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ABSTRACT
Several computational problems in phylogenetic reconstruc-
tion can be formulated as restrictions of the following general
problem: given a formula in conjunctive normal form where
the atomic formulas are rooted triples, is there a rooted bi-
nary tree that satisfies the formula? If the formulas do not
contain disjunctions and negations, the problem becomes
the famous rooted triple consistency problem, which can be
solved in polynomial time by an algorithm of Aho, Sagiv,
Szymanski, and Ullman. If the clauses in the formulas are
restricted to disjunctions of negated triples, Ng, Steel, and
Wormald showed that the problem remains NP-complete.
We systematically study the computational complexity of
the problem for all such restrictions of the clauses in the in-
put formula. For certain restricted disjunctions of triples we
present an algorithm that has sub-quadratic running time
and is asymptotically as fast as the fastest known algorithm
for the rooted triple consistency problem. We also show that
any restriction of the general rooted phylogeny problem that
does not fall into our tractable class is NP-complete, using
known results about the complexity of Boolean constraint
satisfaction problems. Finally, we present a pebble game ar-
gument that shows that the rooted triple consistency prob-
lem (and also all generalizations studied in this paper) can-
not be solved by Datalog.
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1. INTRODUCTION
Rooted phylogeny problems are fundamental computational
problems for phylogenetic reconstruction in computational
biology, and more generally in areas dealing with large a-
mounts of data about rooted trees. Given a collection of
partial information about a rooted tree, we would like to
know whether there exists a single rooted tree that explains
the data. A concrete example of a computational problem
in this context is the rooted triple consistency problem. We
are given a set V of variables, and a set of triples ab|c with
a, b, c ∈ V , and we would like to know whether there exists a
rooted tree T with leaf set V such that for each of the given
triples ab|c the youngest common ancestor of a and b in this
tree is below the youngest common ancestor of a and c (if
such a tree exists, we say that the instance is satisfiable).

The rooted triple consistency problem has an interesting his-
tory. The first polynomial time algorithm for the problem
was discovered by Aho, Sagiv, Szymanski, and Ullman [4],
motivated by problems in database theory. This algorithm
was later rediscovered for phylogenetic analysis [34]. Hen-
zinger, King, and Warnow [25] showed how to use decremen-
tal graph connectivity algorithms to improve the quadratic
runtime of the algorithm by Aho et al.

Dekker [18] asked the question whether there is a finite set
of ‘rules’ that allows to infer a triple ab|c from another
given set of triples Φ if all trees satisfying Φ also satisfy
ab|c. This question was answered negatively by Bryant and
Steel [12]. Dekker’s ‘rules’ have a very natural interpretation
in terms of Datalog programs. Datalog as an algorithmic
tool for rooted phylogeny problems is much more power-
ful than Dekker’s rules. One of the results of this paper is
the proof that there is no Datalog program that solves the
rooted triple consistency problem.

Datalog inexpressibility results are known to be very dif-
ficult to obtain, and the few existing results often exhibit
interesting combinatorics [28, 3, 22, 23, 8]. The tool we
apply to show our result, the existential pebble game, orig-
inates in finite model theory, and was successfully applied
to finite domain constraint satisfaction [29]. A recent gen-
eralization of the intimate connection between Datalog and
the existential pebble game to a broad class of infinite do-
main constraint satisfaction problems [7] allows us to apply
the game to study the expressive power of Datalog for the
rooted triple consistency problem.
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There are several important phylogeny problems that are
related to the rooted triple consistency problem. One is
the subtree avoidance problem, introduced by [32], or the
forbidden triple problem [11]; both are NP-hard. It turns out
that all of the problems and many other rooted phylogeny
problems can be conveniently put into a common framework,
which we introduce in this paper.

A triple formula is a formula Φ in conjunctive normal form
where all literals are of the form ab|c or ab - c. It turns out
that the problems mentioned above and many other rooted
phylogeny problems (we provide more examples in Section 2)
can be formalized as the satisfiability problem for a given
triple formula Φ where the set of clauses that might be used
in Φ is (syntactically) restricted. If C is a class of clauses, and
the input is confined to triple formulas with clauses from C,
we call the corresponding computational problem the rooted
phylogeny problem for clauses from C.

In this paper, we determine for all classes of clauses C the
computational complexity of the rooted phylogeny problem
for clauses from C. In all cases, the corresponding computa-
tional problem is either in P or NP-complete. In our proof
of the complexity classification we apply known results from
Boolean constraint satisfaction. The rooted phylogeny prob-
lem is closely related to a corresponding split problem (de-
fined in Section 4), which is a Boolean constraint satisfaction
problem where we are looking for a non-trivial solution, i.e.,
a solution where at least one variable is set to true and at
least one variable is set to false. The complexity of Boolean
split problems has been classified in [16]. If C is such that
the corresponding split problem can be solved efficiently,
our algorithmic results in Section 4 show that the rooted
phylogeny problem for C can be solved in polynomial time.
Conversely, we present a general reduction that shows that
if the split problem is NP-hard, then the rooted phylogeny
problem for C is NP-hard as well.

