold, as witnessed by expressions A1 := J(0, c, ?a)KD ,
A2 := J(0, c, ?b)KD , and A3 := J(?a, c, 1)KD .

• EquivalenceA1 1 (A2 1 A3) ≡ (A1 1 A2) 1 (A1 1 A3)
does not hold, as witnessed by expressionsA1 := J(?a, c, 1)KD ,
A2 := J(?b, c, 1)KD , and A3 := J(0, c, ?a)KD .

• Equivalence (A1 1 A2)1 A3 ≡ (A1 1 A3) 1 (A2 1 A3)
does not hold, as witnessed by expressionsA1 := J(0, c, ?a)KD ,
A2 := J(0, c, ?b)KD , and A3 := J(?a, c, 1)KD .

Next, we provide counterexamples for distributivity rules over \:
• Equivalence A1 ∪ (A2 \A3) ≡ (A1 ∪A2) \ (A1 ∪A3) does

not hold, as witnessed by expressions A1 := J(?a, c, 1)KD ,
A2 := J(0, c, ?a)KD , and A3 := J(?a, c, 1)KD .

• Equivalence (A1 \A2)∪A3 ≡ (A1 ∪A3) \ (A2 ∪A3) does
not hold (symmetrical to the previous one).

• Equivalence A1 1 (A2 \ A3) ≡ (A1 1 A2) \ (A1 1 A3)
does not hold, as witnessed by expressionsA1 := J(?a, c, 1)KD ,
A2 := J(?b, c, 1)KD , and A3 := J(0, c, ?a)KD .

• Equivalence (A1 \ A2) 1 A3 ≡ (A1 1 A3) \ (A2 1 A3)
does not hold (symmetrical to the previous one).

• Equivalence A1 1 (A2 \ A3) ≡ (A1 1 A2) \ (A1 1 A3)
does not hold, as witnessed by expressionsA1 := J(?a, c, 1)KD ,
A2 := J(?b, c, 1)KD , and A3 := J(?b, c, 1)KD .

• Equivalence (A1 \ A2)1 A3 ≡ (A1 1 A3) \ (A2 1 A3)
does not hold, as witnessed by expressionsA1 := J(?a, c, 1)KD ,
A2 := J(?b, c, 1)KD , and A3 := J(0, c, ?b)KD .

Finally, we provide counterexamples for invalid rules over 1 :

• Equivalence A1 ∪ (A2 1 A3) ≡ (A1 ∪ A2)1 (A1 ∪ A3)
does not hold, as witnessed by expressionsA1 := J(?a, c, 1)KD ,
A2 := J(c, c, c)KD , and A3 := J(?b, c, 1)KD .

• Equivalence (A1 1 A2) ∪ A3 ≡ (A1 ∪ A3)1 (A2 ∪ A3)
does not hold (symmetrical to the previous one).

• Equivalence A1 1 (A2 1 A3) ≡ (A1 1 A2)1 (A1 1 A3)
does not hold, as witnessed by expressionsA1 := J(?a, c, 1)KD ,
A2 := J(?b, c, 1)KD , and A3 := J(0, c, ?a)KD .

• Equivalence (A1 1 A2) 1 A3 ≡ (A1 1 A3)1 (A2 1 A3)
does not hold (symmetrical to the previous one).

• EquivalenceA1\(A2 1 A3) ≡ (A1\A2)1 (A1\A3) does
not hold, as witnessed by expressions A1 = J(?a, c, 1)KD ,
A2 = J(?b, c, 1)KD , and A3J(0, c, ?a)KD .

• Equivalence (A1 1 A2)\A3 ≡ (A1\A3)1 (A2\A3) does
not hold, as witnessed by expressions A1 := J(?a, c, 1)KD ,
A2 := J(?b, c, 1)KD , and A3 := J(0, c, ?b)KD .

The list of counterexamples is exhaustive.2

C.4 Proof of Lemma 4
(FElimI). We first introduce three functions rem?x : M 7→ M,

add?x7→c :M 7→ M, and subst ?y
?x

:M 7→ M, which manipulate
mappings as described in the following listing:
• rem?x(µ) removes ?x from µ (if it is bound), i.e. outputs map-

ping µ′ such that dom(µ′) := dom(µ) \ {?x} and µ′(?a) :=
µ(?a) for all ?a ∈ dom(µ′).
• add?x7→c(µ) binds variable ?x to c in µ, i.e. outputs mapping
µ′ := µ ∪ {?x 7→ c} (we will apply this function only if ?x 6∈
dom(µ), so µ′ is defined).
• subst ?y

?x
(µ) := rem?x(add?y 7→µ(?x)(µ)) replaces variable ?x

by ?y in µ (we will apply this function only if ?x ∈ dom(µ)
and ?y 6∈ dom(µ)).

We fix document D. To prove that (FElimI) holds, we show
that, for every expression A built using operators 1, ∪, and triple
patterns JtKD (i.e., expressions as defined in rule (FElimI)) the fol-
lowing five claims hold (abusing notation, we write µ ∈ A if µ is
contained in the result of evaluating expressionA on documentD).

(C1) If µ ∈ A, dom(µ) ⊇ {?x, ?y}, and µ(?x) = µ(?y)
then rem?x(µ) ∈ A ?y

?x
.

(C2) If µ ∈ A and ?x 6∈ dom(µ) then µ ∈ A ?y
?x

.
(C3) If µ ∈ A and ?x ∈ dom(µ), and ?y 6∈ dom(µ)

then subst ?y
?x

(µ) ∈ A ?y
?x

.

(C4) If µ ∈ A ?y
?x

and ?y 6∈ dom(µ) then µ ∈ A.

(C5) If µ ∈ A ?y
?x

and ?y ∈ dom(µ)
then µ ∈A or add?x7→µ(?y)(µ) ∈A or subst ?x

?y
(µ) ∈A.

Before proving that these conditions hold for every expression
A build using only operators 1, ∪, and triple patterns JtKD , we
argue that the above five claims imply (FElimI). ⇒: Let µ ∈
πS\{?x}(σ?x=?y(A)). From the semantics of operators π and σ
it follows that µ is obtained from some µ′ ⊇ µ s.t. µ′ ∈ A,
?x, ?y ∈ dom(µ′), µ′(?x) = µ′(?y), and πS\{?x}({µ′}) =
{µ}. Given all these prerequisites, condition (C1) implies that
µ′′ := rem?x(µ

′) is generated by A ?y
?x

. Observe that mapping µ′′

agrees with µ′ on all variables but ?x. Hence, πS\{?x}({µ′′}) =
πS\{?x}({µ′}) = {µ}, which shows that µ is generated by the
right side expression πS\{?x}(A ?y

?x
). ⇐: Consider a mapping µ ∈

πS\{?x}(A
?y
?x

). Then there is some mapping µ′ ∈ A ?y
?x

such that
µ′ ⊇ µ and πS\{?x}({µ′}) = {µ}. By assumption we have that
?x ∈ cVars(A) and it is easily verified that this implies ?y ∈
cVars(A ?y

?x
). Hence, variable ?y is bound in µ′ (according to

Proposition 1). Condition (C5) now implies that (i) µ′ ∈ A, or
(ii) add?x7→µ′(?y)(µ

