
Composition with Target Constraints

Marcelo Arenas
PUC Chile

marenas@ing.puc.cl

Ronald Fagin
IBM Research – Almaden
fagin@almaden.ibm.com

Alan Nash
Aleph One LLC

ABSTRACT
It is known that the composition of schema mappings, each speci-
fied by source-to-target tgds (st-tgds), can be specified by a second-
order tgd (SO tgd). We consider the question of what happens when
target constraints are allowed. Specifically, we consider the ques-
tion of specifying the composition ofstandard schema mappings
(those specified by st-tgds, target egds, and a weakly-acyclic set
of target tgds). We show that SO tgds, even with the assistance
of arbitrary source constraints and target constraints, cannot spec-
ify in general the composition of two standard schema mappings.
Therefore, we introduce source-to-target second-order dependen-
cies (st-SO dependencies), which are similar to SO tgds, but al-
low equations in the conclusion. We show that st-SO dependencies
(along with target egds and target tgds) are sufficient to express the
composition of every finite sequence of standard schema mappings,
and further, every st-SO dependency specifies such a composition.
In addition to this expressive power, we show that st-SO depen-
dencies enjoy other desirable properties. In particular, they have
a polynomial-time chase that generates a universal solution. This
universal solution can be used to find the certain answers to unions
of conjunctive queries in polynomial time.

It is easy to show that the composition of an arbitrary number of
standard schema mappings is equivalent to the composition of only
two standard schema mappings. We show that surprisingly, the
analogous result holds also for schema mappings specified by just
st-tgds (no target constraints). That is, the composition of an arbi-
trary number of such schema mappings is equivalent to the com-
position of only two such schema mappings. This is proven by
showing that every SO tgd is equivalent to an unnested SO tgd
(one where there is no nesting of function symbols). The language
of unnested SO tgds is quite natural, and we show that unnested
SO tgds are capable of specifying the composition of an arbitrary
number of schema mappings, each specified by st-tgds. Similarly,
we prove unnesting results for st-SO dependencies, with the same
types of consequences.

The collapsing result for SO tgds gives us two alternative ways to
deal with the composition of multiple schema mappings specified

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 22–25, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00

by st-tgds. First, we can replace the composition by a single schema
mapping, specified by an unnested SO tgd. Second, we can replace
the composition by the composition of only two schema mappings,
each specified by st-tgds. A similar comment holds for the compo-
sition of standard schema mappings.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data translation

General Terms
Algorithms, Theory

Keywords
Metadata management, schema mapping, data exchange, composi-
tion, target constraint

1. INTRODUCTION
Schema mappings are high-level specifications that describe the re-
lationship between two database schemas, asource schemaand a
target schema. Because of the crucial importance of schema map-
pings for data integration and data exchange (see the surveys [33,
34]), several different operators on schema mappings have been
singled out as important objects of study [8]. One of the most fun-
damental is the composition operator, which combines successive
schema mappings into a single schema mapping. The composition
operator can play a useful role each time the target of a schema
mapping is also the source of another schema mapping. This sce-
nario occurs, for instance, in schema evolution, where a schema
may undergo several successive changes. It also occurs in extract-
transform-load (ETL) processes in which the output of a transfor-
mation may be the input to another [43]. The composition operator
has been studied in depth [21, 37, 39, 40].

One of the most basic questions is: what is the language needed
to express the composition of schema mappings? For example, if
the schema mappingM12 is an st-tgd mapping, that is, a map-
ping specified by a finite set of the widely-studiedsource-to-target
tuple-generating dependencies (st-tgds), and the schema mapping
M23 is also an st-tgd mapping, is the compositionM12 ◦ M23

also an st-tgd mapping? Fagin et al. [21] showed that surprisingly,
the answer is “No.” In fact, they showed that it is necessary to pass
to existential second-order logic to express this composition in gen-
eral. Specifically, they defined a class of dependencies, which they
call second-order tgds (SO tgds), which are source-to-target, with
existentially-quantified function symbols, and they showed that this
is the “language of composition”. That is, they showed that the
composition of any number of st-tgd mappings can be specified by

129

an SO tgd. They also showed that every SO tgd specifies the com-
position of a finite number of st-tgd mappings. Thus, SO tgds are
exactly the right language,

What happens if we allow not only source-to-target constraints, but
also target constraints? Target constraints are important in practice;
examples of important target constraints are those that specify the
keys of target relations, and referential integrity constraints (or in-
clusion dependencies [9]). This paper is motivated by the question
of how to express the compositions of schema mappings with tar-
get constraints. This question was first explored by Nash et al. [40],
where an even more general class of constraints was studied: con-
straints expressed over the joint source and target schemas without
any restrictions. Here we study a case intermediate between that
studied by Fagin et al. in [21] and that studied by Nash et al. in
[40]. Specifically, we studystandard schema mappings, where the
source-to-target constraints are st-tgds, and the target constraints
consist of target equality-generating dependencies (t-egds) and a
weakly acyclic set [20] of target tuple-generating dependencies (t-
tgds). Standard schema mappings have a chase that is guaranteed
to terminate in polynomial time. In fact, weak acyclicity was intro-
duced in [20] in order to provide a fairly general sufficient condition
for the chase to terminate in polynomial time (a slightly less gen-
eral class was introduced in [15], under the nameconstraints with
stratified witness, for the same purpose).