2. PHYLOGENY PROBLEMS
We fix some standard terminology concerning rooted trees.
Let T be a tree (i.e., an undirected, acyclic, and connected
graph) with a distinguished vertex r, the root of T . The
vertices with exactly one neighbor in T are called leaves.
The vertices of T are denoted by V (T ), and the leaves of
T by L(T ) ⊆ V (T ). For u, v ∈ V (T ), we say that u lies
below v if the path from u to r passes through v. We say
that u lies strictly below v if u lies below v and u 6= v. The
youngest common ancestor (yca) of two vertices u, v ∈ V (T )
is the node w such that both u and v lie below w and w
has maximal distance from r. Note that the yca, viewed
as a binary operation, is commutative and associative, and
hence there is a canonical definition of the yca of a set of
elements u1, . . . , uk. The tree T is called binary if the root
has two neighbors, and every other vertex has either three
neighbors or one neighbor. We write uv|w (or say that uv|w
holds in T ) if u, v, w are distinct leaves of T and yca(u, v)
lies strictly below yca(u,w) in T . We write uv -w if u, v, w
are distinct leaves of T and yca(u, v) does not lie strictly
below yca(u,w) in T .

Definition 1. A triple formula is a (quantifier-free) for-
mula Φ in conjunctive normal form with atomic formulas of

the form xy|z. In other words, Φ is a conjunction of clauses
(also called triple clauses) where each clause is a disjunction
of positive literals of the form xy|z and negative literals of
the form xy - z.

Example 1. An example of a triple formula is (x1y1|y2∨
x2x1 - y1) ∧ (x2y1|y2 ∨ x2x1|y2), with the clauses (x1y1|y2 ∨
x2x1 - y1) and (x2y1|y2 ∨ x2x1|y2).

The following notion will be used frequently in later sections.
If Φ is a triple formula, and S is a subset of the variables of Φ,
then Φ[S] denotes the triple formula that is the conjunction
of all triple clauses that only contain variables from S.

Definition 2. A triple formula Φ is satisfiable if there
exists a rooted binary tree T and a mapping α from the vari-
ables of Φ to the leaves of T such that in every clause at least
one literal is satisfied. A literal xy|z (xy - z) is satisfied by
(T, α) if α(x), α(y), α(z) are distinct and if yca(α(x ), α(y))
lies (does not lie) strictly below yca(α(x ), α(z )) in T .

A pair (T, α) with the properties in Definition 2 is also called
a solution to Φ.

We would like to remark that a triple formula Φ is satisfiable
if and only if there exists a rooted binary tree T and an
injective mapping α from the variables of Φ to the leaves of
T such that the formula evaluates under α to true (in the
usual sense), i.e., a literal xy|z (xy - z) is satisfied by (T, α) if
α(x)α(y)|α(z) is (is not) true in T . This is straightforward to
verify. The definition of rooted phylogeny problems chosen
in this paper will be more convenient when we use results
from constraint satisfaction.

A fundamental problem in phylogenetic reconstruction is the
rooted triple consistency problem [25, 12, 34, 4]. This prob-
lem can be stated conveniently in terms of triple formulas.

Rooted-Triple-Consistency
INSTANCE: A triple formula Φ without disjunction and
negation.
QUESTION: Is Φ satisfiable?

The following NP-complete problem was introduced and stud-
ied in an equivalent formulation by Ng, Steel, and Wor-
mald [32].

Subtree-Avoidance
INSTANCE: A triple formula Φ where each clause is a dis-
junction of negative literals.
QUESTION: Is Φ satisfiable?

More generally, if C is a class of triple clauses, the rooted
phylogeny problem for C is the following computational prob-
lem.

Rooted-Phylogeny for clauses from C
INSTANCE: A triple formula Φ where each clause can be
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obtained from clauses in C by substitution of variables.
QUESTION: Is Φ satisfiable?

It is straightforward to see from the definition that all of
these problems belong to NP. Note that both the rooted
triple consistency problem and the subtree avoidance prob-
lem are examples of rooted phylogeny problems, by appro-
priately choosing the class C. The rooted triple consistency
problem equals the rooted phylogeny problem for the class
C that consists of all clauses of the form xy|z. The subtree
avoidance problem equals the rooted phylogeny problem for
the class C that consists of clauses of the form x1y1 - z1 ∨
· · · ∨ xsys - zs.

The following problem has been studied in [11]; also here,
NP-hardness of the following problem follows directly from
our complexity classification result in Section 5.

Forbidden-Triple-Consistency
INSTANCE: A triple formula Φ where each clause consists
of a single negative literal.
QUESTION: Is Φ satisfiable?

Phylogeny Problems as Infinite Domain CSPs. Phylog-
eny problems can be viewed as infinite domain constraint
satisfaction problems (CSPs), which are defined as follows.
Let Γ be a structure with a finite relational signature τ . A
first-order formula over τ is called primitive positive if it
is of the form ∃x1, . . . , xn. ψ1 ∧ · · · ∧ ψm where ψ1, . . . , ψm

are atomic formulas over τ , i.e., of the form x = y or
R(x1, . . . , xk) for a k-ary R ∈ τ . Then the constraint satis-
faction problem for Γ, denoted by CSP(Γ), is the computa-
tional problem to decide whether a given primitive positive
sentence (i.e., a primitive positive formula without free vari-
ables) is true in Γ. We cannot give a full introduction to
constraint satisfaction and to constraint satisfaction on infi-
nite domains, but point the reader to [13, 6]. Here, we only
specify an infinite structure ∆ that can be used to describe
the rooted triple consistency problem as a constraint satis-
faction problem. It will then be straightforward to see that
all other rooted phylogeny problems can be formulated as
infinite domain CSPs as well.

