
On the Aggregation Problem for Synthesized Web Services

Ting Deng
Beihang University

dengting@act.buaa.edu.cn

Wenfei Fan Leonid Libkin Yinghui Wu
University of Edinburgh

{wenfei@inf, libkin@inf, Y.Wu-18@sms}.ed.ac.uk

ABSTRACT

The paper formulates and investigates the aggregation prob-
lem for synthesized mediators of Web services (SWMs). An
SWM is a finite-state transducer defined in terms of tem-
plates for component services. Upon receiving an artifact,
an SWM selects a set of available services from a library
to realize its templates, and invokes those services to oper-
ate on the artifact, in parallel; it produces a numeric value
as output (e.g., the total price of a package) by applying
synthesis rules. Given an SWM, a library and an input ar-
tifact, the aggregation problem is to find a mapping from
the component templates of the SWM to available services
in the library that maximizes (or minimizes) the output.
As opposed to the composition syntheses of Web services,
the aggregation problem aims to optimize the realization of
a given mediator, to best serve the users’ need. We an-
alyze this problem, and show that its complexity depends
on the underlying graph structure of the mediator: while it
is undecidable when such graphs contain even very simple
cycles, it is solvable in single-exponential time (in the size
of the specification) for SWMs whose underlying graphs are
acyclic. We prove several results of this kind, with matching
lower bounds (NP and PSPACE), and analyze restrictions
that lead to polynomial-time solutions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-
neous; D.2.8 [Software Engineering]: Metrics—complex-
ity measures, performance measures

General Terms
Delphi theory

Keywords
web services artifacts synthesis problem static analysis
transducers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 22-25, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00.

self-booking cruise

flight hotel activity package

reserving lodging

start

Figure 1: An SWM specifying a travel planner

1. Introduction

Fundamental research on Web services has mostly focused
on service models, verification and composition. A vari-
ety of models have been proposed to specify the behaviors
and interactions of Web services, based on finite-state au-
tomata [6, 16, 19], data-driven transducers [2, 5, 12, 13, 14,
31] or recently, artifacts [7, 11, 15]. A number of verification
problems have been studied to decide, e.g., whether a trans-
action with certain properties can be generated by a service,
or whether two services are equivalent [1, 2, 11, 12, 13, 14,
16, 17, 31]. The composition synthesis aims to determine
whether available services can be coordinated to deliver a
requested service, by automatically generating a mediator.
Complexity bounds on the composition problem have been
established for various service models [5, 6, 14, 19, 23, 24].

This paper studies a problem that has not yet received
much attention, referred to as the aggregation problem for
Web services. In practice a mediator is often predefined, in
terms of templates for component services. Each template
indicates a service of a certain functionality (e.g., for booking
flight tickets or reserving hotel rooms), and is to be realized
with an available service. Provided that a mediator and a
library of available services are already in place, a natural
question concerns how to find an optimal realization of the
mediator that best serves the users’ need. That is, given
user’s input, we want to generate a composite service on the
fly by selecting a set of available services from the library
and realizing templates in the mediator with these services,
such that certain values representing the user’s interest are
maximized (e.g., benefits) or minimized (e.g., price). We
illustrate the problem by an example.

242



Example 1.1: Consider a mediator M1 for planning a trip
to Disney World. Users are offered two options, as shown
in Fig. 1. (1) They may book a flight, reserve a hotel room,
and arrange activities separately, all by themselves. (2) Al-
ternatively, they may opt for a cruise package, with which
the choices of hotels are limited. In either option, the users
may repeatedly make reservations for activities, e.g., Disney
World, scuba, to fill out their free time slots.

The mediator M1 is defined with component templates,
e.g., flight and activity, which indicate services with a func-
tionality for booking a flight and an activity, respectively.
Such a template is to be realized with an available service
having the required functionality. For example, flight can
be realized with one of the online ticket booking systems
launched by airlines or services such as Expedia and Price-
line. Provided with travel dates, the available service that is
chosen to realize flight returns the lowest airfare and reserves
a ticket.

Provided travel dates and a list of free time slots, etc, the
mediator is expected to explore both options.

(1) For the first option, it ranges over available services for
checking flights, hotel rooms and activities. It picks the ones
that lead to the minimum cost C1, which is the sum of the
airfare, accommodation cost and the costs of the activities
chosen.

(2) For the second option, it ranges over cruise packages,
and for each package, it inspects its lodging constraint and
finds a hotel accordingly. It inspects activities as in the first
option. The cost C2 is the sum of the prices of the cruise,
lodging and activities.

(3) After both C1 and C2 are found, the mediator returns
the option with min(C1, C2). The option is reserved with
the locked price [36], and recommended to the users. The
users may then either decide to purchase the package, or
cancel the reservation and repeat the process again. The
actions are not committed until the users are ready to do so.

Observe that the templates in M1 may be realized with
possibly multiple available services. In this work we focus
on how the mediator should realize its templates with the
ones that lead to the lowest cost. 2

The aggregation analysis is not only of theoretical interest.
The need for it is also evident in practice. In response to
practical demand, there have been service providers looking
into service selection based on the quality of services, e.g.,
the Océano project at ibm [21]. However, the issue has not
yet received a formal treatment, from models for specifying
aggregation syntheses to the complexity of the problem.

The aggregation problem is, however, nontrivial. As we
have seen from the example above, there are typically multi-
ple choices of available services to realize a component tem-
plate. Furthermore, there is data flow [23] among the com-
ponents, i.e., the output of a component is passed as the
input to another; as a result, the realization of a component
is dependent on the choice of the services for the components
that invoke it. In addition, the control flow of the media-
tor may be complex, e.g., represented as a tree, a dag or a
cyclic graph. These make this optimization problem rather
challenging.

Contributions. We present a model to specify mediators
with aggregation, formulate the aggregation problem, and
establish complexity bounds on the problem for mediators
of various structures.

Mediators with aggregation. We present a notion of synthe-
sized mediators for Web services (SWMs), which extends me-
diators studied in [14] by incorporating aggregation synthe-
sis. An SWM specifies a requested service that takes an
artifact as input, and returns an aggregate value at the end.
We consider artifacts that are updatable records represent-
ing the life-cycle of the processing of a requested service (see
[7, 11, 15, 25] for detailed discussions about artifacts).

