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ABSTRACT
Stochastic context-free grammars (SCFGs) have long been
recognized as useful for a large variety of tasks including
natural language processing, morphological parsing, speech
recognition, information extraction, Web-page wrapping and
even analysis of RNA. A string and an SCFG jointly rep-
resent a probabilistic interpretation of the meaning of the
string, in the form of a (possibly infinite) probability space
of parse trees. The problem of evaluating a query over this
probability space is considered under the conventional se-
mantics of querying a probabilistic database. For general
SCFGs, extremely simple queries may have results that in-
clude irrational probabilities. But, for a large subclass of
SCFGs (that includes all the standard studied subclasses
of SCFGs) and the language of tree-pattern queries with
projection (and child/descendant edges), it is shown that
query results have rational probabilities with a polynomial-
size bit representation and, more importantly, an efficient
query-evaluation algorithm is presented.
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mars and Other Rewriting Systems—parsing ; I.2.7 [Artificial
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ing and understanding, text analysis ; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing—
linguistic processing
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1. INTRODUCTION
Uncertainty is often an inherent property of data. To give

just a few examples, a medical diagnosis may be based on
statistical interpretation of examination results, RFID tags
generate signals that noisily represent (possibly ambiguous)
events, natural language processing of a string may generate
many different possible parses, and information extraction
may derive several semantic interpretations of given data.
It is interesting to note that all the above-mentioned sce-
narios involve two components: (1) observed, certain data
and (2) an uncertain, or probabilistic, process in which the
certain data is interpreted. Thus, the result of a medical ex-
amination, or of a sequence of sensor transmissions, yields
precise observed facts, but their interpretation may be only
probabilistic. Similarly, in natural language processing and
information extraction, there is an observed string, and a
probabilistic process that yields the many possible mean-
ings (i.e., grammatical or semantic parses) of the string.

Recently, there has been significant progress on process-
ing uncertain and probabilistic data. Probabilistic relational
databases were studied extensively (e.g., [12, 13, 28, 29]) as
were probabilistic XML trees (e.g. [9, 18, 23, 36, 42]). The
referenced papers present different approaches to modeling
and querying probabilistic relations or XML. In this paper,
we adapt the concept of querying a probabilistic database
to the task of querying the meaning of a string; this is done
by applying the query to the probability space of parse trees
(which we view as a probabilistic database).

More specifically, we study the problem of querying the
space of parse trees of a given string, as represented by
a stochastic context free grammar (SCFG). Basically, our
queries are tree patterns with child and descendant edges,
Boolean conditions attached to the nodes, and a sequence
of projected nodes. An answer is a sequence of strings (for
the projected nodes), along with its associated probability
value. Thus, we provide a method to answer rich hierarchi-
cal queries over the space of parse trees, while deriving the
probabilities of the results. This ability is extremely use-
ful in the context of information extraction [10, 16, 17, 45]
and natural language processing [30], as well as additional
areas in which SCFGs have proven successful (e.g., speech
recognition [21,35], recognizing complex multi-tasked activ-
ities [32,33], and modeling RNA and tRNA [14,27,41]).

To demonstrate, consider the scenario in which users en-
ter search queries in an e-commerce site—more specifically,
in a site that sells books. The string entered by the user
is observable, and hence, is known. The user’s intent is, of
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course, not provided explicitly. (Note that this is a small-
scale example of the problem of information extraction.)
Rather, the user intent is modeled as a parse tree that is
randomly produced by an SCFG. Figure 1 shows a string
virginia woolf orlando biography and an SCFG describing user
intent. Together, the string and SCFG imply a space of
parse trees appearing at the top of the same figure; for
instance, t1 means that the user is interested in the book
“Orlando Biography” by Virginia Woolf. The right side of
the figure depicts a query (over the strings logged as search
queries), returning authors requested in the search queries,
provided that the user asked for a book of the genre biogra-
phy, or the with keyword biography, or with a title contain-
ing the word biography. Each answer (e.g., “virginia woolf”
or “orlando”) will be associated with its probability.

A string and an SCFG define a probabilistic parse which
can be viewed as a probabilistic database (namely, a proba-
bility space over parse trees). This representation, though,
significantly differs from that of previous work on proba-
bilistic databases. For one, the common representation of a
probabilistic database (e.g., as in the work referenced ear-
lier) is based on annotation of data items (e.g., tuples or
XML elements) with probabilities, along with some addi-
tional specifications like mutual exclusion and choice nodes.
The representation of a probabilistic parse, on the other
hand, follows the two-component view of uncertain data
(previously discussed) where the interpretation of the obser-
vation is given by a probabilistic branching process (namely,
the SCFG). To illustrate this significant difference, a pos-
sible world of a standard probabilistic database is a sub-
structure of the annotated database, which is far from be-
ing the case here. As another illustration, an SCFG and a
string can easily encode an infinite space of parses (with an
unbounded size), which cannot be done by annotating an or-
dinary database. Another pivotal difference is the following.
While query evaluation in the above probabilistic-database
models is well understood, the process of actually translat-
ing real-life uncertainty into those models is yet unclear. In
contrast, the task of learning an SCFG has been extensively
studied [26,31,38,39].

We note that there has been little work on querying parse
trees of SCFGs in the past. Instead, the focus is often on
finding the Viterbi (i.e., most likely) parse [25,44] (or top-k
parses [19, 37]), which can then be queried as a determin-
istic object. A notable exception is [40] which constructs
a Bayesian network from an SCFG, and then can query
this network. However, the query language of [40] is sig-
nificantly more restricted than our tree queries, they do not
provide complexity guarantees, and they only consider very
restricted types of SCFGs; in particular, they do not allow
rules with an empty right-hand side, which are shown here
to constitute a major source of difficulty in query evaluation.

Devising an efficient algorithm for query evaluation is chal-
lenging. First, the space of parse trees can be infinite (and
each parse tree in the space can be arbitrarily large) and
hence, we must avoid explicit enumeration of the probabil-
ity space. Second, in the general case, probabilities associ-
ated with query answers may require an exponential number
of bits to represent, and may even be irrational. If either of
these is the case then, obviously, efficient query evaluation is
unattainable. To overcome this second hurdle, we (slightly)
restrict SCFGs to a special form called weakly linear SCFGs.
The main contribution of this paper is an efficient algorithm

for evaluating a tree query (in the form described above) over
a probabilistic parse given by a string and a weakly linear
SCFG. The algorithm involves several steps and techniques,
including grammar normalization, query decomposition, dy-
namic programming, computation of a least fixed point, and
linear algebra. Efficiency of our algorithm is in terms of
data complexity (namely, the query is fixed), and the run-
ning time is actually exponential in the size of the query.
We show that this is essential, as the problem of query eval-
uation has an intractable query-and-data complexity, even
under strong restrictions.

The paper is organized as follows. In Section 2, we give
some preliminary definitions and describe the basic notions
of a parse tree and a probabilistic parse. The concept of
querying a probabilistic parse is formalized in Section 3.
SCFGs, as our specific realization of probabilistic parses,
are defined in Section 4. In Section 5, we give results on
the complexity of query evaluation (for probabilistic parses
given by a string and an SCFG, and for the language of tree
queries). Our query-evaluation algorithm (for weakly linear
SCFGs) is presented in Section 6. We conclude in Section 7.

2. PRELIMINARIES
In this section, we present some preliminary definitions

and notation that we use throughout the paper. Specifically,
we define trees and hedges, as well as probability spaces of
parse trees.

2.1 Trees and Hedges
Our trees are ordered, unranked, and with labeled nodes.

Such trees are often used in the literature to model XML
data [23, 34]. Here we will use such trees to represent both
parses of text (a concept similar to XML) and queries.

Let Σ be an alphabet. A Σ-tree is inductively defined as
follows.

• If σ ∈ Σ then σ() is a Σ-tree.

• If σ ∈ Σ and t1, . . . , tn are Σ-trees, then σ(t1 · · · tn) is
a Σ-tree.

For a one-node tree σ(), we often omit the parentheses and
write just σ.

A Σ-hedge is a sequence h = t1 · · · tn of Σ-trees. Note
that every Σ-tree is a Σ-hedge. Also, if h is a Σ-hedge and
σ ∈ Σ, then σ(h) is a Σ-tree.