Standard schema mappings are a natural “sweet spot” between the
schema mappings studied by Fagin et al. [20] (with only source-
to-target constraints) and the schema mappings studied by Nash
et al. [40] (with general constraints), for two reasons. The first
reason is the importance of standard schema mappings. Source-
to-target tgds are the natural and common backbone language of
data exchange systems [18]. Furthermore, even though the notion
of weakly acyclic sets of tgds was introduced only recently, it has
now been studied extensively [1, 2, 3, 4, 6, 7, 10, 11, 13, 14, 19,
20, 24, 26, 27, 28, 29, 31, 32, 33, 38, 41, 42]. Among the impor-
tant special cases of weakly acyclic sets of tgds are sets of full tgds
(those with no existential quantifiers) and acyclic sets of inclusion
dependencies [12], a large class that is common in practice. The
second reason for our interest in standard schema mappings is that
as we shall see, compositions of standard schema mappings have
especially nice properties. Thus, the language of standard schema
mappings is expressive enough to be useful in practice, and yet sim-
ple enough to allow nice properties, such as having a polynomial-
time chase.

There are various inexpressibility results in [21] and [40] that show
the inability of first-order logic to express compositions. Thus, each
of these results say that there is a pair of schema mappings that are
each specified by simple formulas in first-order logic, but where
the composition cannot be expressed in first-order logic. In this
paper, we show that some compositions cannot be expressed even
in certain fragments of second-order logic. First, we show that SO
tgds are not adequate to express the composition of an arbitrary pair
of standard schema mappings. It turns out that this is quite easy to
show. But what if we allow not only SO tgds, but also arbitrary
source constraints and target constraints? This is a more delicate
problem. By making use of a notion of locality from [5], we show
that even these are not adequate to express the composition of an
arbitrary pair of standard schema mappings.

Therefore, we introduce a richer class of dependencies, which we
call source-to-target second-order dependencies (st-SO dependen-

cies). This class of dependencies is the source-to-target restriction
of the class Sk∀CQ= of dependencies introduced in [40]. Our st-
SO dependencies differ from SO tgds in that st-SO dependencies
may have not only relational atomic formulasR(t1, . . . , tn) in the
conclusions, but also equalitiest1 = t2. We show that st-SO de-
pendencies are exactly the right extension of SO tgds for the pur-
pose of expressing the composition of standard schema mappings.
Specifically, we show that (1) the composition of standard schema
mappings can be expressed by an st-SO dependency (along with
target constraints), and (2) every st-SO dependency specifies the
composition of some finite sequence of standard schema mappings.
We note that a result analogous to (1), but for schema mappings that
are not necessarily source-to-target, was obtained in [40] by using
their class Sk∀CQ= of dependencies. In fact, our proof of (1) is
simply a variation of the proof in [40].

In addition, we show that st-SO dependencies enjoy other desirable
properties. In particular, we show that they have a polynomial-
time chase procedure. This chase procedure is novel, in that it has
to keep track of constantly changing values of functions. As usual,
the chase generates not just a solution, but auniversal solution[20].
(Recall that asolutionJ for a source instanceI with respect to a
schema mappingM is a target instance where the pair(I, J) sat-
isfies the constraints ofM, and a universal solution is a solution
with a homomorphism to every solution.) The fact that the chase is
guaranteed to terminate (whether in polynomial time or otherwise)
implies that if there is a solution for a given source instanceI , then
there is a universal solution. The fact that the chase runs in polyno-
mial time guarantees that there is a polynomial-time algorithm for
deciding if there is a solution, and, if so, for producing a universal
solution.

Let q be a query posed against the target schema. Thecertain an-
swersfor q on a source instanceI , with respect to a schema map-
pingM, are those tuples that appear in the answerq(J) for every
solutionJ for I . It is shown in [20] that ifq is a union of conjunc-
tive queries, andJ∗ is a universal solution forI , then the certain
answers forq on I can be obtained by evaluatingq onJ∗ and then
keeping only those tuples formed entirely of values fromI . Since
the chase using an st-SO dependency can be carried out in poly-
nomial time, it follows that we can obtain a universal solution in
polynomial time, and so we can compute the certain answers to
unions of conjunctive queries in polynomial time.