′) ∈ A, or (iii) subst ?x
?y

(µ′) ∈ A holds. Con-

cerning case (i), first observe that ?x 6∈ dom(µ′), since all oc-
currences of ?x have been replaced by ?y in A ?y

?x
. On the other

hand, we observe that ?x ∈ cVars(A) →?x ∈ dom(µ′), so
we have a contradiction (i.e., assumption (i) was invalid). With
similar argumentation, we obtain a contradiction for case (iii), be-
cause ?y ∈ cVars(A) →?y ∈ dom(µ′′) for all µ′′ ∈ A, but
obviously ?y 6∈ dom(subst ?x

?y
(µ′)). Therefore, given that condi-

tion (C5) is valid by assumption, we conclude that case (ii) µ′′ :=
add?x7→µ′(?y)(µ

′) ∈ A must hold. Observe that µ′′(?x) = µ′′(?y)
by construction and that µ′′ differs from µ′ only by an additional
binding for variable ?x. Hence, µ′′ passes filter σ?x=?y in the left
expression and from πS\{?x}({µ′′}) = πS\{?x}({µ′}) = {µ} we
deduce that the expression πS\{?x}(σ?x=?y(A)) generates µ.

Having shown that the five claims imply the equivalence, we
now prove them by structural inductions (over expressions built
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using operators 1, ∪ and triple patterns of the form JtKD). We
leave the basic case A := JtKD as an exercise to the reader and
assume that the induction hypothesis holds. In the induction step,
we distinguish two cases. (1) Let A := A1 1 A2. Consider a
mapping µ ∈ A. Then µ is of the form µ = µ1 ∪ µ2 where
µ1 ∈ A1 and µ2 ∈ A2 are compatible mappings. Observe that
A ?y

?x
= A1

?y
?x

1 A2
?y
?x

. (1.1) To see why condition (C1) holds first
note that by induction hypothesis conditions (C1)-(C5) hold forA1,
A2. Further assume that dom(µ) ⊇ {?x, ?y}, and µ(?x) = µ(?y)
(otherwise we are done). It is straightforward to verify that con-
ditions (C1), (C2), and (C3) imply that A1

?y
?x

1 A2
?x
?y

generates
rem?x(µ): the claim follows when distinguishing several cases,
covering the possible domains of µ1 and µ2, and applying the in-
duction hypothesis; we omit the details. (1.2) To prove condi-
tion (C2) let us assume that ?x 6∈ dom(µ). This implies that
?x 6∈ dom(µ1) and ?x 6∈ dom(µ2), so µ1 and µ2 are also gener-
ated by A1

?y
?x

and A2
?y
?x

(by induction hypothesis and claim (C2)).
Hence, µ is generated by A ?y

?x
= A1

?y
?x

1 A2
?y
?x

. (1.3) The proof
that condition (C3) holds follows by application of the induction
hypothesis and conditions (C2), (C3). (1.4) Claim (C4) can be
shown by application of the induction hypothesis in combination
with condition (C4). (1.5) Claim (C5) can be shown by applica-
tion of the induction hypothesis and conditions (C4), (C5). (2) Let
A := A1 ∪ A2 and consequently A ?y

?x
= A1

?y
?x
∪ A2

?y
?x

. (2.1)
Assume that µ ∈ A, dom(µ) ⊇ {?x, ?y}, and µ(?x) = µ(?y).
Then µ is generated by A1 or by A2. Let us w.l.o.g. assume that
µ is generated by A1. By induction hypothesis, rem?x(µ) is gen-
erated by A1

?y
?x

, and consequently also by A1. The proofs for the
remaining conditions (C2)-(C5) proceed analogously.

(FElimII). Similar in idea to (FElimI).2

C.5 Proof of Theorem 7
We denote the corresponding equivalences for bag algebra with

superscript +, e.g. write (Inv+) for rule (Inv) under bag semantics.
Before presenting the proofs, we introduce some additional prelim-
inaries. First we define a function that allows us to map expressions
from one algebra into same-structured expressions of the other al-
gebra.

DEFINITION 20 (FUNCTION s2b). LetA1, A2 ∈ A be set al-
gebra expressions, S ⊂ V a set of variables, and R a filter condi-
tion. We define the bijective function s2b : A 7→ A+ recursively
on the structure ofA-expression:

s2b(JtKD) := JtK+D
s2b(A1 1 A2) := s2b(A1) 1 s2b(A2)
s2b(A1 ∪A2) := s2b(A1) ∪ s2b(A2)
s2b(A1 \A2) := s2b(A1) \ s2b(A2)
s2b(A1 1 A2):= s2b(A1)1 s2b(A2)
s2b(πS(A1)) :=πS(s2b(A1))
s2b(σR(A1)) :=σR(s2b(A1)) 2

We shall use the inverse of the function, denoted as s2b−1(A+),
to transform a bag algebra expressionA+ ∈ A+ into its set algebra
counterpart. Intuitively, the function reflects the close connection
between the set and bag semantics from Definitions 4 and 12, which
differ only in the translation for triple patterns. In particular, it
is easily verified that, for each SPARQL expression or query Q,
it holds that JQK+D = s2b(JQKD) and JQKD = s2b−1 (JQK+D)
holds (when interpreting the results of function J.KD and J.K+D as
SPARQL algebra expressions rather than sets of mappings). Given
this connection, we can easily transfer Lemma 1, which relates the
two semantics, into the context of SPARQL set and bag algebra:

LEMMA 18. The following claims hold.
1. Let A ∈ A and D be an RDF document. Let Ω denote

the mapping set obtained when evaluating A on D and let
(Ω+,m+) denote the mapping multi-set obtained when eval-
uating s2b(A) on D. Then µ ∈ Ω⇔ µ ∈ Ω+.

2. Let A+ ∈ A+ and D be an RDF document. Let (Ω+,m+)
denote the mapping multi-set obtained when evaluating A+

on D and let Ω denote the mapping set obtained when evalu-
ating s2b−1(A+) on D. Then µ ∈ Ω+ ⇔ µ ∈ Ω. 2

Further, we will use some standard rewriting rules for sums.

PROPOSITION 3 (SUM REWRITING RULES). Let ax, bx, de-
note expressions that depend on some x, λ be an expression that
does not depend on x, and Cx be a condition that depends on x.
The following rewritings are valid.

(S1)
P
x∈X λ ∗ ax = λ ∗Px∈X ax,

(S2)
P
x∈{x∗∈X|Cx∗}

P
y∈{y∗∈Y |Cy∗} ax ∗ by

=
P

(x,y)∈{(x∗,y∗)∈(X,Y )|Cx∗∧Cy∗} ax ∗ by ,

(S3)
P
x∈X ax + bx =

P
x∈X ax +

P
x∈X bx. 2

We refer to these equivalences as (S1), (S2), and (S3).
Lemma 18 shows that the result of evaluating set and bag algebra

expressions differs at most in the associated cardinality, so (given
that the rules we are going to prove hold for SPARQL set algebra) it
always suffices to show that, for a fixed mapping µ that is contained
in (by assumption both) the left and right side of the equivalence,
the associated left and right side cardinalities for the mapping co-
incide. We fix document D. Further, given a SPARQL bag algebra
expression A+

i with some index i, we denote by (Ωi,mi) the map-
ping multi-set obtained when evaluating A+

i on D.

