Composition with Target Constraints

Marcelo Arenas Ronald Fagin Alan Nash
PUC Chile IBM Research — Almaden Aleph One LLC
marenas@ing.puc.cl fagin@almaden.ibm.com
ABSTRACT by st-tgds. First, we can replace the composition by a single schema

It is known that the composition of schema mappings, each speci- mapping, specified by an unnested SO tgd. Second, we can replace
fied by source-to-target tgds (st-tgds), can be specified by a secondthe composition by the composition of only two schema mappings,
order tgd (SO tgd). We consider the question of what happens wheneach specified by st-tgds. A similar comment holds for the compo-
target constraints are allowed. Specifically, we consider the ques-sition of standard schema mappings.

tion of specifying the composition aftandard schema mappings

(those specified by st-tgds, target egds, and a weakly-acyclic SetCategories and Subject Descriptors
of target tgds). We show that SO tgds, even with the assistanceH 2.5 [Heterogeneous DatabasgsData translation
of arbitrary source constraints and target constraints, cannot spec- =

ify in general the composition of two standard schema mappings.

Therefore, we introduce source-to-target second-order dependenGeneral Terms

cies (st-SO dependencies), which are similar to SO tgds, but al- Algorithms, Theory

low equations in the conclusion. We show that st-SO dependencies

(along with target egds and target tgds) are sufficient to express theKeywords

composition of every finite sequence of staqdard schema mappir?gs’Metadata management, schema mapping, data exchange, composi-

and further, every st-SO dependency specifies such a compositiony; o target constraint

In addition to this expressive power, we show that st-SO depen- '

dencies enjoy other desirable properties. In particular, they have

a polynomial-time chase that generates a universal solution. This 1. INTRODUCTION

universal solution can be used to find the certain answers to unionsSchema mappings are high-level specifications that describe the re-

of conjunctive queries in polynomial time. lationship between two database schemasyuace schemand a
target schemaBecause of the crucial importance of schema map-

It is easy to show that the composition of an arbitrary number of pings for data integration and data exchange (see the surveys [33,

standard schema mappings is equivalent to the composition of only 34]), several different operators on schema mappings have been

two standard schema mappings. We show that surprisingly, the singled out as important objects of study [8]. One of the most fun-

analogous result holds also for schema mappings specified by justdamental is the composition operator, which combines successive

st-tgds (no target constraints). That is, the composition of an arbi- Schema mappings into a single schema mapping. The composition

trary number of such schema mappings is equivalent to the com-operator can play a useful role each time the target of a schema

position of only two such schema mappings. This is proven by mapping is also the source of another schema mapping. This sce-

showing that every SO tgd is equivalent to an unnested SO tgd hario occurs, for instance, in schema evolution, where a schema

(one where there is no nesting of function symbols). The language may undergo several successive changes. It also occurs in extract-

of unnested SO tgds is quite natural, and we show that unnestedtransform-load (ETL) processes in which the output of a transfor-

SO tgds are capable of specifying the composition of an arbitrary mation may be the input to another [43]. The composition operator

number of schema mappings, each specified by st-tgds. Similarly, has been studied in depth [21, 37, 39, 40].

we prove unnesting results for st-SO dependencies, with the same
types of consequences. One of the most basic questions is: what is the language needed
to express the composition of schema mappings? For example, if
The collapsing result for SO tgds gives us two alternative ways to the schema mapping .- is anst-tgd mapping that is, a map-
deal with the composition of multiple schema mappings specified ping specified by a finite set of the widely-studigalirce-to-target
tuple-generating dependencies (st-tgas)d the schema mapping
Mg is also an st-tgd mapping, is the compositidi; o o Mog
also an st-tgd mapping? Fagin et al. [21] showed that surprisingly,
Permission to make digital or hard copies of all or part of this work for the answer is “No.” In fact, they showed that it is necessary to pass
personal or classroom use is granted without fee provided that copies areto existential second-order logic to express this composition in gen-
not made or distributed for profit or commercial advantage and that copies eral. Specifically, they defined a class of dependencies, which they
bear this notice and the full citation on th_e first page. To copy otherwise,_t_o call second-order tgds (SO tgdsyhich are source-to-target, with
repuphs_h, to post on servers or to redistribute to lists, requires prior specific existentially-quantified function symbols, and they showed that this
permission and/or a fee. . . I .
ICDT 201Q March 22—25, 2010, Lausanne, Switzerland. is the “language of composition”. That is, they showed that the

Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00 composition of any number of st-tgd mappings can be specified by

129

an SO tgd. They also showed that every SO tgd specifies the com-cies) This class of dependencies is the source-to-target restriction
position of a finite number of st-tgd mappings. Thus, SO tgds are of the class SKCQ™ of dependencies introduced in [40]. Our st-
exactly the right language, SO dependencies differ from SO tgds in that st-SO dependencies
may have not only relational atomic formul&§t:, ... ,t,) in the
What happens if we allow not only source-to-target constraints, but conclusions, but also equalities = ¢>. We show that st-SO de-
also target constraints? Target constraints are important in practice;pendencies are exactly the right extension of SO tgds for the pur-
examples of important target constraints are those that specify thepose of expressing the composition of standard schema mappings.
keys of target relations, and referential integrity constraints (or in- Specifically, we show that (1) the composition of standard schema
clusion dependencies [9]). This paper is motivated by the question mappings can be expressed by an st-SO dependency (along with
of how to express the compositions of schema mappings with tar- target constraints), and (2) every st-SO dependency specifies the
get constraints. This question was first explored by Nash et al. [40], composition of some finite sequence of standard schema mappings.
where an even more general class of constraints was studied: con\We note that a result analogous to (1), but for schema mappings that
straints expressed over the joint source and target schemas withoutre not necessarily source-to-target, was obtained in [40] by using
any restrictions. Here we study a case intermediate between thatheir class SKCQ~ of dependencies. In fact, our proof of (1) is
studied by Fagin et al. in [21] and that studied by Nash et al. in simply a variation of the proof in [40].
[40]. Specifically, we studgtandard schema mappingshere the
source-to-target constraints are st-tgds, and the target constraint$n addition, we show that st-SO dependencies enjoy other desirable
consist of target equality-generating dependencies (t-egds) and gproperties. In particular, we show that they have a polynomial-
weakly acyclic set [20] of target tuple-generating dependencies (t- time chase procedure. This chase procedure is novel, in that it has
tgds). Standard schema mappings have a chase that is guarantead keep track of constantly changing values of functions. As usual,
to terminate in polynomial time. In fact, weak acyclicity was intro- the chase generates not just a solution, lurigersal solutiorj20].
duced in [20] in order to provide a fairly general sufficient condition (Recall that asolution.J for a source instancé with respect to a
for the chase to terminate in polynomial time (a slightly less gen- schema mappingV is a target instance where the p@lr; J) sat-
eral class was introduced in [15], under the naroastraints with isfies the constraints of1, and a universal solution is a solution
stratified witnessfor the same purpose). with a homomorphism to every solution.) The fact that the chase is
guaranteed to terminate (whether in polynomial time or otherwise)
Standard schema mappings are a natural “sweet spot” between thémplies that if there is a solution for a given source instahdben
schema mappings studied by Fagin et al. [20] (with only source- there is a universal solution. The fact that the chase runs in polyno-
to-target constraints) and the schema mappings studied by Nashmial time guarantees that there is a polynomial-time algorithm for
et al. [40] (with general constraints), for two reasons. The first deciding if there is a solution, and, if so, for producing a universal
reason is the importance of standard schema mappings. Sourcesolution.
to-target tgds are the natural and common backbone language of
data exchange systems [18]. Furthermore, even though the notionLet ¢ be a query posed against the target schema.c€heain an-
of weakly acyclic sets of tgds was introduced only recently, it has swersfor g on a source instanck with respect to a schema map-
now been studied extensively [1, 2, 3, 4, 6, 7, 10, 11, 13, 14, 19, ping M, are those tuples that appear in the ansy(éh for every
20, 24, 26, 27, 28, 29, 31, 32, 33, 38, 41, 42]. Among the impor- solutionJ for I. It is shown in [20] that ifg is a union of conjunc-
tant special cases of weakly acyclic sets of tgds are sets of full tgdstive queries, and/™ is a universal solution fof, then the certain
(those with no existential quantifiers) and acyclic sets of inclusion answers fog on I can be obtained by evaluatiggon J* and then
dependencies [12], a large class that is common in practice. Thekeeping only those tuples formed entirely of values frbnSince
second reason for our interest in standard schema mappings is thathe chase using an st-SO dependency can be carried out in poly-
as we shall see, compositions of standard schema mappings haveomial time, it follows that we can obtain a universal solution in
especially nice properties. Thus, the language of standard schemaolynomial time, and so we can compute the certain answers to
mappings is expressive enough to be useful in practice, and yet sim-unions of conjunctive queries in polynomial time.
ple enough to allow nice properties, such as having a polynomial-
time chase. In addition to our results about st-SO dependencies, we also have
some results directly about compositions of schema mappings. It is
There are various inexpressibility results in [21] and [40] that show easy to show that the composition of an arbitrary number of stan-
the inability of first-order logic to express compositions. Thus, each dard schema mappings is equivalent to the composition of only two
of these results say that there is a pair of schema mappings that arstandard schema mappings. We show the surprising result that a
each specified by simple formulas in first-order logic, but where similar result holds also for st-tgd mappings (no target constraints).
the composition cannot be expressed in first-order logic. In this That is, the composition of an arbitrary number of st-tgd mappings
paper, we show that some compositions cannot be expressed evers equivalent to the composition of only two st-tgd mappings. This
in certain fragments of second-order logic. First, we show that SO is proven by showing that every SO tgd is equivalent to an unnested
tgds are not adequate to express the composition of an arbitrary pairSO tgd (one where there is no nesting of function symbols). We
of standard schema mappings. It turns out that this is quite easy toalso prove a similar denesting result for st-SO dependencies. These
show. But what if we allow not only SO tgds, but also arbitrary denesting results are the most difficult results technically in the pa-
source constraints and target constraints? This is a more delicateper.
problem. By making use of a notion of locality from [5], we show
that even these are not adequate to express the composition of aWe feel that unnested dependencies are more natural, more read-
arbitrary pair of standard schema mappings. able, and easier to understand than nested dependencies. They are
probably easier to use in practice. For example, it is easy to see that
Therefore, we introduce a richer class of dependencies, which wethe “nested mappings” in [23] can be expressed by unnested SO
call source-to-target second-order dependencies (st-SO dependenigds. We show that unnested SO tgds are also expressive enough to

130

specify the composition of an arbitrary number of st-tgd maggi wanted). The key dependencies we consider are either of the form
This was not even known for the composition of two st-tgd map- R(z,y) A R(x,z) — y = z (which says that the first attribute is
pings. Thus, although it was shown in [21] that each unnested SO a key) orS(y, z) A S(z,z) — y = z (which says that the second
tgd specifies the composition of some pair of st-tgd mappings, the attribute is a key). Finally, éarget tuple-generating dependency

converse was not shown. In fact, for the composition of two st-tgd
mappings, the composition construction in [21] can produce an SO
tgd with nesting depth 2, not 1.