The signature of ∆ is {|} where | is a ternary relation symbol.
The domain of ∆ is N → Q, i.e., the set of all functions
from the natural numbers to the rational numbers (hence,
the domain of ∆ is uncountable). For two elements f, g of
∆, let lcp(f, g) be the set {1, . . . , n} where n is the largest
natural number i such that f(j) = g(j) for all j ∈ {1, . . . , i};
if no such i exists, we set lcp(f, g) := ∅, and if f = g, we
set lcp(f, g) := N. The ternary relation fg|h in ∆ holds
on elements f, g, h of ∆ if they are pairwise distinct and
either | lcp(f, g)| > | lcp(f, h)|, or | lcp(f, g)| = | lcp(f, h)|
and f(| lcp(f, g)|+ 1) < h(| lcp(f, h)|+ 1).

Observe that instances of the rooted triple consistency prob-
lem can be viewed as primitive positive formulas over the
signature {|}.

Lemma 1. A rooted triple formula Φ(x1, . . . , xn) is sat-
isfiable if and only if ∃x1, . . . , xn. Φ(x1, . . . , xn) is true in

∆.

Proof. Suppose that ∃x1, . . . , xn.Φ(x1, . . . , xn) is true in
∆, and let f1, . . . , fn : N → Q be witnesses for x1, . . . , xn

that satisfy Φ in ∆. We define a finite rooted tree T as fol-
lows. The vertex set of T consists of the restrictions of fi to
lcp(fi, fj) for all 1 ≤ i, j ≤ n. Vertex g is above g′ in T if
g′ extends g; it is clear that this describes T uniquely. Note
that the leaves of T are exactly f1, . . . , fn. It is straightfor-
ward to verify that (T, α) satisfies Φ, where α maps xi to
fi.

Conversely, let (T, α) be a solution to Φ. For each vertex v
of T that is not a leaf, let l(v) and r(v) be the two neighbors
in T that have larger distance from the root than v. Let
h be the length of the path r = p1, . . . , ph = α(xi) from
the root r to α(xi) in T . Define fi : N → Q by setting
fi(j) = 0 if 1 ≤ j < h and pj+1 = l(pj), and fi(j) = 1
otherwise. Clearly, the elements f1, . . . , fn of ∆ show that
∃x1, . . . , xn.Φ(x1, . . . , xn) is true in ∆.

This shows that the rooted triple consistency problem is
indeed a constraint satisfaction problem (if we allow that
the template has an infinite domain). This observation will
be useful in Section 3 to apply known techniques for prov-
ing Datalog inexpressibility of the rooted triple consistency
problem.

The following lemma (Lemma 2) shows that the rooted triple
consistency problem is among the simplest rooted phylogeny
problems, that is, for every (non-trivial) class of triple clau-
ses C the rooted phylogeny problem for C can simulate the
rooted triple consistency problem in a simple way.

A triple clause (i.e., a disjunction of positive and negative
triples over the variables x1, . . . , xk) is called trivial if the
clause is satisfied by any injective mapping from the vari-
ables into the leaves of any rooted tree, or if it is unsatisfiable
(and otherwise we call the clause non-trivial).

Lemma 2. Let φ(x1, . . . , xk) be a non-trivial triple clause.
Then there are variables y1

1 , . . . , y
1
k, . . . , yl

1, . . . , yl
k ∈ {a, b, c}

such that
V

i=1..l φ(yi
1, . . . , y

i
k) is logically equivalent to ab|c.

Proof. First observe that if k = 3 and if φ(x1, x2, x3)
= x1x2 -x3 for three distinct variables x1, x2, x3 (or, equiva-
lently, if φ(x1, x2, x3) = x1x3|x2 ∨ x2x3|x1), then φ(a, c, b)∧
φ(b, c, a) is logically equivalent to ab|c. It is straightforward
to derive from this observation that the claim holds for all
clauses with exactly three variables. If k > 3, then non-
triviality of φ implies that φ(x1, . . . , xk) can be written as
xi1xi2 |xi3 ∨ φ′(x1, . . . , xk) for distinct variables xi1 , xi2 , xi3

such that φ′ does not imply xi1xi2 -xi3 , or as xi1xi2 -xi3 ∨
φ′(x1, . . . , xk) for distinct variables xi1 , xi2 , xi3 such that φ′

does not imply xi1xi2 |xi3 . In both cases we can falsify
all literals in φ′ that contain a variable xi4 distinct from
xi1 , xi2 , xi3 by making xi4 equal to some other variable in
this literal. The claim then follows from the case k = 3.

This implies that the Datalog inexpressibility result for the
rooted triple consistency problem we present in the next

167



section applies to all the rooted phylogeny problems studied
in this paper.