Group I
It has been shown in Example 10 that (UIdem) does not carry

over from set to bag semantics. To show that (J̃Idem) carries over
to SPARQL bag algebra we have to show that fA+ 1 fA+ ≡ fA+ for
every expression fA+ ∈gA+. It is easily verified that the set and bag
semantics always coincide for fA+ expressions and that the equiva-
lence holds under set semantics. Clearly, it holds that fA+ 1 fA+ ∈
gA+, so the SPARQL bag algebra equivalence ( ˜JIdem+) holds.

The argumentation for ( ˜LIdem+) is the same. Finally, equivalence
(Inv+) follows easily from Lemma 18 and the observation that the
equivalence holds under set semantics (the extracted mapping set
is empty, so there cannot be any differences in the multiplicity).2

Group II
(UAss+). LetA+

1 , A
+
2 , A

+
3 ∈ A+. PutA+

l := (A+
1 ∪A+

2 )∪A+
3 ,

A+
r := A+

1 ∪ (A+
2 ∪ A+

3 ). Consider a mapping µ that is con-
tained both in the result of evaluating A+

l and A+
r on D. We ap-

ply the semantics of operator ∪ for multi-set expressions (cf. Def-
inition 11) and rewrite the multiplicity that is associated with µ
for A+

l step-by-step: ml(µ) = (m1(µ) + m2(µ)) + m3(µ) =
m1(µ) + (m2(µ) +m3(µ)) = mr(µ).

(JAss+). Let A+
1 , A

+
2 , A

+
3 ∈ A+. We define the shortcuts

A+
l := (A+

1 1 A+
2 ) 1 A+

3 , A+
r := A+

1 1 (A+
2 1 A+

3 ),
A+

112 := A+
1 1 A+

2 , and A+
213 := A+

2 1 A+
3 . Consider a map-

ping µ that is contained in both the result of evaluatingA+
l andA+

r .
We rewrite the left side multiplicity ml(µ):
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ml(µ)=
P

(µ112,µ3)∈{(µ∗112,µ
∗
3)∈(Ω112×Ω3)|µ∗112∪µ∗3=µ}

(m112(µ112) ∗m3(µ3))
=

P
(µ112,µ3)∈{(µ∗112,µ

∗
3)∈(Ω112×Ω3)|µ∗112∪µ∗3=µ}(P

(µ1,µ2)∈{(µ∗1 ,µ∗2)∈(Ω1×Ω2)|µ∗1∪µ∗2=µ112}
(m1(µ1) ∗m2(µ2)) ∗m3(µ3))

(S1)
=
P

(µ112,µ3)∈{(µ∗112,µ
∗
3)∈(Ω112×Ω3)|µ∗112∪µ∗3=µ}(P

(µ1,µ2)∈{(µ∗1 ,µ∗2)∈(Ω1×Ω2)|µ∗1∪µ∗2=µ112}
(m1(µ1) ∗m2(µ2) ∗m3(µ3)))

(S2)
=
P

((µ112,µ3),(µ1,µ2))∈{((µ∗112,µ
∗
3),(µ∗1 ,µ

∗
2))∈

((Ω112×Ω3)×(Ω1×Ω2))|µ∗112∪µ∗3=µ∧µ∗1∪µ∗2=µ∗112}(
m1(µ1) ∗m2(µ2) ∗m3(µ3))

=
P

(µ1,µ2,µ3)∈{(µ∗1 ,µ∗2 ,µ∗3)∈(Ω1×Ω2×Ω3)|µ∗1∪µ∗2∪µ∗3=µ}
(m1(µ1) ∗m2(µ2) ∗m3(µ3))

=
P

((µ1,µ213),(µ2,µ3))∈{((µ∗1 ,µ∗213),(µ∗2 ,µ
∗
3))∈

((Ω1×Ω213)×(Ω2×Ω3))|µ∗1∪µ∗213=µ∧µ∗2∪µ∗3=µ∗213}(
m1(µ1) ∗m2(µ2) ∗m3(µ3))

(S2)
=
P

(µ1,µ213)∈{(µ∗1 ,µ∗213)∈(Ω1×Ω213)|µ∗1∪µ∗213=µ}(P
(µ2,µ3)∈{(µ∗2 ,µ∗3)∈(Ω2×Ω3)|µ∗2∪µ∗3=µ213}

(m1(µ1) ∗m2(µ2) ∗m3(µ3)))
(S1)
=
P

(µ1,µ213)∈{(µ∗1 ,µ∗213)∈(Ω1×Ω213)|µ∗1∪µ∗213=µ}(
m1(µ1) ∗P(µ2,µ3)∈{(µ∗2 ,µ∗3)∈(Ω2×Ω3)|µ∗2∪µ∗3=µ213}
(m2(µ2) ∗m3(µ3)))

=
P

(µ1,µ213)∈{(µ∗1 ,µ∗213)∈(Ω1×Ω213)|µ∗1∪µ∗213=µ}
(m1(µ1) ∗m213(µ213))

= µr(µ)

(UComm+). Let A+
1 , A

+
2 ∈ A+. Put A+

l := A+
1 ∪ A+

2 and
A+
r := A+

2 ∪ A+
1 . Consider a mapping µ that is contained in both

the result of evaluating A+
l and A+

r . We rewrite ml(µ) stepwise:
ml(µ) = m1(µ) +m2(µ) = m2(µ) +m1(µ) = mr(µ).

(JComm+). Let A+
1 , A

+
2 ∈ A+. Put A+

l := A+
1 1 A+

2 ,
A+
r := A+

2 1 A+
1 . Consider a mapping µ that is contained in

both the result of evaluating A+
l and A+

r . Applying the semantics
of operator 1 we rewrite the left side multiplicity:

ml(µ) =
P

(µ1,µ2)∈{(µ∗1 ,µ∗2)∈(Ω1×Ω2)|µ∗1∪µ∗2=µ}
(m1(µ1) ∗m2(µ2))

=
P

(µ2,µ1)∈{(µ∗2 ,µ∗1)∈(Ω2×Ω1)|µ∗2∪µ∗1=µ}
(m2(µ2) ∗m1(µ1))

= mr(µ)

(JUDistR+) and (JUDistL+) follow by rewritings that are similar
in style to those presented in previous proofs.

(MUDistR+). Let A+
1 , A

+
2 , A

+
3 ∈ A+. We define expressions

A+
l := (A+

1 ∪A+
2 )\A+

3 ,A+
r := (A+

1 \A+
3 )∪(A+

2 \A+
3 ),A+

1∪2 :=
A+

1 ∪A+
2 , A+

1\3 := A+
1 \A+

3 , and A+
2\3 := A+

2 \A+
3 . Consider a

mapping µ that is contained in the result of evaluating A+
l andA+

r .
It is easily verified that ml(µ) = m1∪2(µ) = m1(µ) +m2(µ) =
m1\3(µ) +m2\3(µ) = mr(µ).