Each occurrence of a label σ in a Σ-hedge h defines a
unique node v. We denote by V(h) the set of nodes of the
hedge h. The label associated with the node v is denoted
by λ(v). A leaf of a Σ-hedge is a node without children.
The root of a Σ-tree t, denoted root(t), is the node without
a parent. For a node v of t, we denote by tv∆ the subtree of
t that is induced by v and all of its descendants. Note that,
as a special case, t = tr∆ where r = root(t).

When Σ is clear from the context, we may write just tree
and hedge instead of Σ-tree and Σ-hedge, respectively.

2.2 Parse Trees
We now consider a special type of trees, called parse trees.

Throughout the paper, we fix countably infinite sets Θ of
terminal symbols (or just terminals) and N of nonterminal
symbols (or just nonterminals), such that N ∩Θ = ∅. We
use S, X, Y and Z (possibly, with a subscript and/or a
superscript) to denote nonterminals, a, b and c to denote
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Figure 1: An SCFG Γp
S , a string w ∈ L(ΓS), parses of w, and a query πsτ

terminals, and A to denote general (terminal and nonter-
minal) symbols. A string is a member w of Θ∗, that is, a
finite (possibly empty) sequence a1 · · · ak where ai ∈ Θ for
all i = 1, . . . , k. Typically, strings will represent observable
data, such as a textual document, a sentence uttered, or, as
in our running example, a search query that the user has
entered.

A parse tree, or just parse for short, is a (Θ ∪ N)-tree
t such that terminals appear only on leaves (that is, every
interior node is labeled with a nonterminal, and every leaf
is labeled with either a terminal or a nonterminal). Note
that a terminal a and a nonterminal X are special cases
of parses. Also, if t = X(t1 · · · tn) is a parse, then each ti
(where 1 ≤ i ≤ n) is a parse. We denote by PT the set of
all parses. Note that PT is countable (since our trees are
finite).

Let t be a parse. The yield of t, denoted by str(t), is the
string that is obtained by concatenating all the terminals
on the leaves of t, from left to right. Formally, str(t) is
recursively defined as follows. If t = a and a is a terminal,
then str(t) = a; if X is a nonterminal and t = X(t1, . . . , tn),
then str(t) = str(t1) · · · str(tn). If str(t) = w, then we say
that t is a parse of w. We denote by PTw the (countably
infinite) set that comprises all the parses of the string w.

Intuitively, a parse tree t provides a meaning or semantics
to the observable string w = str(t). For example, if w is
a textual document, t may provide meta-data describing w
(e.g., t can be an XML tree). If w is a sentence uttered, then
t can provide the natural-language parsing of w. Finally, in
our running example, described below, w is a search query,
and t provides the user intent behind the query.

Example 2.1. We demonstrate the key concepts in this
paper with a small running example. We consider the sce-
nario in which users enter search queries in an e-commerce
site—more specifically, in a site that sells books. The string
entered by the user is observable, and hence, is known. How-
ever, the user’s intent is, of course, not provided. Under-
standing the user’s intent is a key to providing the user with
relevant search results, and to identifying user trends. An-
alyzing user intent for search queries can be thought of as
a small-scale example of information extraction, where the
goal is to obtain contextual information from a string by
properly parsing the string, and by identifying the roles of
various of the string’s components.

Figure 1 shows (among other things that we will discuss
later on) a string w = virginia woolf orlando biography (in the
center) and four parses t1, . . . , t4 ∈ PTw (in the top). Ter-
minals are represented by lowercase words (e.g., virginia) and
nonterminals are represented by uppercase words (e.g., BK).
The numbers appearing in these trees should be ignored, for
now.

Intuitively, different parses of w represent different mean-
ings. The parse t1 means that the user is interested in the
book “Orlando Biography” by Virginia Woolf1 and t3 means
that the user is interested in a biography written by both
Virginia Woolf and Orlando.

Example 2.1 demonstrates that a string w can have many
plausible parses. In the upcoming section we formalize this
idea by considering probability spaces of parses.

1For simplifying the example, we slightly changed the real
name of the original book which is “Orlando: A Biography.”
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2.3 Probabilistic Parse Trees
All the probability spaces that are considered in this pa-

per are countable (i.e., either finite or countably infinite).
Formally, a probability space is a pair (Ω, p), where Ω is a
countable set and p is a function from Ω to [0, 1] that sat-
isfies

P
o∈Ω p(o) = 1. We say that (Ω, p) is a probability

space over Ω. Each element of Ω is a sample (or a random
instance) of the probability space and a subset of Ω is an
event of the probability space. The support of a probability
space P̃ = (Ω, p), denoted supp(P̃), is the set comprising

all the samples of P̃ with a nonzero probability, that is,
{o ∈ Ω | p(o) > 0}. We say that the probability space (Ω, p)

is finite if supp(P̃) is finite; otherwise, it is infinite.
A probabilistic parse of a string w is a probability space

P̃w over PTw. We use Pw (i.e., without the tilde) to de-
note the random variable that represents a sample chosen
from P̃w. For example, if ψ(·) is some property of parses
(e.g., “contains the nonterminal X”), then Pr(ψ(Pw)) is the

probability that ψ(t) holds for a random instance t of P̃w.

Example 2.2. Consider the four parse trees in Figure 1.
Below each parse ti, there is a positive number (in bold font)
that we tentatively denote by p(ti). These numbers sum up
to 1. We extend p to all possible parses of w by setting
p(t) = 0 for all t /∈ {t1, t2, t3, t4}. Hence, P̃w = (PTw, p) is
a (finite) probabilistic parse of the string w appearing in the
center of Figure 1.

Recall that different parses of a string w assign different
meanings to w. Consequently, a probabilistic parse of w de-
fines a probability space over the meanings of w. As the
meaning is not observable or user provided, it is natural to
think of a probability space of parses as being derived by
a probabilistic process. In this paper, we consider parses
described by a stochastic context-free grammar (defined in
Section 4), and our results are specific to this model. How-
ever, the basic concepts provided in this and the upcoming
sections, which formalize the notion of querying a probabil-
ity space of parses, can be applied to other models of prob-
abilistic parses besides stochastic context-free grammars.

3. QUERYING PROBABILISTIC PARSES
In this section, we present the concept of querying a prob-

abilistic parse of a string. We start by introducing queries
over parses, and then provide the semantics for querying
probabilistic parses.

3.1 Querying Parses
We now formalize the notion of querying a parse. Our

queries are basically tree patterns with projection and spe-
cialized node conditions. The formal syntax follows.

A node constraint c(L,W ) is a Boolean predicate over a
label (symbol) L and a string W . As we later explain, when
such a constraint is applied to a node u of a parse t, the
variable L stands for the label of u and W stands for the
substring underneath u, namely, str(tu

∆). We fix an infinite
class C of node constraints. We do not pose any restriction
on the formalism used for specifying a constraint c(L,W ) of
C, except that our later complexity analysis will make the
assumption that it can be efficiently determined whether
c(A,w) holds, for given symbol A and string w. We may
omit the parameters L and W when they are not needed,
and write just c.

A tree pattern is a tree of node constraints, connected by
child and descendant relationships. Formally, let /C and
//C be the sets of all expressions of the form /c and //c,
where c ∈ C. A tree pattern τ , or just a pattern for short,
is a (/C ∪ //C)-tree.

Let t be a parse, and let τ be a pattern. A match of τ
in t is defined in the standard way (e.g., [5, 24]), namely, it
is a mapping from the nodes of τ to those of t, such that
the node constraints are satisfied and the axis (i.e., / and
//) relationships are preserved. Formally, it is recursively
defined as follows. A set ϕ is a match of τ in t, where
t = A(t1 · · · tn), if the following hold.

1. If τ is the pattern /c, then c(A, str(t)) is true and
ϕ = {root(τ) 7→ root(t)}.

2. If τ is /c(τ1 · · · τk), then ϕ is the union of matches ϕ0,
ϕ1, . . . , ϕk, where ϕ0 is a match of /c in t, and for all
1 ≤ i ≤ k, the match ϕi is of τi in some tj (for some
1 ≤ j ≤ n).

3. If τ = //c(τ1 · · · τk), then ϕ is a match of /c(τ1 · · · τk)
in tu∆ for some node u of t.

Item 2 implies that a match of a pattern τ in a parse t
is unordered ; in other words, the order among siblings in a
pattern τ is meaningless (in this paper). We use M(τ, t)
to denote the set of all matches of τ in t, and we denote
by τ 7→ t the fact that at least one such match exists (i.e.,
M(τ, t) 6= ∅). Observe that a node v of τ occurs on the left
side of exactly one element v 7→ u of a match. Thus, we
naturally view a match ϕ ∈ M(τ, t) as a mapping from the
nodes of τ to those of t (i.e., ϕ(v) = u means that v 7→ u is
a member of ϕ).