We close by discussing an application of our results. In practice, a

composition of many schema mappings may arise (say, as the resulpverT'

of many steps of schema evolution). If these are st-tgd mappings,
then there are several ways to “simplify” this composition. One
solution is to replace the composition of many st-tgd mappings by
a single schema mapping, specified by an unnested SO tgd. Fo
another solution, we can remain within the language of st-tgds by
replacing the composition of many st-tgd mappings by the compo-
sition of only two st-tgd mappings. A similar comment applies to
the composition of many standard schema mappings.

2. PRELIMINARIES

A schemaR is afinite se{ Ry, ..., Ry} of relation symbols, with
eachR; having a fixed arityh; > 0. Let D be a countably infinite
domain. Aninstancel of R assigns to each relation symhal

of R a finite n;-ary relationR! C D":. Thedomain(or active
domair) dom(7) of instancel is the set of all elements that occur
in any of the relations?!. We say thaiR(as, ..., a,) is afactof I

if (a1,...,a,) € R'. We sometimes denote an instance by its set
of facts.

As is customary in the data exchange literature, we consider in-
stances with two types of values: constants and nulls [20]. More
precisely, letC andN be infinite and disjoint sets of constants and
nulls, respectively, and assume tliat= C U N. If we refer to

a schem& as asourceschema, then we assume that for every in-
stancel of S, it holds thatdom(7) C C. On the other hand, if we
refer to a schemd as atarget schema, then for every instande

of S, it holds thatdlom(.J) C CUN. The distinction between con-
stants and nulls is important in the definition of a homomorphism
(which we give later).

2.1 Source-to-target and target dependencies
Fix a source schem@ and a target scheniR, and assume th&
andT do not have predicate symbols in common. Thesoarce-
to-target tuple-generating dependency (st-tgda first-order sen-
tence of the form:

wherep(Z) is a conjunction of relational atoms ov&rndqy (z, §)

is a conjunction of relational atoms ovdl. We assume a safety
condition, that every member af actually appears in a relational
atom inp(). A target equality-generating dependency (t-eigB
first-order sentence of the form:

VE (1p(2) — u = v),

wherep(Z) is a conjunction of relational atoms ov€randu, v are
among the variables mentionedin We again assume the safety
condition. In several of the examples we give in this paper, we
shall make use of special t-egds callegly dependencigsvhich

say that one attribute of a binary relation is a key for that relation
(of course, we could define more general key dependencies if we

131

(t-tgd) is a first-order sentence of the form:
VI ((2) — Fy(2,7)),

where bothp(z) and(z,) are conjunctions of relational atoms
and where we again assume the safety condition.

The notion of satisfaction of a t-egd by a target instancd, de-
noted by.J = «, is defined as the standard notion of satisfaction in

'Iirst-order logic, and likewise for t-tgds. For the case of an st-tgd

«, a source instancé and a target instancé, the pair(1,J) is
said to satisfyr, denoted by(1, J) = «, if the following instance
instanceK of S U T satisfiesa in the standard first-order logic
sense. For every relation nansec S, relationS¥ is defined as
ST, and for every relation namg € T, relationT” is defined as
T7. As usual, a seE,; of st-tgds is said to be satisfied by a pair
(I,J), denoted by(I, J) = X, if (I,J) | aforeverya € Xy
(and likewise for a set of t-egds and t-tgds).

2.2 Schema mappings

In general, asschema mappinfrom a source schenfa to a target
schemd is a set of pairg!, J), where! is an instance of and.J

is an instance dT'. In this paper, we restrict our attention to some
classes of schema mappings that swecifiedn some logical for-
malisms. We may sometimes refer to two schema mappings with
the same set off, J) pairs asequivalent to capture the idea that
the formulas that specify them are logically equivalent. A schema
mapping fromS to T is said to be ast-tgd mappindf there exists

a setX,; of st-tgds such that/, J) belongs toM if and only if
(I,J) = X4, for every pairl, J of instances o andT, respec-
tively. We use notatiooM! = (S, T, X,:) to indicate thatM is
specified byXs;. Moreover, a schema mappingt from S to T

is said to be astandard schema mappinfjthere exists a set,;

of st-tgds and a set; consisting of a set of t-egds andaeakly-
acyclic set of t-tgds, such thdt/, J) belongs toM if and only if
(I,J) | Zst andJ = 3, for every pairl, J of instances oS
andT, respectively; notatiotM = (S, T, X, ;) is used in this
case to indicate that1 is specified by>,; and>;. We occasion-
ally allow a setX; of source constraints in some of our schema
mappings: we then use the notatiort = (S, T, X5, Xsr, X¢).

To define the widely used notion of weak-acyclicity, we need to
introduce some terminology. For a debf t-tgds overT, define
the dependency graghir of I" as follows.

e For every relation namé& in T of arity n, and for every
i € {1,...,n}, include a nodéT,) in Gr.

Include an edg€T’, i) — (1%, j) in Gr if there exist a t-tgd
Vz(e(Z) — Jy¢(z,y)) inT and a variable: in z such that,
2 occurs in the-th attribute ofT} in a conjunct ofp and in
the j-th attribute ofT% in a conjunct ofy.

Include aspecialedge(T},i) —* (1%, 7) in Gr if there exist
at-tgdvz(p(z) — 3y (z,y)) in I' and variableg, y in &
andy, respectively, such thatoccurs in the-th attribute of
Ty in a conjunct ofp andy occurs in thej-th attribute of7%
in a conjunct ofy.

Then sefl” of t-tgds is said to beveakly acyclidf its dependency
graphGr has no cycle through a special edge [20].

Given a schema mappinyt, if a pair (I, J) belongs to it, ther/
is said to be aolutionfor I underM. A universal solutior[20]
for I is a solution with a homomorphism to every solution for
A homomorphisnirom instance/; to instance/; is a functionh
from C U N to C U N such that (1) for eachin C, we have that
h(c) = ¢, and (2) wheneveR(a1,...,an) is a fact of Ji, then
R(h(a1),...,h(an)) is afact of.J>.

2.3 Second-order dependencies

of (1, J), but it is shown in [21, 40] that this does not work prop-
erly. Instead, the solution in [21, 40] is as follows. leebe an SO
tgd from a source schenfito a target schem@'. Then given an
instancel of S and an instancé of T, instancg 7, J) is converted
into a structuréU;; I, J), which is just like(I, .J) except that it has
auniverseU. The domain and range of the functionsadinis then
taken to bdJ. The universé/ is taken to be a countably infinite set
that includeslom(7) U dom(.J). The intuition is that the universe
contains the active domain along with an infinite set of nulls. Then
(I, J) is said to satisfy, denoted by(1, J) |= o,if (U;1,J) = o
under the standard notion of satisfaction in second-order logic (see,
for example, [16]). It should be noticed that it is proven in [21] that

In this paper, we also consider schema mappings that are specified” the case of SO tgds, instead of t"f}king the univéfsn? be infi-
by second-order dependencies. In the definition of these dependenité, one can take it to be finite and “sufficiently large”, whereas in

cies, the following terminology is used. Given a collectiorof
variables and a collectiofi of function symbols, #erm (based on
z and f) with depth of nesting is defined recursively as follows:

1. Every member of and every O-ary function symbol (con-
stant symbol) off is a term with depth of nesting 0.

2. If f is a k-ary function symbol inf with & > 1, and if
t1,...,t, are terms, with maximum depth of nestidg- 1,
thenf(t1,...,tx) is a term with depth of nesting.

Then, given a source scherSaand a target scheniR, a second-

order source-to-target tuple-generating dependency (SO tgd) from

S to T is a second-order formula of the form [21]:

Hf_(v‘i'l((pl — 'l/)l) /AN /\Vf'n(@n I wn))v
where

1. Each member of is a function symbol.
2. Eachy; is a conjunction of

e relational atomic formulas of the fortfi(y1, . ..
whereS is ak-ary relation symbol o8 andy;, ..
are (not necessarily distinct) variablesiin and

e equality atoms of the form = t’, wheret andt’ are
terms based of; and f.

7yk)'
o Yk

3. Eachy; is a conjunction of relational atomic formulas of the

form T'(t1,...,t.), whereT is anf-ary relation symbol of
T andt4, ..., t, are terms based afy and f.

4. Each variable irz; appears in some relational atomic for-

mula of p;.