(LUDistR+). Let A+
1 , A

+
2 , A

+
3 ∈ A+. Then

(A+
1 ∪A+

2 )1 A+
3

= ((A+
1 ∪A+

2 ) 1 A+
3 ) ∪ ((A+

1 ∪A+
2 ) \A+

3 )

= ((A+
1 1 A+

3 ) ∪ (A+
2 1 A+

3 )) ∪
((A+

1 \A+
3 ) ∪ (A+

2 \A+
3 )) [(JUDistR+), (MUDistR+)]

= ((A+
1 1 A+

3 ) ∪ (A+
1 \A+

3 )) ∪
((A+

2 1 A+
3 ) ∪ (A+

2 \A+
3 )) [(UAss+), (UComm+)]

= (A+
1 1 A+

3 ) ∪ (A+
2 1 A+

3 ) [semantics] 2

Group III
(PBaseI+). Let A+ ∈ A+ and S ⊂ V . Consider a mapping

µ contained in the result of evaluating A+
l := πpVars(A+)∪S(A+)

and A+
r := A+. We rewrite ml(µ) stepwise:

ml(µ) =
P
µ+∈{µ∗+∈Ω|πpVars(A∗)∪S({µ∗+})={µ}}m(µ+)

(∗)
=
P
µ+∈{µ}m(µ+) = m(µ) = mr(µ),

where step (∗) follows from the observation that equivalence
πpVars(A∗)∪S({µ∗+}) = {µ} holds if and only if µ∗+ = µ holds
(this claim follows easily from Proposition 2 and the definition of
operator π) and the fact that µ ∈ Ωr = Ω by assumption.

(PBaseII+). Let A+ ∈ A+ and S ⊂ V . Consider a mapping
µ that is contained in the result of evaluating A+

l := πS(A+) and
A+
r := πS∩pVars(A+)(A

+). We apply the semantics from Defini-
tion 11 and rewrite the (right side) multiplicity mr(µ):

mr(µ)=
P
µ+∈{µ∗+∈Ω|π

S∩pVars(A+)({µ∗+})={µ}}
m(µ+)

(∗)
=
P
µ+∈{µ∗+∈Ω|πS({µ∗+})={µ}}m(µ+)

= ml(µ),

where step (∗) follows from the semantics and Proposition 2.

(PFPush+). Similar in idea to (PMPush+).

(PMerge+). Let A+ ∈ A+ and S1, S2 ⊂ V . We define A+
l :=

πS1(πS2(A
+)), A+

r := πS1∩S2(A
+), and A+

π2 := πS2(A
+). Ac-

cording to Lemma 18, it suffices to show that for each mapping µ
that is contained in Ωl and Ωr it holds that ml(µ) = mr(µ). We
rewrite the multiplicity ml(µ) schematically:

ml(µ) =
P
µ+∈{µ∗+∈Ωπ2|πS1 ({µ∗+})={µ}}mπ2(µ+)

=
P
µ+∈{µ∗+∈Ωπ2|πS1 ({µ∗+})={µ}}P
µ′+∈{µ•+∈Ω|πS2 ({µ•+})={µ+}}m(µ′+)

(S2)
=
P

(µ+,µ
′
+)∈{(µ∗+,µ•+)∈(Ωπ2,Ω)|

πS1 ({µ∗+})={µ}∧πS2 ({µ•+})={µ∗+}}m(µ′+)

=
P

(µ+,µ
′
+)∈{(µ∗+,µ•+)∈(Ωπ2,Ω)|

πS1 (πS2 ({µ•+}))={µ}∧πS2 ({µ•+})={µ∗+}}m(µ′+)

(∗1)
=
P
µ′+∈{µ•+∈Ω|
πS1 (πS2 ({µ•+}))={µ}}m(µ′+)

(∗2)
=
P
µ′+∈{µ•+∈Ω|
πS1∩S2 ({µ•+}))={µ}}m(µ′+)

= mr(µ),

where step (∗1) follows from the observation that mapping µ∗+
is uniquely determined by µ•+ and (∗2) follows directly from the
semantics of operator π.

(PUPush+). Let A+
1 , A

+
2 ∈ A+ and S ⊂ V . Consider a map-

ping µ that is contained in the result of evaluatingA+
l := πS(A+

1 ∪
A+

2 ) and A+
r := πS(A+

1 ) ∪ πS(A+
2 ). Put A+

1∪2 := A+
1 ∪ A+

2 ,
A+
π1 := πS(A+

1 ), and A+
π2 := πS(A+

2 ). We apply the semantics
from Definition 11 and rewrite the multiplicityml(µ) step-by-step:

ml(µ) =
P
µ+∈{µ∗+∈Ω1∪2|πS({µ∗+})={µ}}m1∪2(µ+)

=
P
µ+∈{µ∗+∈Ω1∪2|πS({µ∗+})={µ}}(m1(µ+) + m2(µ+))

(S3)
= (
P
µ+∈{µ∗+∈Ω1∪2|πS({µ∗+})={µ}}m1(µ+))+

(
P
µ+∈{µ∗+∈Ω1∪2|πS({µ∗+})={µ}}m2(µ+))

(∗)
= (

P
µ+∈{µ∗+∈Ω1|πS({µ∗+})={µ}}m1(µ+))+

(
P
µ+∈{µ∗+∈Ω2|πS({µ∗+})={µ}}m2(µ+))

= mπ1(µ) + mπ2(µ)
= mr(µ),
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where step (∗) follows by semantics of operator ∪.

(PJPush+). The rule follows from the following proposition.

PROPOSITION 4. Let A+
1 , A

+
2 ∈ A+ and S′ ⊂ V with S′ ⊇

pVars(A+
1 )∩ pVars(A+

2 ). Then the following equivalence holds.

πS′ (A
+
1 1 A+

2 ) ≡ πS′ (A
+
1 ) 1 πS′ (A

+
2 ) (FJPush2+) 2

To see why Proposition 4 implies (FJPush), consider the origi-
nal equivalence, where S′ := S ∪ (pVars(A+

1 ) ∩ pVars(A+
2 )).

Observe that, by construction, S′ ⊇ pVars(A+
1 ) ∩ pVars(A+

2 ).
We rewrite the left side of (FJPush) into the right side:

πS(A+
1 1 A+

2 )

= πS(πS′ (A
+
1 1 A+

2 )) [(PMerge+)]
= πS(πS′ (A

+
1 ) 1 πS′ (A

+
2 )) [(FJPush2+)]

Given this rewriting, it remains to show that (FJPush2+) is valid.
We split this proof into two parts. First, we show that the map-
ping sets coincide. To this end, we show that (FJPush2+) holds
for SPARQL set algebra (the result carries over to bag algebra by
Lemma 18). Let A1, A2 ∈ A and S′ ⊇ pVars(A1)∩pVars(A2).
⇒: Consider a mapping µ generated by the left side expression

