
Bag Equivalence of XPath Queries

Sara Cohen
The Selim and Rachel Benin School of

Engineering and Computer Science
The Hebrew University

Jerusalem 91094, Israel
sara@cs.huji.ac.il

Yaacov Y. Weiss
The Selim and Rachel Benin School of

Engineering and Computer Science
The Hebrew University

Jerusalem 91094, Israel
yyweiss@cs.huji.ac.il

ABSTRACT
When a query is evaluated under bag semantics, each an-
swer is returned as many times as it has derivations. Bag
semantics has long been recognized as important, especially
when aggregation functions will be applied to query results.
This paper is the first to focus on bag semantics for XPath
queries. In particular, the problem of bag-equivalence of a
large class of XPath queries (modeled as tree patterns) is
explored. The queries can contain unions, branching, label
wildcards, the vertical child and descendant axes, the hori-
zontal following, following-sibling and immediately-following
sibling axes, as well as positional (i.e., first and last) axes.
Equivalence characterizations are provided, and their com-
plexity is analyzed. As the descendent axis involves a recur-
sive relationship, this paper is also the first to address bag
equivalence over recursive queries, in any setting.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; H.2.4 [Database Management]: Systems—Query
processing

General Terms
Theory

Keywords
XPath, query equivalence, bag semantics, multiset semantics

1. INTRODUCTION
XPath [4] is a simple language for navigating XML docu-
ments. As such, it is an important component of many XML
standards, including XSL [1], XQuery [2], XML Schema [16],
XLink [10] and XPointer [9]. Proper understanding of the
fundamentals of XPath (i.e., issues such as expressivity, op-
timization, equivalence) are a key to effective use of all the
technologies above.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 22–25, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00

In this paper we focus on the problem of determining equiva-
lence of XPath queries, under bag semantics. Formally, given
two XPath queries, the equivalence problem is to determine
whether the queries will yield the same results, over any
database. Containment and equivalence, under of various
fragments of XPath have been studied extensively, e.g., [11,
13–15, 17], as these problems are considered a key to query
optimization and view usability. Containment of fragments
of XPath, with respect to integrity constraints was studied
in [11] and containment in the presence of DTDs was stud-
ied in [17]. Containment of XPath queries including branch-
ing, wildcard labels and the descendant axis was shown to
be Co-NP complete in [13]. Containment in the presence of
DTDs, disjunctions and variables (comparisons) was studied
in [14]. Finally, containment of XPath 2.0 queries (which can
include path intersection, path equality, path complementa-
tion, for-loops and transitive closure) was studied in [15].
All the above-mentioned work considers only XPath queries
evaluated under set semantics.

The XPath standard dictates that XPath is evaluated un-
der set semantics. Intuitively, this means that a node will
be in the result at most one time, regardless of the number
of ways that the XPath query can be satisfied while deriving
this node. SQL, on the other hand, provides the user with
flexibility (by choosing to include or omit the DISTINCT
keyword) in deciding whether queries should be evaluated
under set semantics, or under bag semantics, wherein an-
swers are returned as many times as they have derivations.
Such flexibility is useful, especially when aggregation func-
tions are applied to the data. In fact, [3] went so far as
to refer to queries evaluated under bag semantics as real
queries. The following example demonstrates information
needs that are properly captured by using bag semantics.

Example 1.1. The database on the left side of Figure 1
describes the structure of departments within a (software)
company. A department may have several teams, each of
which has a leader and direct members. A team may further
be composed of sub-teams, again with their own leader and
members, and so on. Thus, in the example database, Sally
leads a team with direct member Jim. Indirect members of
this team include Saul (who is himself a team leader), as
well as John, Jake and Jessy. The nodes are numbered for
easy reference.

Each of the three boxes on the right side of the same figure
depicts a query (or union of queries). We follow the standard

116

Leader

Team

Member

Company

Company

Dept

Member
Name

Development

Team

Leader Member Team

Leader Member Team

Leader

MemberMember
Member

Sam

Saul

Joe

Sally Jim

John
Jake

Jessy

Company

Member

Dept

*

Company

Dept

Leader

Company

Dept

1

2

3
4

5 6 7

8 9 10

11

12

13

14

Q1

Q3

Q4

Q2D

Figure 1: Database and queries. Ovals indicate output nodes.

convention of depicting queries as tree patterns with single
and double lines representing the child axis and descendant
axis, respectively. The ovals indicate output nodes.

When evaluated under bag semantics, the bag union of the
queries in the top box, i.e., Q1 and Q2, will return each
department, as many times as it has leaders and members,
i.e., the result can be used to count the number of employees
per department. The query Q3 in the middle box returns
each leader as many times as the number of (direct and
indirect) members within his team. The bottom query Q4

returns each member, as many times as the number of teams
in which the member (directly or indirectly) belongs.

Equivalence of non-recursive Datalog queries under bag se-
mantics has been studied rather extensively [3,5–7,12] (some-
times in the context of count-queries). However, these re-
sults do not carry over to XPath queries, for several reasons.
First, XPath queries are evaluated over databases that must
have tree form, whereas Datalog queries are evaluated over
arbitrary databases. Second, XPath uses axes, such as de-
scendant, that are inherently recursive. No previous work
has studied bag equivalence of recursive Datalog queries.
Third, bag and bag-set semantics coincide for XPath queries
(as each node has a unique identity in the XML data model),
but not for Datalog queries—making the setting quite dif-
ferent. This paper is the first to study equivalence of XPath
queries under bag semantics. We note that due to the well-
known correspondence between bag semantics and queries
with the aggregation function count [6], the results in this
paper imply equivalence characterizations for XPath count-
ing queries.

The main contribution of this paper is a complete charac-

terization of bag equivalence of XPath queries, written as
tree patterns. We consider queries that can contain mul-
tiple output nodes, unions, branching, label wildcards, the
vertical child and descendant axes, the horizontal following,
following-sibling and immediately-following sibling axes, as
well as positional axes (first and last). The complexity of
equivalence is also analyzed. As the descendant axis involves
a recursive relationship, this paper is the first to address bag
equivalence over recursive queries, in any setting.

This paper is structured as follows. Section 2 defines the no-
tion of a database, a query and bag semantics for evaluation.
To make the presentation clearer, we start by considering
only one horizontal axis. Section 3 reduces the equivalence
problem to that of equivalence of completely ordered sets of
queries, and Section 4 provides our equivalence characteri-
zation. In Section 5 we show how to extend our results to
a richer setting, including different types of horizontal axes.
Section 6 concludes.

2. DEFINITIONS
2.1 Databases
Let Σ be an infinite set of symbols A, B, C, . . ., called labels.
A database D = (V, E, r,≺, λ) is a labeled, ordered, directed,
rooted tree, where (1) V is the set of nodes, (2) E is the set
of edges, (3) r ∈ V is the root node, (4) ≺ is a complete
ordering over sibling nodes and (5) λ : V → Σ associates
each node a with a label λ(a). For sibling nodes a, b, we
write a ≺ b if a precedes b.