[40] this is shown to be insufficient in the presence of unrestricted
target constraints.

The class of SO tgds was introduced in [21] to deal with the prob-
lem of composing schema mappings. More specifically, given a
schema mapping\1:2 from a schem&; to a schema&, and a
schema mapping23 from S, to a schem&s, the composition

of these two schemas, denoted B¢12 o Mos, is defined as the
schema mapping consisting of all paii5;, I3) of instances for
which there exists an instande of S» such that /1, I2) belong to
M2 and(Iz, I3) belong toMo2s. It was shown in [21] that the
composition of an arbitrary number of st-tgd mappings is defined
by an SO tgd, and also that SO tgds are closed under composition.

3. A NEGATIVE RESULT: SO TGDS ARE
NOT ENOUGH

In [21], SO tgds were introduced to deal with the problem of com-
posing schema mappings. As we noted, it was proved in [21] that
the composition of a finite number of st-tgd mappings can always
be specified by an SO tgd, and also that SO tgds are closed under
composition. Thus, SO tgds are a natural starting point for the study
of languages for defining the composition of schema mappings with
target constraints, which is the goal of this paper. Unfortunately, it
can be easily proved that this language is not rich enough to be able
to specify the composition of some simple schema mappings with
target constraints. We now give an example.

ExamMPLE 3.1. Let M2 = (S1,S2,X12,%2) and Mas =
(527537223), whereS; = {P(,)}, S, = {R(7)}, S; =
{T(,-)} and

Z:12 = {P(Ly) - R(l’,y)},
¥y = {R(‘Tvy) A R(:E,Z) — Y= Z}:
Y23 = {R(z,y) — T(z,y)}.

The fourth condition is the safety condition for SO tgds. Note that Notice thatZ, consists of a key dependency o\%y.

it is “built into” SO tgds that they are source-to-target. The depth

of nesting of an SO tgd is the maximal depth of nesting of the terms |f a schema mapping from S; to Ss is specified by an SO tgd,

that appear in it. We say that the SO tgdirmestedf its depth of

then for every instancé, of S;, there exists an instandg of Ss

nesting is at most 1. Thus, an unnested SO tgd can contain termssuch that(I, I3) € M. On the contrary, for the instande of S;

like f(x), but not terms likef (g(z)).

such thatP”* = {(1,2), (1, 3)}, there is no instancé; of S3 such
that (11, I3) € M2 o Mas, sincel; does not have any solutions

As was noted in [21, 40], there is a subtlety in the semantics of underM,. Thus, the composition oM ;2 and M2z cannot be
SO tgds, namely, the semantics of existentially quantified function specified by an SO tgd. |

symbols. In particular, in deciding whethéf, .J) = o, for an

SO tgdo, what should the domain and range of the functions in-

stantiating the existentially quantified function symbols be? The From the previous example, we obtain the following proposition.

obvious choice is to let the domain and range be the active domain

132

PROPOSITION 3.2. There exist schema mapping$ti2
(Sl7 527 2127 22) and./\/lzg = (SQ7 SS, 223), Where212 and223
are sets of st-tgds antl, is a set of key dependencies, such that
M2 o Mas cannot be specified by an SO tgd.

Proposition 3.2 does not rule out the possibility that the compo-
sition of M2 and M3 can be specified by using an SO tgd to-
gether with some source and target constraints. In fact, the compo-
sition M2 o Ma3 can be specified by a set of st-tgds together
with some source constraintsMi2 o M3 = Mis. where
M3 = (S1,83,%1,%13) and

X} {P(z,y) A P(x,2) -y =2z},

T3 {P(z,y) = T(z,y)}-
A natural question is then whether the language of SO tgds together
with source and target constraints is the right language for defining
the composition of schema mappings with source and target con-

straints. Unfortunately, the following theorem shows that this is not
the case.

THEOREM 3.3. There exist schema mappingais
(S17 Sz, 212, 22) and./\/lz:; = (Sz7 Sg, 223), Wher6212 and 223
are sets of st-tgds anll, is a set of key dependencies, such that
M2 o Mas cannot be specified by any schema mapping of the
form (S1, Ss, 01,013, 03), Whereo; is an arbitrary source con-
straint, 013 is an SO tgd, and; is an arbitrary target constraint.

If we view a source constraint as a set of allowed source instances,
then when we say that; is an “arbitrary source constraint” in The-
orem 3.3, we mean that; allows an arbitrary set of source in-
stances. A similar comment appliesat@ being an “arbitrary target
constraint”.

To prove this theorem, we use a notion of locality from [5]. No-
tions of locality [22, 25, 30, 35] have been widely used to prove
inexpressibility results for first-order logi@&(Q) and some of its
extensions. The intuition underlying those notions of locality is
that FO cannot express properties (such as connectivity, cyclicity,
etc.) that involve nontrivial recursive computations. The setting of
locality is as follows. The&Saifman graphG (1) of an instancd of

a schemd is the graph whose nodes are the element&ai(7),

and such that there exists an edge betweandb in G(I) if and
only if & andb belong to the same tuple of a relati®{, for some

R € S. For example, iff is an undirected graph, théi(7) is I it-
self. The distance between two elementndb in I is considered

to be the distance between themd(/). Givena € dom(7), the
instanceN (a), called thed-neighborhood of: in 1, is defined as
the restriction of to the elements at distance at mé$tom a, with

a treated as a distinguished element (a constant in the vocabulary).

The notion of neighborhood of a point is used in [5] to introduce the
following notion of locality for data transformations. In this defini-
tion, N](a) =, N} (b) indicates thatV] (a) and N (b) agree on

all FO-sentences of quantifier rank at mésthat is, for everyrO-
sentencep of quantifier rank at most, we have thaiV; (a) = ¢

if and only if N] (b) = o, where the quantifier rank of a formuja

is the maximum depth of quantifier nesting in it.

DEFINITION 3.4. ([5]). Given a source schensaand a target
schemdT’, a mappings : S — T islocally consistent undefO-
equivalencef for every r, ¢ > 0 there exist, k > 0 such that, for

133

every instancd of S anda,b € dom(1), if N}(a) =, Ni(b),
then

1. a € dom(F (1)) ifand only if b € dom(F (1)), and

2. NN (a) =, NSD ().

For a fixed schema mappin®, T, X.:), we denote by§can the
transformation fromS to T, such thatFc.n (/) is the canonical
universal solution fod. In [5], it was shown thaf... is locally
consistent undeFO-equivalence for schema mappings specified
by st-tgds.

PrRoPOSITION3.5 ([5]). Forevery st-tgd mapping, the trans-
formation§.an is locally consistent unddrO-equivalence.

The previous proposition can be easily extended to the case of a
composition of a finite number of st-tgd mappings.

LEMMA 3.6. Letn > 2. For everyi € [1,n — 1], let
M; = (Si,Si+1,%::+1) be a schema mapping specified by a
setY; ;11 of st-tgds, andg’,, be the canonical universal solution
transformation forM;. Assume tha§ is the transformation from
S; to S,, defined as:

3(‘[1) = 3?;11((33an(3(1:an(11))))7

for every instancd; of S1. Theng is locally consistent unddrO-
equivalence.

Lemma 3.6 is one of the key components in the proof of Theo-
rem 3.3. We give here a sketch of the proof of Theorem 3.3.
PROOF SKETCH OF THEOREM 3.3. =
(S1,S2,%12,%2) and Mas
mappings, where:

Let Mo
(S2,S3,%23) be schema

Si {EG), Pu(), Q1()}
Sz = {P(),Q2(),R(-,-),5(;)}
Ss = {V()}
and
Y12 = {Pi(z) — Pa(x),
Q1(z) — Q2(w),
E(z,y) — 321322323 (R(z, 21) A R(y, 22) A
S(z1,23) N S(z2,23))},
Yo = {R(z,y) ANR(z,2) =y = 2,
Sz, y) N S(z,2) >y =z,
S(y,z) AN S(z,2) =y =z},
Yo = {Pa(2) A R(z,2) A R(y,2) A Qa(y) — V(x)}

First, we note that for every instande of S, there exists an in-
stancelz of Sz such that(;,I3) € M2 o Mas, and for ev-
ery instancel; of S3, there exists an instandg of S; such that
(I1, I3) € Mi2 o Maz. From these two properties, we conclude
that source and target constraints cannot be used in defining the
composition ofM 2 and Mas.

Thus, we need only show thatt;» o Ms3 cannot be specified by e relational atomic formulas of the forf' (¢4, ...,),

an SO tgd. For the sake of contradiction, we assume that schema whereT" is an/-ary relation symbol ofl" andty, . ..,
mappingMis = (Si1,Ss,013) defines this composition, where t, are terms based ori and f, and

o13 is an SO tgd. From Theorem 8.2 in [21], we know that every e equality atoms of the form = ¢/, wheret and¢’ are
SO tgd is equivalent to the composition of a finite humber of st- terms based om; and f.

tgd mappings. Thus, given thatl,3 defines the composition of
M2 and M3, we have that there exist schema mapping$ =

(S1,85,%12), ..., M,y = (8,1, 85, X, 1 ,,) such thata > Let & be the st-SO dependendyf (Vzi(p1 — ¢1) A -+ A
2, 8! = 81, S, = S, ¥};,, is a set of st-tgds for every € VZn(on —). From now on, we say thatz;(p; —) is
{1,...,n — 1}, and M} o ... o M/,_, defines the composition ~ anSO tgd partof & if v); is a conjunction of relational atomic for-
of Mi2 and Mas, that is, for every pair of instancdd, I3) € mulas of the formil’(¢1, . .., t¢), and we say thatz;(p; — ;) is
S1 X Ss: an SO egd parbf @ if +; is an equality atom of the forrh = ¢'.
Note that if; is the conjunction of the SO tgd parts ®f and~.
(I1,I3) € Miz o Mas & (I1,I3) € Mio...o M, . is the conjunction of the SO egd parts®fthen® is equivalent to

; . i the formulad f (v A ve).
For every: € {1,...,n — 1}, let §t., be the canonical solution P Ae)

transformation forAM), and assume th& is the transformation
defined a%(ll) = gz;rll(' o (%gan(%(l:an(ll))) T) for every in-
stancel; of S;. From Lemma 3.6, we have thgtis locally con-
sistent undeFO-equivalence. In particular, we have that foe 1
and¢ = 1, there existd, k& > 0 such that for every instanch
of S; and for everya, b € dom(I1), if Ni'(a) =, N;*(b), then
a € dom(F(I1)) ifand only if b € dom(F(11)).