A tree-pattern query (or just query for short) is obtained
from a pattern τ by applying projection. Formally, a pro-
jection sequence for a pattern τ is a list v = (v1, . . . , vk) of
nodes of τ . A query has the form πvτ , where τ is a pat-
tern and v is a projection sequence for τ . Given a parse
tree t, an answer for πvτ , where v = (v1, . . . , vk), is a se-
quence a = (w1, . . . , wk) of substrings of w, such that there
exists a match ϕ of τ in t that satisfies wi = str(tϕ(vi)

∆
) for

all i = 1, . . . , k. We use πvτ(t) to denote the set of all the
answers for πvτ . In other words,

πvτ(t)
def
= {(str(tϕ(v1)

∆
), . . . , str(tϕ(vk)

∆
)) | ϕ ∈M(τ, t)} .

Remark 3.1. Traditionally, the result of applying a pat-
tern to a tree is a series of nodes, and not of substrings.
In our setting, returning internal nodes as answers is rather
meaningless, as the internal nodes differ in each parse. There-
fore, our choice of returning substrings is natural. We note
that our setting can easily accommodate other definitions
of query answers, such as indices into the string instead of
substrings.

Example 3.2. The box on the right side of Figure 1 shows
a query πvτ . The pattern τ contains three nodes that are
depicted by small rounded rectangles, and one node (in the
bottom) that forms a large rectangle. Each of the first three
nodes has the node constraint “L = A,” where A is the sym-
bol written inside the rectangle. For example, the constraint
of the grey node, which we denote by vAU, is “L = AU,”
namely, the label should be AU; this node is the output
node, that is v = (vAU). The constraint c(L,W ) of the large-
rectangle node should be interpreted as follows: L = GNR
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and W = biography, or L = KW and W = biography, or
L = TL and W contains the terminal biography.

Intuitively, when evaluated over a parse of a user search
query, the pattern πvτ returns the authors requested in
the search query, provided that the user asked for a book
of the genre biography, or with the keyword biography, or
with a title containing the word biography. There are two
matches ϕ1 and ϕ2 of τ in the parse t3 (also in Figure 1).
Both matches map the S and BK to the (single) S and BK
nodes of t3, respectively. Also, the two matches map the
right child of BK to the GNR node of t3. Finally, ϕ1 maps
the AU node to the AU node above virginia woolf and ϕ2

maps it to the AU node above orlando. As a result, we con-
clude that πvτ(t3) = {virginia woolf, orlando}; that is, both
virginia woolf and orlando are answers. We can similarly com-
pute πvτ(ti) for each of the three other parses ti in the figure.
The reader can verify that the following hold.

• πvτ(t1) = πvτ(t2) = {virginia woolf}
• πvτ(t3) = πvτ(t4) = {virginia woolf, orlando}

A special case of a query is a Boolean query, where v is
the empty sequence. In this case, the answer is the singleton
{()} if τ 7→ t, or the empty set otherwise.

3.2 Querying Probabilistic Parses
We define the semantics of querying the probabilistic parse

P̃w of a string w according to the conventional notion of
querying probabilistic data [9, 12, 13, 23, 24, 36, 42]. Let πvτ

be a query. When evaluating πvτ over P̃w, the set of answers
πvτ(P̃w) comprises all the pairs (a, conf a), such that a ∈
πvτ(t) for some random parse t ∈ supp(P̃w), and conf a is
the confidence of a, namely, the probability of obtaining a
when querying a random parse. In other words,

πvτ(P̃w)
def
= {(a, conf a) |conf a = Pr(a ∈ πvτ(Pw))

∧ conf a > 0} .
Observe that although P̃w is infinite, πvτ(P̃w) is finite, since
w is finite (hence, it has a finite number of substrings). Also
observe that if πvτ is Boolean (i.e., v is empty), then query
evaluation amounts to determining Pr(τ 7→ Pw).

Example 3.3. Consider again Figure 1. Recall the prob-
abilistic parse P̃w from Example 2.2, containing t1, . . . , t4
with the probabilities shown below these parses (and the
rest of the parses of w have probability 0). Now consider the
query πvτ (in the same figure). As described in Example 3.2,
the possible answers are virginia woolf and orlando. The an-
swer virginia woolf is obtained in all of the four parses; hence,
its confidence is 1. The answer orlando is obtained only in
t3 and t4; hence, the probability of orlando is 0.396694215 +
0.148760331 = 0.545454546. In conclusion, we have

πvτ(P̃w) = {(virginia woolf, 1), (orlando, 0.545454546)} .

4. STOCHASTIC CONTEXT-FREE
GRAMMARS

In the previous sections, we described the notions of prob-
abilistic parses and querying thereof. In this section, we pro-
vide the formalism used to represent a probabilistic parse,

namely, a stochastic context-free grammar. To make the pa-
per self-contained, we first briefly review the notion of a
context-free grammar.

4.1 CFG
A production rule (or just rule) has the form X → γ,

where X is a nonterminal and γ ∈ (Θ ∪N)∗. In particular,
γ may be empty and then it is also denoted by ε. For a set
Γ of production rules, we denote by Θ(Γ) and N(Γ) the sets
of all terminals and nonterminals, respectively, that appear
in Γ (in either the left-hand side or the right-hand side of
some rule). A context-free grammar (CFG) consists of a
finite set Γ of rules, such that every nonterminal X ∈ N(Γ)
appears on the left-hand side of some rule in Γ (that is, for
all X ∈ N(Γ) there exists γ such that X → γ ∈ Γ). In
addition, a CFG has a designated symbol S ∈ N(Γ) called
the start symbol. The CFG defined by Γ and S is denoted
by ΓS .

A parse t is generated by a CFG ΓS if the following two
conditions hold. First, the root of t is labeled with S, that
is, t is of the form S(t1 · · · tn). Second, for all nodes u of
t, if λ(u) is a nonterminal and u1, . . . , uk is the sequence of
children of u (from left to right), then Γ contains the rule
λ(u) → λ(u1) · · ·λ(uk). Note that the second condition im-
plies that a leaf u of t is either labeled with a terminal or is
such that Γ contains the rule λ(u) → ε. The set of all the
parses that are generated by ΓS is denoted by PT(ΓS). Sim-
ilarly, for a string w, the subset of PT(ΓS) that comprises
the parses of w (i.e., the set PT(ΓS) ∩PTw) is denoted by
PTw(ΓS). The language of ΓS , denoted L(ΓS), is the set of
all the strings w that have a parse generated by ΓS ; that is,

L(ΓS)
def
= {w ∈ Θ∗ | PTw(ΓS) 6= ∅} .

Example 4.1. The bottom part of Figure 1 shows a CFG
ΓS (that is, Γ comprises all the specified rules, and the start
symbol is S), when ignoring the numbers appearing in paren-
theses. We use the convention that X → γ1 | · · · | γm is a
shorthand notation for the m rules X → γi for i = 1, . . . ,m.
Each of the parses t1, . . . , t4 (in the top of the figure) is gen-
erated by ΓS. The reader can verify that for the string w in
the figure, the set PTw(ΓS) is exactly {t1, t2, t3, t4}.

4.2 SCFG
A CFG describes a process of producing parse trees and

strings thereof. This process is nondeterministic since a spe-
cific nonterminal can appear on the left side of several rules.
A stochastic (also called probabilistic) context-free grammar
(SCFG) is similar to a CFG, except that the rules are aug-
mented with probabilities; that is, the nondeterministic pro-
cess is replaced with a probabilistic one. Formally, an SCFG
comprises a CFG ΓS and a function p : Γ → (0, 1] that as-
signs probabilities to rules, such that for all nonterminals
X ∈ N(Γ),

X

(X→γ)∈Γ

p(X → γ) = 1 .

That is, for all nonterminals X of Γ, the probabilities of the
rules with X on the left-hand side sum up to 1. Note that
we do not allow zero probabilities. The SCFG that is given
by ΓS and p is denoted by Γp

S .

Example 4.2. Figure 1 shows an SCFG Γp
S . The CFG

ΓS is described in Example 4.1. The probability p(X → γ)
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of each rule X → γ is written in parentheses to the right of
γ. As an example, p(AUS → AUS AU) = 0.6 and p(AUS →
ε) = 0.4. Note that the sum of these two numbers is 1, which
is as required since these two are the probabilities of all the
rules having AUS on the left-hand side.