In addition to our results about st-SO dependencies, we also have
some results directly about compositions of schema mappings. It is
easy to show that the composition of an arbitrary number of stan-
dard schema mappings is equivalent to the composition of only two
standard schema mappings. We show the surprising result that a
similar result holds also for st-tgd mappings (no target constraints).
That is, the composition of an arbitrary number of st-tgd mappings
is equivalent to the composition of only two st-tgd mappings. This
is proven by showing that every SO tgd is equivalent to an unnested
SO tgd (one where there is no nesting of function symbols). We
also prove a similar denesting result for st-SO dependencies. These
denesting results are the most difficult results technically in the pa-
per.

We feel that unnested dependencies are more natural, more read-
able, and easier to understand than nested dependencies. They are
probably easier to use in practice. For example, it is easy to see that
the “nested mappings” in [23] can be expressed by unnested SO
tgds. We show that unnested SO tgds are also expressive enough to

130

specify the composition of an arbitrary number of st-tgd mappings.
This was not even known for the composition of two st-tgd map-
pings. Thus, although it was shown in [21] that each unnested SO
tgd specifies the composition of some pair of st-tgd mappings, the
converse was not shown. In fact, for the composition of two st-tgd
mappings, the composition construction in [21] can produce an SO
tgd with nesting depth 2, not 1.

We close by discussing an application of our results. In practice, a
composition of many schema mappings may arise (say, as the result
of many steps of schema evolution). If these are st-tgd mappings,
then there are several ways to “simplify” this composition. One
solution is to replace the composition of many st-tgd mappings by
a single schema mapping, specified by an unnested SO tgd. For
another solution, we can remain within the language of st-tgds by
replacing the composition of many st-tgd mappings by the compo-
sition of only two st-tgd mappings. A similar comment applies to
the composition of many standard schema mappings.

2. PRELIMINARIES
A schemaR is a finite set{R1, . . . , Rk} of relation symbols, with
eachRi having a fixed arityni > 0. Let D be a countably infinite
domain. AninstanceI of R assigns to each relation symbolRi

of R a finiteni-ary relationRI
i ⊆ Dni . Thedomain(or active

domain) dom(I) of instanceI is the set of all elements that occur
in any of the relationsRI

i . We say thatR(a1, . . . , an) is afact of I
if (a1, . . . , an) ∈ RI . We sometimes denote an instance by its set
of facts.

As is customary in the data exchange literature, we consider in-
stances with two types of values: constants and nulls [20]. More
precisely, letC andN be infinite and disjoint sets of constants and
nulls, respectively, and assume thatD = C ∪ N. If we refer to
a schemaS as asourceschema, then we assume that for every in-
stanceI of S, it holds thatdom(I) ⊆ C. On the other hand, if we
refer to a schemaT as atarget schema, then for every instanceJ
of S, it holds thatdom(J) ⊆ C∪N. The distinction between con-
stants and nulls is important in the definition of a homomorphism
(which we give later).

2.1 Source-to-target and target dependencies
Fix a source schemaS and a target schemaT, and assume thatS
andT do not have predicate symbols in common. Then asource-
to-target tuple-generating dependency (st-tgd)is a first-order sen-
tence of the form:

∀x̄ (ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)),

whereϕ(x̄) is a conjunction of relational atoms overS andψ(x̄, ȳ)
is a conjunction of relational atoms overT. We assume a safety
condition, that every member of̄x actually appears in a relational
atom inϕ(x̄). A target equality-generating dependency (t-egd)is a
first-order sentence of the form:

∀x̄ (ϕ(x̄) → u = v),

whereϕ(x̄) is a conjunction of relational atoms overT andu, v are
among the variables mentioned in̄x. We again assume the safety
condition. In several of the examples we give in this paper, we
shall make use of special t-egds calledkey dependencies, which
say that one attribute of a binary relation is a key for that relation
(of course, we could define more general key dependencies if we

wanted). The key dependencies we consider are either of the form
R(x, y) ∧ R(x, z) → y = z (which says that the first attribute is
a key) orS(y, x) ∧ S(z, x) → y = z (which says that the second
attribute is a key). Finally, atarget tuple-generating dependency
(t-tgd) is a first-order sentence of the form:

∀x̄ (ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)),

where bothϕ(x̄) andψ(x̄, ȳ) are conjunctions of relational atoms
overT, and where we again assume the safety condition.