We adopt the same convention for the semantics of st-SO depen-
dencies as was given in Section 2 for SO tgds, by assuming the
existence of a countably infinite universe that includes the active
domain.

We shall show that the composition of a finite number of standard

schema mappings is given by a schema mapping specified by an
st-SO dependency, together with t-egds and a weakly acyclic set
of t-tgds. It is convenient to give these latter schema mappings a
name. To emphasize the similarity of these second-order schema

To obtain a contradiction, and thus conclude the proof, it is enough
to show an instancé;, of S; and elements, b € dom(/1) such

that N, (a) =« Ng' (b), a € dom(F(11)) andb & dom(3(I1)). mappings with the first-order case, we shall refer to these schema
Such an instance is defined as follow’* = {a,b}, Q' = {c}, mappings aSO-standard Thus, an SO-standard schema mapping
andE™ contains the following tuples: is one that is specified by an st-SO dependency, together with t-egds
and a weakly acyclic set of t-tgds.
E E E E
a a1 s aq c Note that st-SO dependencies, like SO tgds, are closed under con-
junction. That is, the conjunction of two st-SO dependencies is
E E E equivalent to a single st-SO dependency. This is why we define

b by . by an SO-standard schema mapping to have only one st-SO depen-
dency, not several. Note also that every finite set of st-tgds can be
expressed with an SO tgd, and so with an st-SO dependency. In par-

As shown in the figureE™" is a union of two paths, one containing ~ ticular, every standard schema mapping is an SO-standard schema
d + 2 elements with first elememntand last element, and another mapping.

one containingl + 1 elements with first elemertt Observe that

NI (a) = NJ*(b) since N[(a) is isomorphic toN* (b), with 5. THE CHASE FOR ST-SO DEPENDEN-

a andb treated as distinguished elements. But not only that, it is CIES

also possible to prove thatc dom(§(/1)) andb ¢ dom(F(11)), In [21], the well-known chase process is extended so that it applies

which leads us to the aforementioned contradiction] to an SO tgdb. The idea is that each SO tgd partiofs treated like
a tgd (of course, the conclusion contains Skolem functions rather

4. SOURCE-TO-TARGET SO DEPENDEN- than existential quantifiers). In deciding whether the premise of the
CIES SO tgd part is instantiated in the instance being chased, two terms

In Section 3, we showed that SO tgds, even with the assistance ofar® trea}ted as qual precisely if they are syntactically idgntical. So
arbitrary source constraints and arbitrary target constraints, cannot& Premise containing the equality atgft) = ¢(y) automatically
always be used to specify the composition of mappings with tar- falls to hold over an instance, and a premise containing the equal-
get constraints, even if only key dependencies are allowed as targefty atom f(g(z)) = f(g(y)) automatically fails to hold over an
constraints. In this paper, we define a richer class, called source-instance unless the instantiationzoéquals the instantiation of.
to-target SO dependencies (st-SO dependencies). This class of de-))

pendencies is the source-to-target restriction of the clag€Ok In this section, we discuss how the che_tse can be extended to apply
of dependencies introduced in [40]. We show that st-SO depen- {0 @n st-SO dependency. We note that in [40], a chase procedure for
dencies (together with appropriate target constraints) are the rightthgdependenmes studied th.ere (which are like ours b.ut not neces-
extension of SO tgds for the purpose of expressing the composition sarily source-to_—target) was introduced. However, their chase was
of standard schema mappings. The definition of st-SO dependen-not procedural, in that their chase procedure says to set teransl

cies is exactly like the definition of SO tgds in Section 2, except t2 to be equal when the dependencies logically imply that ¢..
that condition (3) is changed to: Because of our source-to-target restriction, we are able to give an

explicit, polynomial-time procedure for equating terms.

3. Eachy; is a conjunction of For space reasons, we keep the discussion here informal. In chasing

134

an instancd with an st-SO dependend, we chase first with all

of the SO egd parts @b, and then we chase with all of the SO tgd
parts of®. We no longer consider two terms to be equal precisely
if they are syntactically identical, since an SO egd part may force,
say, f(0) andg(1) to be equal, even though(0) andg(1) are not
syntactically identical.

Given a source instanck and an st-SO dependendy, we now
describe how to chasewith the SO egd parts ab. Let D be the
active domain off (by our assumptionsD consists of constants
only). Letn be the maximal depth of nesting over all terms that
appear in®. Let f consist of the function symbols that appear in
®. Let T be the set of terms based @ and f that have depth
of nesting at most.. This setT” is sometimes called thderbrand
universe(with respect taD and) of depthn. It is straightforward

to see (by induction on depth) that the siz€Tofs polynomial in
the size ofD, for a fixed choice ofb. We note that if we defing”

to be the subset df that consists of all term&a), wheret(z) is

a subterm ofP, anda is the result of replacing members @fby
values inD, then we could work just as well with” as withT" in
defining the chase. However, the proofs are easier to give Using
instead ofl”.

We now define a functio#” with domain the members @. The
valuesF'(t) are stored in a table that is updated repeatedly during
the chase process. dfis a member ofD, then the initial value of
F(a) is a itself (in fact, the value of'(a) will never change for
memberse of D). If t is a member off" that is not inD (so that
t is of the form f(¢1,...,tx) for some function symbaof), then
F(t) is initially taken to be a new null value. As we changewe
shall maintain the invariant that jf(¢1, ..., ¢x) and f(t1, ..., ;)
are members of” where F'(t;) = F(t;), for 1 < i < k, then
F(f(t1,...,tx)) = F(f(ty,...,t)). This is certainly true ini-
tially, since F' is initially one-to-one on members @f.

Let N be the set of all of the new null values (the values initially
assigned ta¥(¢) whent is not in D). We create an ordering

on D U N, where the members dP are an initial segment of the
ordering=, followed by the members a¥.

We now begin chasing with the SO egd parts @b, to change the
values of F. Whenevert is a member ofl" such that we replace
a current value of"'(¢) by a new value during the chase process,
we will always replace the current value 6f(¢) by a value that

is lower in the ordering<. If s1(g1) = s2(72) is an equality in
the premise of an SO egd part ®f then the equalitys1(e1)
s2(é2) evaluates to “true” where; andé; consist of members of
D, precisely if the current value df (si(é1)) equals the current
value of F'(s2(&2)). Each time an equality; (a) = t2(b) is forced
(because of an SO egd part with conclusiefiz) = t2(y)), and

the current value of'(¢1(a)) does not equal the current value of
F(t2(b)) we proceed as follows. Let be the smaller of these two
values and let, be the larger of these two values in our ordering
<. If ¢2 is a constant, then the chase fails and halts. Otherwise
for every member of 7" where the current value df'(s) is c2,
change the value so that the new valueFdfs) is c¢1. Note that
under this change, the new valuefoft; (a)) and the new value of

of F(t2(b)) are the same (namely,).

These changes iR may propagate new changesiih which we

need to make in order to maintain the invariant. Assume that as

a result of our changes iR so far, there are termg(¢1, . .
and f(t1, . ..

7tk)
, 1) in T whereF(t;) = F(t;), for1 <i < k, but

135

F(f(t1,...,tx)) and F(f(t1,...,t})) are different. As before,

let ¢; be the smaller of these two values anddgebe the larger of
these two values in our ordering. If c2 is a constant, then the
chase fails and halts. Otherwise, for every membef 7" where

the current value of'(s) is c2, change the value so that the new
value of F'(s) is c1. Note that under this change, the new value
of F'(f(t1,...,tx)) and the new value of (f(¢1,. .., t})) are the
same (namelyg;). Continue this process until no more changes
occur. Itis easy to see that we have maintained our invariant. Con-
tinue chasing with SO egd parts until no more changes occur. Note
that at most as many changes can occur as the size sifice ev-

ery time a change occurs, there are strictly fewer valuer @

ast ranges ovefl’. This is the key reason why the chase runs in
polynomial time.

OnceF has stabilized, so that no more changes are caused by chas-
ing with the SO egd parts ob, then chasd with the SO tgd
parts of®. If s1(y1) = s2(g2) is an equality in the premise of

an SO tgd part ofd, then the equality; (&1) s2(é2) evalu-

ates to “true” wherez; ande, consist of members af, precisely

if F(s1(e1)) = F(sz2(e2)). These chase steps produce the target
relationJ that is taken to be the result of the chase.

We have the following theorem about the chase process.

THEOREM 5.1. Let ® be a fixed st-SO dependency. The chase
of a ground instancé with ® runs in time polynomial in the size of
I. The chase fails precisely if there is no solution fawith respect
to ®. If the chase succeeds, then it produces a universal solution
for I with respect tcD.

Note that in particular, Theorem 5.1 tells us that there is a
polynomial-time algorithm for determining, given a source instance
1, whether there is a solution fdr and if so, producing a universal
solution forI.

Because there is a polynomial-time chase for st-SO dependencies,
there is also a polynomial-time chase for SO-standard schema map-
pings: first, chase with the st-SO dependency, and then with the
target dependencies (where there is a polynomial-time chase be-
cause of the weak-acyclicity assumption). It follows that there is a
polynomial-time algorithm for obtaining a universal solution for an
SO-standard schema mapping (if there is a solution).