We say that a is an ancestor of b if there is a directed path
from a to b in D. We say that a is a non-strict ancestor of
b if a is an ancestor of b or a = b. We will also say that b

is a non-strict descendant of a. We say that b c-follows a

117

if a depth-first traversal of D starting at c reaches a, then
returns to c, and then reaches b. Formally, b c-follows a if
there are children a′ and b′ of c such that (1) a′ is a non-
strict ancestor of a, (2) b′ is a non-strict ancestor of b and
(3) a′ ≺ b′.

For example, consider the database in Figure 1. Assume
that the ordering ≺ is defined in the left-to-right order in
which nodes appear. Then, Node 7 is an ancestor of Node 9
and a non-strict ancestor of Nodes 7 and 9. Node 12 7-
follows Node 8, as does Node 10. However, Node 12 does
not 7-follow Node 11.

2.2 Query Syntax
We formally define a query as follows.1

Definition 2.1 (Query). A query Q = (V, E, r,≺, λ, ō)
is defined similarly to a database, with four adaptations:

• the set of edges E is a disjoint union of two sets E/ and
E//, called child and descendant edges, respectively;

• λ is a function V → Σ∪{∗}, where ∗ is a special symbol
not appearing in Σ, called the wildcard symbol;

• ≺ is a partial ordering among sibling nodes in V , i.e.,
there may be sibling nodes v, w for which neither v ≺ w
nor w ≺ v.

• ō is a sequence of nodes from V , called the output
nodes.

To make the presentation clear, we use lowercase letters from
the beginning of the alphabet a, b, c, . . . to denote database
nodes, lowercase letters from the end of the alphabet u, v, w, . . .
to denote query nodes and capital letters from the beginning
of the alphabet A, B, C, . . . to denote symbols from Σ.

If ≺ implies a contradiction, then Q is inconsistent. Unless
otherwise stated, we assume that all queries are consistent
in this paper. If ≺ is a complete ordering of sibling nodes,
Q is a completely ordered query . If ≺ is empty, then Q is a
orderless query . We use Q to denote a multiset of queries. If
all the queries in Q are completely ordered (resp. orderless),
then we say that Q is completely ordered (resp. orderless).

2.3 Query Semantics
In this paper, we evaluate queries over databases under bag
semantics. In other words, a tuple of nodes may appear
multiple times in the output, depending on the number of
matchings achieving this tuple. A formal definition follows.

Definition 2.2 (Matching). Let D = (VD, ED, rD,≺D

, λD) be a database and Q = (VQ, E/ ∪E//, rQ,≺Q, λQ, ō) be
a query. A mapping µ : VQ → VD is a matching of Q to D
if all the following conditions hold:

• edge consistency: ∀(v,w) ∈ E/, (µv, µw) ∈ ED and
∀(v, w) ∈ E//, the node µv is an ancestor of µw in D;

1The query language is enriched in Section 5.

• root consistency: µrQ = rD;

• label consistency: ∀v ∈ VQ, either λQ(v) = ∗ or λQ(v) =
λD(µv);

• order consistency: ∀v, w ∈ VQ, if v, w are sibling nodes
with parent u and v ≺Q w, then µw µu-follows µv, i.e.,
there exist children a and b of µu in VD such that

1. a is a non-strict ancestor of µv,

2. b is a non-strict ancestor of µw and

3. a ≺D b.

Note that if Q is completely ordered, then µ must be injec-
tive. We use M(Q,D) to denote the set of all matchings
from Q to D.

Remark 2.3. Our semantics for ≺ differs slightly from
the standard semantics of the XPath following axis. In par-
ticular, given query node u with children v and w such that
v ≺ w, we require µv and µw be non-strict descendants of
distinct children a and b of µu. The standard meaning of
the following axis would only require µv and µw to have
a common ancestor that is a descendant of µu, and differs
from µv.

Our semantics for ≺ allows the equivalence characterization
to be presented in a clear fashion. It is easy to express the
semantics of the XPath following axis (as well as following-
sibling) using the ≺ primitive. Details appear in Section 5.

The result of applying Q to D, is the multiset of tuples

Q(D) := {{µ(ō) | µ ∈ M(Q, D)}},

where {{·}} is used to denote a multiset. The result of apply-
ing a multiset of queries Q to D, is simply the bag-union of
the results of applying all queries Q ∈ Q to D, i.e.,

Q(D) :=
]

Q∈Q

Q(D) .

Example 2.4. Consider the database D in Figure 1. There
are three matchings of Q1 to D, all of which map Com-
pany to Node 1, and Dept to Node 2. These matchings map
Leader to Nodes 5, 8 and 11. Similarly, there are five match-
ings of Q2 to D, all of which agree with Q1 on Company and
Dept, but map Member to one of five different nodes. Thus,
{{Q1, Q2}}(D) contains Node 2 a total of 8 times, i.e., can be
used to count the number of employees per department.

Now consider Q3. For each Leader node in D, there is a
single way to map Team, and multiple ways to map Member
(exactly as many as there are Member descendant nodes for
the Team). Thus, Q3(D) contains Nodes 5, 8 and 11 a total
of 5, 4 and 3 times, respectively. It is then easy to see that
Q3 returns the each leader exactly as many times as the
number of (direct or indirect) members of his team.

Finally, consider Q4. For each Member node in D, there is a
matching of Q4 to the database that maps the node labeled

118

x ≺ {v,w}

w

x ≺ v

v

ww

y y

v vv

x ≺ w

w

A

Q1

v

∗u

A A
x

A

Q2

v

∗u

A A
x

A

Q3

∗u

A
x {v,w}

A

Q

v

∗u

A A
x w w w

∗

A

u

A
x

A

Q5

∗

A

u

x

Q7

A A

∗

x ≺ y,w ≺ v

∗

A

u

x

Q6

A A

∗

x ≺ v, x ≺ w x ≺ v, v ≺ w x ≺ w,w ≺ v

x ≺ y, v ≺ w

∗

A

u

A
x

A

Q4

Figure 2: Query Q and {v, w}-expansion Exp{v,w}(Q) = {Q1, . . . , Q7}.

∗ to each of the ancestors of the member node (other than
Company and Dept). Therefore, each Member node will be
returned exactly as many times as the number of teams to
which the member (directly or indirectly) belongs.

2.4 Problems of Interest
We say that the multisets of queries Q and Q′ are equivalent ,
written Q ≡ Q′, if, for all databases D, it holds that Q(D) =
Q′(D). Similarly, Q is contained in Q′, written Q ⊆ Q′,
if, for all databases D, it holds that Q(D) is a subbag of
Q′(D). The bag-equivalence problem (or simply equivalence
problem, for short) is to determine whether two multisets of
queries are equivalent. The containment problem is defined
similarly.