πS′(A1 1 A2). Then µ is obtained from some mapping µ′ ⊇ µ
s.t. πS′({µ′}) = {µ}. Further, µ′ is of the form µ′1 ∪ µ′2 where
µ′1 and µ′2 are compatible mappings that are generated by A1 and
A2, respectively. We observe that the right side subexpressions
πS′(A1) and πS′(A2) then generate mappings µ′′1 ⊆ µ′1 and µ′′2 ⊆
µ′2 that agree with µ′1 and µ′2 on all variables in S′, respectively
(where “agree” means that each such variable is either bound to
the same value in the two mappings or unbound in both mappings).
Clearly, µ′′1 ⊆ µ′1 ∧ µ′′2 ⊆ µ′2 ∧ µ′1 ∼ µ′2 → µ′′1 ∼ µ′′2 , so the right
side expression generates the mapping µ′′ := µ′′1 ∪ µ′′2 . It is easily
verified that (i) dom(µ′′) ⊆ S′ and that (ii) µ′′ agrees with µ′ on all
variables on S′. This implies that µ′′ = µ and we conclude that µ is
generated by the right side expression. ⇐: Consider a mapping µ′

that is generated by the right side expression πS′(A1) 1 πS′(A2).
Then µ′ is of the form µ′ = µ′1∪µ′2, where µ′1 ∼ µ′2 are generated
by the subexpressions πS′(A1) and πS′(A2), respectively. Con-
sequently, A1 and A2 generate mappings µ1 ⊇ µ′1 and µ2 ⊇ µ′2
such that µ1 and µ2 agree with µ′1 and µ′2 on all variables in S′,
respectively. We distinguish two cases. First, (i) if µ1 and µ2 are
compatible then µ := µ1 ∪ µ2 agrees with µ′ on all variables in
S′, and therefore πS′({µ}) = µ′, so the left side expression gen-
erates µ′. Second, (ii) if µ1 and µ2 are not compatible then there
is ?x ∈ dom(µ1) ∩ dom(µ2) such that µ1(?x) 6= µ2(?x). From
precondition S′ ⊇ pVars(A1) ∩ pVars(A2) and Proposition 2
it follows that ?x ∈ S′. We know that µ′1 and µ′2 agree with µ1

and µ2 on all variables in S′. It follows that µ′1(?x) 6= µ′2(?x),
which contradicts the assumption that µ′1 ∼ µ′2. This completes
the second direction.

Having shown that the mapping sets coincide under bag seman-
tics, it remains to show that the left- and right side multiplicities
agree for each result mapping. We therefore switch to SPARQL
bag algebra again. Let A+

1 , A
+
2 ∈ A+ and S′ ⊂ V such that S′ ⊇

pVars(A1) ∩ pVars(A2) holds. We define A+
l := πS′(A

+
1 1

A+
2 ), A+

r := πS′(A
+
1 ) 1 πS′(A

+
2 ), A+

112 := A+
1 1 A+

2 , A+
π1 :=

πS′(A
+
1 ), A+

π2 := πS′(A
+
2 ), and A+

π11π2 := A+
π1 1 A+

π2. Con-
sider a mapping µ contained in the result of evaluatingA+

l andA+
r .

Applying the semantics from Definition 11 we rewrite ml(µ):

ml(µ) =
P
µ+∈{µ∗+∈Ω112|πS′ ({µ∗+})={µ}}m112(µ+)

=
P
µ+∈{µ∗+∈Ω112|πS′ ({µ∗+})={µ}}

P
(µ1,µ2)∈{(µ∗1 ,µ∗2)∈Ω1×Ω2|µ∗1∪µ∗2=µ+}

(m1(µ1) ∗m2(µ2))
(S2)
=
P

(µ+,(µ1,µ2))∈{(µ∗+,(µ∗1 ,µ∗2))∈Ω112×(Ω1×Ω2)|
πS′ ({µ∗+})={µ}∧µ∗1∪µ∗2=µ∗+}(m1(µ1) ∗m2(µ2))

=
P

(µ+,(µ1,µ2))∈{(µ∗+,(µ∗1 ,µ∗2))∈Ω112×(Ω1×Ω2)|
πS′ ({µ∗1∪µ∗2})={µ}∧µ∗1∪µ∗2=µ∗+}(m1(µ1) ∗m2(µ2))

=
P

(µ1,µ2)∈{(µ∗1 ,µ∗2)∈(Ω1×Ω2)|
πS′ ({µ∗1∪µ∗2})={µ}}(m1(µ1) ∗m2(µ2))

(∗)
=
P

(µ1,µ2)∈{(µ∗1 ,µ∗2)∈(Ω1×Ω2)|
πS′ ({µ∗1})∪πS′ ({µ∗2})={µ}}(m1(µ1) ∗m2(µ2))

=
P

(µ1,µ2)∈{(µ∗1 ,µ∗2)∈(Ωπ1×Ωπ2)|{µ∗1}∪{µ∗2}={µ}}
(m1(µ1) ∗m2(µ2))

= mr(µ),

where (∗) follows from S′ ⊇ pVars(A1) ∩ pVars(A2).

(PMPush+). Let A+
1 , A

+
2 ∈ A+ and S ⊂ V be a set of vari-

ables. Recall that by definition S′ := S∪(pVars(A1)∩pVars(A2))
and S′′ := pVars(A1) ∩ pVars(A2). Put A+

l := πS(A+
1 \ A+

2 ),
A+
r := πS(πS′(A

+
1 ) \ πS′′(A+

2 )), A+
1\2 := A+

1 \ A+
2 , A+

π1 :=

πS′(A
+
1 ), A+

π2 := πS′′(A
+
2 ), A+

π1\π2 := A+
π1 \ A+

π2, and fix doc-
ument D and a mapping µ that is contained both in Ωl and Ωr .
Applying the semantics from Definition 11, we rewrite the (right
side) multiplicity mr(µ) schematically:

mr(µ) =
P
µ+∈{µ∗+∈Ωπ1\π2|πS({µ∗+})={µ}}

mπ1\π2(µ+)

(∗1)
=
P
µ+∈{µ∗+∈Ωπ1\π2|πS({µ∗+})={µ}}

mπ1(µ+)

=
P
µ+∈{µ∗+∈Ωπ1\π2|πS({µ∗+})={µ}}P
µ′+∈{µ•+∈Ω1|πS′ ({µ•+})={µ+}}m1(µ

′
+)

(S2)
=
P

(µ+,µ
′
+)∈{(µ∗+,µ•+)∈Ωπ1\π2×Ω1|

πS({µ∗+})={µ}∧πS′ ({µ•+})={µ∗+}}m1(µ
′
+)

=
P

(µ+,µ
′
+)∈{(µ∗+,µ•+)∈Ωπ1\π2×Ω1|

πS(πS′ ({µ•+}))={µ}∧πS′ ({µ•+})={µ∗+}}m1(µ
′
+)

(∗2)
=
P

(µ+,µ
′
+)∈{(µ∗+,µ•+)∈Ωπ1\π2×Ω1|

πS({µ•+})={µ}∧πS′ ({µ•+})={µ∗+}}m1(µ
′
+)

(∗3)
=
P

(µ+,µ
′
+)∈{(µ∗+,µ•+)∈Ωπ1\π2×Ω1\2|

πS({µ•+})={µ}∧πS′ ({µ•+})={µ∗+}}m1(µ
′
+)

(∗4)
=
P
µ′+∈{µ•+∈Ω1\2|πS({µ•+})={µ}}

m1(µ
′
+)

(∗5)
=
P
µ′+∈{µ•+∈Ω1\2|πS({µ•+})={µ}}

m1\2(µ
′
+)

= ml(µ),

where step (∗1) follows from the observation thatmπ1\π2(µ
∗
+) =

mπ1(µ
∗
+) for all µ∗+ ∈ Ωπ1\π2, rewriting step (∗2) holds because

S ⊆ S′, step (∗3) follows from the observation that only those
mappings from Ω1 contribute to the result that are also contained in
Ω1\2, step (∗4) holds because every mapping µ•+ ∈ Ω1\2 uniquely
determines a mapping µ∗+ ∈ Ωπ1\π2 through condition πS′({µ•+}) =
µ∗+, and step (∗5) follows from the observation that m1(µ

•
+) =

m1\2(µ
•
+) for all µ•+ ∈ Ω1\2.