As shown in [20], we can use a universal solution to obtain the cer-
tain answers to unions of conjunctive queries in polynomial time.
We now recall the definition of the certain answers. Given a schema
mappingM = (S, T, X), an instancd over the source schens

and ak-ary queryg posed against the target schemathecertain
answers of g on | with respect t¥1, denoted bycertainv (g, I),

is the set of alk-tuplest of values from/ such that, for every so-

"lution J of I underM, we have that € ¢(J), whereg(J) is the

result of evaluatingy on J. If J is a universal solution fof under

M, andgq is a union of conjunctive queries, then it is shown in [20]
that certaina (g, I) equalsg(J),, which is the result of evaluat-
ing ¢ on J and then keeping only those tuples formed entirely of
values from/ (that is, tuples that do not contain nulls). The equal-
ity certainyv (g, I) = ¢(J), holds for arbitrarily specified schema
mappingsM (as long as such a universal solutidrexists). We
thereby obtain the following corollary to Theorem 5.1, which is
analogous to the same corollary in [21] for mappings specified by

SO tgds (except that in the case of SO tgds, there is always a solu schema mapping1:3. In fact, we can take the target constraints
tion for every ground instanch). of M3 to be the target constraints 8fl23. Thus, intuitively, st-
SO dependencies are expressive enough to capture the intermediate

target constraints in a composition.
COROLLARY 5.2. Let M be an SO-standard schema mapping.

Let ¢ be a union of conjunctive queries over the target sch@ma

Then for every ground instandeover S such that there is a solu- THEOREM 6.3. Let M2 = (S1,82,312,%2) and Moz =
_tion forl wiFh respect tab, th_e set certaing (g, I') can be computed (S2,Ss, Xa3, ¥3) be standard schema mappings (so thag, Xos
in polynomial time (in the size d). are sets of st-tgds, anll; (i = 2,3) is the union of a set of t-

egds and a weakly-acyclic set of t-tgds). Then there exists an st-SO
dependencys such that the mappingt1s = (S1, S3, 013, X3)
is equivalent to the compositiol 12 o Mos3.

6. A POSITIVE RESULT: SO-STANDARD

SCHEMA MAPPINGS ARE THE In Section 6.2, we show that the composition of SO-standard
NEEDED CLASS schema mappings is also an SO-standard schema mapping. By

In this section, we show that SO-standard schema mappings (thos€O0mbining this result with Theorem 6.3 (and using the simple
specified by an st-SO dependency, along with target constraints@ct, noted earlier, that every standard schema mapping is an SO-
consisting of t-egds and a weakly-acyclic set of t-tgds) exactly cor- Standard schema mapping), we obtain our desired result, namely,

respond to the composition of standard schema mappings. that the composition of a finite number of standard schema map-
pings is equivalent to an SO-standard schema mapping.

6.1 Us!ng SO_Stanqard schema mappings to It is straightforward to show that Theorem 6.3 is a consequence of
define compositions the following proposition.

Before we show that the composition of an arbitrary number of

standard schema mappings is equivalent to an SO-standard schema

mapping, we first show that target constraints are needed (that is, ProposITION 6.4. Let M, be a standard schema mapping,

st-SO dependencies by themselves are not enough). In fact, theand letMo23 be an st-tgd mapping (no target constraints). Then the

next proposition says that st-SO dependencies, without target con-compositionM 2 o M3 can be specified by an st-SO dependency.

straints, are not capable of specifying even schema mappings spec-

ified by st-tgds and a set of key dependencies.

As pointed out in Section 4, the class of st-SO dependencies cor-
. . responds to the source-to-target restriction of the class'WE8K
PROPOSITION 6.1. There exists a schema mappirg 1> = dependencies introduced in [40]. In fact, Theorem 6.3 and Propo-
(S1,S2, %12, X2), whereX:» is a set of st-tgds antl; is a set of sition 6.4 were essentially established in [40] (see Theorems 6 and
key dependencies, such thet; cannot be specified by an st-SO g and the paragraph after Theorem 10 in [40]), but they are restated
dependency. and clarified here for the sake of completeness. We also show here
how Proposition 6.4 is proved, which is a straightforward adapta-
tion of the proofs of Theorems 6 and 9 in [40], and the comments
in the paragraph after Theorem 10 to handle a weakly-acyclic set
of target tgds.

As we shall see, we get an easy proof of Proposition 6.1 by using
the following simple proposition, which is analogous to the same
result for st-tgds [17].

We now demonstrate, by example, how an st-SO dependency

PROPOSITION 6.2. Let 12 be an st-SO dependency, lebe a is obtained fromM 2 and. M3 in Proposition 6.4 (it will be clear
source instance a.nd lef be a target instance. If7, J) ": o1 how to extend from the example to the general case). Assume that

4 4 S = {A(7)73()}7 Se = {0(7 ')7D('7)}7 S3 = {E(7)}
C .
andJ C J', then(l, J') |= 012 Furthermore, suppose thai» consists of the following st-tgds:

PROOF OFPROPOSITIONG.1. LetS; = {S(-,-)}, S2 = {T'(-,")} Alwy) = COly),
andXi = {S(z,y) — T(z,y)}, and assume that, consists B(z) — 3JyC(z,y), (1)
of the single key dependen&(z,y) A T'(z,2) — y = z. By

e 7. Y5 consists of the following t-tgds:
way of contradiction, assume thatl,» can be specified by an st- ? gt

SO dependencys. LetI = {S(1,2)}, J = {T'(1,2)} and Clz,y) NC(y,2z) — C(z,x),
J = {T(L 2)7’1_'(17 3)} Given that(I, J) 'I Y12 U X, andoia C %D 2
specifiesM12, we have thatl, J) & o12. Hence, by Proposi- (@,y) = 3=D(2,2), @
tion 6.2, we have thal, .J') k= o1, and, thus(I, J') = %12 U, C(z,z) — D(z,),
sinceo2 specifiesM 2. Thus, we obtain a contradiction, since D(z,y) — D(y,x),
J' S,

3 O andX,s consists of the st-tgd:
Let M12 and /\{12:; pe standard schema mappings. The previous D(z,y) — 3zE(z,y,z2). 3)
negative result implies that st-SO dependencies by themselves can-
not necessarily specify the compositidf12 o Ma3. Our next To obtaino 3, we first Skolemize each dependencyin, X2 and

theorem implies thatM 12 o M3 is equivalent to an SO-standard 323 to obtain the set§(312), £(X2) and€ (X23) of dependencies,

136

respectively. In this process, we use distinct Skolem funstior
distinct dependencies. In particular, we replace (1), (2) and (3) by:

B(z) — C(z, f(z)),
Clz,y) — D(z,g(z,y)),
D(z,y) — E(z,y,h(z,y)),

respectively. Then for predicatésand D, we introduce functions
fc.gc, fp andgp, where fc, go have the same arity &S, and
wherefp, gp have the same arity d3, and we define ;3 as:

3f393h3fc3gc3foIgn U,

where f, g andh are the Skolem functions introduced above and
¥ is a conjunction of a set of dependencies defined as follows. As
predicateC' cannot be mentioned i, functions fc and g are
used to replace it: the equalif-(a) = gc(a) is used to indicate
thatC'(a) holds. Thus, the first two conjuncts @f are generated
from £(X12) by replacingC(z) by fc(z) = gc(Z):

Az, y)
B(x)

—

fe(z,y) = go(z,y),
fe(z, f(2) = go(z, f(x)). 4)
Similarly, functions fp and gp are used to replace predicafg

and the dependencies §{X2) are used to generate the following
conjuncts ofl:

—

dom(z) A dom(y) A dom(z) A fo(z,y) = go(z,y) A
fe(y,z) = gc(y,2) — fo(z,2) = go(z,x), (5)
dom(z) A dom(y) A
fe(@,y) = go(x,y) — fo(z,9(2,y))
dom(z) A fe(z,x) = gc(x,z) — fp(z
dom(z) A dom(y) A
fo(z,y) =gp(z,y) = fo(y,2) = gp(y,), (8)

p(z,9(z,y)), (6)

=9
7$) :gD(x,x), (7)

wheredom(-) is a formula that defines the domain of the instances
of Sy, that is,dom(z) is Jy A(z,y) V Iz A(z,x) V B(z). This
predicate is included in the previous dependencies to satisfy the
safety condition of st-SO dependencies, namely, that every variable

following is one of the conjuncts oF generated from formula (5):

dom(z) A dom(y) A dom(z) A
fe(f(@),y) = go(f(x),y) A fely, f(2)) = go(y, £(2) —
fe(f(2), f(x)) = ge(f(2), f(z)),

while the following dependency is one of the conjunctsbofen-
erated from formula (7):

dom(z) A dom(y) A fo(f(x), f(y)) = go(f(2), f(y)) A
f(x) = fy) — fo(f(@), f(y)) = gp(f (), f(y))-
Notice that in the previous dependency we have included the equal-

ity f(x) = f(y), as it can be the case thta) = f(b) holds
for distinct elements andb. Similarly, it is possible to infer that

only terms of the forme, f(y), g(z,y), g(z, f(y)), 9(f(2),y)
andg(f(z), f(y)) need to be considered for the case of predicate

D. Thus, dependency (8) is instantiated with all the possible com-
binations of this type of terms. For example, the following is one
of the conjuncts off generated by this process:

dom(z) A dom(y) A dom(z) A
fo(f(@),9(f(y),2)) = gp(f(x),9(f(y),2)) —
fo(9(f(y),2), f(x)) = gp(9(f (), 2), f(x)).
Finally, the last conjuncts of are generated from dependency

D(z,y) — E(z,y,h(x,y)) as above. For example, the follow-
ing are two of these conjuncts:

dom(z) A dom(y) A fp(z,y) = gp(z,y) — E(z,y,h(z,y)),
dom(z) A dom(y) A dom(z) A
fo(f(x),9(f(y), f(2))) = gp(f(2),9(f(y), [(2))) —
E(f(x),9(f(y), [(2)), h(f(x),9(f (), f(2))))-

It is important to notice that the weak acyclicity Bf guarantees

that the above process terminates. That is, we need only consider
terms up to a certain fixed depth of nesting. In particular, in the
above example, we only need to consider terms where the nesting
depth of functions is at most 2.