In this paper we focus on the equivalence problem, and pro-
vide a complete characterization of equivalence. Limited
results are presented on the containment problem (see Sec-
tion 6 for discussion of the elusiveness of this problem).

3. REDUCTION TO COMPLETELY ORDERED
QUERIES

In this section we reduce the general problem of equivalence
of multisets of queries to that of equivalence of multisets
of completely ordered queries. Formally, we show that for
any query Q there exists a multiset of completely-ordered
queries Q that is equivalent to Q. Note that care must be
taken to ensure that Q not only returns the same results as
Q, but also with the same multiplicities. The key concept
used in finding Q is that of an expansion, defined next.

Let Q = (V, E, r,≺, λ, ō) be a query. We say that a pair
of nodes v, w are order-unknown sibling nodes if (1) v and
w are siblings and (2) neither v ≺ w nor w ≺ v follows
from ≺. If v, w are order-unknown sibling nodes, then the
{v, w}-expansion of Q is the multiset of queries Exp{v,w}(Q)
containing the following queries:

• Directly Adding Order: Exp{v,w}(Q) contains the
queries Q1 and Q2, which are derived by adding v ≺ w
and w ≺ v, respectively, to Q;

• Uniting Nodes: If λ(v) = λ(w), λ(v) = ∗ or λ(w) =
∗, then Exp{v,w}(Q) contains the query Q3, which is
derived by

1. removing v and w from V , and adding the node
{v, w}, instead;

2. giving {v, w} the label λ(v), if λ(v) 6= ∗, and λ(w)
otherwise;

3. replacing every occurrence of v and w in E//, E/,
≺, ō with {v, w};

4. if (u, {v, w}) is now in both E// and E/, then re-
moving (u, {v, w}) from E//.

In other words, nodes v, w are united in Q3.
2

• Demoting a Node: If (u, v) ∈ E//, then Exp{v,w}(Q)
contains the query Q4, which is derived by (1) remov-
ing (u, v) from E//, (2) adding (w, v) to E//, and (3)
replacing all occurrences of v in ≺ with w. In other
words, in Q4, the node v is demoted to become a child
of w.

Similarly, if (u, w) ∈ E//, then Exp{v,w}(Q) contains
the query Q5, which is created symmetrically, by de-
moting w to become a child of v.

• Lowering Both Nodes: If (u, v) ∈ E// and (u, w) ∈
E//, then Exp{v,w}(Q) contains the query Q6, which
is derived by

1. creating a new node y with λ(y) = ∗;

2. replacing all occurrences of v and w in ≺ with y

3. adding edges (u, y), (y, v) and (y,w) to E//;

2Due to the symmetrical nature of Q3, we do not need to
create an additional query with the roles of v and w reversed.

119

y
B

u A

∗
w

C

A
v

x

Q1

v ≺ w

y
B

u A

∗
w

C

A
v

x

Q2

w ≺ v

y
B

u A

C

A

x

{v,w}

Q3

x ≺ y

Q

y
B

u A

∗
w

C

A
v

x
u A

C

A
v

x

∗

B

w

y

y
B

u A

C

A

x

{v,w}

Q4

y ≺ x

u A

C

A
v

x
∗

B

w

y

x ≺ w

u A

C

A
v

x
∗

B

w

y

w ≺ x

u A

C

A
v

B

{w, x}

y

Q8
Q7Q6Q5

Figure 3: Query Q and complete expansion Exp(Q) = {Q1, . . . , Q8}.

4. removing edges (u, v) and (u, w) from E//;

5. adding v ≺ w to ≺.

In other words, in Q6, the nodes v, w are lowered below
a new node y.

Similarly, Exp{v,w}(Q) contains the query Q7, created
in the same fashion as Q6, except in the final step
w ≺ v is added to ≺.

Example 3.1. To demonstrate, consider the query Q in
Figure 2. The multiset Exp{v,w}(Q) contains exactly the
queries Q1, . . . , Q7. Note that if Q were of a different form,
then Exp{v,w}(Q) might contain less queries. For example,
if the incoming edge of v was not a descendant edge, then
Exp{v,w}(Q) would not contain Q4, Q6 or Q7.

Remark 3.2. In Figure 2, as in many of the upcom-
ing figures, we do not explicitly note the output nodes.
The reader may assume that Q (and hence, Q1, . . . , Q7) is
Boolean, i.e., returns the empty sequence over a database D
with the multiplicity of the number of matchings of Q over
D. We choose to present Boolean queries in our examples,
to reduce clutter.

There may be queries in Exp{v,w}(Q) that are isomorphic.

Definition 3.3 (Isomorphic). Queries Q1 = (V1, E/1
∪

E//1
, r1,≺1, λ1, ō1) and Q2 = (V2, E/2

∪ E//2
, r2,≺2, λ2, ō2)

are isomorphic, denoted Q1 ∼ Q2, if there exists a bijective
mapping ϕ from V1 to V2 such that

• (v, w) ∈ E/1
if and only if (ϕv, ϕw) ∈ E/2

;

• (v, w) ∈ E//1
if and only if (ϕv, ϕw) ∈ E//2

;

• ϕr1 = r2;

• v ≺1 w holds if and only if ϕv ≺2 ϕw holds;

• for all v, λ1(v) = λ2(ϕv));

• ϕō1 = ō2.

For example, in Figure 2, there are three pairs of isomorphic
queries, namely, Q1 ∼ Q2, Q4 ∼ Q5 and Q6 ∼ Q7.

We now show the main property of a {v, w}-expansion.

Lemma 3.4. Let Q be a query and v, w be order-unknown
sibling nodes. Then, Q ≡ Exp{v,w}(Q).

A pair u, v of sibling nodes are at level n if u and v each
have n ancestors. We say that u, v are a lowest level pair
of order-unknown sibling nodes, or llou sibling nodes for
short, if u, v are order-unknown sibling nodes and there is no
pair of order-unknown sibling nodes with a lower level (i.e.,
closer to the root) than u, v. Note that there may be several
lowest-level pairs of order-unknown sibling nodes. A com-
plete expansion of a multiset of queries Q, denoted Exp(Q),
is derived by the following process:

120

Computing a Complete Expansion

While ∃Q ∈ Q that is not completely ordered,
• choose a pair of llou sibling nodes v, w, and
• replace Q with Exp{v,w}(Q) in Q.

The following theorem states that the process of comput-
ing a complete expansion terminates (i.e., Exp(Q) will be
finite) and, moreover, that each query in Exp(Q) is at most
twice as large as Q. Of course, Exp(Q) can contain an ex-
ponential number of queries. Finally, note that termination
is not obvious, as the process of computing a complete ex-
pansion introduces new node, which must be considered in
later stages of computing a complete ordering.

Theorem 3.5. Let Q be a query. Then, a complete ex-
pansion Exp(Q) is of finite size. Moreover, each query in
Exp(Q) is at most twice as large as Q.