3. DATALOG
Datalog is an important algorithmic concept originating both
in logic programming and in database theory [1, 21, 27].
Feder and Vardi [22] observed that Datalog programs can
be used to formalize efficient constraint propagation algo-
rithms used in Artificial Intelligence [5, 31, 17, 30]. Such
algorithms have also been studied for the phylogenetic re-
construction problem. It was asked by Dekker [18] whether
there exists a set of rules for inferring rooted triples from
a set of rooted triples Φ such that a rooted triple can be
derived by these rules if and only if it is logically implied by
Φ. This was answered negatively by Bryant and Steel [12].

In this section, we will show the stronger result that the
rooted triple consistency problem cannot be solved by Dat-
alog. This is a considerable strengthening of this previous
result by Bryant and Steel, since we can use Datalog pro-
grams not only to infer rooted triples that are implied by
other rooted triples, but rather might use Datalog rules to
infer an arbitrary number of relations (aka IDBs) of arbi-
trary arity to solve the problem. Moreover, we only require
that the Datalog program derives false if and only if the
instance is unsatisfiable. In particular, we do not require
that the Datalog program derives every rooted triple that is
logically implied by the instance (which is required for the
question posed by Dekker).

In our proof, we use a pebble-game that was introduced
to describe the expressive power of Datalog [28] and which
was later used to study Datalog as a tool for finite domain
constraint satisfaction problems [22]. The correspondence
between Datalog and pebble games extends to infinite do-
main constraint satisfaction, if the template is a countably
infinite ω-categorical structure. A countably structure is
called ω-categorical if its first-order theory1 has exactly one
countable model up to isomorphism.

It can be verified (see [2]) that the first-order theory of ∆
introduced in the previous section has exactly one countable
model Λ up to isomorphism. The ω-categorical structure
Λ has been studied in the context of infinite permutation
groups [19, 2]. Since ∆ and Λ have the same first-order
theory, we have in particular that a rooted triple formula
is satisfiable in ∆ if and only if it is satisfiable in Λ. The
observation that the rooted triple consistency problem can
be formulated as a CSP with an ω-categorical template has
been made in [24]. The fact that Λ is ω-categorical allows us
to use the existential k-pebble game to establish the Datalog
lower bound for the rooted triple consistency problem [7].
The definition of this game given below is adapted to the
special case of the rooted triple consistency problem, to keep
notation simple.

The existential k-pebble game (for the rooted triple consis-
tency problem) is played by the players Spoiler and Duplica-
tor on an instance Φ of the rooted triple consistency problem
and Λ. Each player has k pebbles, p1, . . . , pk for Spoiler and

1The first-order theory of a structure is the set of first-order
sentences that is true in the structure.

q1, . . . , qk for Duplicator. Spoiler places his pebbles on the
variables of Φ, Duplicator her pebbles on elements of Λ. Ini-
tially, no pebbles are placed. In each round of the game
Spoiler picks some of his pebbles. If some of these pebbles
are already placed on Φ, then Spoiler removes them from
Φ, and Duplicator responds by removing the corresponding
pebbles from Λ. Let i1, . . . , im be the indices of the peb-
bles that are placed on Φ (and Λ) after the i-th round. Let
ai1 , . . . , aim (bi1 , . . . , bim) be the variables of Φ (the elements
of Λ) pebbled with the pebbles pi1 , . . . , pim (qi1 , . . . , qim)
after the i-th round. If Φ[{ai1 , . . . , aim}] contains a rooted
triple aijaik |ail but bij bik |bil does not hold in Λ then the
game is over, and Spoiler wins. Duplicator wins if the game
continues forever.

Theorem 1 (follows from Theorem 5 in [7]). There
is no Datalog program that solves the rooted triple consis-
tency problem if and only if for every k there exists an un-
satisfiable instance Φk of the rooted triple consistency prob-
lem such that Duplicator wins the existential k-pebble game
on Φk and Λ.

To construct the instance Φk, we choose prime numbers
r, s, t such that 2k < r < s < t. The instance has the
variables v0, . . . , vt−1, and contains the triples vivi+r|vi+s

where all indices are modulo t.

Note that because r and t are pairwise prime, for any pair
v, v′ from v0, . . . , vt−1 there exists a sequence v = u0, . . . , ul

= v′ such that for all 0 ≤ i < l there is a triple uiui+1|u′i in
the instance for some u′i. Hence, a condition due to Aho et
al. [4] implies that Φk is unsatisfiable for all k ≥ 1. This can
also be seen by Lemma 6 in Section 4. We are left with the
proof that Duplicator wins the existential k-pebble game on
Φk and Λ.

Definition 3. The incidence graph G(Φ) of an instance
Φ of the rooted triple consistency problem is the (simple
undirected) graph whose vertex set is the union of the set
of variables and the set of triples of Φ, and where a variable
x is adjacent to a rooted triple if x is one of the arguments
of the triple.

Lemma 3. If S is a subset of at most 2k variables from
Φk, then G(Φk[S]) is acyclic.

Proof. Since r, s, t pairwise do not have common divi-
sors, and 2k < r < s < t, all cycles in G(Φk) have length at
least 2k+1. Since S has size at most 2k, the graph G(Φk[S])
cannot contain cycles.