An SWM M is a finite-state transducer. Each state has a
transition rule and a synthesis rule. The transition rule is
specified with a precondition, component templates and suc-
cessor states. Upon receiving an artifact, it checks whether
the precondition is satisfied; if so it realizes the templates
with available services in a library, invokes the services to
operate on the artifact in parallel, and passes the updated
artifacts downward to its successor states. The synthesis rule
is to compute aggregation value in the state. It is defined in
terms of a polytime-computable function on the aggregate
values of the successor states. That is, aggregate values are
passed upward. The aggregate value generated in the start
state of M is returned as (part of) the output of the service.

A formulation of the aggregation problem. An SWM M is
realized with available services in a library L. A service in
L is a function that takes an artifact as input and returns
an (updated) artifact. A realization of M in L is a mapping
ρ from the templates of M to L. Substituting service ρ(τ )
for each template τ of M yields a composite service M [ρ].

To ensure that the composite service generated by a real-
ization ρ is sensible, we also consider realization constraints
on ρ that specify what available services are allowed to re-
alize a template.

Given an SWM M , an input artifact t, a library L, and
a realization constraint λ, the aggregation problem, denoted
by AGP(M, L, λ, t), is to find a realization ρ of M in L that
satisfies λ and maximizes (or minimizes) the output of M [ρ]
on the input t.

Complexity bounds. The control flow of an SWM M can be
depicted as a graph G[M ] of a form similar to Fig. 1, in
which nodes are states of M and an edge (s1, s2) indicates
that s2 is a successor state of s1. We establish lower and
upper bounds on AGP(M, L, λ, t), all matching, for M of
various structures. We show that AGP(M, L, λ, t) is unde-
cidable when G[M ] is cyclic. In fact, for every cyclic graph
G, the aggregation problem is undecidable over SWMs M so
that G[M ] = G. But when G[M ] is not cyclic (i.e., is a dag),
the aggregation problem becomes decidable. Note that for
many verification problems that ask questions about specifi-
cations, rather than data, single-exponential running time is
viewed as acceptable (and in many cases unavoidable) [10].
We show that by forbidding cycles we get such acceptable
algorithmic solutions: the problem is PSPACE-complete in
the acyclic case, and the complexity drops further to NP-
complete (but approximation-hard) when G[M ] is a tree.

We also study special cases of AGP(M, L, λ, t). In partic-
ular, we give the complexity bounds for the problem when

243



M is fixed but L varies, and when L is fixed while M may
change. The former is to cope with a set of predefined me-
diators when the library L may take new services or drop
obsolete services, and the latter is to accommodate the prac-
tical setting where a relatively stable library L serves various
mediators. We show that the former simplifies the aggrega-
tion synthesis, e.g., AGP(M, L, λ, t) is in PTIME as opposed
to PSPACE-complete for dag-structured M . In contrast,
the latter does not make our lives easier: the complexity
bounds remain intact when L is fixed.

To the best of our knowledge, this work is among the first
formal treatments of aggregation syntheses of Web services.
Our results provide a comprehensive picture of complexity
bounds for the aggregation problem. In addition, the proofs
provide algorithmic insight for developing effective methods
to conduct the syntheses.

Related work. Several algorithms have been developed for
selecting available services for service composition, based on
the quality of services (qos) [8, 20, 34, 35]. Previous work
on qos differs from this work in the following aspects. (a)
The criteria for qos focus on system issues such as service
response time, cost, reliability, availability, trust and band-
width. In contrast, the aggregation problem is to maxi-
mize (or minimize) certain values in an artifact represent-
ing users’ interest, which are the data processed by the ser-
vices and are returned as output. (b) The complexity of the
aggregation problem largely comes from data flow among
component services, i.e., the output of one component is
treated as the input of another. In contrast, data flow is
not a major issue for previous work on qos. (c) Previous
work on qos does not address how aggregation syntheses
are expressed in Web services. Furthermore, previous re-
sults mostly consist of heuristic algorithms for estimating
qos and selecting available services accordingly; complexity
bounds for service selection are not studied, except [8]. An
NP-complete bound was shown in [8] for optimal selection
of available services, for pipelined (linear-structured) ser-
vices based on a qos model, in the presence of constraints
on connecting a pair of services. The qos model and the
constraints of [8] are quite different from the aggregation
syntheses and constraints studied in this work. Indeed, in
the qos settings the optimal selection problem remains in
NP even for dag-structured services [34], as opposed to the
PSPACE-complete bound of this work.

A number of standards have been developed for specify-
ing Web services, e.g.,WSDL [33], WSCL [32], OWL-S [26],
SWFL [30] and BEPL [9]. A variety of models have also
been proposed to characterize services supported by those
standards, based on finite-state automata [6, 16, 19], data-
driven transducers [2, 5, 12, 13, 14, 31] or artifacts [7, 11,
15]. The notion of SWMs is a refinement of synthesized me-
diators studied in [14], which shows that its mediators are
able to express automaton and transducer abstractions of
services. SWMs refine mediators of [14] by defining synthe-
sis rules in terms of aggregation functions. They emphasize
data flow among component services, along the same lines
as [23]. Meanwhile SWMs specify control flow in terms of
transitions of a transducer. To our knowledge, only [14] and
the split-join operator of OWL-S [26] allow one to express
synthesis operations, and moreover, no previous model sup-
ports aggregation syntheses.

As remarked earlier, several verification problems have
been investigated for Web services [1, 2, 11, 12, 13, 14, 16,
17, 23, 31]. Complexity bounds have also been developed
for the composition problem [5, 6, 14, 19, 23, 24]. To our
knowledge, however, no previous work has studied the ag-
gregation problem. In particular, the aggregation problem
is quite different from the composition problem. The latter
is a decision problem to determine whether there exists a
mediator that coordinates available services to deliver a re-
quested service; in contrast, the former is an optimization
problem that aims to find a realization of a given mediator
to maximize (or minimize) certain values in an artifact.

An artifact is an identifiable record in which attributes
may be created, updated, or deleted [7, 11, 25]. It repre-
sents the life-cycle and business-relevant data of a business
entity [15]. In this work we use artifacts to characterize input
messages to a composite service, communications between
components during a run of the service, and the output of
the run of the service.

Organization. We present SWMs in Section 2, and formu-
late the aggregation problem in Section 3. We establish the
undecidability of the aggregation problem in Section 4. We
identify decidable special cases and provide their matching
complexity bounds in Section 5. Finally, section 6 summa-
rizes the main results and identifies open problems.

2. Synthesized Mediators for Web Services

We now define the syntax and the semantics of SWMs.

2.1 Synthesized Mediators

Before we formally define SWMs, we first describe artifacts
and component templates.