We now conclude the main result of this section.

Corollary 3.6. Let Q be a multiset of queries. Then,
Exp(Q) is a finite completely ordered multiset of queries,
such that Q ≡ Exp(Q).

Example 3.7. Consider first query Q in Figure 2. All
queries in {Q1, . . . , Q7} are completely ordered, and thus,
Exp(Q) = {Q1, . . . , Q7}. Note that a complete expansion
was derived by a single step of the expanding process.

A more sophisticated example appears in Figure 3. Con-
sider the query Q in this figure. It is possible to show that
Exp(Q) = {Q1, . . . , Q8}. Note that these queries are de-
rived by repeatedly choosing pairs of order-unknown sibling
nodes, and computing the expansion for these pairs. (The
numbering of the queries Q1 through Q8 is only provided
for convenience and does not correspond with the number-
ing provided in the definition of a {v, w}-expansion.) By
Corollary 3.6, it follows that Q ≡ {Q1, . . . , Q8}.

4. CHARACTERIZING EQUIVALENCE
In this section, we study equivalence of multisets of com-
pletely ordered queries. Therefore, unless explicitly stated
otherwise, we will assume that all queries are completely or-
dered. By Corollary 3.6, equivalence of general multisets of
queries can be reduced to equivalence of multisets of com-
pletely ordered queries.

We start by introducing the notion of a core of a query,
which captures the essence of a query (Section 4.1). Next,
we consider several cases in which multisets of queries ap-
pear different, yet are equivalent (Section 4.2). Then, we
introduce the notion of a canonical database, which will be
used in the proof of our equivalence characterization (Sec-
tion 4.3). Finally, we present and prove a sufficient and
necessary property for equivalence (Section 4.4).

y

v

x ≺ y x ≺ v

v
A

Q̂

u

A
x

∗

y′
1
≺ v

Q′

∗

u

A

A
x

y′
1

∗
y′
2

v

∗

∗

A ∗

Q

A

x

u

Figure 4: Query Q, and its core Q̂. The core of Q′

is isomorphic to Q̂. In Q and Q′, core nodes are

underlined.

4.1 Core Nodes and Queries
In this section we define cores of queries. Intuitively, a core
of a query Q captures the “essence” of Q while abstract-
ing away (removing) paths of wildcard labeled nodes. To
formalize this idea, we start by defining core nodes.

Definition 4.1 (Core Node). Let Q = (V, E, r,≺, λ, ō)
be a completely ordered query. We say that a node v ∈ V is
a core node if at least one of the following conditions hold:

1. v is the root, i.e., v = r;

2. λ(v) 6= ∗;

3. v has more than one child;

4. v is an output node, i.e., appears in ō;

5. v is a leaf node.

We use V̂ to denote the set of core nodes in V .

Observe that a node v is not a core node only if v is an
intermediate node of Q (not the root or leaf), is labeled with
a wildcard, has a single child and is not an output node.

Consider a path in Q of the form p = u, z1, . . . , zn, v where
u, v ∈ V̂ , and zi 6∈ V̂ , for all i. We call p a core path, u, v
core endpoints (as they are at either ends of a core path) and
z1, . . . , zn intermediate nodes. In particular, in a core path
all intermediate nodes zi have a single child and are labeled
with ∗. The notion of a core path will be central to many of
the results in this section.

We use Q⇓(u,v) to denote the query derived by collapsing
the path from u to v, i.e., Q⇓(u,v) is derived from Q by:

• removing all nodes z1, . . . , zn;

• adding a descendant edge (u, v);3

3For the special case that n = 0, i.e., there are no interme-
diate nodes, and (u, v) is a child edge, it is replaced with a
descendant edge.

121

• replacing any occurrence of z1 in ≺ by v (i.e., v inherits
all sibling orderings of z1).

Obviously, the query Q⇓(u,v) is completely ordered, if Q is

completely ordered. The core query of Q, denoted Q̂ is the
query derived by collapsing all core paths of Q.

To demonstrate the notion of a core query, consider the
query Q and its core Q̂ in Figure 4. The core nodes are
underlined. Note that the node y does not appear in Q̂, as
y is not a core node. Note also that x ≺ v in Q̂, as x ≺ y in
Q.

Different queries may have isomorphic cores. Formally, we
say that Q and Q′ are core isomorphic, if Q̂ is isomorphic
to Q̂′. Suppose that Q and Q′ are completely-ordered, core-
isomorphic queries. The queries Q̂ and Q̂′ are also com-
pletely ordered. Therefore, there is a single isomorphism ϕ
from Q̂ to Q̂′. By abuse of notation, we will consistently
use the same letters to denote a core node v in Q and its
(single) corresponding node ϕv in Q′. Thus, e.g., if u, . . . , v
is a core path in Q, then u, . . . , v will be a core path in Q′

with corresponding endpoints. (Note, of course, that the
intermediate nodes in the core path will differ.)

Now, consider query Q′ in Figure 4. Once again, the core
nodes have been underlined. Observe that we have used the
same letters to denote corresponding core nodes in Q′ and
in Q, as Q̂ ∼ Q̂′. Using this notational convention, Q̂ and
Q̂′ are actually identical (and are exactly the query in the
center of Figure 4).

4.2 Different, Yet Equivalent, Queries
We extend the notion of isomorphic queries, presented ear-
lier, to multisets of queries. Formally, we say that two mul-
tisets of queries Q and Q′ are isomorphic, written Q ∼ Q′

if (1) |Q| = |Q′| and (2) there is a bijection π from Q to Q′

such that

∀Q ∈ Q(Q ∼ π(Q)) .

Obviously, if Q ∼ Q′, then Q ≡ Q′. Unfortunately, the
converse does not hold. In this part we explore two simple
cases where multisets of non-isomorphic queries are indeed
equivalent. Later on we will show that, essentially, these
are the only cases in which non-isomorphic queries can be
equivalent.

4.2.1 Flipping Edges Types
Let Q be a query. Let u, z1, . . . , zn, v be a core path in
Q. We say that a node zi on this path is flippable if the
single incoming and outgoing edges of zi are of different
types (i.e., one is a child edge and one is a descendant edge).
We say that Q′ is the zi-flip of Q, if Q′ is derived from Q
by switching the types of the incoming and outgoing edges
of zi (e.g., if (zi−1, zi) ∈ E// and (zi, zi+1) ∈ E/ in Q, then
(zi−1, zi) ∈ E′

/ and (zi, zi+1) ∈ E′
// in Q′).

To demonstrate, consider queries Q and Q′ from Figure 5.
It is easy to see that Q′ is the y-flip of Q. Next we will show
that this implies that Q ≡ Q′.

y

x ≺ y

y

x ≺ y

∗ ∗

A ∗

Q′

u

A

x
A ∗

Q

u

A

x

v v

Figure 5: Queries Q and Q′, such that Q′ is the y-flip

of Q.