Consider an SCFG Γp
S . Recall that p is a function over Γ.

We extend p to PT(ΓS) as follows. The number p(t) ∈ (0, 1],
for a parse t generated by ΓS , is the probability that all
the applications of production rules that generated t in-
deed occur, when viewing different applications as proba-
bilistically independent. Formally, p(t) is recursively de-
fined as follows. If t = a where a is a terminal, then
p(t) = 1; otherwise, if t = X(t1 · · · tn) where X is a non-
terminal, then p(t) = p(X → γ)× p(t1)× · · · × p(tn) where
γ is the concatenation of the root labels of t1, . . . , tn (i.e.,
γ = λ(root(t1)) · · ·λ(root(tn))); as a special case, if n = 0
(i.e., t = X), then p(t) = p(X → ε).

Example 4.3. We continue with the running example.
Recall that PTw(ΓS) = {t1, t2, t3, t4}. Below each node u
of a parse ti, the figure contains a rounded rectangle with
the probability p(X → γ), where X and γ correspond to the
labels of u and its children, respectively. As an example,
consider the BK node u of the parse t1. Then u is the only
child of the root (labeled with S), and the probability 0.6
below the root is p(S → BK). The probability below u is 0.4,
which is p(BK → AUS TD). For i = 1, . . . , 4, the number
p(ti) (which is not shown in the figure) is obtained by simply
multiplying the probabilities in the rounded rectangles of ti.
For example, p(t1) = 0.62×0.42×0.3×0.2×0.1 = 0.0003456.

One may think that (the extended) p implies a probability
function over PT(ΓS) (that is, the pair (PT(ΓS), p) is a
probability space). However, this is not the case in general,
since the sum

P
t∈PT(ΓS) p(t) can be smaller than one. (It

is easy to show that this sum is never larger than one.) For
instance, this sum is smaller than one if PT(ΓS) (and hence
L(ΓS)) is empty. A more interesting example is shown next.

Example 4.4. Consider the SCFG Γp
S that is given by

the rules

S → SS (q) | a (1− q) ,

where q is a number satisfying 1 > q > 1/2. It is shown in [6]
that

P
t∈PT(ΓS) p(t) = 1

q
− 1, and hence is smaller than 1.

The “lost” probability is taken by infinite parses, which by
definition are excluded from PT(ΓS).

Conditions guaranteeing that (PT(ΓS), p) is a probability
space have been studied in [4, 48], and in [15] an efficient
algorithm is given for deciding whether this is the case for a
given SCFG. However, this property is not required for the
tasks we consider here, since we are only interested in the
subspace that comprises the parses of a given string w. The
formal definition of this subspace follows.

Let Γp
S be an SCFG and let w ∈ L(ΓS) be a string. We

again abuse the notation and denote by p(w) the probabil-
ity that the random process defined by Γp

S terminates and
produces w; that is, p(w) =

P
t∈PTw(ΓS) p(t). Note that

p(w) > 0 since w ∈ L(ΓS). The probability space P̃S
w is the

pair (PTw, q) where for all parses t of w,

q(t) =

(
p(t)
p(w)

if t ∈ PTw(ΓS);

0 otherwise.

Thus, P̃S
w can be viewed as the conditional probability sub-

space of the probabilistic branching process Γp
S , where the

condition is (termination and) yield of w. Clearly, P̃S
w is a

probabilistic parse. Observe that P̃S
w may be infinite. For

instance, this is the case for the SCFG Γp
S that is given by

S → S (0.5) | a (0.5) and the string w = a.

Example 4.5. Consider again the parses t1, t2, t3 and
t4 for the string w in our running example. Recall from
Example 4.1 that PTw(ΓS) = {t1, t2, t3, t4}, and recall from
Example 4.3 that each p(ti) is obtained by multiplying the
probabilities in the rounded rectangles of ti. The reader
can verify that p(w), which is the sum of the p(ti) for i ∈
{1, 2, 3, 4}, is 0.00104544. Thus, each q(ti), or equivalently
Pr(PS

w = ti), is equal to p(ti)/0.00104544. For example,
q(t1) = 0.0003456/0.00104544 = 0.330578512. For each i,
the probability q(ti) is shown in Figure 1 below the parse ti.

In the remainder of this paper, we focus on the problem of
querying a probabilistic parse that is represented by means
of an SCFG. More formally, given a string w, an SCFG Γp

S ,
and a query πvτ , the task is to evaluate πvτ over the un-
derlying probabilistic parse P̃S

w, that is, to obtain the result
πvτ(P̃S

w). However, this task is not a well defined computa-
tional problem (e.g., in the Turing-machine model) since the

probabilities specified in πvτ(P̃S
w) do not necessarily admit

a finite representation (even if each p(X → γ) is given as a
rational number). Therefore, we impose some restrictions on
Γp

S . This and other computational aspects of this problem
are discussed in the next section.

5. COMPLEXITY RESULTS
In the remainder of this paper, we study the computa-

tional task of evaluating a query over a probabilistic parse
of a string, given the string and an SCFG. In this section,
we first discuss how probabilities are represented, as well as
cases in which the probabilities in the results cannot be ef-
ficiently represented. We then present our main complexity
results.

5.1 Representing Probabilities
We first need to specify how the numbers (probabilities)

are represented in both the input and the output. We use
the convention (e.g., [9, 15]) that numbers are rational and
each is represented by a pair of integers: the numerator and
the denominator. Moreover, each of the two integers is rep-
resented in the standard binary encoding (thus, the number
of bits required to represent an integer d is logarithmic in
the actual value of d).

Recall that our goal is to compute πvτ(P̃S
w), that is, the

pairs (a, conf a), such that a ∈ πvτ(t) for some parse t ∈
PTw(ΓS), and conf a is the probability of a. We desire the
probabilities in the output to have the same representation
as those in the input. Unfortunately, the following example
shows that in general, the sought probabilities in the output
may be irrational. Thus, the problem of query evaluation is
not well defined since the output does not necessarily admit
a finite representation (in, e.g., the Turing-machine model).
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Example 5.1. Let Γp
S be defined as follows:

S → X (1/2) | Y (1/2)

X → a (1)

Y → aZ (1)

Z → ε (1/2) | b (2/6) | ZZZZZ (1/6)

Let w be the (one-symbol) string a, and let τ be the pat-
tern /X (in XPath notation, i.e., /l is a shorthand notation
for /c where c(L, V ) is “L = l”). We view τ as a Boolean
query, where the result of query evaluation is essentially
the probability Pr(τ 7→ PS

w). There is exactly one parse
t ∈ PTw(ΓS), namely S(X(a)), that satisfies τ 7→ t; let t be
that parse. Then, Pr(τ 7→ PS

w) is equal to p(t)/p(w). Now,
p(w) is equal to p(t) + 0.5q, where q is the probability that
Z produces the empty string. Since p(t) = 0.5, we get that
Pr(τ 7→ PS

w) = 1/(1+q). So, if Pr(τ 7→ PS
w) is rational, then

q is rational as well. But q satisfies the equality q = 1
2
+ 1

6
q5,

which means that q is a root of the polynomial x5 − 6x+ 3,
and it is known (e.g., [15, 43]) that this polynomial has no
rational roots (or even ones that are radical over Q).

The above example is essentially an adaptation of the ex-
ample given in [15] for the irrationality of the termination
probability of a recursive Markov chain.

Remark 5.2. Due to Example 5.1, the query evaluation
problem does not admit a computational solution. One way
to circumvent this issue is to allow the probabilities in the
output to be approximate (e.g., k-bit precise). Whether this
enables an efficient evaluation remains an open problem.
However, it can easily be shown that such an approxima-
tion would yield an approximation for the probability of ter-
mination of an SCFG (i.e., the value

P
t∈PT(ΓS) p(t)), and

whether the latter approximation can be efficiently obtained
is a long-standing open problem (see, e.g., [15]). In this pa-
per, we take a different approach to the problem illustrated
by Example 5.1, as discussed below.

We restrict the language of SCFGs considered, so as to
avoid irrational probabilities in the output. Care must be
taken when devising such a restriction, to ensure that the
probabilities in the output can be represented efficiently (i.e.,
the numerators and the denominators require a polynomial
number of bits). A simple, (but rather drastic) restriction is
to consider only non-recursive SCFGs. Formally, Γp

S is non-
recursive if there are no cycles in the directed graph that
has the node set N(Γ) and an edge (X,Y ) whenever a rule
of the form X → γ1Y γ2 is in Γ.