Artifacts and templates. Following [15] we simply treat
an artifact as a record specified by an artifact schema

RA = (val : Q, A1 : θ1, . . . , An : θn),

where each Ai is an attribute and θi is its domain. We
have a designated attribute val with the domain Q of ra-
tional numbers (for storing aggregate values). We assume
that a special symbol ⊥ is in each of the domains, denoting
undefined as usual. We use I(RA) to denote the set of all
artifacts of schema RA.

We assume a countably infinite set Γ of template names
for component services. Each template denotes a service of
a certain functionality.

Mediators. A synthesized mediator (SWM) is a finite-state
transducer defined in terms of component templates. When
the templates are realized with available services, the SWM

coordinates those services to deliver a requested composite
service. More specifically, upon receiving an artifact, the
SWM invokes the component services to operate on the ar-
tifact, and redirects artifacts by routing the output of one
service to the input of another [9]. It generates the output
of the requested service by synthesizing certain values in the
artifacts updated by the component services.

244



(q1, true) → (qs, τid), (qc, τid) val(q1) ← min(val(qs), val(qc))
(qs, true) → (qf , τf ), (qh, τh), (qa, τa) val(qs) ← val(qf ) + val(qh) + val(qa)
(qa, φa) → (qa, τa), (qr, τid) (φa is t.Tl 6= ∅) val(qa) ← val(qa) + val(qr)

(qc, true) → (qa, τa), (qp, τp) val(qc) ← val(qa) + val(qp)
(qp, true) → (qr, τid), (ql, τl) val(qp) ← val(qr) + val(ql)
(qf , true) → . val(qf ) ← . /* similarly for qh, ql, qr */

Figure 2: The transition rules and synthesis rules of mediator M1

Definition 2.1: A synthesized mediator (for web services,
referred to as an SWM) over an artifact schema RA is defined
as M = (Q, δ, σ, q0), where Q is a finite set of states, q0 is
the start state, δ is a set of transition rules, and σ is a set
of synthesis rules, such that for each q ∈ Q, there exist a
unique transition rule δ(q) and a unique synthesis rule σ(q):

δ(q) : (q, φ) → (q1, τ1), . . . , (qk, τk).
σ(q) : val(q) ← Fq(val(q1), . . . , val(qk)).

Here q, q1, . . . , qk refer to states in Q, and

• all the τi’s are template names from Γ (referred to as
component templates of M ; the set of these templates
in M is denoted by Γ(M));

• φ, called the precondition of q, is a PTIME-computable
predicate over artifacts of schema RA;

• k ≥ 0; in particular, when k = 0, the right-hand side
(rhs) of the rules δ(q) and σ(q) are empty; and

• Fq : Qk → Q is a PTIME-computable function.

For a transition (q, φ) → (q1, τ1), . . . , (qk, τk), we refer to
q1, . . . , qk as the successor states of q carrying templates
τ1, . . . , τk, respectively. 2

Example 2.1: The mediator M1 described in Example 1.1
can be expressed as an SWM. The artifact schema for M1

consists of attributes specifying (1) departure city, travel
dates, and the number of tickets, (2) a list Tl of free
time slots to be filled, (3) a list Al of activities, initially
empty, and (4) val indicating the total cost of a trip, ini-
tially ⊥. We define mediator M1 = (Q1, δ1, σ1, q1), where
Q1 = {q1, qs, qc, qf , qh, qa, qr, qp, ql}, and the transition rules
δ1 and synthesis rules σ1 are shown in Fig. 2.

In the mediator M1, the set Γ(M1) includes templates
τf , τh, τa, τp and τl. As shown in Fig. 1, these templates are
to be realized with available services for checking flight, ho-
tel, activity, cruise package and lodging, respectively. Each
of these services updates certain attribute values of the arti-
fact. For example, τa updates attributes Al and Tl by filling
a time slot with an activity. In addition, Γ(M1) contains
a dummy template τid, which simply passes artifact to its
successor state without incurring any changes.

Note that the synthesis rule for q1 is defined with aggrega-
tion operator min, while the synthesis rule for qs is defined
with the sum aggregate. We shall explain the semantics of
M1 in Example 2.2. 2

Remark. We focus on SWMs in which the transitions are
deterministic. The reason for this is twofold. First, SWMs

can already encode nondeterminism to a certain degree. In-
deed, nondeterminism in this scenario is encoded not by

transitions, but by the choice of library functions that repre-
sent possible implementations of templates. An SWM thus
encodes a variety of actual realizations, which will be de-
fined shortly. Second, allowing nondeterminism in transi-
tions leads to significant technical problems. To start with,
one needs an ad-hoc method for defining the aggregate value
of the mediator even when all library functions have been
fixed, as many possible runs may exist. Even more unpleas-
antly, there are no meaningful structural restrictions that
ensure decidability of the problem of choosing the best real-
ization of an SWM. In light of these, we consider determin-
istic SWMs to focus on the main theme of the aggregation
analysis, and defer a full treatment of nondeterminism to
future work.

2.2 Semantics of Mediators

The semantics is defined via realizations of SWMs, which
substitute available library services for template names.
Once this is done, we give two ways of presenting the se-
mantics of SWMs: a traditional, purely operational one, as
well as an equivalent semantics that describe the run at once,
rather than via a sequence of steps.

Realizing SWMs. We view available services as function
on artifacts, i.e., functions f : I(RA) → I(RA). We shall
only impose a condition that such functions are tractable,
i.e., PTIME-computable. We assume that we have a li-
brary L of available services to choose from. The library can
be built by leveraging techniques for Web service discovery
(e.g., [4, 29]).

In a nutshell, the output of an available service is used
to update attribute values of the input artifact. The service
conducts the computation based on data in its local database
and the input artifact. While in practice it may take addi-
tional input from the users, to simplify the discussion we
assume that all the input parameters are encompassed in
the input artifact as attributes. This assumption does not
change the complexity bounds for the aggregation problem
to be investigated.

To make a composite service, an SWM needs to be realized
by substituting available library services for its templates.
Thus, we define a realization of an SWM M in library L as
a mapping ρ from the set Γ(M) of templates of M to L.
We denote the result of substituting a library service ρ(τ )
for each occurrence of τ in M by M [ρ], referred to as the
composite service of M realized by ρ.