Suppose we are at some stage of the existential k-pebble
game on Φk and Λ. The following definition is inspired by
a Datalog inexpressibility result that was established for a
very different problem in temporal reasoning [8].

Definition 4. A subset S of at least 2 and most 2k vari-
ables of Φk is called dominated if GS := G(Φk[S]) is con-
nected (and hence by Lemma 3 a tree), and if all but at most
one of the leaves of GS are pebbled.
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Note that the unpebbled leaf in GS (if it exists) is always
an element of S. The notion of dominated sets allows us to
specify the winning strategy for Duplicator for the existen-
tial k-pebble game. First, we prove a lemma that shows that
Duplicator always finds an answer to the unpebbled leaf in
a dominated set.

Lemma 4. Let S be a dominated set of Φk, and let a1,
. . . , am be the pebbled leaves of G(Φk[S]). Then any injective
mapping from a1, . . . , am to Λ can be extended to a mapping
α from S to Λ that is a satisfying assignment for Φk[S].

Proof. The proof is by induction on the number i of
pebbled leaves of G(Φk[S]). If i = 1, there is nothing to
show. Otherwise, there exists a vertex u in G(Φk[S]) which
is adjacent to two pebbled leaves x and y. There are two
cases to consider: u is a rooted triple xy|z, or u is a rooted
triple xz|y. In both cases, it follows straightforwardly from
the properties of Λ that any mapping from {x, y} to Λ can
be extended to z such that the extension satisfies the rooted
triple u. Hence, we can consider a smaller dominated set
where z is pebbled instead of x, y, and apply the induction
hypothesis.

Lemma 5. Duplicator wins the existential k-pebble game
on Φk and Λ.

Proof. Let u be a previously unpebbled leaf of a domi-
nated set S with pebbled leaves a1, . . . , al, and let b1, . . . , bl
be the corresponding responses of Duplicator.

Duplicator always maintains the following invariant. When-
ever Spoiler places a pebble on u, Duplicator can play a value
v from Λ such that the mapping that assigns ai to bi for
1 ≤ i ≤ l and that maps u to v can be extended to all of S
such that this extension is a satisfying assignment for Φk[S].

Clearly, the invariant is satisfied at the beginning of the
game. Suppose that during the game Spoiler pebbles a vari-
able u. Let S1, . . . , Sp be the dominated sets where u is the
unpebbled leaf before Spoiler put his pebble on u. (If there
is no such dominated set, then p = 0.) Let T1, . . . , Tq be
the newly created dominated sets after Spoiler put his peb-
ble on u. We have to show that under the assumption that
Duplicator in her previous moves has always maintained the
invariant, she will be able to make a move that again fulfills
the invariant. Note that the union S of the sets S1, . . . , Sp

was itself a dominated set already before Spoiler played on
u, unless p = 0 (here we use the fact that there are at most
k pebbles in the game). The next move of Duplicator is the
value v from the invariant applied to S. If p = 0, Duplicator
plays an arbitrary element in Λ. To show that this move
satisfies the invariant, we apply Lemma 4 to T1, . . . , Tq.

Corollary 1. There is no Datalog program that solves
the rooted triple consistency problem.

Proof. As stated above, for all k the structure Φk is
unsatisfiable. However, by Lemma 5, Duplicator wins the
existential k-pebble game on Φk and Λ. The statement now
follows from Theorem 1.

4. THE ALGORITHM
In this section we show that the rooted phylogeny problem
can be solved in polynomial time if all clauses come from
the following class T , defined as follows.

Definition 5. A disjunction ψ := x1y1|z1∨ · · ·∨xpyp|zp

is called admissible if it is trivial or if {xi, yi} = {xj , yj} for
all 1 ≤ i, j ≤ p. The set of all admissible clauses is denoted
by T .

The algorithm we present in this section builds on previ-
ous algorithmic results about the rooted triple consistency
problem, most notably [4, 25].

We start with a general observation how one can solve rooted
phylogeny problems. For a given rooted triple formula Φ, we
proceed recursively as follows: for each recursive call, we try
to find a subset S of the variables V of Φ such that there is
a solution (T, α) where

• r is the root of T ,

• α(S) are the leaves in T below the left child of r, and

• α(V \S) are the leaves in T below the right child of r.

After we have found a candidate set for S, the procedure re-
cursively solves the restriction of Φ to S and the restriction
of Φ to V \ S. If both recursive calls succeed and find the
solutions (T1, α1) and (T2, α2), respectively, then the algo-
rithm creates a new vertex r, and returns (T, α), where T is
the tree rooted at r where the left child of r is the root of
T1 and the right child is the root of T2, and where α is the
common extension of α1 and α2.

Of course, the crucial question is how to find such a set S.
It turns out that this problem is closely related to a Boolean
constraint satisfaction problem (Boolean CSP) on the same
set of variables, which we will call the split problem for Φ
(the split problem will also be important in Section 5). The
variables that are mapped to 0 in a satisfying assignment
to the split problem are precisely the variables that end up
in S, i.e., we obtain a valid set S by computing a solution
s to the Boolean CSP, and we then set S = s−1(0). In
order for the recursion to terminate, we will always only be
interested in non-trivial solutions to the Boolean problem,
i.e., in solutions where at least one variable is set to 0 and
at least one variable is set to 1.