If the SCFG Γp
S is non-recursive, then PTw(ΓS) is finite.

This implies that for a query πvτ , the result πvτ(P̃S
w) con-

tains only rational probabilities. Nevertheless, the following
example shows that even if non-recursiveness is assumed,
the desired probabilities may require exponentially many
bits to represent (moreover, that holds even if the query
is Boolean).

Example 5.3. Let w be the string a, and let τ be the
pattern /Y . For n ≥ 1, consider the following SCFG Γp

S .

S → X (1/2) | Y (1/2)

X → a (1)

Y → aZn (1)

Zi → Zi−1Zi−1 (1) i = n, n− 1, . . . , 1

Z0 → ε (1/2) | b (1/2)

Let pX and pY be the probabilities that X and Y produce
w, respectively. Then p(w) is equal to 0.5pX + 0.5pY , and
Pr(τ 7→ PS

w) is equal to 0.5pY /(0.5pX + 0.5pY ) = pY /(pX +
pY ). Now, pX = 1, and pY is the probability that Zn

produces the empty string. The probability that Z0 pro-
duces the empty string is 0.5. For Z1, it is 0.52, for Z2

it is 0.54, and in general, the probability Zi produces the

empty string is 2−2i

. Hence, pY = 2−2n

. We conclude that
Pr(τ 7→ PS

w) = 1/(1 + 22n

) and, therefore, the number of
bits required for representing the probability Pr(τ 7→ PS

w)
(in particular, its denominator) is Ω(2n).

Thus, even though the language of SCFGs has been greatly
restricted, efficient representation of the output is still not
possible. In the next section, we briefly review other restric-
tions of SCFGs (equivalently, of CFGs) that are common in
the literature, and then describe the restriction assumed in
this paper, called weak linearity. Importantly, weak linear-
ity requires weaker assumptions than other common restric-
tions, and allows recursion.

5.2 Weakly Linear SCFGs
Consider an SCFG Γp

S . We say that Γp
S is (1) null free

if Γ contains no rule of the form X → ε, (2) in Chomsky
normal form if Γ contains only rules of the form X → Y Z,
X → a or S → ε where X, Y and Z are nonterminals, a is
a terminal, and neither Y nor Z is S and (3) linear if the
right-hand side γ of every rule X → γ of Γ has at most one
nonterminal. These classes of SCFGs have been considered
extensively in the past.

Let Γp
S be an SCFG. A symbol A of Γp

S is said to be nullable
if A is a nonterminal and the empty string ε can be produced
from A, that is, ε ∈ L(ΓA). Weak linearity of an SCFG is
defined as follows.

Definition 5.4 (Weak Linearity). An SCFG Γp
S is

weakly linear if for all rules X → γ of Γ, if γ contains two
or more symbols, then at least one of them is not nullable.

It is easy to see that null-free SCFGs, linear SCGFs and
SCFGs in Chomsky normal form are all special cases of
weakly linear SCFGs (this is also the case for other popular
normal forms, such as Greibach normal form). The following
example shows that weakly linear SCFGs strictly generalize
these three classes. Note that weakly linear SCFGs can be
recursive, and the classes of weakly linear SCFGs and non-
recursive SCFGs are incomparable.

Example 5.5. Recall the SCFG Γp
S of Figure 1. The

reader can verify that ΓS is weakly linear. This follows im-
mediately from the fact that the only nullable symbol is AUS,
and this symbol appears at most once on the right-hand side
of each rule. Note that ΓS is not null free, not in Chomsky
normal form, and not linear (since, e.g., it contains the rule
BK → AUS TD). Also, observe that ΓS is recursive (since it
contains the rules AUS → AUS AU and KW → KW KWS).
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Observe that for a weakly linear SCFG Γp
S and a string

w, the set PTw(ΓS) (and the probability space P̃S
w) can still

be infinite. Intuitively, weakly linear SCFGs avoid arbitrar-
ily wide parses, but allow arbitrarily deep parses. As an
example, let Γp

S be the weakly linear SCFG defined by

S → S X (0.5) | a X (0.5)

X → ε (0.5) | b (0.5)

and let w be the string a. Then PTw(ΓS) contains infinitely
many parses, such as S(aX), S(S(aX)X), S(S(S(aX)X)X),
and so on.

Remark 5.6. In principle, an SCFG can be transformed
into one in Chomsky normal form in a manner that pre-
serves the probability of every string [1]. However, in this
work we cannot assume that the given SCFG is normalized,
for several reasons. First, such a translation is intractable as
it may require specification of probabilities that cannot be
represented efficiently (or even finitely). Even more funda-
mentally, such a translation changes the parses themselves
and, consequently, it is likely to change the result (namely,
the answers and their probabilities) for a query.

5.3 Complexity
Our main focus is on query evaluation under the standard

assumption of data complexity [47]. Formally, under data
complexity, the query πvτ is held fixed and the input consists
of an SCFG Γp

S and a string w. The goal is to compute

πvτ(P̃S
w).

The central result of the paper is that for weakly linear
SCFGs, query evaluation is tractable. Formally, we prove
the following.

Theorem 5.7. Let πvτ be a fixed query. The evaluation
of πvτ(P̃S

w), given a weakly linear SCFG Γp
S and a string

w ∈ L(ΓS), is in polynomial time; in particular, πvτ(P̃S
w)

can be represented using a polynomial number of bits.

Theorem 5.7 is comprised of two separate results. First,
weak linearity is sufficient to overcome the problems shown
in Examples 5.1 and 5.3, thereby ensuring that all probabil-
ities can be represented using a polynomial number of bits.
Second, there is an efficient algorithm that computes these
probabilities.

Theorem 5.7 gives an upper bound on the data complex-
ity of the evaluation problem, under the assumption of weak
linearity. We now show that this result cannot be improved
to combined (query-and-data) complexity, even under strong
restrictions on the input. Observe that the output can be ex-
ponential in the size of the query (specifically, in the length
of the projection sequence v), hence, under combined com-
plexity, polynomial time is not enough for just writing the
output. For such problems, the conventional yardstick of
efficiency is polynomial total time [20], namely, the running
time is polynomial in the size of both the input and the out-
put. However, the following theorem rules out polynomial
total time, by showing that query evaluation is intractable
even if the query is Boolean. Moreover, this intractability
holds even under strong restrictions on the SCFG and on
the pattern.

Theorem 5.8. Computing Pr(τ 7→ PS
w), given a pattern

τ , an SCFG Γp
S and a string w ∈ L(ΓS) such that ΓS is

non-recursive and null-free, is FP#P -complete; determining
whether this probability is nonzero is NP-complete. More-
over, these hold even when adding one of the following as-
sumptions.

1. Each label of τ has the form /c (in particular, τ has
no descendant edges) where c is L = l.

2. ΓS is in Chomsky normal form.

3. ΓS is linear.

Recall that FP#P is the class of functions that are effi-
ciently computable using an oracle to some function in #P.
A function f is FP#P -hard if there is a polynomial-time
Turing reduction from every function in FP#P to f . Note
that this is an intractable complexity class, since by using
an oracle to a complete problem for this class one can solve
every problem in the polynomial hierarchy [46].

6. EVALUATION ALGORITHM
In this section, we present an efficient algorithm for eval-

uating a query over a probabilistic parse represented by a
weakly linear SCFG. Formally, we fix a query πvτ , and the
input for the problem consists of a weakly linear SCFG Γp

S

and a string w ∈ L(ΓS). The goal is to compute the set

πvτ(P̃S
w), that is, the set of all pairs (a, conf a), such that

a ∈ πvτ(t) for some t ∈ PTw(ΓS) and conf a = Pr(a ∈
πvτ(PS

w)).
Our strategy will be to first introduce a probability space

P̃S of parses rooted at the symbol S, regardless of any string
w (Section 6.1). Then, we reduce the problem at hand to

that of computing the probability of an event over P̃S (Sec-
tion 6.2). Basically, this involves reducing the evaluation of
general queries to that of determining satisfaction of Boolean
queries. Next, we show how to normalize an SCFG, so that it
has specific properties that make the formulation of the algo-
rithm easier (Section 6.3). Finally, we present our algorithm
for the reduced problem (Sections 6.4–6.7) and analyze the
running time (Section 6.8).