To ensure that the services realized make sense, we need
to impose constraints on realizations. For instance, it is not
sensible if one realizes a template intended for airfare with
a service for hotel. Thus, we define a realization constraint

245



as a mapping λ from Γ(M) to the powerset P(L) of L. A
template τ is restricted to a set λ(τ ) of available services
that have the required functionality, such that τ is only al-
lowed to be realized with a service in the subset λ(τ ) of L.
Realization constraints classify services in the library based
on their functionality, and can be automatically found by
capitalizing on Web service discovery methods [4, 29].

A realization ρ of M is said to be valid w.r.t. constraint λ
if for each τ in Γ(M), we have ρ(τ ) ∈ λ(τ ). We also say that
a realization constraint λ is deterministic if it uniquely de-
termines the library service for each template, i.e. |λ(τ )| = 1
for all τ .

Runs of composite service – operational semantics.
A composite service M [ρ], where M is defined over an ar-
tifact schema RA, runs on artifacts of RA. We present two
equivalent notions of a run: one of purely operational, and
the other of more denotational flavor.

For the operational notion, we define a step relation
⇒(M[ρ],t0), where t0 is an artifact. The relation is between
execution trees [5, 6]. One starts with a single-node execu-
tion tree labeled by the triple (q0, t0,⊥), and proceeds until
a terminal execution tree is reached, on which the step rela-
tion is not applicable. Then the value of the third attribute
of the root’s label in that execution tree is the result of run-
ning the composite service, i.e., M [ρ](t0).

More precisely, in an execution tree, each node v is labeled
by a triple (q, t, w), where q ∈ Q, t is an artifact of schema
RA, and w ∈ Q ∪ {⊥}. We refer to the value w as val(v).
For two execution trees ξ and ξ′, we write ξ ⇒(M[ρ],t0) ξ′ if
one of the following conditions holds.

Spawning. If there is a leaf node v of ξ labeled with
(q, t,⊥) (where the transition rule for q is (q, φ) →
(q1, τ1), . . . , (qk, τk)) and ξ′ is obtained from ξ as fol-
lows.

• If k = 0 or φ evaluates to false on t (i.e., either
q has no successor state, or the precondition for
q does not hold), then ξ′ is obtained from ξ by
setting val(v) to the value of the val attribute of
t.

• Otherwise ξ′ is obtained from ξ by spawning k
children u1, . . . , uk of v, in parallel. For each i ∈
[1, k], a distinct node ui is created as the i-th child
of v. The node ui is labeled with (qi, ρ(τi)(t),⊥),
i.e., it invokes available service ρ(τi) and labels ui

with the updated artifact ρ(τi)(t).

Synthesizing. If there is no leaf node to which a transi-
tion rule applies, then ξ′ is obtained from ξ by pick-
ing a node v labeled by (q, t,⊥) so that none of its
successors u1, . . . , uk has val(ui) = ⊥, and updating
val(v) according to the synthesis rule: val(v) gets the
value Fq(val(u1), . . . , val(uk)), where Fq is the aggre-
gate from the synthesis rule for q.

In other words, the synthesis rule is applied if val(v) =
⊥ as soon as val(ui) is available for all i ∈ [1, k].

The run starts from an execution tree ξ0 consisting of a
single root node r, labeled with q0, the input artifact t0 and
carrying val(r) = ⊥. Then an execution tree is generated

top-down; spawning new nodes stops at a node reached if
either the node is in a “final state” q indicated by the tran-
sition rule of q (with an empty rhs), or at the node the
precondition φ is not satisfied. In both cases val at such a
node carries a non-⊥ value. The synthesis rule for state q is
applied bottom-up to a node v labeled with (q, t,⊥) as soon
as val(ui)’s are available for all its children.

If the process stops, val(r) is the output. More precisely,
the result of the run of M [ρ] on artifact t0 is an execution
tree ξ such that ξ0 ⇒∗ ξ and there is no distinct ξ′ satisfying
ξ ⇒ ξ′ (of course ⇒∗ is the reflexive-transitive closure of ⇒).
The output M [ρ](t0) is the content of val(r) at the root r of
the result of the run.

The process may not necessarily stop when a mediator M
is “recursively defined”, i.e., when a state in M can reach
itself after one or more transitions. In other words, there
may not exist a finite execution tree ξ such that ξ0 ⇒∗ ξ
and ξ cannot be further expanded via spawning. When this
happens, M [ρ](t0) is undefined.

Denotational semantics. Note that while there may be
multiple runs of a composite service, their results coincide,
and thus the output is uniquely defined. In fact, one can
compactly represent the output of such runs by a single tree,
as shown in the easily verified proposition below. The propo-
sition suggests a semantics of denotational flavor, which is
equivalent to its operational counterpart given above.

Proposition 2.1: For a composite service M [ρ] and an
artifact t0 of schema RA, the result of a run and the output
of M [ρ] on t0 are either a (Q × I(RA) × Q)-labeled tree ξ
and a number w0 ∈ Q satisfying the following conditions:

1. the root of ξ is labeled with (q0, t0, w0);

2. consider a node v of ξ labeled with (q, t,w), where
(q, φ) → (q1, τ1), . . . , (qk, τk) is the transition rule for
q;

(a) v is a leaf iff w = t.val and either φ(t) = false or
k = 0;

(b) v is a non-leaf node iff it has k children labeled
with (qi, ρ(τi)(t), wi) for i = 1, . . . , k so that w =
Fq(w1, . . . , wk), where Fq is the aggregate in the
synthesis rule for q.

or are undefined.

Example 2.2: Recall the mediator M1 from Example 1.1.
Given an artifact t1 of schema R1 and a realization ρ1, the
execution tree specifying the run of M1[ρ1] on t1 is con-
structed as follows, as depicted in Fig. 3.

(1) It starts with a tree ξ0 consisting of only the root node
r, labeled with (q1, t1, val(r) = ⊥).

(2) Since the preconditions for qs and qc are true, the tree
ξ0 is expanded to ξ1 by creating two children vs and
vc for root r, labeled with (qs, t1,⊥) and (qc, t1,⊥),
respectively. Note the dummy service τid simply passes
the input artifact t1 to vs and vc.

(3) At node vs, the available services ρ1(τf ), ρ1(τh) and
ρ1(τa) are invoked unconditionally, in parallel with pa-
rameter t1 associated with vs. The tree ξ1 is expanded
by creating three children vf , vh, va.