ExXAMPLE 6.5. We conclude this section by showing why weak

mentioned in a term has to be mentioned in a source predicate. Weacyclicity is necessary to guarantee the termination of the above

then use the standard approach for eliminating disjunctions in a
premise (for examplep; V @2 — 1 can be replaced by the two
formulasp; — v andps —).

Notice that if an equalityfc (a, f(a)) = gc(a, f(a)) can be in-
ferred by using dependency (4), then we know t6dt, f(a))
holds. Thus, sinceD(a,g(a, f(a))) can be obtained from
C(a, f(a)) and the dependency’(z,y) — D(z,g(x,y)),
it should be possible to infer thatfp(a,g(a, f(a)))
gp(a, g(a, f(a))) holds by using the fact thafc(a, f(a))
gc(a, f(a)) holds and the dependencies ¥n. However,
dom(f(a)) does not hold, thenfc(a, f(a)) gc(a, f(a))
does not satisfy the premise of dependency (6) and, therefore
fo(a,g(a, f(a))) = gp(a,g(a, f(a))) cannot be inferred by us-
ing this dependency. To overcome this limitation, we also instan-
tiate the above four dependencies with the terms that appear in th
tuples that are generated by repeatedly applying the formulas in
E(X2). More precisely, it is possible to infer that only terms of the
form = and f(y) need to be considered for the case of predicate
C and, thus, dependencies (5), (6) and (7) are instantiated with all
the possible combinations of this type of terms. For example, the

if

137

[S)

process. Assume tha¥lis = (Si,S2,X12,%2) and Mas
(S2,83,%23), whereS, = {A(-,))}, S2 = {B(-,-)}, S3
{C(-,)}, ¥12 consists of the following st-tgd:

A(z,y) — B(z,y),
Y5 consists of the following t-tgd:

B(z,y) — 32B(y,2),
andX,s consists of the st-tgd:

B(z,y) — C(z,y).

Notice thatM is not a standard schema mappingYasis not
weakly acyclic.

9)

In order to obtain an st-SO dependemgy that defines the compo-
sition of M12 and M3, the above process first Skolemizes each
dependency ifti2, 32 andX.; to obtain the set§ (X12), £(X2)
and&(X23) of dependencies, respectively. In particular, the t-tgd
(9) is replaced by the dependency:

B(z,y) — By h(z,y)). (10)

Then binary functiong's ard g5 are introduced, and 5 is defined THEOREM 6.6. For every pairMi2 = (S1,S2,012,%2) and
as3h3dfedgr ¥, whereW is a conjunction of a set of dependen- Mz = (S, S3, 023, X3) of schema mappings, whesgs, 23

cies defined as follows. The first conjunct\bfis generated from are st-SO dependencies andi (i = 2,3) is the union of a
E(X12) by replacingB(x,y) by fs(x,y) = gB(z,y): set of t-egds and a weakly acyclic set of t-tgds, there exists an
st-SO dependency;s such that the schema mappingt;s =
Alz,y) — fe(x,y) =gs(z,Yy). (11) (S1,S3, 013, ¥3) is equivalent to the compositioh s o Mos.

Then functionsfs andgp are used to eliminate predicaiefrom

E(X2). In particular, the following conjunct is included b Note that, just as in Theorem 6.3, the atused inMs is also

. used inM 3. Theorem 6.6 was essentially established in [40] (see

dom(z) A dom(y) A f5(x,y) = gs(z,y) — Theorems 6 and 9 and the paragraph after Theorem 10 in [40]),
fB(y, h(z,y)) = gB(y,h(z,y)), (12) since the class of st-SO dependencies corresponds to the source-to-

target restriction of the class of 8€Q~ dependencies introduced

wheredom(-) is a formula that defines the domain of the instances in [40]

of S1, that is,dom(z) is Ju A(z,u) V Jv A(v, z). As mentioned
above, predicatdom(-) is included in the previous dependency to

satisfy the safety condition of st-SO dependencies. As pointed out in Section 6.1, the previous result is fundamental to

showing that SO-standard schema mappings can define the compo-
sition of standard schema mappings, since from the combination of
this result with Theorem 6.3 (and using the simple fact that every
standard schema mapping is an SO-standard schema mapping), we
obtain the following theorem as a consequence.

It should be noticed if(a,b) is a tuple inA4, one can infer that
fe(a,b) = ggr(a,b) holds by considering dependency (11), and
then one can infer thafz (b, h(a,b)) = ggr(b,h(a,b)) holds
by considering dependency (12). By definition ®fs, this im-
plies that B(b, h(a,b)) holds, from which one concludes that
B(h(a,b), h(b, h(a,b))) also holds (from dependency (10)). Thus,

in this case it should be possible to infer that THEOREM 6.7. The composition of a finite number of standard

schema mappings is equivalent to an SO-standard schema map-
fB(h(a,b),h(b,h(a,b))) = g (h(a,b), h(b, h(a,b))) (13) pIng.

holds from the dependenciesin However, ifdom(h(a, b)) does -standar hema m in r X-
not hold, then one cannot infer equality (13) from dependency (12) 6.3 SO-standard schema appings are €

and the fact thafs (b, h(a, b)) — g (b, h(a, b)) holds. This forces actly the needed class
one to instantiate dependency (12) with the terms that appear in theWe have introduced st-SO dependencies (and SO-standard schema
tuples that are generated by repeatedly applying (10). In particular, Mappings) because of Theorem 6.7. In this section, we show that

the following dependency is included as a conjuncidb be able SO-standard schema mappings are exactly the needed class, since
to infer (13) from equalityfs (b, h(a, b)) = g5 (b, h(a,b)): the converse of Theorem 6.7 also holds. Specifically, we have the

following theorem.
dom(z) A dom(y) A fp(x, h(z,y)) = gB(z, h(z,y)) —

To(h(z,y), hz, h(z,y))) = g5 (h(z,9), h(z; h(z,9)))- THEOREM 6.8. Every SO-standard schema mapping is equiva-
The previous dependencies are used to deal with the terms wherd€nt to the composition of a finite number of standard schema map-
the nesting depth of functions is at most 2. But given Miatis pings.

not weakly acyclic, one also needs to deal with the terms where
the nesting depth of functions is 3, which forces one to include the _ . .) .
following dependency as a conjunctt This is proven by showing the following:

d Ad A .
om(x) A dom(y) THEOREM 6.9. Every schema mappingt = (S, T, o),

fB(h(z,y), h(z, h(z,y))) = g8(h(z,y), h(z, h(z,y))) — whereo.; is an st-SO dependency, is equivalent to the composition
fe(h(z,h(z,y)), h(h(z,y), h(z, h(z,y)))) = of a finite number of schema mappings, each specified by st-tgds
g5(h(x, h(z,y)), h(h(z,y), h(z, h(z,y)))). and t-egds.

It is not difficult to see that the process does not terminate in this
case, as from the preceding dependency one needs to generate ldote that, somewhat surprisingly, we do not need to make use of
formula to deal with the terms where the nesting depth of functions a weakly acyclic set of t-tgds (or any t-tgds at all) in Theorem 6.9.
is 4, which in turn has to be used to generate a dependency to dealn particular, letM12 and Mos be as in Proposition 6.4 (where
with nesting depth 5, and so on. ad the specification of\12 may make use of a weakly-acyclic set of
t-tgds). By Proposition 6.4, the composition is given by a schema
., mapping. M3 specified by an st-SO dependency, and by Theo-
6.2 Composablllty of SO-standard schema rem 6.9, we know that\1,3 is the composition of a finite number
mappings of schema mappings, each specified by st-tgds and t-egds (no t-
The next theorem implies that the composition of SO-standard tgds). SoM;2 o M3z needs no t-tgds to specify it, even though
schema mappings is an SO-standard schema mapping. This is the\ 2 makes use of t-tgds.
final step we need to show that the composition of a finite number
of standard schema mappings is given by an SO-standard schem&Ve now show how Theorem 6.8 follows from Theorem 6.9. Let
mapping. M = (S, T,ost, X¢) be an SO-standard schema mapping (where

138

ost IS an st-SO dependency, adtl is the union of a set of t-
egds and a weakly acyclic set of t-tgds). Let' = (S, T, o),
where we discard; from M. By Theorem 6.9, where the role
of M is played by M’, we know that there are schema map-
pingsM., ..., My, each specified by st-tgds and t-egds, such that
M = Mjio---0oM;j. Assume tha.t\/tk = (S/7 T‘7 O’St7Tk), with

T, consisting only of t-egds. LeM), = (S, T, 0., Tk U).
Then My, ..., My_1, M}, are standard schema mappings({

is a standard schema mappings, since its only t-tgds are thos

in 3;). Since(S,T,0s) = Mi o --- o My, it follows eas-
||y that (S7T7O'St, Et) = Mjo---o0o Mp_1o0 M% ThUS,
M=Mio-0Myy_10M,.

We now demonstrate, by example, how Theorem 6.9 is proved

(again, it will be clear how to extend from the example to the gen-
eral case). Our proof is an extension of the proof in [21] that every

SO tgd specifies the composition of a finite number of st-tgd map-

pings (see Theorem 8.4 in [21]).