6.1 The Probability Space P̃S

Let Γp
S be an SCFG. As shown in Example 4.4, the pair

(PT(ΓS), p) is not necessarily a probability space (since the
random branching process defined by Γp

S does not necessar-
ily terminate with probability 1). However, in this section
we do wish to view Γp

S as a probability space over parses
(regardless of any specific string). So, we add an artificial
symbol ⊥S that consumes all the “missing”probability. For-
mally, we assume that ⊥S is a nonterminal that does not
belong to N(Γ). We define p(⊥S) = 1 −Pt∈PT(ΓS) p(t).

Then, the pair (PT(ΓS) ∪ {⊥S}, p) is a probability space
of parses rooted at S (and, also, the symbol ⊥S), and is

denoted P̃S .
Consider an SCFG Γp

S and let X ∈ N(ΓS) be a nontermi-
nal. Note that Γp

X is an SCFG (i.e., the one obtained from
Γp

S by using X, instead of S, as the start symbol). Thus, the
function p is now also defined over PT(ΓX). The probability

space P̃X is the pair (PT(ΓX)∪{⊥X}, p), namely, the prob-
ability space consisting of all parses that are rooted at the
symbol X (and, also, the symbol ⊥X). For convenience, we

also define the probability space P̃a for a terminal a ∈ Θ(Γ),
and then it is the fixed symbol a (which is a special case of a
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parse). For A ∈ N(Γ) ∪Θ(Γ), we use PA (i.e., without the
tilde) to denote the random variable that represents a sam-

ple chosen from P̃A (i.e., P̃A and PA relate to each other as

P̃S
w and PS

w do).
In the remainder of this section, we assume a fixed query

πvτ and a specific input w and Γp
S for the problem. (Thus,

Γp
S is weakly linear and w ∈ L(ΓS).)

6.2 Reduction to an Event Probability
We first reduce the problem to that of evaluating the prob-

ability of an event over P̃S . The reduction is rather stan-
dard (e.g., it is similar in spirit to that used in [9, 12, 24]).
The idea is to produce a set A such that A contains all the
possible answers a without their confidences (and possibly
additional elements), and the size of A is bounded by a poly-
nomial. For each element a ∈ A, we generate a pattern τa
such that Pr(a ∈ πvτ(PS

w)) is equal to Pr(τa 7→ PS
w), that is,

the result of a Boolean query. Then, if q = Pr(τa 7→ PS
w) is

nonzero, we output the pair (a, q). Next, we give the details
of how A and τa are constructed.

Let v = (v1, . . . , vk). The set A comprises all the se-
quences (w1, . . . , wk), where each wi (1 ≤ i ≤ k) is a sub-
string of w. Various heuristics can be used for filtering out
sequences (w1, . . . , wk) that have a zero probability (and,
thus, do not affect the output). But even without those, |A|
is bounded by n2k, which is polynomial due to the assump-
tion that πvτ (and in particular k) is fixed.

For a given a ∈ A, the pattern τa is constructed as follows.
Recall that v = (v1, . . . , vk). Let a = (w1, . . . , wk) and
suppose that each node vi is labeled by the node constraint
ci(L,W ). Then τa is obtained from τ by replacing each
ci(L,W ) with the conjunction ci(L,W ) ∧W = wi. It can
be easily verified that, indeed,

Pr(a ∈ πvτ(PS
w)) = Pr(τa 7→ PS

w) .

Using our reduction it follows that to solve the problem at
hand, it is sufficient to be able to evaluate a Boolean query.
Therefore, in the sequel we assume that v is empty and,
hence, the goal is to compute the probability Pr(τ 7→ PS

w).
The following holds.

Pr
“
τ 7→ PS

w

”
= Pr

“
τ 7→ PS | str(PS) = w

”

=
Pr
`
τ 7→ PS ∧ str(PS) = w

´

Pr (str(PS) = w)
(1)

Consequently, it is enough to compute the numerator and
the denominator of (1). We will show how to compute the
numerator. The denominator can be viewed as a special
case of the numerator with the pattern τ that matches ev-
ery parse (i.e., *). Thus, we are left with the problem of
computing

Pr
“
τ 7→ PS ∧ str(PS) = w

”
. (2)

6.3 2-normalization
Our next step is that of normalizing Γp

S , where the goal
is to transform it into a grammar with some specific de-
sired properties. Formally, we transform Γp

S into an equiva-

lent SCFG Υp′
S′ , such that Υp′

S′ has the property that every
sequence γ on the right-hand side of a rule X → γ has
two or fewer symbols (i.e., γ comprises one or two sym-

bols, or it is the empty string ε). We say that Υp′
S′ is 2-

normalized, and the transformation presented below is called
2-normalization. This type of transformation is a standard
operation over CFGs (e.g., it is done when transforming a
CFG into the Chomsky normal form). The problem with 2-
normalization (or any transformation that changes the rules)
is that it changes the parses and, therefore, can affect the
final result of query evaluation. In particular, the probabil-
ity that there is a match of τ in a random parse can change.
Thus, we introduce virtual nonterminals that can be used
to reverse the effect of normalization.

Formally, we assume that the global set N of nonter-
minals contains an infinite subset VN of virtual nonter-
minals. These nonterminals are not used in Γp

S (that is,
N(Γ) ⊆ N \ VN), and are only introduced by us (in the
way we show below) for the technical reason of query eval-
uation. A concrete nonterminal is one that is not virtual.
We use V and U to denote virtual nonterminals. Virtual
nonterminals are used for 2-normalization, as follows.

We start with Υp′
S′ = Γp

S . We repeat the following until

Υp′
S′ is 2-normalized, while in each step we guarantee that

Υp′
S′ is weakly linear. We choose a rule X → γ such that γ

contains three or more symbols. We introduce a fresh virtual
nonterminal V . Note that at least one of the symbols of γ
is not nullable (due to weak linearity). So, γ is either of the
form Aδ or δA, where δ contains two or more symbols, not
all are nullable. In the first case, we replace X → γ with
X → AV , and in the second we replace it with X → V A.
We also add the rule V → δ. The probability p′(X → AV )
(or p′(X → V A)) is p(X → γ), and p′(V → δ) = 1. Finally,
S′ = S.

Example 6.1. As a simple example, consider the follow-
ing SCFG Γp

S .

S → S X X (0.5) | a X (0.5)

X → ε (0.5) | b (0.5)

In the 2-normalized version of this SCFG, the rule S →
S X X (0.5) would be replaced with two rules S → V X (0.5)
and V → S X (1). We use V to replace SX, instead of XX,
since the latter replacement would create an SCFG which is
not weakly linear.

Next, we present the reverse operation
vn
↓ that removes

virtual nonterminals from a parse. Let Υp′
S′ be an SCFG

that possibly uses virtual nonterminals. Let X ∈ N(Υ) be
a (concrete or virtual) nonterminal and let t ∈ PT(ΥX)

be a parse. The operation
vn
↓ t repeatedly removes virtual

nonterminals from t until none is left; when a virtual non-
terminal V is removed, its children (if exist) become the
children of the parent of V , unless V is the root and then
its children become roots. This means that if X if virtual,
then

vn
↓ t is not necessarily a tree, but rather a hedge (com-

prising zero or more trees). Formally,
vn
↓ t is defined as fol-

lows. If t = A(t1 · · · tn) where A /∈ VN, then
vn
↓ t is the tree

A(
vn
↓ t1 · · · vn↓ tn). If t = V (t1 · · · tn) where V ∈ VN, then

vn
↓ t

is the hedge
vn
↓ t1 · · · vn↓ tn.

The following proposition, which is rather straightforward,
shows that 2-normalization is indeed reversible by

vn
↓ . More-

over, weak linearity is preserved by 2-normalization. In the

proposition, PS and PS′ correspond to Γp
S and Υp′

S′ , respec-
tively. Also, recall that Γp

S is weakly linear.
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Proposition 6.2. Suppose that 2-normalizing Γp
S results

in Υp′
S′ . Then Υp′

S′ is 2-normalized and weakly linear. More-

over, Pr(PS = t) = Pr(
vn
↓PS′ = t) for all t ∈ PT; hence,

Pr(τ 7→ PS∧str(PS) = w) = Pr(τ 7→ vn
↓PS′∧str(PS′) = w).

Thus, in the sequel, we assume that Γp
S is already 2-

normalized (in addition to being weakly linear). In par-
ticular, Γp

S may include virtual nonterminals. Hence, due to
Proposition 6.2, instead of computing Equation (2), we need
to compute the following probability.