Proposition 4.2. Let Q be a query, and z be a flippable
intermediate node on a core path. Let Q′ be the z-flip of Q.
Then, Q̂ ∼ Q̂′ and Q ≡ Q′.

We say that queries Q and Q′ are flip isomorphic, denoted
Q ∼f Q′, if

• Q̂ is isomorphic to Q̂′;

• for all (u, v) in Q̂, the path from u to v in Q has the
same number of child edges and the same number of
descendant edges, as the path from u to v in Q′.4

To understand the intuition behind this notion, it is easy
to see that if Q ∼f Q′, then there is a series of flips that,
starting from Q, derives a query that is isomorphic to Q′. We
extend the notion of flip isomorphic to multisets of queries
in the natural way, i.e., Q ∼f Q′ if there is a bijection π
from Q to Q′ such that for all Q ∈ Q, we have Q ∼f π(Q).

Corollary 4.3 follows from Proposition 4.2.

Corollary 4.3. Let Q and Q′ be multisets of queries. If
Q ∼f Q′, then Q ≡ Q′.

4.2.2 Edge Unrolling
We now consider a second case where non-isomorphic queries
can be equivalent. Let Q = (V, E/∪E//, r,≺, λ, ō) be a query.
Let (u, v) be an edge in E//. The (u, v)-unrolling of Q is the
set of queries {Q1, Q2} derived as follows:

• Q1 is simply the query Q, with the edge (u, v) removed
from E// and added to E/.

• Q2 is the query derived by (1) adding a node z with
λ(z) = ∗, (2) replacing all occurrences of v in ≺ with
z and (3) removing edge (u, v) from E// and adding
edges (u, z) to E/ and (z, v) to E//. In other words,
the node v is demoted to be below the new node z.

Note that if Q is completely ordered, then so is {Q1, Q2}.

4Note that we are following the convention stated earlier
that uses the same node names to denote corresponding
nodes in queries with isomorphic cores.

122

yy

v ≺ y

y

z ≺ yv ≺ y

∗ ∗ ∗

A

Q1

u

A

v
A

Q

u

A

v

x x

Q2

u

A

z
∗

A
v x

∗ ∗ ∗

Figure 6: Queries {Q1, Q2} are the (u, v)-unrolling of

Q.

Example 4.4. To demonstrate, observe that {Q1, Q2} in
Figure 6 is the (u, v)-unrolling of Q (in the same Figure).
This figure demonstrates a single unrolling of an edge in Q.
Obviously, it is possible to continue unrolling edges in Q1

and Q2, and creating additional queries.

Intuitively, Q1 captures matchings µ for which µ(v) is a
child of µ(u) and Q2 captures matchings µ′ for which µ′(v)
is a descendant, but not a child, of µ′(u). Therefore, the
following property is immediate.

Proposition 4.5. Let Q be a query, and (u, v) be a de-
scendant edge in Q. Then, the (u, v)-unrolling of Q is equiv-
alent to Q.

Let Q be a query and k be a positive integer. We say that
Q is k-unrolled if, for each core path p in Q, one of the
following conditions holds

• p contains only child-edges or

• p contains at least k edges.

Similarly, we say that a multiset of queries Q is k-unrolled,
if every query in Q is k-unrolled. Given a multiset of queries
Q, the definition of a (u, v)-unrolling of a query immediately
provides us with a method to create a multiset Unrollk(Q)
that is k-unrolled and is equivalent to Q. Actually, there
may be many different ways to create k-unrolled multiset
of queries equivalent to Q, as there may be several descen-
dant edges on the path from u to v (which can be unrolled).
To make Unrollk(Q) unambiguous, we will assume that we
always unroll the topmost descendant edge on the path.

We will write Q ∼f
k Q′ if the k-unrollings of Q and Q′ are

flip isomorphic, i.e., if Unrollk(Q) ∼f Unrollk(Q′). Later,
in Theorem 4.10, we will prove that given multisets of com-
pletely ordered queries Q and Q′ it is possible to determine
a value k such that Q ≡ Q′ if and only if Q ∼f

k Q′. To show
this, we will need to consider databases of a specific form,
called canonical databases, which are introduced in the next
section.

Example 4.6. In Figure 6, the set {Q1, Q2} is a 2-unrolling
of Q, but is not a 3-unrolling of Q (e.g., since the paths from
u to v and from u to x in Q2 contain descendant edges, but
do not contain 3 edges). Observe also that Q ∼f

k {Q1, Q2}
for all k ≥ 2.

4.3 Canonical Databases
A canonical database for a query Q is created out of its core
Q̂. Intuitively, a canonical database for Q is generated from
Q̂ by replacing wildcards with a label, and replacing edges
with chains of nodes. In other words, while Q̂ is derived from
Q by collapsing core paths, a canonical database is created
by “expanding” descendant edges of Q̂.

Formally, let Q be a completely ordered query. Creating a
canonical database out of Q involves three types of opera-
tions:

• Core Path Replacement: Let u, . . . , v be a core
path in Q. Let i be a non-negative integer. The i-
length path replacement for u, v is derived from Q by
replacing the path u, . . . , v with a path u, z′

1, . . . , z
′
i, v

of child edges where z′
i are new nodes labeled ∗. In

addition, if z is the first child of u on the core path
before the replacement and z′ is the first child of u on
the core path after the replacement, then we replace
every occurrence of z in ≺ by z′.

If θ is a function that maps each pair of core endpoints
in Q to a non-negative integer, then the θ-path replace-
ment of Q, denoted Qθ is derived by simply applying
the θ(u, v)-length path replacement for each core path
u, . . . , v. Note that core paths may be replaced by
paths that are either longer or shorter.

• Wild Card Elimination: Let Z be an unused label.5

The wildcard eliminated version of Q, denoted Q∗⇒Z,
is derived by replacing all ∗ labels with the label Z.

• Descendant Edge Elimination: The descendant-
edge eliminated version of Q, denoted Q//⇒/ is derived
by replacing all descendant edges with child edges.

Finally, let θ be a mapping of all pairs of core endpoints in
Q to nonnegative integers. The canonical database for θ and
Q, denoted D

Q
θ is defined as

D
Q
θ := ((Qθ)∗⇒Z)//⇒/ .

In other words, to derive a canonical database for θ and
Q we simply apply all three of the above defined steps, in
order. When Q is clear from the context we will drop the
superscript and simply write Dθ .

Example 4.7. Consider the queries Q, its core Q̂ and
query Q′, appearing in Figure 4. Figure 7 contains two
canonical databases for Q, namely Dθ1 and Dθ2 . Due to
our notational convention of using the same letters for cor-
responding core nodes in core-isomorphic queries, we can
also view these databases as being canonical databases for
Q′. Note that Q is not satisfiable over Dθ1 , but is satisfiable
over Dθ2 .
5Since Σ is infinite, we may assume that there is some label
Z not appearing in any queries.