Definition 6 (split formula for Φ). Let Φ be a root-
ed triple formula. Then the split formula for Φ is the Boolean
formula obtained from Φ by replacing positive literals of the
form xy|z by (x↔ y)∧ (z ∨¬z), and negative literals of the
form xy - z by (x↔ z) ∨ (y ↔ z).

Since we are only interested in non-trivial solutions of the
split formula, the tautological conjuncts of the form (z∨¬z)
cannot be omitted. In general, finding non-trivial solutions
for Boolean formulas might be a hard task (see Section 5).
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However, observe that if Φ is a rooted triple formula whose
clauses come from T , then the split formula for Φ is in fact a
2-SAT formula. We will show in Section 5 that if the clauses
are restricted in a different way such that the Boolean prob-
lem is not a 2-SAT instance, then the phylogenetic recon-
struction problem is NP-hard.

One of the central ideas for the polynomial-time algorithm
for the rooted triple consistency problem in [4] is to associate
a certain undirected graph to an instance of the rooted triple
consistency problem. We generalize this idea to admissible
clauses as follows.

Definition 7. Let Φ be an instance of the rooted triple
consistency problem with clauses from T . Then LΦ := (V,E)
is the graph where the vertex set V is the set of variables of
Φ, and where E contains an edge {x, y} iff Φ contains a
non-trivial clause xy|z1 ∨ · · · ∨ xy|zp for p ≥ 1.

The following provides a sufficient (but not a necessary)
condition for unsatisfiability of rooted triple formulas with
clauses from T .

Lemma 6. Let Φ be an instance of the rooted triple con-
sistency problem with clauses from T . If LΦ is connected
then Φ is unsatisfiable.

Proof. Let V be the set of variables in Φ. Suppose that
there is a rooted tree T with leaves X and a mapping α :
V → X such that for every clause xy|z1∨· · ·∨xy|zp in Φ the
yca of α(x), α(y) lies strictly below the yca of α(x), α(zi) in
T for some 1 ≤ i ≤ p. Let r be the yca of α(V ), i.e., the set
of all leaves in the image of V under α. It cannot be that all
vertices in α(V ) lie below the same child of r in T (otherwise
the child would have been the yca of α(V )). Since the graph
LΦ is connected, there is an edge {x, y} in LΦ such that α(x)
and α(y) lie below different children of r in T . Hence, there
are z1, . . . , zp ∈ V and a clause xy|z1 ∨ · · · ∨ xy|zp in Φ.
By assumption, the yca of α(x) and α(y), which is r, lies
strictly below the yca of α(x) and α(zi) for some 1 ≤ i ≤ p,
a contradiction to the choice of r.

Theorem 2. The algorithm Solve in Figure 1 determines
in time O(m log2 n) whether a given instance Φ of the rooted
triple consistency problem with clauses from T is satisfiable
(where m is the number of triples in all clauses, and n is the
number of variables of Φ).

Proof. If Φ is the empty conjunction, then Φ is clearly
satisfiable, and so the answer of the algorithm is correct in
this case. The algorithm first computes a connected compo-
nent S of LΦ (we discuss details of this step in the paragraph
about the running time of the algorithm); if S = V , i.e., if
LΦ is connected, then Lemma 6 implies that Φ is unsatisfi-
able.

Otherwise, we execute the algorithm recursively on Φ[S] and
on Φ[V \S]. If any of these recursive calls reports an incon-
sistency, then the instance is clearly unsatisfiable as well.

Otherwise, we inductively assume that the algorithm cor-
rectly asserts the existence of a solution (T1, α1) of Φ[S] and
of a solution (T2, α2) of Φ[V \ S].

Let T be the tree obtained by creating a new vertex r, linking
the roots of T1 and T2 below r, and making r the root of T .
Let α be the mapping that maps x to αi(x) if x ∈ L(Ti), for
i ∈ {1, 2}. We claim that (T, α) is a solution to Φ, i.e., we
have to show that in every clause ψ of Φ at least one literal
is satisfied. If ψ = xy|z1 ∨ · · · ∨ xy|zp, it cannot be that x
and y are in distinct components, since they are connected
by an edge in LΦ. If all variables of ψ lie completely inside
one component, say inside the i-th component, we are done
by inductive assumption, because (Ti, αi) is a solution to
Φ[Vi]. Hence, there must be a j, 1 ≤ j ≤ p, such that zj is
not in the i-th component. But in this case the yca of α(x)
and α(y) lies below the root of Ti and hence strictly below r,
which is the yca of α(x) and α(zj). Hence, the literal xy|zj

in ψ is satisfied. This concludes the correctness proof of the
algorithm shown in Figure 1.

We still have to show how this procedure can be imple-
mented such that the running time is in O(m log2 n). There
are amortized sublinear algorithms for testing connectivity
in undirected graphs while removing the edges of the graph.
This was used to speed-up the algorithm for the rooted triple
consistency problem [25]. We can use the same approach and
obtain an O(m log2 n) bound for the worst-case running time
of our algorithm.