(PLPush+). Similar to the proof of (PLPush) for SPARQL set
algebra (observe that all rules that are used in the latter proof are
also valid in the context of SPARQL bag algebra).2

Group IV
As an example that shows that (FDecompII) does not carry over

to bag algebra, consider the expression A := J(c, c, ?x)KD , filter
R := (¬?x = a) ∨ (¬?x = b) and document D := {(c, c, c)}.
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(FDecompI+). Let A+ ∈ A+ and R be a filter condition.
Put A+

l := σR1∧R2(A
+), A+

r := σR1(σR2(A
+)), and A+

σ2 :=
σR2(A

+). Consider a mapping µ that is contained in the result of
evaluating A+

l and A+
r , which implies that µ ∈ Ω and µ |= R1,

µ |= R2, µ |= R1∧R2. Applying the semantics from Definition 11
we can easily derive that ml(µ) = m(µ) = mσ2(µ) = mr(µ).

(FReord+). Follows from equivalence (FDecompI+) and the
commutativity of the boolean operator ∧.

(FBndI+) - (FBndIV+). Follow from the semantics of σ in.2

Group V
(FUPush+). Follows from the semantics of σ and ∪.

(FMPush+). Let A+
1 , A

+
2 ∈ A+ and R be a filter condition. Put

A+
l := σR(A+

1 \A+
2 ), A+

r := σR(A+
1 ) \A+

2 , A+
1\2 := A+

1 \A+
2 ,

and A+
σ1 := σR(A+

1 ). Consider a mapping µ that is contained in
the result of evaluating A+

l and A+
r . This implies that µ |= R,

µ ∈ Ω1\2, µ ∈ Ω1, and µ ∈ Ωσ1. Combining the semantics
from Definition 3 with the above observations we obtain ml(µ) =
m1\2(µ) = m1(µ) = mσ1(µ) = mr(µ).

(FJPush+). Let A+
1 , A

+
2 ∈ A+ and R be a filter condition such

that for all ?x ∈ vars(R):?x ∈ cVars(A1)∨?x 6∈ pVars(A2).
Put A+

l := σR(A+
1 1 A+

2 ), A+
r := σR(A+

1 ) 1 A+
2 , A+

112 :=
A+

1 1 A+
2 , and A+

σ1 := σR(A+
1 ). Consider a mapping µ that is

contained in the result of evaluating A+
l and A+

r . Clearly it holds
that µ |= R and µ ∈ Ω112. Combining these observations with the
semantics from Definition 3 we obtain

ml(µ) = m112(µ)
=

P
(µ1,µ2)∈{(µ∗1 ,µ∗2)∈Ω1×Ω2|µ∗1∪µ∗2=µ}

(m1(µ1) ∗m2(µ2))
(∗)
=
P

(µ1,µ2)∈{(µ∗1 ,µ∗2)∈Ωσ1×Ω2|µ∗1∪µ∗2=µ}
(mσ1(µ1) ∗m2(µ2))

= mr(µ),

where (*) follows from the observation that the precondition for
all ?x ∈ vars(R):?x ∈ cVars(A1)∨?x 6∈ pVars(A2) implies
that for all µ1 ∈ Ω1, µ2 ∈ Ω2 s.t. µ1∪µ2 = µ the mappings µ1 and
µ agree on variables in vars(R), i.e. each ?x ∈ vars(R) is either
bound to the same value in µ1 and µ or unbound in both. Hence,
for every µ1 it holds that µ1 |= R, which justifies the rewriting.

(FLPush+)). Similar to the proof of (FLPush) for SPARQL set
algebra (observe that all rules that are used in the latter proof are
also valid in the context of SPARQL bag algebra).2

Group VI
(MReord+), (MMUCorr+), (MJ+). The three equivalences fol-

low easily from the semantics of operator \ from Definition 11.

(L̃J+). Similar to the proof of (fLJ) for SPARQL set algebra
(observe that all rules that are used in the latter proof are also valid
in the context of SPARQL bag algebra).

(FLBndI+), (FLBndII+). Similar to the proof of (FLBndI) and
(FLBndII) for SPARQL set algebra (all rules that are used in the
latter proof are also valid in the context of SPARQL bag algebra).2

C.6 Proof of Lemma 6
Lemma 6(1): Follows from the semantics of ASK and Lemma 1
Lemma 6(2): Follows from the semantics of ASK queries and

the semantics of the UNION operator (cf. Definition 3 and 4).

Lemma 6(3): Follows from the semantics of ASK queries and the
semantics of the OPT operator (cf. Definition 4 and 3). In partic-
ular, the correctness follows from the semantics of operator1, the
algebraic counterpart of operator OPT: it is straightforward to show
that (i) JQ1KD = ∅ → JQ1KD 1 JQ2KD = ∅ and (ii) if there is
some µ ∈ JQ1KD then there also is some µ′ ∈ JQ1KD 1 JQ2KD .

Lemma 6(4): Follows from the semantics of ASK, the semantics
of operator AND, and Proposition 2. Observe that pVars(JQ1KD)∩
pVars(JQ2KD) = ∅ together with Proposition 2 implies that for
each pair of mappings (µ1, µ2) ∈ JQ1KD × JQ2KD it holds that
dom(µ1) ⊆ pVars(JQ1KD), dom(µ2) ⊆ pVars(JQ2KD), and
therefore dom(µ1) ∩ dom(µ2) = ∅.2

C.7 Proof of Lemma 7
Lemma 7(1): Follows from the definition of SELECT DISTINCT

queries (cf. Appendix A.6) and Lemma 1, which shows that bag
and set semantics coincide w.r.t. mapping sets.

Lemma 7(2): Follows from the definition of the SELECT DIS-
TINCT and SELECT REDUCED query forms, i.e. it is easily shown
that the definition of function m in the SELECT DISTINCT query
form satisfies the two conditions (i) and (ii) that are enforced for
function m in the definition of SELECT REDUCED queries.

Lemma 7(3): Follows from claims (1) and (2) of the lemma. 2

C.8 Proof of Lemma 8
Follows from the observation that for Q ∈ AFOπ we always

have that each mapping µ ∈ JQK+D has multiplicity one associ-
ated (i.e. the semantics coincide) and the fact that the projection on
variables S ⊇ pVars(JQKD) does not modify the evaluation re-
sult. Please note that the first observation has already been made in
the technical report of [1], claiming that for AFO expressions the
multiplicity associated with each result mapping equals to one.2

D. PROOFS OF SEMANTIC RESULTS

D.1 Proof of Theorem 8

REMARK 1. Recall from Section 5 that in the following proof
we consider a fragment of SPARQL extended by empty graph pat-
terns {} (with semantics J{}KD := {∅}) and by an algebraic MINUS
operator (with semantics JQ1 MINUS Q2KD := JQ1KD \ JQ2KD).
To see why empty graph patterns are necessary to obtain the power
to encode first-order sentences observe that – in SPARQL without
empty patterns – it is impossible to write an ASK query that re-
turns true on the empty document. To give a concrete example, in
the latter fragment (i.e., the one comprising expression according
to Definition 1) the first-order constraint ϕ := ¬∃T (c, c, c) can-
not be encoded as ASK query that returns true on every document
D |= ϕ, because in particular D := ∅ |= ϕ. Contrarily, observe
that in SPARQL extended by empty graph patterns (and operator
MINUS) we can easily encode ϕ as ASK({} MINUS (c, c, c)).9