123

Z

Z

Z

A

Dθ1

z ≺ z′

z′

A

u

z

x v

Z

Z

A

Z

A

Dθ2

x ≺ z1

z1

z2

v

u

x

θ1(u, x) = 1
θ1(u, v) = 1

θ2(u, x) = 0
θ2(u, v) = 2

Figure 7: Canonical databases.

We continue with our notational abuse by using the same let-
ters to denote core nodes and their corresponding database
nodes (as in Figure 7). Recall that the series of output nodes
ō in Q are all core nodes, and hence, appear in the database.
We will have a particular interest in the series of database
nodes ō. To distinguish these as nodes from the database
(as opposed to their identically named corresponding query
nodes), we will call this series of nodes the target series for

D
Q
θ .

We now establish which types of queries may return the tar-
get series when evaluated over D

Q
θ . In the following propo-

sition, we use |V (Q)| to denote the number of nodes in Q
and |V 6=∗(Q)| to denote the number of nodes in Q that have
a label that differs from ∗.

Proposition 4.8. Let D
Q
θ be a canonical database for θ

and Q. Let Q′ be a query with the same number of output
nodes as Q. If Q′(DQ

θ) contains the target series, then one
of the following conditions must hold:

• |V (Q̂′)| < |V (Q̂)|;

• |V (Q̂′)| = |V (Q̂)|, but |V 6=∗(Q̂
′)| < |V 6=∗(Q̂)|;

• Q̂ ∼ Q̂′.

We say that θ is a path respecting mapping of core paths in
Q to nonnegative integers, if for all pairs of core endpoints
u, v in Q,

• if the core path p = u, . . . , v contains only child edges,
then θ(p) is the number of intermediate nodes of p;

• if the core path p = u, . . . , v contains at least one
descendant edge, then θ(p) is greater-or-equal-to the
number of intermediate nodes of p.

This is an important property, since if θ is not path respect-
ing for Q, then Q(DQ

θ) will not contain the target series.

We now establish the number of times that a query Q will
return the target series over a canonical database D

Q
θ . In

particular, we will show that this number is a polynomial in
the values that θ assigns.

Let Q be a query and let θ be a path respecting mapping. We
analyze the number of times that Q will return the target
series. Let u, v be core endpoints of Q. We use du,v and
cu,v to denote the number of descendant and child edges,
respectively, on the path from u to v. We define

bu,v =

8

>

>

>

<

>

>

>

:

1 if du,v = 0
`

θ(u,v)−cu,v+1
du,v

´

if v is a leaf, λ(v) = ∗ and

v is not in ō
`

θ(u,v)−cu,v

du,v−1

´

otherwise

Proposition 4.9. Let Q be a query and θ be a path-
respecting mapping. Let E be the set of all pairs of core
endpoints in Q. Then, Q returns the target series over D

Q
θ

with multiplicity

Φ(Q, θ) =
Y

(u,v)∈E

bu,v . (1)

4.4 Equivalence Characterization
We use maxcp(Q) to denote the number of intermediate
nodes on the longest core path in Q. Similarly, for a multiset
of queries Q, we define

maxcp(Q) = max{maxcp(Q) | Q ∈ Q}

For example, consider queries Q and Q′ in Figure 4. Then,
maxcp(Q) = 1 (due to the core path u, y, v) and maxcp(Q′) =
2 (due to the core path u′, y′

1, y
′
2, x

′).

We now state and prove the main result of this paper. The
basic strategy in our proof is to identify a query for which
a family of canonical databases may be created. We then
show that if Q and Q′ do not satisfy a certain property, then
the number of times that Q and Q′ return the target series
over the canonical databases are different polynomials. This
proof is somewhat in the spirit of the proofs used to char-
acterize equivalence of conjunctive queries with or without
comparisons [6] but is significantly more intricate due to the
presence of recursion, implied by the descendant edges.

Theorem 4.10. Let Q and Q′ be multisets of completely
ordered queries. Let k = maxcp(Q∪Q′) + 1. Then,

Q ≡ Q′ ⇐⇒ Q ∼f
k Q′

.

The intuition follows. It follows from Propositions 4.2 and 4.5
that if Q ∼f

k Q′, then also Q ≡ Q′. Thus, it remains to show
the other direction. In fact, we show the contrapositive, i.e.,
that if Q 6∼f

k Q′, then also Q 6≡ Q′.

We may assume that Q and Q′ are k-unrolled (otherwise we
compute these unrollings). We may assume that there is no
pair of queries Q ∈ Q and Q′ ∈ Q′ such that Q ∼f Q′. Oth-
erwise, such queries always contribute the same results with
the same multiplicities to Q and Q′, and can be removed.
Since Q 6∼f

k Q′, some queries remain.

124

Among the queries in Q and in Q′, we find a query Q1 that
is minimal in its number of core nodes, and among those,
minimal in its number of non-wildcard labeled core nodes.
We will be creating a family of canonical databases for this
query and will show that over some database in this family Q
and Q′ return the target series a different number of times.

By Proposition 4.8 and our choice of Q1, it follows that
any query in Q or Q′ that returns the target series over a
canonical database for Q1 must be core isomorphic to Q1.
Thus, we can assume that all queries in Q and Q′ are core
isomorphic to Q1, since all other queries will not return the
target series over the family of database that we define.

Not only do we wish to create canonical databases, we wish
to make these databases path respecting for some query in
Q or Q′. To choose this query, we find among all those
(core-isomorphic) queries of Q and Q′, a query Q2 for which
the following property holds: There is no Q ∈ Q ∪Q′, such
that for all pairs of core endpoints u, v, the core path from
u to v in Q is shorter than the core path from u to v in Q2.

Now, our family of databases is defined to be canonical
databases D

Q2
θ such that θ is path-respecting for Q2. Fi-

nally, we show that given such a canonical database D
Q2
θ ,

the number of times that Q and Q′ return the target series
is a polynomial in the values assigned by θ. Using Proposi-
tion 4.9 we show that the polynomials for Q and Q′ differ,
implying that there is some canonical database for which Q
and Q′ return the target series a different number of times.

Taken together, Theorem 4.10 and Corollary 3.6 provide
an equivalence characterization for arbitrary multisets of
queries (that may not be completely ordered).

Corollary 4.11. Let Q and Q′ be multisets of queries,
which may not be completely ordered. Then,

Q ≡ Q′ ⇐⇒ Exp(Q) ∼f
k Exp(Q′) ,

where k = maxcp(Exp(Q∪Q′)) + 1.

Based on Corollary 4.11, we present an upper bound on the
complexity of equivalence. The following result is relies on
the facts that (1) the size of every query in the multiset
Unrollk(Exp(Q)),Unrollk(Exp(Q′)) is bound by a polyno-
mial in the size of the input and (2) using nested loops,
we can check for the equivalence characterization, without
generating all queries Unrollk(Exp(Q)),Unrollk(Exp(Q′))
at the same time.