Assume thaS = {S(-)}, T = {T'(-,)}, s
following st-SO dependency:

3f3g Va (S(x) — T(f(9(x)), 9(f(2)))) A
Vavy (S(x) AS(y) A fz) = fly) — g(z) = g(y))]-
Next we construct schema mappingg:2 = (S1, S2, X12, X2),
Masz = (S2,83,¥23,%3) and M3zq = (S3,S4, X34) such that
1)S; =8,(2)S4 =T, (3) X12, X2z andXs4 are sets of st-tgds,
(4) X5 and X3 are set of t-egds, and (5) the mapping specified by
ot IS equivalent toM 12 0 Ma3 o My,

0 ando,; is the

Define S, as{Ri(-),
following st-tgds:

S(x)

Fi(-,-),Gi(-,+)} and X, to consist of the

— I (CC)7
S(z) — FJyFi(z,y),
S(z) — JyGi(z,y).

Intuitively, we takeR; to copy S, we takeFi(x,y) to encode
f(z) = y, and we takeG:(z,y) to encodeg(x) = y. In par-

ticular, the second and third dependencies have the effect of guar-

anteeing thayf (z) andg(z) are defined for every elementin S,
respectively.

Given that¥;» cannot guarantee tha andG, each define a sin-
gle image for every element i, we letX, consist of the following
t-egds:

Fi(z,y) NFi(z,2) — y=2,

Gi(z,y) A Gi(z, 2) Y=z,
that guarantee thdf; andG, encode functions. In the same way,

defineSs as{Raz(-), Fa(+,"),Gz(+,-)} and 323 to consist of the
following st-tgds:

—

Ri(x)

Fi(x,

Gi(z,

Fi(z,y

Gi(z,y)

Intuitively, we takeR, to copy R1, F> to copy F', andG» to copy
G1, and we include the fourth dependency to guaranteegifigt

is defined for ally in the range off, and we include the fifth de-
pendency to guarantee théfy) is defined for ally in the range of

Ra(x),
FQ(wv y)7
GQ(mvy)v
3z Ga(y, 2),
3z F>(y, 2).

Y
Y

Ll

)
)
)

—

139

g. Also as in the previous case, we includeXip two t-egds that

guarantee thak> andG- are indeed functions:

Fy(z,y) A\ Fa(z, 2)
Ga(z,y) N Ga(z, 2)

— Y=z,
— Y=z

Given that at this point, we have predicates that encode the values
of all the terms that are used i, we also include ints de-

grendencies that encode the conjuncts gfof the formvz (¢ —
t1 = t2). More precisely, in this case we include3l the follow-

ing t-egd that encodes the conjunttVy (S(z) A S(y) A f(z) =
fy) = g(x) = g(y)):

Ra(z) A R2(y) A\ Fa(z, 2) A
Fs(y,z) A Ga(z,u) A Ga(y,v) — u =v.

Finally, we useR,, F> andG2 to encode the remaining conjuncts
of o4+, which indicate how to populate the target relationgrgf.
Thus, we defin&s4 to consist of the following st-tgd:

Ra(x) A Ga(z,y1) A Fa(y1,y2) A
FQ(m, Z1) A G’Q(Z17 22) — T(yz7 22).

This concludes the demonstration by example of how to prove The-
orem 6.9. This demonstration gives, as a special case (when the st-
SO dependency is unnested) the following lemma (where we note
also the number of schema mappings that are composed).

LEMMA 6.10. Every schema mappingU

(S7 T7 Ust),

whereog; is an unnested st-SO dependency, is equivalent to the

composition of two schema mappings, each specified by st-tgds and
t-egds.

We note that Theorem 6.9 follows immediately from Lemma 6.10

and the fact, as we show later, that every st-SO dependency is
equivalent to an unnested st-SO dependency, Therefore, we really
needed to prove only Lemma 6.10 (the unnested case) rather than
the general case that we dealt with in proving Theorem 6.9.

7. COLLAPSING RESULTS: NESTING IS
NOT NECESSARY

In this section, we present collapsing results about the depth of
nesting of function symbols in st-SO dependencies and SO tgds.
Specifically, we prove the following two theorems.

THEOREM 7.1. Every st-SO dependency is equivalent to an
unnested st-SO dependency.

THEOREM 7.2. Every SO tgd is equivalent to an unnested SO
tod

These two results, especially the second one, are the most techni-
cally difficult results in the paper. Both results are surprising, since
the “obvious” way to try to denest, which we now describe, does
not work. Consider for example the SO tgd

3f3gVavy(P(z,y) A (f(g9(z)) =y) — Q(z,y))

(14)

The “obvious” way to denest (14) is to introduce a new variable The next two corollaries follow from Theorem 7.1 just as Corollar-
ard rewrite (14) as ies 7.3 and 7.4 follow from Theorem 7.2.

3f3gVaVyVz(P(z,y) A (g(z) = 2) A g -
(f(2) =y) — Q(z,y)) (15) COROLLARY 7.5.. The comp05|t|oq pf a finite number of stan-
’ dard schema mappings can be specified by an unnested st-SO de-
However, the formula (15) is not an SO tgd, since it violates the pendency, along with t-egds and a weakly acyclic set of t-tgds.
safety condition (because the variabldoes not appear iR (x,y),

the only relational atomic formula in the premise of (15)). . .
COROLLARY 7.6. The composition of a finite number of stan-

It should be mentioned that in [36], Libkin and Sirangelo intro- dard schema mappi.ngs is equivalent to the composition of two stan-
duce the second-order language of Skolemized STDs (SkSTDs),dard schema mappings.

and study some of its fundamental properties. In particular, it is
shown in [36] that this language is closed under composition if the
premises of SKSTDs are restricted to be conjunctive queries. In-
terestingly, this fragment of SkSTDs is similar to the language of
SO tgds but does not allow nesting of functions, which may lead
one to think that Theorem 7.2 can be deduced from the results i ~5ro L ARY 7.7. The composition of a finite number of stan-

[36]. However, no safety condition is imposed on the premises of 54 schema mappings is equivalent to the compositibno Mo

SkSTDs in [36] and, thus, nesting of functions is not needed in this ¢ +vo standard schema mappingd, and M., where the target
language as it can be eliminated in the “obvious” way shown above. . nstraints ofM are only t-egds (no t-tgds). '

In fact, dependency (15) is a valid constraint according to [36].

In fact, it follows from Corollary 7.5 and Lemma 6.10 that we can
slightly strengthen Corollary 7.6 as follows

We now present and discuss two corollaries of Theorem 7.2, Corollary 7.6 has a direct, almost trivial proof that does not use our
heavy machinery, as we now show. Letia, Moas, ..., My_1x

be standard schema mappings. Defig, to have source schema
the same as\ 2, target schema equal to the union of the target
schemas ofM2, ..., My_2_1, and constraints equal to the
union of the constraints aM 2, ..., My_2 ,—1. Because all of
the schemas are disjoint, it is easy to see thé}, is a standard
schema mapping (note that the st-tgds\@ts, ..., My_2 1 are
now being treated as t-tgds #ff},). Then it is clear that

COROLLARY 7.3. The composition of a finite number of st-tgd
mappings can be specified by an unnested SO tgd.

This is a strengthening of the result (Theorem 8.1 in [21]) that the
composition of a finite number of st-tgd mappings can be speci-
fied by an SO tgd (thus, we replace “SO tgd” by “unnested SO
tgd”). Corollary 7.3 follows immediately from the result we just MizoMago...oMp_1k=MizoMp_1.

cited (Theorem 8.1 in [21]) and our Theorem 7.2. It was not even

known before that the composition of two st-tgd mappings can be))
specified by an unnested SO tgd. Thus, although it was shown in In contrast to Corollary 7._6, the reason that Corollary_7.4 is quite
[21] that each unnested SO tgd specifies the composition of someUnexpected is that there is no obvious way to deal with all of the
pair of st-tgd mappings, the converse was not shown. In fact, for St-tgds in the intermediate schema mappings.

the composition of two st-tgd mappings, the composition construc-

tion in [21] produces an SO tgd whose depth of nesting can be 2, Corollary 7.5, unlike Corollary 7.6, does not seem to have a simple
not 1. direct proof that avoids the machinery of Theorem 7.1. This is be-

cause our construction of the composition of two standard schema
We feel that nested dependencies are difficult to understand MaPPINgs produces an st-SO dependency whose nesting depth can
(just think about an equality likef(g(z),h(f(z,y))) = be arbitrarily large.
g(f(z,h(y)))), and probably also difficult to use in practice. On))
the other hand, unnested dependencies seem to be more natural arfg@Sed on our collapsing results, there are two alternative ways to
readable. For example, it is easy to see that the “nested mappings'deal with the composition of multiple st-tgd mappings. First, by
in [23] can be expressed by unnested SO tgds. Corollary 7.3 tells Corollary 7.3, we can replace this composition by a single schema
us that unnested SO tgds are also expressive enough to specify thE'aPping, specified by an unnested SO tgd. Second, by Corol-
composition of an arbitrary number of st-tgd mappings. lary 7.4, we can replace the composition by the composition of only
two st-tgd mappings. Similarly, by using Corollaries 7.5 and 7.6,
Theorem 7.2 has as another corollary the following collapsing re- We have two alternative ways to deal with the composition of a
sult about the number of compositions of st-tgd mappings. large number of standard schema mappings.