5. COMPLEXITY CLASSIFICATION
This section is devoted to the proof of the following result.

Theorem 3. Let C be a set of rooted triple clauses. If C
is not a subset of the class T presented in Section 4, then the
rooted phylogeny problem for clauses from C is NP-complete.

Our proof of Theorem 3 consists of two parts. In the first
part, we show that if C is not a subset of T , then it is
NP-hard to decide whether a certain Boolean split problem
(defined below) has a non-trivial solution. In the second
part we show that the split problem reduces to the rooted
phylogeny problem for C.

If C is a class of rooted triple clauses, we defineB(C) to be the
set of split formulas for clauses from C. Recall that a solution
to a propositional formula is called non-trivial if at least one
variable is set to true and at least one variable is set to false.
The split problem for a set of Boolean formulas B is the
problem to decide whether a given conjunction of formulas
obtained from formulas in B by variable substitution has a
non-trivial solution.

We will show that if C is a class of rooted triple clauses that
is not a subclass of T , then there exists a finite subset C′ of
C such that the split problem for B(C′) is NP-complete. In
the proof of this statement we use the following result, which
follows from Theorem 6.12 in [16], and is due to [15]. The
notion of Horn, dual Horn, affine, and bijunctive Boolean
relations are standard and introduced in detail in [16]; de-
tailed knowledge of these notions will not be required in the
further proof.
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Solve(Φ)
Input: A rooted triple formula Φ with variables V and clauses from T .
Output: true if Φ is satisfiable, false otherwise.

If Φ is the empty conjunction then return ‘true’
If LΦ is connected

return ‘false’
else

Let S be the vertices of a connected component of LΦ

If Solve(Φ[S]) is false or Solve(Φ[V \ S]) is false return ‘false’
else return ‘true’
end if

end if

Figure 1: The algorithm for the rooted phylogeny problem for clauses from T .

Theorem 4. Let B be a set of Boolean formulas. Then
the split problem for B is in P if all formulas in B are from
one of the following types: Horn, dual Horn, affine, bijunc-
tive. In all other cases, B contains a finite subset B′ such
that the split problem for B′ is NP-complete.

We say that a Boolean formula ψ is preserved by an oper-
ation f : {0, 1}k → {0, 1} if for all satisfying assignments
α1, . . . , αk of ψ the mapping defined by x 7→ f(α1(x), . . . ,
αk(x)) is also a satisfying assignment for ψ.

Proposition 1. If C is not a subclass of T , then B(C) is
neither Horn, dual Horn, affine, nor bijunctive.

Proof. Let φ be from C \ T . Clearly, the split formula
ψ for φ is preserved by x 7→ ¬x, and is also preserved by
constant operations. Moreover, it is known (and follows
from [33]) that every Boolean formula that is preserved by
¬, contains the constants, and is either Horn, dual Horn,
affine, or bijunctive must also be preserved by the operation
xor defined as (x, y) 7→ (x+y mod 2). So it suffices to show
that ψ cannot be preserved by xor.

We assume that φ is a disjunction of triples of the form
xy|z; this is without loss of generality, since we can replace
literals for the form xy - z by yz|z ∨ xz|y. Because φ is
not from T and in particular non-trivial, there is a tree T
and an injective mapping from the variables V of φ to the
leaves of T such that (T, α) is not a solution to φ. More-
over, observe that φ must contain triples ab|c and uv|z where
{a, b} 6= {u, v}: otherwise, if for all disjuncts ab|c and uv|w
we have {a, b} = {u, v}, then ψ would be a 2-SAT formula,
in contradiction to the assumption that φ /∈ T .

Consider the assignment β that maps x ∈ V to 0 if α(x)
is below the first child of the yca r of α(V ) in T , and that
maps x to 1 otherwise (which child of r is selected as the
first child is not important in the proof). Clearly, β does not
satisfy the split formula for ψ. Observe that the assignment
β1 that is obtained from β by negating the value assigned
to a is a satisfying assignment for ψ, since it satisfies the
disjunct ((a ↔ b) ∧ (c ∨ ¬c)) of ψ. The assignment β2 that
is constant 0 except for the variable a which is assigned

1 is also a satisfying assignment for ψ, because ψ satisfies
((u ↔ v) ∧ (w ∨ ¬w)). But since xor(β1(x), β2(x)) equals
β(x) for all x ∈ V , this shows that ψ is not preserved by
xor, which is what we wanted to show.

We now turn to the second part of the proof of Theorem 3.
The idea to reduce the split problem for B(C) to the rooted
phylogeny problem for C is to construct instances of the phy-
logeny problem in such a way that they are unsatisfiable if
and only if their split problem does not have a non-trivial
solution. To implement this idea, we construct an instance
of the phylogeny problem that fragments into simple and
satisfiable pieces after one step of the recursion of the algo-
rithm from Section 4.

Proposition 2. Let C be a finite class of rooted triple
clauses. Then the split problem for B(C) can be reduced in
polynomial time to the rooted phylogeny problem for C.