Theorem 4.12. Let Q and Q′ be multisets of queries,
which may not be completely ordered. It is possible to de-
termine whether Q ≡ Q′ in PSPACE.

We now consider the containment problem. As is the case for
Datalog queries, containment is significantly more difficult
than equivalence. In fact, even when Q and Q′ are orderless,
determining whether Q ⊆ Q′ is undecidable. The proof
of Theorem 4.13 is in the spirit of a similar result for bag
containment of unions of Datalog queries in [12].

Theorem 4.13. The problem of deciding bag containment
among orderless multisets of queries is undecidable.

5. HORIZONTAL AXES
Until now, we considered queries which use the ≺ relation-
ship among sibling nodes as a horizontal axis. As noted
earlier, ≺ is similar to the XPath following axis, but does
not coincide precisely with this axis. In this section we con-
sider several horizontal axes available in XPath, and show
how our results can be generalized to allow for these addi-
tional axes. To simplify the presentation, we show how to
add each of these axes separately to individual queries. The
extension to multisets of queries, with several of the different
axis types considered, is straightforward.

Note that in each subsection a new notion of a query is de-
fined, and is considered throughout that subsection. To dif-
ferentiate the queries considered within these sections with
the original notion of Definition 2.1, we will call the latter
standard queries.

5.1 Relationships among Database Nodes
We start by defining several relationships among pairs of
nodes. Let D be a database and a, b be nodes in D. We
say that b follows a if a depth-first traversal of D reaches
a before reaching b, and moreover, b is not in the subtree
rooted at a. Equivalently, b follows a if there exists a node c
such that b c-follows a. We say that b is a following sibling
of a if a and b are sibling nodes and a ≺D b (where ≺D is
the ordering over sibling nodes in D). We say that b is an
immediately-following sibling of a if b is a following sibling
of a, and there is no c such that a ≺D c and c ≺D b. Finally,
we say that b is the first-child of a if b is a child of a, and
there is no child c of a for which c ≺ b. The relationship
last-child is defined analogously.

5.2 Following and Following-Sibling Axes
We start by considering queries which may use the follow-
ing and following sibling axes. Thus, our queries are of the
form Q = (V, E, r,≺,≺f ,≺ fs, λ, ō), where ≺f and ≺fs are
partial orderings representing the following and following-
sibling relationships, respectively.

To define query semantics, we extend the notion of a match-
ing in the natural fashion, i.e., a mapping µ of nodes in Q to
those in a database D is a matching of Q to D if it satisfies
all conditions in Definition 2.2, and moreover,

• For any pair of nodes v, w such that v ≺f w it holds
that µw follows µv;

• For any pair of nodes v, w such that v ≺fs w it holds
that µw is a following sibling of µv.

Remark 5.1. We note the translation of XPath queries
with horizontal axes into tree-like patterns is not immediate,
e.g., in /a/child::b/following::c there is no indication as
to which node is the parent of c. However, this is easily
dealt with by adding descendant edges from the root of the
pattern to nodes with no apparent parent, such as c. The
following relationship is then expressed using ≺f , and not
with the tree structure.

125

z

v ≺ z, z ≺ifs w

z

v ≺ifs z, z ≺ w

A

B ∗

u

v
C
w

Q1

z

v ≺ifs z, z ≺ifs w

B ∗

u

v
C
w

Q2

AA

B ∗

u

v
C
w

Q

A

B ∗

u

v

Q3

y
∗
z

C
w

v ≺ifs y, y ≺ z, z ≺ifs w

Figure 8: Queries using the immediately-following sibling axis.

Equivalence among queries (or multisets of queries) with the
following and following-sibling axes is defined in the natural
way. The following result shows that adding ≺f and ≺fs

does not increase the expressive power of the query language.

Proposition 5.2. Let Q = (V, E, r,≺,≺f ,≺fs λ, ō) be a
query. Then, there exists a multiset of standard queries Q
(i.e., such that each Q′ ∈ Q has empty ≺f and ≺fs rela-
tionships), for which Q ≡ Q.

Basically, the idea behind Proposition 5.2 is to start by com-
puting Exp(Q), in the manner described earlier, while ignor-
ing the new relations. Then, for all v, w such that v ≺f w,
we eliminate queries in which w does not follow v. Simi-
larly, for all v, w such that v ≺fs w, we eliminate queries
in which w is not a following sibling of v. Finally, in the
remaining queries, for all v ≺fs w, we replace any descen-
dant incoming edges to v and w with child edges.6 At this
point all relationships in ≺f and ≺fs can be dropped. Care
must be taken in the actual reduction as the nodes v from
Q may not appear directly in queries of Q′ ∈ Exp(Q) due
to node merges. Therefore, the required relationships are
actually checked not between v and w, but rather between
corresponding nodes in Q′.

We immediately derive the following corollary.

Corollary 5.3. Let Q and Q′ be multisets of queries,
which may not be completely ordered, and may use the fol-
lowing and following sibling axes. It is possible to determine
whether Q ≡ Q′ in PSPACE.

5.3 First and Last Axes
We now consider queries which may use the first axes. All
our results are immediately extendable to the last axes, in a
completely analogous manner. Our queries are of the form
Q = (V, E, r,≺, F, λ, ō), where F is a subset of nodes of V ,
corresponding to the first children relationship.

Once again, to define query semantics, we extend the notion
of a matching in the natural fashion, i.e., a mapping µ of
nodes in Q to those in a database D is a matching of Q to
D if it satisfies all conditions in Definition 2.2, and moreover,

• For any node v ∈ F , if u is the parent of v in Q, then
µv is the first child of µu in D.

6Such a replacement is correct due to the semantics of ≺.

Unlike following and following sibling, the first axis does
increase the expressive power of our query language, and
thus, we cannot show a result similar to Proposition 5.2.
Instead, we show the following result.

Proposition 5.4. Let Q1 and Q2 be queries that may use
the first axis. Then, there are multisets of standard queries
Q1 and Q2 (i.e., that do not use the first axis) such that
Q1 ≡ Q2 if and only if Q1 ≡ Q2.

The basic idea behind Proposition 5.4 follows. We start by
setting Q1 = {Q1}. Then, while there is a query Q ∈ Q1

with a non-leaf node u such that the set F of Q does not
contain any of the children of u, we remove Q from Q1 and
add the following queries to Q1

• We create a new node z, (1) add z as a child to u, (2)
add z to F , and (3) add z ≺ v, for all other children v
of u.

• For each child v of u such that there is no w with
w ≺ v, we create a query Qv in which (1) we add v to
F and (2) we add v ≺ w for all other children w of u.

Intuitively, the first query captures matchings where none
of the children of u is its first child in the databases, and
the remaining queries choose one of the nodes of u to be its
first child. When the process terminates we drop all sets
F . Finally, by defining Q2 similarly, we get the result of
Proposition 5.4. Corollary 5.5 follows.