246



r
1 1
( , , ( ) )valq t r

sv 1 1
( , , )
s
q t C c

v
1

( , , )
c
q t

f
v

( , , ).val
f f f
q t t

h
v

( , , ).valh h hq t t

a
v ( , , ).vala a aq t t

1

a
v rv

( , , ).valr r rq t t

2

a
v

p
v ( , , )p pq t

1 1
( , , ).val
a a a
q t t

2
( , , )
a a
q t

Spawning

Synthesizing

Figure 3: An example execution tree

At node vf , assume that tf is the output artifact of
ρ1(τf ), and tf .val is the airfare found by ρ1(τf ) based
on the data in the input t1 and the local database of
ρ1(τf ). Since state qf does not have any successor
state, vf does not spawn any new node, and val(vf ) is
simply set to be tf .val; similarly for vh.

On the other hand, at node va, if the precondition
φa(t1) is satisfied, ρ1(τa) is triggered to find an ac-
tivity. It returns an artifact ta, which updates t1 by
filling a free time slot with an activity, i.e., adding the
newly chosen activity to t1.Al (treated as ta.Al), and
removing the corresponding slot from t1.Tl (denoted
as ta.Tl). It spawns two children v1

a and vr, and passes
ta to them. While the node vr simply retains ta.val for
synthesizing (denoted as tr.val), the process repeats at
node v1

a, which invokes ρ1(τa) to select activities for
the remaining time slots in ta.Tl. The tree expands
until all the free time slots are filled, i.e., when the
precondition φa no longer holds.

(4) As soon as the spawning process terminates for the sub-
tree of va, the synthesizing phase starts for the subtree
of vs. Synthesizing val values upwards, val(va) is set
to be the sum of the costs for all the chosen activities.
When val(va) is available, val(vf )+ val(vh)+ val(va) is
computed and assigned to val(vs), which is the cost C1

shown in Fig. 3.

(5) Similarly, at node vc two children v2

a and vp are created.
In particular, at the node vp the service ρ1(τp) is trig-
gered to select a cruise package, which yields artifact
tp. Based on the package selected and its constraint
on lodging, a hotel is chosen by invoking ρ1(τl), taking
tp as the input parameter.

Along the same lines as described above, the subtree
rooted at vc is completed and val(vc) is computed. At this
point val(r) can be computed, as min(val(vs), val(vc)). This
yields the result of the run, an execution tree in which no
node v has val(v) = ⊥. The output M1[ρ1](t1) of the run is
val(r). 2

To sum up, a transition rule indicates a business rule,
and the precondition for each state determines whether its
associated business rule should be carried out or not. An
SWM specifies the control flow in terms of its transition rules,

and the data flow with artifacts. There exist dependencies
on the artifacts, e.g., the output artifact of ρ1(τp) is the input
of ρ1(τl) in the example above; that is, the choice of hotel
depends on what cruise package is selected in the previous
state, as various cruise packages impose different lodging
constraints. Also, to simplify the discussion, we only take
a single artifact as input and produce a single value val as
output. However, the definition of SWMs can be readily
extended such that a composite service may take multiple
artifacts as input and return multiple artifacts as output
(including but not limited to val), and this does not change
the results in the paper.

3. The Aggregation Problem

We now present the aggregation problem. Given an SWM

M over artifact schema RA, an artifact t of RA, a library
L of available services and a realization constraint λ, the
aggregation problem is to find a realization ρ of M in L that
is valid w.r.t. λ and maximizes (or minimizes) M [ρ](t).

Intuitively, given an input t and a mediator M , the ag-
gregation synthesis is to generate a composite service “on-
the-fly” [28] that is “optimal” for user’s request, by realizing
templates of M with available services w.r.t. the user’s in-
put. For instance, the aggregation synthesis for SWM M1 of
Example 1.1 is an instance of the aggregation (minimization)
problem.

As usual, to study the complexity, we turn to a decision
version of the aggregation problem. In such a version, we
are interested in a valid realization ρ of M in L so that
M [ρ](t) ≥ B, for a predefined bound B.

PROBLEM: AGP(M, L, λ, t)

INPUT:

1. An SWM M over an artifact schema RA;

2. an artifact t of RA;

3. a library L of available services,

4. a realization constraint λ.

QUESTION: Does there exist a realization ρ of M in
L valid w.r.t. λ so that M [ρ](t) ≥ B?

Of course one can change the sign of all the values and

247



aggregate functions and arrive at an equivalent minimization
problem which asks whether M [ρ](t) ≤ B. If we want to
emphasize whether we refer to the maximization (M [ρ](t) ≥
B) or minimization (M [ρ](t) ≤ B) version, we shall write
AGPmax or AGPmin, resp.

Our goal is to investigate the complexity bounds of
AGP(M, L, λ, t) for SWMs M of various structures. More
precisely, we define the mediator graph of an SWM M =
(Q, δ, σ, q0), denoted by G[M ], as a directed edge-labeled
graph G[M ] = (Q, E, L) in which there is an edge (q, q′)
in E labeled with τ if q′ is a successor state of q carrying
template τ , i.e., (q′, τ ) is in the rhs of the transition rule
for q in M . In the sequel we simply write G[M ] as (Q,E)
when L is clear from the context. Apparently an SWM M
is recursively defined if G[M ] is cyclic.

We start by showing that the general problem is undecid-
able even for very simple SWMs that have a single state and
whose underlying graph is a self-loop. In fact, we show that
for every graph containing a cycle, the aggregation prob-
lem for mediators with that underlying graph is undecidable
(even if some of the parameters are fixed). As an example,
Figure 1 depicts an SWM with a cyclic graph structure.

So this suggests a restriction to SWMs whose mediator
graph is a dag. We show that for such dag-structures SWMs

the problem is decidable in PSPACE, and the further restric-
tion to tree-structured SWMs puts the problem in NP.

4. Aggregation Synthesis: undecidability

In this section we show that the general aggregation syn-
thesis problem AGP(M, L, λ, t) is undecidable, and identify
restrictions that need to be put on the parameters of the
problem to achieve decidability.

Recall that the mediator graph for an SWM M is the graph
G[M ] whose nodes are reachable states of M , and which has
an edge from q to q′ if q′ appears in the right-hand side of
the unique transition rule for q in M .

We then have the following undecidability result. Recall
that a realization constraint λ is deterministic if |λ(τ )| = 1
for all τ , i.e., for each template, the library service realizing
it is uniquely determined.

Theorem 4.1: Let G be an arbitrary connected graph
with a cycle. Then there exists an SWM M0 whose mediator
graph is G, a fixed library L0 and a deterministic realiza-
tion constraint λ0 such that the problem AGP(M0, L0, λ0, t)
(whose only input is t) is undecidable.