Concerning the extension by a syntactic MINUS operator it was
argued in [1] that this operator can always be simulated using OP-
TIONAL and FILTER, by help of so-called copy patterns. Unfor-
tunately, the encoding presented there relies on the presence of
variables in the right side expression of the MINUS, i.e. fails for
expression like Q1 MINUS (c, c, c). One workaround to fix the
construction seems to be the encoding of Q1 MINUS Q2 as

(Q1 OPT (Q2 AND (?x, ?y, ?z))) FILTER (¬bnd(?x)),

9We wish to thank Claudio Gutierrez for helpful discussions on the
expressiveness of SPARQL and for pointing us to this encoding.
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where ?x, ?y, ?z 6∈ pVars(JQ2KD). In fact, this works when-
ever we forbid empty graph patterns in Q2. Yet in the general case
(i.e. if empty graph patterns occur in Q2), the encoding fails; un-
fortunately, such situation may occur in the encoding in the subse-
quent proof of Theorem 8. To see why the above encoding gen-
erally fails in the presence of empty patterns, choose Q1 := {},
Q2 := {}, and D := ∅. Then JQ1 MINUS Q2KD = ∅, but
J(Q1 OPT (Q2 AND (?x, ?y, ?z))) FILTER (¬bnd(?x))KD = {∅}.

To conclude the discussion, it is an open question if operator MI-
NUS can be encoded by the remaining operators in the presence of
empty graph patterns and in response we decided to add the MI-
NUS operator to our fragment. We emphasize, though, that this
gives us exactly the same fragment that was used in [1] to prove
that SPARQL has the same expressiveness as relational algebra.2

In the subsequent proof of Theorem 8 we assume that the reader
is familiar with first-order logic. We show that for each RDF con-
straint, i.e. each first-order sentence ϕ over the ternary predicate T ,
there is a SPARQL query Qϕ such that JASK(Qϕ)KD ⇔ D |= ϕ.
More precisely, we encode a first-order sentence ϕ that is built us-
ing (1) equality formulas of the form t1 = t2, (2) relational atoms
of the form T (t1, t2, t3), (3) the negation operator ¬, (4) the con-
junction operator ∧, and (5) formulas of the form ¬∃xψ. We en-
code ϕ as a SPARQL queryQϕ s.t. JQϕKD = ∅ exactly if ID 6|= ϕ,
where ID:=({s, p, o |(s, p, o) ∈ D}, {T (s, p, o)|(s, p, o) ∈ D}),
i.e. ID is a structure that has as its domain the values from D
and contains a relational fact T (s, p, o) for each triple (s, p, o)
in D. It should be mentioned that ψ1 ∨ ψ2 can be written as
¬(¬ψ1 ∧ ¬ψ2) and each quantifier formula can be brought into
the form (5), i.e. ∀xψ is equivalent to ¬∃x¬ψ and ∃xψ can be
written as ¬(¬∃xψ), so cases (1)-(5) are sufficient (we chose the
variant ¬∃xψ because its encoding is simpler than e.g. ∀xψ).

Before presenting the encoding, we introduce some notation and
definitions. Let var(ϕ) := {x1, . . . , xn} denote all variables ap-
pearing in formula ϕ and define a set S := {?x1, . . . , ?xn} of
corresponding SPARQL variables. We introduce a total function
v : var(ϕ) 7→ S that translates each variable occurring in ϕ into its
corresponding SPARQL variable, i.e. v(xi) :=?xi for 1 ≤ i ≤ n.
Further assume that S¬ ⊂ V is an infinite set of variables disjoint
from S. For each subexpression ψ of ϕ we define an infinite par-
tition S¬ψ ⊂ S¬ such that, for each pair of distinct subexpressions
ψ1 6= ψ2 of ϕ it holds that S¬ψ1 ∩ S¬ψ2 = ∅. Based on these par-
titions, we define for each subexpression ψ of ϕ its active domain
expression Qψ as follows. Let free(ψ) := {v1, . . . , vk} ⊆ S be
the free variables in subexpression ψ. Then we define Qψ as

((v(v1), ?a11, ?a12) UNION (?a13, v(v1), ?a14) UNION (?a15, ?a16, v(v1)))
AND

((v(v2), ?a21, ?a22) UNION (?a23, v(v2), ?a24) UNION (?a25, ?a26, v(v2)))
AND
. . .
AND

((v(vk), ?ak1, ?ak2) UNION (?ak3, v(vk), ?ak4) UNION (?ak5, ?ak6, v(vk)))

where ?a, ?a11, . . . , ?a16, . . . , ?ak1, . . . , ?ak6 are pairwise dis-
tinct variables taken from S¬ψ . Note that the active domain ex-
pressions for two distinct subexpressions share at most variables
from S, because ?a and all ?aij are chosen from the partition
that belongs to the respective subexpressions. Further, note that
Qϕ := {} because ϕ is a sentence and therefore free(ϕ) = ∅. To
give an intuition, each Qψ represents all combinations of binding
the free variables v1, . . . , vk in ψ (more precisely, the correspond-
ing variables v(v1), . . . , v(vk)) to elements of the input document,
where ?a and the ?aij are globally unique dummy variables that are
not of further importance (but were required for the construction).

The remainder of the proof follows a naive evaluation of first-
order formulas on finite structures. With the help of the active
domain subexpressions Qψ we generate all possible bindings for
the free variables in a subformula. Note that there is no need to
project away the dummy variables ?aij : we use fresh, distinct vari-
ables for every subformula ψ, so they never affect compatibility
between two mappings (and hence do not influence the evaluation
process); in the end, we are only interested in the boolean value, so
these bindings do not harm the construction. The subexpressions
Qψ are only the first step. We set enc(t) := t if t is a constant
and enc(t) := v(t) if t is a variable and follow the definition of a
formula’s semantics by generating all possible bindings for the free
variables by induction on the formula’s structure. The encoding
thus follows the possible structure of ϕ given in (1)-(5) before:

(1) For ψ := t1 = t2 we define
enc(ψ) := Qψ FILTER (enc(t1) = enc(t2)).

(2) For ψ := T (t1, t2, t3) we define
enc(ψ) := Qψ AND (enc(t1), enc(t2), enc(t3)).

(3) For ψ := ¬ψ1 we define enc(ψ) := Qψ MINUS enc(ψ1)

(4) For ψ := (ψ1 ∧ ψ2) we define
enc(ψ) := enc(ψ1) AND enc(ψ2).

(5) For ψ := ¬∃xψ1 we define enc(ψ) := Qψ MINUS enc(ψ1).

We now sketch the idea behind the encoding. It satisfies the fol-
lowing two properties: (⇒) foreach interpretation10 I := (ID, γ)
such that I |= ϕ there exists a mapping µ ∈ Jenc(ϕ)KD such
that µ ⊇ {?x1 7→ γ(x1), . . . , ?xn 7→ γ(xn)} and (⇐) foreach
mapping µ ∈ Jenc(ϕ)KD it holds that every interpretation (ID ,γ)
with γ(xi) := µ(?xi) for 1 ≤ i ≤ n satisfies ϕ. Both directions
together imply the initial claim, since ID 6|= ϕ⇔ Jenc(ϕ)KD = ∅.