8. CONCLUDING REMARKS
COROLLARY 7.4. The composition of a finite number of st-tgd We have investigated the question of what language is needed

mappings is equivalent to the composition of two st-tgd mappings. to specify the composition of schema mappings with target con-

straints. In particular, we showed thsttSO dependencigalong

with appropriate target constraints) are exactly the right language
This follows from Corollary 7.3 and the fact (which is a special for specifying the composition ostandard schema mappings
case of Theorem 8.4 of [21]) that a schema mapping specified by (those specified by st-tgds, target egds, and a weakly-acyclic set
an unnested SO tgd is equivalent to the composition of two st-tgd of target tgds). By contrast, we showed that SO tgds, even with
mappings. arbitrary source and target constraints, are not rich enough to be

140

able to specify in general the composition of two standardreehe [10] B. Cautis, A. Deutsch, and N. Onose. Querying Data Sources
mappings. In addition to their expressive power, we also showed that Export Infinite Sets of Views. Imternational
that st-SO dependencies enjoy other desirable properties. In partic- Conference on Database Theory (ICDpages 84-97, 2009.
ular, they have a polynomial-time chase that generates a universal11] R. Chirkova and M. Genesereth. Equivalence of SQL
solution. which can be used to find the certain answers to unions of Queries in Presence of Embedded DependenciesCM
conjunctive queries in polynomial time. Symposium on Principles of Database Systems (PODS)
pages 217-226, 2009.
We proved the surprising results that SO tgds and st-SO dependen{12] S. S. Cosmadakis and P. C. Kanellakis. Functional and
cies can be denested: that is, each such dependency is equivalentto |nclusion Dependencies: A Graph Theoretic Approach. In
another dependency of that type with no nested function symbols. Advances in Computing Researgblume 3, pages 163—184.
These denesting results can be used to “collapse” multiple compo- 1986.

sitions of schema mappings ir\to the compo.sition of two schema [13] A. Deutsch, A. Nash, and J. Remmel. The Chase Revisited.
mappings of that type. In particular, we obtain the unexpected re- In ACM Symposium on Principles of Database Systems
sult that the composition of an arbitrary number of st-tgd mappings (PODS) pages 149-158, 2008.

is equivalent to the composition of only two st-tgd mappings. [14] A. Deutsch, L. Popa, and V. Tannen. Query Reformulation

with ConstraintsSIGMOD Record35(1):65—73, 2006.

[15] A. Deutsch and V. Tannen. Reformulation of XML Queries
and Constraints. linternational Conference on Database
Theory (ICDT) pages 225-241, 2003.

Our results gave us two ways to “simplify” the composition of an
arbitrary number of st-tgd mappings. First, we could replace the
composition by a single schema mapping, specified by an unnested
SO tgd. Second, we could replace the composition by the compo- . . .
sition of only two st-tgd schema mappings. A similar comment ap- [16] H. B. EndertonA Mathematical Introduction to Logic:

plies to the composition of an arbitrary number of standard schema Seconq Edition_Academic Press, 2_001'
mappings. [17] R. Fagin. Inverting Schema MappingsCM Trans.

Database Syst32(4), 2007.

[18] R. Fagin, L. Haas, M. Hernandez, R. Miller, L. Popa, and
Y. Velegrakis. Clio: Schema mapping creation and data
exchange. In A. Borgida, V. Chaudhri, P. Giorgini, and E. Yu,
editors,Conceptual Modeling: Foundations and
Applications, Essays in Honor of John Mylopouyleslume
5600 ofLecture Notes in Computer Scienpages 198—-236.

Acknowledgments

The authors are grateful to Phokion Kolaitis for helpful discussions.
Most of the work on this paper was done while Alan Nash was
at IBM Research — Almaden and Marcelo Arenas was a visitor at
IBM Research — Almaden. Marcelo Arenas was also supported by

FONDECYT grant 1090565. Springer-VerIag, 2009.
[19] R. Fagin, P. Kolaitis, A. Nash, and L. Popa. Towards a
9. REFERENCES Theory of Schema-Mapping Optimization. Rtoceedings of

[1] F. Afrati and N. Kiourtis. Query Answering Using Views in the 27th ACM Symposium on Principles of Database
the Presence of DependenciesNiew Trends in Information Systems, PODS'Q@ages 33-42, 2008.

Integration (NTII), pages 8-11, 2008. [20] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data

[2] F. Afrati and P. Kolaitis. Repair Checking in Inconsistent Exchange: Semantics and Query Answerifigeoretical
Databases: Algorithms and Complexity.lhternational Computer Science&36:89-124, 2005. Preliminary version in
Conference on Database Theory (ICDpages 31-41, 2009. Proc. 2003 International Conference on Database Theory,

[3] F. Afrati, C. Li, and V. Pavlaki. Data Exchange in the pp. 207-224.

Presence of Arithmetic Comparisons.Hrtending Data [21] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Composing
Base Technology (EDB;pages 487-498, 2008. schema mappings: Second-order dependencies to the rescue.

[4] F. Afrati, C. Li, and V. Pavlaki. Data Exchange: Query ACM Trans. Database Sys80(4):994-1055, 2005.
Answering for Incomplete Data Sources.3m International [22] R. Fagin, L. Stockmeyer, and M. Vardi. On monadic NP vs
Conference on Scalable Information Systems, 2009. monadic coNPInformation and Computatign

[5] M. Arenas, P. Barceld, R. Fagin, and L. Libkin. Locally 120(1):78-92, 1995.

Consistent Transformations and Query Answering in Data [23] A. Fuxman, M. A. Hernandez, C. T. H. Ho, R. J. Miller,
Exchange. IrProceedings of the 23rd ACM Symposium on P. Papotti, and L. Popa. Nested Mappings: Schema Mapping
Principles of Database Systems, PODS’fdges 229240, Reloaded. Invery Large Data Bases (VLDB)ages 67-78,
2004. 2006.

[6] M. Arenas, J. Pérez, and C. Riveros. The Recovery of a [24] A. Fuxman, P. Kolaitis, R. Miller, and W.-C. Tan. Peer Data
Schema Mapping: Bringing Back Exchanged Data. In ExchangeACM Transactions on Database Systems,
Proceedings of the 27th ACM Symposium on Principles of 31(4):1454-1498, 2006.

Database Systems, PODS,@hges 13-22, 2008. [25] H. Gaifman. On local and non-local properties. In

[7] P. Barcelo. Logical Foundations of Relational Data Proceedings Herbrand Symposium Logic Colloguium, North
ExchangeSIGMOD Record38(1):49-58, 2009. Holland, 1982 pages 105-135, 1982.

[8] P. A. Bernstein. Applying Model Management to Classical [26] G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. On
Meta-Data Problems. I@onference on Innovative Data Reconciling Data Exchange, Data Integration, and Peer Data
Systems Research (CIDR), pages 209-220, 2003. Management. IRCM Symposium on Principles of Database

[9] M. Casanova, R. Fagin, and C. Papadimitriou. Inclusion Systems (PODS), pages 133-142, 2007.

Dependencies and their Interaction with Functional [27] G. Gottlob and A. Nash. Efficient Core Computation in Data
Dependenciesl. Computer and System Sciences ExchangeJournal of the ACM55(2), 2008.

20(1):29-59, 1984.

141

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

G. Gottlob and S. Szeider. Fixed-Parameter Algorithms Fo
Artificial Intelligence, Constraint Satisfaction and Database
ProblemsComputer Journal51(3):303-325, 2008.

T. Green, G. Karvounarakis, Z. Ives, and V. Tannen. Update
Exchange with Mappings and Provenancelniternational
Conference on Very Large Data Bases (VLD&jges
675-686, 2007.

W. P. Hanf. Model-theoretic methods in the study of
elementary logic. IMhe Theory of Models; Addison, Henkin,
and Tarski, eds., North Holland 196pages 132—-145, 1965.
A. Hernich and N. Schweikardt. CWA-solutions for Data
Exchange Settings with Target DependencieA@OM
Symposium on Principles of Database Systems (PODS)
pages 113-122, 2007.

G. Karvounaraki and V. Tannen. Conjunctive Queries and
Mappings with Unequalities. Technical Report
MS-CIS-08-37, University of Pennsylvania, 2008.

P. G. Kolaitis. Schema Mappings, Data Exchange, and
Metadata Management. RCM Symposium on Principles of
Database Systems (POD$nges 61-75, 2005.

M. Lenzerini. Data integration: a theoretical perspective. In
Proceedings of the 21st ACM Symposium on Principles of
Database Systems, PODS,@ages 233—-246, 2002.

L. Libkin. Elements of Finite Model Theargpringer-Verlag,
1st edition, 2004.

L. Libkin and C. Sirangelo. Data exchange and schema
mappings in open and closed worlds AGM Symposium on
Principles of Database Systems (POD&)ges 139-148,
2008.

J. Madhavan and A. Y. Halevy. Composing Mappings
Among Data Sources. limternational Conference on Very
Large Data Bases (VLDBpages 572-583, 2003.

M. Meier. Towards Rule-Based Minimization of RDF
Graphs under Constraints. Wileb Reasoning and Rule
Systemsvolume 5341 ot ecture Notes in Computer
Sciencepages 89-103. Springer-Verlag, 2008.

S. Melnik. Generic Model Management: Concepts and
Algorithms volume 2967 of_ecture Notes in Computer
ScienceSpringer, 2004.

A. Nash, P. A. Bernstein, and S. Melnik. Composition of
Mappings Given by Embedded Dependencies. In
Proceedings of the 24th ACM Symposium on Principles of
Database Systems, PODS,@&ages 172—-183, 2005.

P. Papotti and R. Tortone. Schema Exchange: Generic
Mappings for Transformaing Data and Metad&ata and
Knowledge Engineering8(7):665-682, 2009.

B. ten Cate and P. Kolaitis. Structural Characterizations of
Schema-Mapping Languages.liriernational Conference

on Database Theory (ICDTpages 63—72, 2009.

P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. On the
Logical Modeling of ETL Processes. International
Conference on Advanced Information Systems Engineering
(CAISE) pages 782-786, 2002.

142