Proof. Suppose we are given an instance of the split
problem for B(C) with constraints ψ1, . . . , ψm and variables
V = {x0, . . . , xn−1}. We create an instance Φ of the rooted
phylogeny problem for C as follows. Because of Lemma 2, we
can assume that C contains the clause that just consists of
ab|c. The variables V ′ of Φ are triples (x, i, j) where x ∈ V ,
i ∈ {0, . . . ,m − 1}, and j ∈ {1, . . . , n − 1}. In the follow-
ing, all indices of variables from V are modulo n. Moreover,
if m > 1 we will also write (x, i, n) for (x, i + 1, 1) for all
i ∈ {0, . . . ,m− 2}. The clauses of Φ consist of two groups.

• To define the first group of clauses, suppose that ψi has
variables y1, . . . , yq. Let φi(y1, . . . , yq) be the rooted
triple clause that defines the Boolean relation from
B(C) used in ψi(y1, . . . , yq). By the assumption that C
and B(C) are finite it is clear that φi can be computed
efficiently (in constant time). We then add the clause
φi((y1, i, 1), . . . , (yq, i, 1)) to Φ.

• The second group of clauses in Φ has for all xs ∈ V ,
i ∈ {0, . . . ,m−2} (if m = 1 the second group of clauses
is empty), and j ∈ {1, . . . , n− 1} the clause

(xs, i, j)(xs, i, j + 1)|(xs+j , i, 1) .
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We claim that Φ is satisfiable if and only if ψ1 ∧ · · · ∧ ψm

has a non-trivial solution. First suppose that Φ has a solu-
tion (T, α). Then the variables V ′ of Φ can be partitioned
into the variables that are mapped via α below the left child
of yca(α(V ′)), and the ones mapped below the right child.
Note that both parts of the partition are non-empty. Vari-
ables (x, i, j) of V ′ that share the first coordinate are in the
same part of the partition due to the clauses in Φ in the
second group. Hence, the mapping that sends x ∈ V to 0
if (x, i, j) is mapped to the first part, and that sends x to
1 otherwise is well-defined, and a non-trivial assignment. It
also satisfies all constraints ψ1, . . . , ψm, because of the first
group of clauses in Φ.

Conversely, suppose that there is a non-trivial solution for
ψ1 ∧ · · · ∧ ψm. Note that this solution is a solution to the
split problem of Φ. So, on the first level of the recursion the
algorithm from Section 4 does not reject Φ. Consider the
instances Φ1 and Φ2 of the recursive calls of the algorithm.
Since the assignment is non-trivial, there is a variable xp ∈ V
that is mapped to 1 and a variable xq ∈ V that is mapped
to 0. Hence, for all i ∈ {0, . . . ,m− 1} the clauses (xp, i, q −
p)(xp, i, q−p+1)|(xq, i, 1) from the second group are neither
in Φ1 nor in Φ2, because they contain variables from both
parts of the partition. Therefore, any clause from the first
group in Φ1 will be disconnected in G[Φ1] from any other
clause in the first group in Φ1. The same statement holds for
Φ2. It is then easy to see that the two recursive calls of the
algorithm on Φ1 and on Φ2 do not fail. By the correctness
of the algorithm the instance Φ is satisfiable.

Both groups of clauses together consist of m + mn(n − 1)
many clauses, and it is easy to see that the reduction can be
implemented in polynomial time.

We conclude this section with a combination of the results
above.

Proof of Theorem 3. As mentioned, the rooted phy-
logeny problem for C is clearly in NP. Let C be a class of
rooted triple clauses that is not a subset of T . We prove
NP-hardness as follows. By Proposition 1, B(C) is neither
Horn, dual Horn, affine, nor bijunctive. Theorem 4 asserts
that there exists a finite subset B of B(C) such that the
split problem for B is NP-hard. This means that there is
a subset C′ of C such that the split problem for B(C′) is
NP-hard. Proposition 2 shows that the rooted phylogeny
problem for clauses from C′ (and hence also for clauses from
C) is NP-hard as well.

6. CONCLUDING REMARKS
We have shown that we can decide the consistency of rooted
phylogeny data even if the data consists of restricted forms
of disjunctions of rooted triples. Our algorithm extends pre-
vious algorithmic results about the rooted triple consistency
problem, without sacrificing worst-case efficiency. Our class
of rooted triple clauses T that can be handled efficiently is
also motivated by another result of this paper, which states
that any set of rooted triple clauses that is not contained in
T has an NP-complete rooted phylogeny problem. Here we
use known results about the complexity of (Boolean) con-
straint satisfaction problems, witnessing how techniques in

constraint satisfaction theory can be applied to classes of
problems that previously have not been studied in connec-
tion with constraint satisfaction.

Another such transfer of tools from constraint satisfaction
to phylogenetic reconstruction is our result that no Datalog
program can solve the rooted triple consistency problem.
To show this result we use a pebble game that captures
the expressive power of Datalog for constraint satisfaction
problems with infinite ω-categorical templates.

We would like to mention that our technique to show Data-
log inexpressibility can be adapted to show that the follow-
ing (closely related) problems cannot be solved by Datalog
as well.

• Satisfiability of branching time constraints [10];

• The network consistency problem of the left-linear-
point algebra [20, 26];

• Cornell’s tree description logic [14, 9];

Note that these problems can simulate the rooted triple con-
sistency problem by simple reductions [9].
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