Corollary 5.5. Let Q and Q′ be multisets of queries,
which may not be completely ordered, and may use the first
and last child axes. It is possible to determine whether Q ≡
Q′ in PSPACE.

5.4 Immediately-Following Sibling Axis
We now consider queries which may use the immediately-
following sibling axis. Note that XPath does not have this
axis built-in, however, it is useful to express positional con-
straints among nodes.7 Our queries are now of the form
Q = (V, E, r,≺,≺ifs, λ, ō), where ≺ifs is a partial order

7In fact, the immediately-following sibling axis can be used
to express numerical positional constraints (such as that v is
the i-th child of u), but a full discussion is beyond the scope
of this paper.

126

corresponding to the immediately-following sibling relation-
ship. As before, we extend the notion of a matching µ, so
that it must satisfy the conditions in Definition 2.2, and in
addition,

• For any pair of nodes v, w such that v ≺ifs w it holds
that µw is the immediate following sibling of µv.

The relationship ≺ifs is considerably more challenging than
those considered earlier. In fact, ≺ifs and ≺ interplay in
a manner similar to the child and descendant axis. Thus,
the immediately-following-sibling relationship can introduce
new ways in which syntactically different queries may be
equivalent. We demonstrate this in the following example.

Example 5.6. Consider the query Q in Figure 8. Note
that z must follow v (according to the semantics of ≺), but
w must be an immediately-following sibling of z. Basically,
the node z is used to constrain there to be at least one node
between v and w. Query Q1 is equivalence to Q, although
order of the relationships ≺ and ≺ifs has been flipped. This
equivalence is similar in spirit to the flipping of edge types,
introduced in Section 4.2, and demonstrated in Figure 5.

It is also possible to show that Q ≡ {Q2, Q3}. Intuitively,
Q2 requires there to be no nodes between v and z, while
Q3 requires there to be at least one node between v and z.
Thus, {Q2, Q3} can be viewed as an unrolling of the hori-
zontal relationship between v and z. Such unrollings bear
resemblance to the edge unrollings of Section 4.2, demon-
strated in Figure 6.

It is possible to characterize equivalence between queries
which use the immediately-following sibling axis, by extend-
ing two key notions introduced earlier:

• Flip isomorphisms should be extended to allow “flips”
in the horizontal relationships, and not only in the
vertical child/descendant relationships. Note that as
before, flips must occur only around nodes of a special
type. In this case, only ≺,≺ifs around leaf nodes with
the label ∗ may be flipped.

• Unrollings should be extended to allow pairs of adja-
cent nodes with the ≺ relationship to be “unrolled” by
adding new nodes in between. These new nodes will be
leaves, labeled ∗. Care must be taken to avoid increas-
ing multiplicities by adding the new nodes. This is
achieved by using the ≺ifs relationship, which implies
that a matching of a node is functionally dependent on
the mapping of its previous sibling.

A characterization similar to that of Theorem 4.10 can be
shown, if the horizontal unrollings are of length greater than
the largest branching degree of the queries. The full proof
is rather intricate, requires an adaptation of the notion of
query cores (which ignores nodes that are leaves, labeled ∗),
an adaptation of the notion of canonical databases (which
can extend core queries horizontally, and not only vertically)

and finally, careful examination of the polynomials which
characterize result multiplicity. A complete discussion is
beyond the scope of this paper.

6. CONCLUSION
In this paper we characterized bag equivalence of XPath
queries. Our results are general, and allow descendants,
wild-cards, branching, unions, multiple output nodes and
horizontal axes. This paper is the first to consider bag se-
mantics for queries that are recursive (i.e., due to the de-
scendant axis). Preliminary results on bag containment were
presented.

For future work, we plan on studying bag-equivalence in the
presence of a schema. We also intend to study the combina-
tion of set and bag semantics for XPath queries, in the spirit
of [5], e.g., to model XPath queries with the count operator
over a sub-portion of the query. Finally, bag-containment for
XPath queries without union is an interesting open problem.
We note that characterizing bag-containment (or even deter-
mining decidability) is a long open problem for conjunctive
Datalog queries, and thus, bag-containment for XPath may
also prove illusive.

Acknowledgments
This research is partially supported by the Israel Science
Foundation (Grant 143/09).

7. REFERENCES
[1] A. Berglund. Extensible stylesheet language (XSL)

version 1.1. http://www.w3.org/TR/xsl, 2006.

[2] S. Boag, D. Chamberlin, M. F. Fernández,
D. Florescu, J. Robie, and J. Siméon. XQuery 1.0: An
XML query language. http://www.w3.org/TR/xquery,
2007.

[3] S. Chaudhuri and M. Y. Vardi. Optimization of real
conjunctive queries. In Proceedings of the Twelfth
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, May 25-28, 1993,
Washington, DC, pages 59–70. ACM Press, 1993.

[4] J. Clark and S. DeRose. XML path language (XPath)
version 1.0. http://www.w3.org/TR/xpath, 1999.

[5] S. Cohen. Equivalence of queries that are sensitive to
multiplicities. VLDB J., 18(3):765–785, 2009.

[6] S. Cohen, W. Nutt, and Y. Sagiv. Deciding
equivalences among conjunctive aggregate queries. J.
ACM, 54(2), 2007.

[7] S. Cohen, Y. Sagiv, and W. Nutt. Equivalences among
aggregate queries with negation. ACM Trans.
Comput. Log., 6(2):328–360, 2005.

[8] M. Davis. Computability and Unsolvability. Dover
Publications, 1982.

[9] S. DeRose, E. Maler, and R. Daniel, Jr. XML pointer
language (XPointer) version 1.0.
http://www.w3.org/TR/WD-xptr, 2001.

[10] S. DeRose, E. Maler, and D. Orchard. XML linking
language (XLink) version 1.0.
http://www.w3.org/TR/xlink, 2001.

[11] A. Deutsch and V. Tannen. Containment and integrity
constraints for xpath. In KRDB, Rome, Italy, Sept.
2001.

127

[12] Y. E. Ioannidis and R. Ramakrishnan. Containment of
conjunctive queries: Beyond relations as sets. ACM
Trans. Database Syst., 20(3):288–324, 1995.

[13] G. Miklau and D. Suciu. Containment and equivalence
for a fragment of xpath. J. ACM, 51(1):2–45, 2004.

[14] F. Neven and T. Schwentick. On the complexity of
xpath containment in the presence of disjunction,
dtds, and variables. Logical Methods in Computer
Science, 2(3), 2006.

[15] B. ten Cate and C. Lutz. The complexity of query
containment in expressive fragments of xpath 2.0. In
PODS, pages 73–82, Beijing, China, June 2007.

[16] H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML schema part 1: Structures.
http://www.w3.org/TR/xmlschema-1, 2004.

[17] P. T. Wood. Containment for xpath fragments under
dtd constraints. In ICDT, pages 297–311, Siena, Italy,
Jan. 2003.

128