Pr
“
τ 7→ vn

↓PS ∧ str(PS) = w
”

(3)

Remark 6.3. Virtual nonterminals are of an independent
interest, since they allow the user to introduce nonterminals
that are not semantically meaningful, and should be ignored
during query evaluation. Our results immediately generalize
to accommodate the existence of such nonterminals in the
original Γ. For example, in the SCFG Γp

S of Figure 1, if AUS
was defined as a virtual terminal, then from the standpoint
of query processing, it would be as if parses have all AU
nodes directly below BK (which is the fashion in which such
data would naturally be modeled in XML).

6.4 Computed Probabilities
Our approach is to compute, by dynamic programming,

probabilities for a set of events. In the end, Equation (3)
will be easily obtained from the computed probabilities. In
this section, we describe this set of events.

We assume that the length of w is n. We denote by w[s,e),
where e ≥ s, the substring of w that starts at the sth symbol
and ends with the (e − 1)st symbol. In particular, w[s,s) is
the empty string ε.

Consider the pattern τ . We use Sub(τ) to denote the set
of sub-patterns of τ , that is, Sub(τ) = {τ v

∆ | v ∈ V(τ)}.
For example, Figure 2 shows a pattern τ and its proper sub-
patterns τa, τb, τc, τa′ , τb′ , and τd; thus, Sub(τ) is the set
{τ, τa, τb, τc, τa′ , τb′ , τd}. Given a subset Q ⊆ Sub(τ), we will
use Q to denote the set Sub(τ) \ Q.

We straightforwardly extend the notion of a match of a
pattern τ in a parse t to a match of τ in a hedge h = t1, . . . , tk
of parses, as follows. A match of τ in h is a match of τ in
ti for some 1 ≤ i ≤ k. Thus, τ 7→ h means that there exists
some i (1 ≤ i ≤ k) such that τ 7→ ti.

Consider a symbol A, a parse t, a set Q ⊆ Sub(τ), and
two integers s and e such that e ≥ s. We write t °s,e Q if
all of the following three conditions hold: (1) str(t) is w[s,e),

(2) for all τ ′ ∈ Q, there is a match of τ ′ in
vn
↓ t, and (3) for

all τ ′ ∈ Q, there is no match of τ ′ in
vn
↓ t. The algorithm

computes Pr(PA °i,j Q) for all symbols A ∈ N(Γ) ∪Θ(Γ),
subsets Q of Sub(τ), and integers s and e such that 1 ≤ s ≤
e ≤ n+ 1.

Recall that our goal is to compute the probability of (3).
If every Pr(PA °s,e Q) is computed, this can be done by to
the following equality.

Pr
“
τ 7→ vn

↓PS ∧ str(PS) = w
”

=

X

{Q⊆Sub(τ)|τ∈Q}
Pr
“
PS °1,n+1 Q

”

So, it remains to compute the probabilities Pr(PA °s,e Q).
We show how this is done in the following sections.

6.5 Dynamic Program
Our approach employs the idea of the inside algorithm,

which is an immediate adaptation of the CYK algorithm [7,
22,49] (that determines acceptance of a string by a CFG) to
the computation of the probability of a string in an SCFG.
The inside algorithm is applicable to SCFGs in Chomsky
normal form, and applies dynamic programming. However,
the inside algorithm is heavily based on the assumption that
the grammar is null free. Thus, our approach significantly
differs in many key aspects from the inside algorithm.

In more detail, we compute the probabilities Pr(PA °s,e

Q) by dynamic programming, such that if e′−s′ < e−s (i.e.,

w[s′,e′) is shorter than w[s,e)), then each Pr(PA′ °s′,e′ Q′)
is computed before any Pr(PA °s,e Q).

In the following sections, we fix s and e (where 1 ≤ s <
e ≤ n + 1). We show how to compute Pr(PA °s,e Q) for

all A and Q, assuming that every Pr(PA′ °s′,e′ Q′) has
been computed for all e′ and s′ such that e′ − s′ < e − s.
Note that this includes the first step where e = s (and no
probabilities are pre-computed). Essentially, applying this
step of the dynamic program (i.e., computing the probabil-
ities Pr(PA °s,e Q) from the previously computed proba-
bilities) entails establishment of linear relationships among
the probabilities Pr(PA °s,e Q) for the different A and Q
(Section 6.6), and translation of these relationships into a
non-singular system of linear equations (Section 6.7).

6.6 Top-Down Linear Relationships
We use qs′,e′

A,Q as a shorthand notation for Pr(PA °s′,e′ Q).

Our goal is to compute qs,e
A,Q for all A and Q. (Recall that

we fixed s and e.) If A is a terminal symbol a, then the tree
PA comprises only the symbol a (and, in particular, it is
deterministic), and we can directly test whether PA °s,e Q
(in which case, qs,e

A,Q = 1) or not (and then qs,e
A,Q = 0).

So, we need to compute qs,e
X,Q for all nonterminals X ∈

N(Γ) and subsets Q of Sub(τ). Our approach is to reduce
the computation of the qs,e

X,Q to that of solving a system of
linear equations. For that, we use the pre-computed prob-
abilities. More particularly, we will show how to formulate

qs,e
X,Q as a linear combination other qs′,e′

X′,Q′ , such that X ′ be-

longs to γ for some rule (X → γ) ∈ Γ. Recall that we have

pre-computed probabilities qs′,e′
X′,Q′ for which e′ − s′ < e− s,

thus such probabilities are “known.”
Let X be a nonterminal of Γ. Then X appears on the left

side of rules of R and, moreover, p defines a probability space
over the rules of the form X → γ. Recall that, in a parse,
the relationship between a node labeled X and its children
corresponds to one of the rules X → γ; that is, the children
of the root form γ when their labels are concatenated. From
the law of total probability, we have

qs,e
X,Q =

X

(X→γ)∈R

p(X → γ)× rX→γ , (4)

where rX→γ is the probability that PX °s,e Q holds given
that the children of the root of PX correspond to γ. Recall
that γ comprises either zero, one or two symbols. Next, we
show how to process each rX→γ in (4).

6.6.1 Empty Rule
The first case is where γ = ε, (i.e., the empty string).

In this case, PX is a deterministic hedge: if X is virtual,

71



/B
τb τc τdτb′

/A

/C//B

//B /B /D
τa τa′

/A //A

τ /A

//B /B /D/C

/C //A

/D

Figure 2: A pattern τ and its proper sub-patterns;
note that Sub(τ) = {τ, τa, τb, τc, τa′ , τb′ , τd}

then PX is the empty hedge; otherwise, it is the tree X.
Therefore, rX→γ is either 0 or 1, and we simply test which
case it is.

6.6.2 Virtual Nonterminal
Now, we consider the case where X is a virtual nontermi-

nal. Suppose first that γ = A (i.e., γ comprises the single
symbol A). It follows from the definition of a virtual non-
terminal that in this case we have rX→γ = qs,e

A,Q. Thus, if A

is a terminal, then qs,e
A,Q is either 0 or 1, and it is determined

above. Otherwise, if A is a nonterminal, then rX→γ = qs,e
A,Q.

Next, we suppose that γ = A1A2. The root of PX has two
children: the left parse is t1 ∈ PT(ΓA1) and the right is t2 ∈
PT(ΓA2). For PX °s,e Q to be satisfied, the conjunction of
the following three conditions is necessary and sufficient.

• There exists some k such that str(t1) = w[s,k) and
str(t2) = w[k,e).

• For all τ ′ ∈ Q, there is a match of τ ′ in either t1 or t2.

• For all τ ′ ∈ Q, there is a match of τ ′ in neither t1 nor
t2.

Thus, rX→γ is equal to

Pr

 
e_

k=s

_
Q1∪Q2=Q

t1 °s,k Q1 ∧ t2 °k,e Q2

!
.

Now, different choices of k, Q1 and Q2 are disjoint events.
Furthermore, the parses t1 and t2 are probabilistically inde-
pendent, and they are distributed by the probability spaces
P̃A1 and P̃A2 , respectively. Therefore, we conclude the fol-
lowing

rX→γ =

eX

k=s

X
Q1∪Q2=Q

qs,k
A1,Q1

× qk,e
A2,Q2

(5)

Observe that almost all the probabilities in the right-hand
side of Equation (5) are pre-computed. In fact, the only
unknowns in the right-hand side of Equation (5) are qs,e

A1,Q1

(when k = e) and qs,e
A2,Q2

(when k = s).2 If e = s (i.e.,
w[s,e) = ε), then rX→γ = 0, since either A1 or A2 is not
nullable.