Proof sketch: The reduction is from the existence of solu-
tions to Diophantine equations with a fixed number of vari-
ables and of fixed degree (e.g., degree 16 with 29 variables
[22]). The artifact codes the coefficients of such a polyno-
mial (note that the schema is fixed) as well as a code for a
tuple of variables (with the initial value 0) and the value of
the Diophantine polynomial on the decoded tuple. We use a
fixed library consisting of a single function f that increases
the value of the code by 1. The SWM has one state q, with
transition and synthesis rules as follows:

(q, P 6= 0) → (q, τ ), val(q) ← val(q).

Here P decodes the code value and computes the value of
the polynomial, in PTIME. If the value is 0, the val attribute
is set to 0 and propagated up. Otherwise the function f is
invoked to increase the code by 1, and the process proceeds.
A run does not terminate if there is no solution; otherwise
it terminates with output 01.

The graph of this SWM has one node with a self-loop. For
graphs with larger cycles just add dummy states. 2

A slight modification of the proof shows the following un-
decidability result.

Corollary 4.2: The aggregation problem is undecidable
even if the library, the (deterministic) realization constraint,
the artifact, and the cyclic mediator graph are fixed. That is,
for an arbitrary connected graph G with a cycle, there exist
a fixed library L0, a deterministic realization constraint λ0

and an artifact t0 so that the problem AGP(M, L0, λ0, t0),
whose only input is an SWM M with the mediator graph G,
is undecidable.

Proof sketch: We follow the previous proof and remove
the coefficients of the polynomial from the artifact and in-
stead put attributes for the values of the decoded tuple of
variables. The SWM produces the tuple from a code and
computes the polynomial in the precondition, i.e., we have
a transition rule (q0, p(n̄) 6= 0) → (q1, τ ), where p is the
Diophantine polynomial and n̄ refers to the k-tuple holding
the decoded values. The library consists of a single function
f as in the previous proof. 2

Analyzing the proof, we see that there are two main rea-
sons for undecidability:

1. cyclicity of the mediator graph (even a single cycle
leads to undecidability), and

2. the infinite domain of attribute values of the artifact.

The second constraint is essential for many applications as
artifacts store numbers, dates, strings, etc. So we need to
impose restrictions on the mediator graph. As no cycles are
allowed, we shall look at mediator graphs which are dags
and trees. But now, for completeness only, we present a
simple result for the case of fixed-size domain.

Proposition 4.3: Assume that the size of the domain
of each attribute of the artifact schema is fixed. Then
AGP(M, L, λ, t) can be solved in single-exponential time. If
M and the artifact schema are fixed as well, it is solvable in
polynomial time.

Proof sketch: When the size of the domain is fixed, there
are at most exponentially many artifacts, and then runs of
each realization can be accepted by exponential-size tree au-
tomata. Since the number of realizations with a fixed do-
main is exponential too, we need to check nonemptiness of
exponentially many tree automata, each of exponential size,
which can be done in single-exponential time. When M
and the artifact schema are fixed too, we have polynomially
many realizations and artifacts, and the problem becomes
polynomial. 2

1We thank an anonymous referee for suggesting an improve-
ment of our initial proof.

248



5. Decidable Cases

In this section we identify special decidable cases of the
aggregation problem. We investigate AGP(M, L, λ, t) for
SWMs M that are not recursively defined, i.e., when the me-
diator graph G[M ] of M is acyclic. As a result, one does not
have to worry about the termination of runs of composite
services realized with these SWMs.

5.1 Tree-Structured Mediators

We start with AGP(M, L, λ, t) for tree-structured SWMs

M , i.e., when G[M ] is a tree.

Complexity. Our first result shows that the aggregation
problem indeed becomes decidable when G[M ] has a tree
structure. In fact, it can be solved in single-exponential
time, which is acceptable for static analysis of specifications
such as SWMs.

The problem is, however, intractable even for simple
“pipelined”SWMs, i.e., when G[M ] has a linear (chain) struc-
ture. More specifically, M has a pipelined structure if every
transition rule either has an empty right-hand side, or is of
the form (q, φ) → (q′, τ ). Moreover, the intractability is
rather robust: it holds even if we fix the library L (which is
a reasonable assumption, as in practice, a library of avail-
able services may be relatively stable: it is only updated
periodically).

Theorem 5.1: AGP(M, L, λ, t) is NP-complete for tree-
structured SWMs. The problem remains NP-hard when the
library L is fixed, and when the mediator M has a pipelined
structure.

Proof sketch: There is an NP algorithm that, given a tree-
structured SWM M , a library L, an artifact t, a constraint
λ and a number B, checks whether there exists a realization
ρ valid w.r.t. λ such that M [ρ](t) is smaller than (or greater
than) B. The algorithm first guesses a realization ρ, and
then checks whether ρ is valid w.r.t. λ and M [ρ](t) ≤ B (or
M [ρ](t) ≥ B), in PTIME.

We verify the NP lower bounds of AGPmax(M, L, λ, t)
and AGPmin(M, L, λ, t) by reductions from 3sat and non-
tautology, respectively, which are known NP-complete prob-
lems (cf. [18]). The reductions are based on M with a
pipelined structure and a fixed L. 2

In light of this intractability result one might be tempted
to develop a PTIME approximation algorithm for the ag-
gregation problem such that one can still efficiently find a
solution with certain performance guarantee. However, this
is also infeasible. The result below shows that the aggrega-
tion problem is not even in apx, the class of problems that
allow PTIME approximation algorithms with approximation
ratio bounded by a constant (see, e.g., [3] for apx).

Below we show a stronger result: AGP(M, L, λ, t) does
not even allow PTIME approximation algorithms with ap-
proximation ratio bounded by any polynomial. An algo-
rithm is said to achieve an approximation ratio nl for a
maximization (resp. minimization) problem if for every in-
stance of the problem, it produces a solution of value at

least 1

1+nl
OPT, i.e., in the range [ 1

1+nl
OPT, OPT] (resp. at

most (1 + nl) OPT), where l is fixed and OPT is the value
of the optimal solution. We refer to such an algorithm as a
nl-approximation algorithm. The result below tells us that
no matter what nl is used, it is impossible to find a PTIME
nl-approximation algorithm for AGP(M, L, λ, t) unless P =
NP, even when L and M are fairly restricted.

Theorem 5.2: Unless P = NP, there does not exist any
PTIME nl-approximation algorithm for AGP(M, L, λ, t),
even when M has a pipelined structure and when L is fixed.