The two directions can be proven by induction on the structure
of formulas. Concerning the two basic cases (1) and (2) observe
that, in their encoding, the active domain expressions generate the
universe of all solutions, which is then restricted either by appli-
cation of the filter (for case (1) ψ := t1 = t2) or by joining
the active domain expression with the respective triple pattern (for
case (2) ψ := T (t1, t2, t3)). In the induction step there are three
cases that remain to be shown. First, the idea of the encoding for
ψ := ¬ψ1 is that we subtract from the universe of all solutions
exactly the solutions of ψ1, encoded by enc(ψ1). Second, a con-
junction ψ := ψ1 ∧ ψ2 is straightforwardly mapped to a join op-
eration between the encodings of ψ1 and ψ2. Third, the encoding
for ψ := ¬∃xϕ is similar to the encoding for the negation; ob-
serve, however, that in this case ?x 6∈ free(ψ), so the active do-
main expression does not contain variable ?x anymore, which can
be understood as an implicit projection.2

D.2 Proof of Lemma 9
LetQ′ ∈ cq−1(cbΣ(cq(Q)))∩Aπ . Then cq(Q′) ∈ cbΣ(cq(Q)).

This directly implies that cq(Q′) ≡Σ cq(Q) and it follows (from
the correctness of the translation) that Q′ ≡Σ Q.2

D.3 Proof of Lemma 10
Direction⇒ follows from Lemma 9, so it suffices to prove direc-

tion⇐. So let us assume that Q′ ≡Σ Q and Q′ is minimal. First
observe that both cq−1((cq(Q′))Σ) and cq−1((cq(Q))Σ) are Aπ-
expressions. It follows that cq(Q′) ≡Σ cq(Q). From this obser-
vation, the minimality ofQ′, and the correctness of the translation it
follows that cq(Q′) ∈ cbΣ(cq(Q)) andQ′ ∈ cq−1(cbΣ(cq(Q))).2

10An interpretation is a pair of a structure and function γ that maps
variables to elements of the structure’s domain.
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D.4 Proof of Lemma 11
Rule (FSI):⇒: Assume that Q2 ≡Σ Q2 FILTER (?x =?y) and

consider a mapping µ ∈ JSELECTS(Q2)KD . Then µ is obtained
from some µl ∈ JQ2KD by projecting on the variables S. By pre-
condition µl is also contained in JQ2 FILTER (?x =?y)KD , so we
know that ?x, ?y ∈ dom(µl) and µl(?x) = µl(?y). It is eas-
ily verified that in this case there is a mapping µr ∈ Q2

?x
?y

that
agrees with µl on all variables dom(µl)\?y and is unbound for ?y
(cf. the proof of rule (FElimI) from Lemma 4). Given that ?y 6∈ S
and the observation that µ is obtained from µl by projecting on
S, we conclude that µ is also obtained from µr when projecting
on S. Consequently, µ is generated by the right side expression
SELECTS(Q2

?x
?y

). ⇐: Assume that Q2 ≡Σ Q2 FILTER (?x =?y)

and consider a mapping µ ∈ JSELECTS(Q2
?x
?y

)KD . Then µ is ob-
tained from some µr ∈ JQ2

?x
?y
KD by projecting on the variables

S. It can be shown that then the mapping µl := µr ∪ {?y 7→
µr(?x)} is contained in JQ2KD (cf. the proof of rule (FElim) from
Lemma 4). Given that ?y 6∈ S and the observation that µ is ob-
tained from µr by projecting on S, we conclude that µ is also ob-
tained from µl when projecting for S. Consequently, the left side
expression JSELECTS(Q2)KD generates µ.

Rule (FSII): Follows trivially by the observation that, by assump-
tion, each µ ∈ JQ2KD satisfies the filter condition ?x =?y.

Rule (FSIII): First note that preconditions ?x ∈ pVars(JQ2KD)
and Q2 ∈ A imply that ?x ∈ cVars(JQ2KD). From Proposition 1
we obtain that ?x ∈ dom(µ2) foreach µ2 ∈ JQ2KD and it easily
follows from Definition 6 that ?x ∈ dom(µ) foreach mapping µ ∈
JQ1 AND Q2KD . Now consider the expression

JQ1 OPT Q2KD = (JQ1KD 1 JQ2KD) ∪ (JQ1KD \ JQ2KD)

and put Ω1 := JQ1KD 1 JQ2KD = JQ1 AND Q2KD , Ω\ :=
JQ1KD\JQ2KD . From the above considerations we know that ?x ∈
dom(µ1) foreach µ1 ∈ Ω1. We now argue that Ω\ = ∅, which
implies that the equivalence holds, because then ?x ∈ dom(µ) for
every µ ∈ JQ1 OPT Q2KD and no mapping satisfies the filter con-
dition ¬bnd(?x). To show that Ω\ = ∅ let us for the sake of con-
tradiction assume there is µ\ ∈ Ω\. This implies that µ\ ∈ JQ1KD
and there is no compatible mapping µ2 ∼ µ\ in JQ2KD . Now by
assumption µ\ ∈ JSELECTpVars(JQ1KD)(Q1 AND Q2)KD . Hence,
there must be µ1 ∈ JQ1KD , µ2 ∈ JQ2KD such that µ1 ∼ µ2 and
µ1 ∪ µ2 ⊇ µ\. Consequently, it trivially holds that µ2 ∼ µ\,
which contradicts to the initial assumption that there is no compat-
ible mapping µ2 ∼ µ\ in JQ2KD .2

D.5 Proof of Lemma 12
Rule (OSI): We transform Q := JQ1 OPT Q2KD systematically.

LetD be an RDF database s.t.D satisfies all constraints in Σ. Then

JQKD = JQ1 OPT Q2KD
= (JQ1KD 1 JQ2KD) ∪ (JQ1KD \ JQ2KD)
= JQ1 AND Q2KD ∪ (πpVars(JQ1KD)(JQ1 AND Q2KD) \ JQ2KD)

It is easy to verify that each mapping in JQ1 AND Q2KD is com-
patible with at least one mapping in Q2, and the same holds for
πpVars(JQ1KD)JQ1 AND Q2KD . Hence, the right side union subex-
pression can be dropped and we obtain Q ≡Σ Q1 AND Q2.

Rule (OSII): Let D be an RDF database s.t. D |= Σ. We trans-
form expression Q := JQ1 OPT (Q2 AND Q3)KD schematically:

JQKD = J(Q1 OPT (Q2 AND Q3))KD
= JQ1 AND Q2 AND Q3KD ∪ (JQ1KD \ JQ2 AND Q3KD)

= JQ1 AND Q3KD ∪ (JQ1 AND Q2KD \ JQ2 AND Q3KD)
(∗)
= JQ1 AND Q3KD ∪ (JQ1 AND Q2KD \ JQ3KD)
= (JQ1KD 1 JQ3KD) ∪ (JQ1KD \ JQ3KD)
= JQ1 OPT Q3KD ,

where step (*) follows from the observation that the equation

JQ1 AND Q2KD \ JQ2 AND Q3KD ≡ JQ1 AND Q2KD \ JQ3KD
holds; the formal proof of this equation is straightforward.2
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