2At least one of these values is multiplied by 0, since at most
one of A1 and A2 is nullable, and thus, either qs,s

A1,Q1
= 0 or

qe,e
A2,Q2

= 0.

6.6.3 Concrete Nonterminal
Suppose now that X is a concrete nonterminal. There are

two cases in which PX °s,e Q is trivially false. First, there
is some τ ′ ∈ Q of the form /c(τ1, . . . , τk), and c(X,w[s,e)) =

false. Second, there is some single-node τ ′ ∈ Q of the form
/c or //c, and c(X,w[s,e)) = true. Thus, in both cases, we
have rX→γ = 0.

We now suppose that the above conditions do not hold,
and we introduce some notation. Let Q′ be a subset of
Sub(τ). We write Q ↓X Q′ if all of the following conditions
hold:

1. If τ ′ = /c(τ1 · · · τk) ∈ Q, then τl ∈ Q′ for all 1 ≤ l ≤ k.

2. If τ ′ = //c(τq1 · · · τqk ) ∈ Q, then either (a) τ ′ ∈ Q′, or
(b) c(X,w[s,e)) = true, and τl ∈ Q′ for all 1 ≤ l ≤ k.

3. If τ ′ = /c(τ1 · · · τk) ∈ Q and c(X,w[s,e)) = true, then
there is some 1 ≤ l ≤ k such that τl 6∈ Q′.

4. If τ ′ = //c(τ1 · · · τk) ∈ Q, then τ ′ 6∈ Q′; if in addition,
c(X,w[s,e)) = true, then there is some 1 ≤ l ≤ k such
that τl 6∈ Q′.

Example 6.4. Consider again the patterns of Figure 2.
Let Q = {τa, τb}, and let X = A. Here, the node constraints
are all of the form L = l and, in particular, they do not
involve w[s,e). Let Q′ be such that Q ↓X Q′. Note that there

are different sets Q′ such that Q ↓X Q′. However, the four
conditions above imply that Q′ must (or must not) contain
certain patterns (or combinations thereof). Condition 1 is
applicable only for τ ′ = τa, and it requires both τb and τc

to be in Q′. Condition 2 is applicable only for τ ′ = τb,
and it requires Q′ to include τb (since X differs from B).
Condition 3 is applicable only for τ ′ = τ , and it requires Q′
to exclude either τa or τa′ (or both). Finally, Condition 4 is
applicable only for τ ′ = τ ′a, and it requires Q′ to exclude τa′

and either τb′ or τd (or both). One can verify that Q′ can
be, for example, {τb, τc, τb′} or {τ, τb, τc, τd}.

We now observe the following. Suppose that the root of
PX has a single child v labeled X ′. Then PX °s,e Q holds
if and only if t′ °s,e Q′ holds for the subtree t′ of PX that
is rooted at the child v and for some Q′ such that Q ↓X Q′.
Therefore, for the case where γ = A we get that

rX→γ =
X

Q↓XQ′
qs,e

A,Q′ . (6)

Now suppose that γ = A1A2. Then, the root of PX has
two children labeled with A1 and A2, and these children are
the roots of two subtrees t1 and t2, respectively. In this
case, PX °s,e Q holds if and only if both t1 °s,k Q1 and
t2 °k,e Q2 hold for some k such that s ≤ k ≤ e, and some
Q1 and Q2 that satisfy Q ↓X (Q1 ∪Q2). Then we get:

rX→γ =

eX

k=s

X

Q↓X (Q1∪Q2)

qs,k
A1,Q1

× qk,e
A2,Q2

(7)

As in the case where X is virtual and γ = A1A2, the only
unknowns in (7) are qs,e

A1,Q1
and qs,e

A2,Q2
.
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6.7 Finding the Probabilities
In the previous section, we established a set of linear equa-

tions over the values qs,e
X,Q. The reader can easily verify that

the equations defining qs,e
X,Q (Equations (4)–(7)), are indeed

linear. This is correct, since each product qs,k
A1,Q1

× qk,e
A2,Q2

has at least one component whose value is known (since ei-
ther k− s < e− s, e− k < e− s, or e = k = s and then one
of qs,e

A1,Q1
and qs,e

A2,Q2
is zero since Γp

S is weakly linear).

In order to derive the unknown values qs,e
X,Q, we must solve

the linear equations from the previous section. To this end,
we represent the unknown qs,e

X,Q by the variable xX,Q. The
vector x comprises the variables xX,Q for all X ∈ N(Γ) and
Q ⊆ Sub(τ) (we assume some translation from a pair (A,Q)
to an integer index). Now, by replacing each unknown qs,e

X,Q
with xX,Q, we derive a system of linear equations over x.

Let m = |N(Γ)| × 2|Sub(τ)|. We view x as an m-vector
(that is, a column vector of dimension m). For all nontermi-
nals X ∈ N(Γ) and sets Q ⊆ Sub(τ), we have an equation
of the form

xX,Q = (mX,Q)Tx + dX,Q

where mX,Q is an m-vector and dX,Q is a (nonnegative)
number. Let M′ be the m × m matrix that comprises all
the row m-vectors (mX,Q)T, and let d be the m-vector that
comprises all the dX,Q. Finally, let qs,e be the m-vector that
comprises all the qs,e

X,Q.
Our goal is to find the vector qs,e. From the construction

of M′ it follows that qs,e is a solution for x = M′x + d;
that is, qs,e = M′qs,e + d. The problem is that there can
be (infinitely) many (nonnegative) solutions q′, where qs,e

is just one of them. So next, we will show how to transform
M′ into a new m ×m matrix M, so that qs,e is the single
solution for x = Mx + d.

We start with detecting the zero elements of qx,e (that is,
X and Q such that Pr(PX °s,e Q) = 0). We can efficiently

do so in linear time in |Γ| and 2|SubQ| by a computation that
is similar to that of the closure of database attributes un-
der functional dependencies [2]. Now, we obtain the matrix
M from M′ by zeroing out every column and every row of
M′ that corresponds to a zero element qs,e

X,Q. The following
lemma shows that M is, indeed, the matrix we need. Note
that Im is the m×m identity matrix. The proof, which uses
recent results of [15], is based on showing that qs,e is a least
fixed point of the operator M′x + d : Rm → Rm.

Lemma 6.5. M − Im is non-singular. Moreover, qs,e is
the unique solution for (M− Im)x = −d.

As a consequence of Lemma 6.5, we can now complete
the computation of qs,e (and, hence, the whole algorithm)
by means of inverting anm×mmatrix (which can be done in
O(m2.376) time [11]). Next section, we discuss the efficiency
of the algorithm.

6.8 Efficiency
It is fairly obvious from the description of the algorithm

(in the previous sections) that its running time is polynomial
if one simplistically assumes that each arithmetic operation
has a fixed cost (e.g., as in the rational Blum-Shub-Smale
computational model [3]). However, we need to show that
the algorithm is efficient in a realistic model, that is, un-
der bit complexity. To this end, it is sufficient to prove that
the intermediate numbers do not explode in representation,

that is, the number of bits used for representing each of
the intermediate probabilities is upper bounded by a poly-
nomial. This is shown in the next lemma. The proof of
this lemma is by analyzing every generated linear system
(M− Im)x = −d, mainly based on applications of Cramer’s
rule.

Lemma 6.6. The number of bits required for representing
each of the computed numbers qs,e

A,Q is polynomial in w and

Γp
S , and exponential in τ .

This completes the proof of Theorem 5.7.

7. CONCLUSIONS
We formalized the concept of query evaluation over a

probabilistic parse of a string, and focused on representation
of probabilistic parses by means of SCFGs. We discussed
the computational limitations of query evaluation, and we
presented an efficient algorithm for evaluating tree-pattern
queries (with projection) in the fairly general class of weakly
linear SCFGs.

Although beyond the scope of this paper, our algorithm
can be extended to richer queries that include negation and
disjunction (in addition to conjunction), in the spirit of the
queries of [8]. Moreover, it is possible to show that for acyclic
SCFGs, query evaluation can be done within k-bit precision
(i.e., the probabilities are approximated by a 2−k additive
factor) while the running time is polynomial in the input and
in k (despite the fact that the exact result of a query would
require an exponential number of bits to represent). An im-
portant direction for future work is the evaluation of queries
under models of (stochastic) parsing that are different from
SCFGs.
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