Proof sketch: For AGPmax(M, L, λ, t), we show that given
an instance ϕ of 3sat, one can construct in PTIME a
pipelined SWM M , a realization constraint λ and an ini-
tial artifact t, with a fixed library L of services, such that
(a) if ϕ is satisfiable, then there exists a realization ρ such

that M [ρ](t) = 2|X|+1, where X is the set of variables in ϕ

(2|X|+1 is expressed in binary, in O(|X|) space); and (b) oth-
erwise for all realizations ρ, M [ρ](t) = 0. This suffices, for
if there exists a PTIME nl-approximation algorithm for the
aggregation problem, then one can decide 3sat in PTIME.
Indeed, given any instance ϕ of 3sat, we can construct M ,
λ, t, and execute the algorithm on M , λ, t and the fixed L,
all in PTIME. We could then conclude that ϕ is satisfiable
iff the algorithm returns a value no less than 1

1+|X|l
2|X|+1.

Hence we would have had a PTIME algorithm for 3sat,
which is impossible unless P = NP.

The proof for AGPmin(M, L, λ, t) is similar, by reduction
from non-tautology. 2

5.2 DAG-Structured Mediators

We next investigate AGP(M, L, λ, t) for SWMs with a
dag structure. Like tree-structured SWMs, dag-structured
SWMs simplify the aggregation analysis: AGP(M, L, λ, t) is
also decidable in this setting.

Given Theorem 5.1, the best one can hope for is that
AGP(M, L, λ, t) remains in NP for dag-structured SWMs. It
turns out that for these SWMs, the complexity goes up, but
the aggregation problem is still solvable in single exponen-
tial time (in PSPACE). Moreover, the PSPACE hardness
bound remains intact even when the library L is fixed and
the realization constraint λ is deterministic.

Theorem 5.3: AGP(M, L, λ, t) is PSPACE-complete for
dag-structured SWMs. The problem remains PSPACE-hard
when the library L is fixed and the realization constraint λ
is deterministic.

Proof sketch: To show the upper bound, we provide a non-
deterministic algorithm that, given M, L, λ, t and B, guesses
a realization ρ, and checks in PSPACE whether (a) ρ is valid
w.r.t. λ, and (b) M [ρ](t) ≥ B. Hence the problem is in
PSPACE, since PSPACE = NPSPACE.

The PSPACE lower bound is verified by reduction from
q3sat, which is known to be PSPACE-complete (cf. [27]).
The reduction is such constructed that the library L is fixed
and there exists a unique realization ρ valid w.r.t. realization

249



Mediators M AGP(M, L, λ, t) with fixed L with fixed M

tree-structured NP-complete (Th 5.1) NP-complete (Th 5.1) PTIME (Prop 5.4)
approximation-hard (Th 5.2) approximation-hard (Th 5.2)

dag-structured PSPACE-complete (Th 5.3) PSPACE-complete (Th 5.3) PTIME (Prop 5.4)
graph-structured undecidable (Th 4.1) undecidable (Th 4.1) undecidable (Th 4.1)

Table 1: Complexity bounds on the aggregation problem AGP(M, L, λ, t)

constraint λ. 2

When the mediator is predefined. We have seen from
Theorems 4.1, 5.1, 5.2 and 5.3 that fixing library does not
make our lives easier: the lower bounds remain unchanged
when the library of available services is predefined and fixed.

Another practical setting is that a service provider often
maintains a set of predefined mediators. That is, the SWMs

can be considered fixed, while the library L is periodically
updated by adding newly found available services to it, or
removing obsolete services from it.

Below we show that fixing SWMs simplifies the aggrega-
tion synthesis: the problem is in PTIME for a fixed SWM

M , when M has a tree or a dag structure. Contrast this
to Theorem 4.1, which tells us that when the mediators are
recursively defined, fixing both mediators and library does
not help.

Proposition 5.4: AGP(M, L, λ, t) is in PTIME when M
is a fixed dag-structured SWM.

Proof sketch: When M is fixed, given any L, λ, t and for
any realization ρ valid w.r.t. λ, it takes PTIME to compute
M [ρ](t). Indeed, the size of M is a constant in this setting.
From this it follows that it is in PTIME to find a realization
ρ that maximizes (or minimizes) M [ρ](t). 2

6. Conclusion

We have provided a formal treatment of the aggregation
synthesis of Web service mediators, a problem that is of
practical importance but has not been adequately addressed
theoretically. We have developed a model for specifying
mediators with aggregation synthesis, and formulated the
aggregation problem. We have also established matching
upper and lower bounds on the problem for mediators of
various structures. The main results of the paper are sum-
marized in Table 1. We showed that the problem is be-
yond reach in practice for recursively defined mediators, even
when the mediators and the library of available services are
predefined and fixed. Nevertheless, for mediators with a
dag or a tree structure, the problem becomes decidable in
single-exponential time, which is an acceptable complexity
for static analysis problems. More specifically, the problem
is PSPACE-complete for dag-shaped mediators, and is NP-
complete for tree-shaped ones; it is even in PTIME when a
set of predefined mediators are considered, a common set-
ting in practice. These make our lives easier, but only to an
extent: the NP-lower bound remains intact when the media-
tor has a pipelined structure and the library is fixed. Worse

still, the problem does not allow any PTIME approximation
algorithms with a polynomial ratio. The PSPACE lower
bound is also robust when the library is fixed.

This work is a first step toward understanding the aggre-
gation synthesis of Web services. There is naturally much
more to be done. First, nondeterminism deserves a full
treatment. While SWMs support a simple form of nonde-
terminism by means of the instantiations of templates, it
is interesting and practical to extend SWMs by allowing a
transition rule to be associated with multiple pre-conditions.
As remarked earlier, however, this introduces several chal-
lenges. Second, the run of a composite service generated
from an SWM may not terminate. We are currently investi-
gating practical restrictions on SWMs such that every run is
guaranteed to terminate and yield a solution. Third, while
the aggregation problem is undecidable in general and is in-
tractable for non-recursive SWMs, we expect that practical
PTIME cases can be identified in certain specific application
domains. Fourth, it is interesting to revisit the composition
problem when aggregation synthesis is brought into the play.
That is, we want to automatically generate mediators that
coordinate available services and deliver a requested service,
with aggregation analysis that aims to best serve the users’
need. Finally, we would like to develop efficient heuristic
algorithms to realize mediators with aggregation synthesis
for specific applications. The operational semantics given
in Section 2.2 provides a conceptual-level strategy for de-
livering a requested service. The strategy can certainly be
improved by capitalizing on practical pruning techniques.
For instance, one may employ a lazy evaluation strategy
such that if some branch already yields a larger (or smaller)
value than a given bound, realizations of the templates in
other branches as well as their computation can be entirely
avoided.

Acknowledgments. Fan is supported in part by EP-
SRC E029213/1 and a Yangtze River Scholarship. Fan
and Libkin acknowledge the financial support of the Fu-
ture and Emerging Technologies (FET) programme within
the Seventh Framework Programme for Research of the
European Commission, under the FET-Open grant agree-
ment FOX, number FP7-ICT-233599. Deng is with the Na-
tional Laboratory of Software Development Environment at
Beihang University, and is supported in part by the 973
Program (2005CB321803) and the 863 Program of China
(2007AA010301).

7. References

[1] S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis

250



of active XML systems. In PODS, 2008.

[2] S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha.
Relational transducers for electronic commerce. JCSS,
61(2):236–269, 2000.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela, and M. Protasi. Complexity
and Approximation: Combinatorial optimization prob-
lems and their approximability properties. Springer Ver-
lag, 1999.

[4] B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and
F. Toumani. On automating Web services discovery.
VLDB J., 14(1), 2004.

[5] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, and
M. Mecella. Automatic composition of transition-based
semantic web services with messaging. In VLDB, 2005.

[6] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenz-
erini, and M. Mecella. Automatic service composition
based on behavioral descriptions. Int. J. Cooperative
Inf. Syst., 14(4):333–376, 2005.

[7] K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and
J. Su. Towards formal analysis of artifact-centric busi-
ness process models. In BPM, 2007.

[8] P. A. Bonatti and P. Festa. On optimal service selection.
In WWW, 2005.

[9] Business Process Execution Language for Web Services
version 1.1 (BEPL4WS), 2004.
http://www.ibm.com/developerworks/library/
specification/ws-bpel/.

[10] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
The MIT Press, 1999.

[11] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Auto-
matic verification of data-centric business processes. In
ICDT, 2009.

[12] A. Deutsch, L. Sui, and V. Vianu. Specification and
verification of data-driven Web applications. JCSS,
73(3):442–474, 2007.

[13] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification
of communicating data-driven Web services. In PODS,
2006.

[14] W. Fan, F. Geerts, W. Gelade, F. Neven, and A. Poggi.
Complexity and composition of synthesized Web ser-
vices. In PODS, 2008.

[15] C. Fritz, R. Hull, and J. Su. Automatic construction
of simple artifact-based business processes. In ICDT,
2009.

[16] X. Fu, T. Bultan, and J. Su. Analysis of interacting
BPEL Web services. In WWW, 2004.

[17] X. Fu, T. Bultan, and J. Su. Conversation protocols: a
formalism for specification and verification of reactive
electronic services. TCS, 328(1-2):19–37, 2004.

[18] M. Garey and D. Johnson. Computers and intractabil-
ity: A guide to the theory of NP-completeness.
W. H. Freeman and Company, 1979.

[19] C. E. Gerede, R. Hull, O. H. Ibarra, and J. Su. Au-
tomated composition of e-services: lookaheads. In IC-
SOC, 2004.

[20] S.-Y. Hwang, H. Wang, J. Tang, and J. Srivastava.
A probabilistic approach to modeling and estimating
the QoS of web-services-based workflows. Inf. Sci.,
177(23):5484–5503, 2007.

[21] IBM. The océano project.
http://researchweb.watson.ibm.com/oceanoproject/.

[22] J. P. Jones. Undecidable Diophantine equations.
Bull. Amer. Math. Soc., 3(2):859–862, 1980.

[23] Y. Lustig and M. Y. Vardi. Synthesis from component
libraries. In FOSSACS, 2009.

[24] A. Muscholl and I. Walukiewicz. A lower bound on Web
services composition. In FoSSaCS, 2007.

[25] A. Nigram and N. Caswell. Business artifacts: An ap-
proach to operational specification. IBM Systems Jour-
nal, 42(3):428–445, 2003.

[26] OWL-S: Semantic Markup for Web Services, 2004.
http://www.w3.org/Submission/OWL-S/.

[27] C. H. Papadimitriou. Computational Complexity. AW,
1994.

[28] M. Pistore, P. Roberti, and P. Traverso. Process-level
composition of executable web services: “on-the-fly”
versus “once-for-all” composition. In ESWC, 2005.

[29] C. Schmidt and M. Parashar. A peer-to-peer approach
to web service discovery. In WWW, 2004.

[30] Semantic Web Services Framework (SWSF) Version
1.1, 2005. http://www.daml.org/services/swsf/1.1/.

[31] M. Spielmann. Verification of relational transducers for
electronic commerce. JCSS, 66(1):40–65, 2003.

[32] Web Services Conversation Language (WSCL) 1.0,
2002. http://www.w3.org/TR/wscl10/.

[33] Web Services Description Language (WSDL) 1.1, 2001.
http://www.w3.org/TR/wsdl.

[34] T. Yu and K.-J. Lin. Service selection algorithms
for Web services with end-to-end QoS constraints.
Inf. Syst. E-Business Management, 3(2):103–126, 2005.

[35] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-aware middleware
for Web services composition. IEEE Trans. Software
Eng., 30(5):311–327, 2004.

[36] Y. Zhang and W. Fan et al. Extending online travel
agency with adaptive reservations. In Coopis, 2007.

251


	p0001-Deshpande
	p0002-Grohe
	p0003-Fraigniaud
	p0004-Schmidt
	p0034-Kaporis
	p0044-Normann
	p0050-Abiteboul
	p0062-Cohen
	p0076-Fagin
	p0089-Sarma
	p0104-Wang
	p0116-Cohen
	p0129-Arenas
	p0143-Hernich
	p0155-Amano
	p0165-Bodirsky
	p0174-Katayama
	p0182-Marnette
	p0195-Wisnesky
	p0208-Arocena
	p0218-Grahne
	p0230-Figueira
	Introduction
	Data trees and XML documents
	The ATRA model
	Decidability of the emptiness problem

	Decidability of XPath
	Definitions
	Reduction to ATRA non-emptiness
	Allowing arbitrary data tests
	Allowing upward axes
	Allowing stronger data tests

	Concluding remarks
	References

	p0241-Deng


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