The notion of satisfaction of a t-egdα by a target instanceJ , de-
noted byJ |= α, is defined as the standard notion of satisfaction in
first-order logic, and likewise for t-tgds. For the case of an st-tgd
α, a source instanceI and a target instanceJ , the pair(I, J) is
said to satisfyα, denoted by(I, J) |= α, if the following instance
instanceK of S ∪ T satisfiesα in the standard first-order logic
sense. For every relation nameS ∈ S, relationSK is defined as
SI , and for every relation nameT ∈ T, relationTK is defined as
T J . As usual, a setΣst of st-tgds is said to be satisfied by a pair
(I, J), denoted by(I, J) |= Σst, if (I, J) |= α for everyα ∈ Σst

(and likewise for a set of t-egds and t-tgds).

2.2 Schema mappings
In general, aschema mappingfrom a source schemaS to a target
schemaT is a set of pairs(I, J), whereI is an instance ofS andJ
is an instance ofT. In this paper, we restrict our attention to some
classes of schema mappings that arespecifiedin some logical for-
malisms. We may sometimes refer to two schema mappings with
the same set of(I, J) pairs asequivalent, to capture the idea that
the formulas that specify them are logically equivalent. A schema
mapping fromS to T is said to be anst-tgd mappingif there exists
a setΣst of st-tgds such that(I, J) belongs toM if and only if
(I, J) |= Σst, for every pairI, J of instances ofS andT, respec-
tively. We use notationM = (S,T,Σst) to indicate thatM is
specified byΣst. Moreover, a schema mappingM from S to T

is said to be astandard schema mappingif there exists a setΣst

of st-tgds and a setΣt consisting of a set of t-egds and aweakly-
acyclic set of t-tgds, such that(I, J) belongs toM if and only if
(I, J) |= Σst andJ |= Σt, for every pairI, J of instances ofS
andT, respectively; notationM = (S,T,Σst,Σt) is used in this
case to indicate thatM is specified byΣst andΣt. We occasion-
ally allow a setΣs of source constraints in some of our schema
mappings: we then use the notationM = (S,T,Σs,Σst,Σt).

To define the widely used notion of weak-acyclicity, we need to
introduce some terminology. For a setΓ of t-tgds overT, define
the dependency graphGΓ of Γ as follows.

• For every relation nameT in T of arity n, and for every
i ∈ {1, . . . , n}, include a node(T, i) in GΓ.

• Include an edge(T1, i) → (T2, j) inGΓ if there exist a t-tgd
∀x̄(ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)) in Γ and a variablex in x̄ such that,
x occurs in thei-th attribute ofT1 in a conjunct ofϕ and in
thej-th attribute ofT2 in a conjunct ofψ.

• Include aspecialedge(T1, i) →
∗ (T2, j) inGΓ if there exist

a t-tgd∀x̄(ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)) in Γ and variablesx, y in x̄
andȳ, respectively, such thatx occurs in thei-th attribute of
T1 in a conjunct ofϕ andy occurs in thej-th attribute ofT2

in a conjunct ofψ.

131

Then setΓ of t-tgds is said to beweakly acyclicif its dependency
graphGΓ has no cycle through a special edge [20].

Given a schema mappingM, if a pair (I, J) belongs to it, thenJ
is said to be asolution for I underM. A universal solution[20]
for I is a solution with a homomorphism to every solution forI .
A homomorphismfrom instanceJ1 to instanceJ2 is a functionh
from C ∪ N to C ∪ N such that (1) for eachc in C, we have that
h(c) = c, and (2) wheneverR(a1, . . . , an) is a fact ofJ1, then
R(h(a1), . . . , h(an)) is a fact ofJ2.

2.3 Second-order dependencies
In this paper, we also consider schema mappings that are specified
by second-order dependencies. In the definition of these dependen-
cies, the following terminology is used. Given a collectionx̄ of
variables and a collection̄f of function symbols, aterm (based on
x̄ and f̄) with depth of nestingd is defined recursively as follows:

1. Every member of̄x and every 0-ary function symbol (con-
stant symbol) off̄ is a term with depth of nesting 0.

2. If f is a k-ary function symbol inf̄ with k ≥ 1, and if
t1, . . . , tk are terms, with maximum depth of nestingd − 1,
thenf(t1, . . . , tk) is a term with depth of nestingd.

Then, given a source schemaS and a target schemaT, a second-
order source-to-target tuple-generating dependency (SO tgd) from
S to T is a second-order formula of the form [21]:

∃f̄ (∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n(ϕn → ψn)),

where

1. Each member of̄f is a function symbol.

2. Eachϕi is a conjunction of

• relational atomic formulas of the formS(y1, . . . , yk),
whereS is ak-ary relation symbol ofS andy1, . . ., yk

are (not necessarily distinct) variables inx̄i, and

• equality atoms of the formt = t′, wheret andt′ are
terms based on̄xi andf̄ .

3. Eachψi is a conjunction of relational atomic formulas of the
form T (t1, . . . , tℓ), whereT is anℓ-ary relation symbol of
T andt1, . . . , tℓ are terms based on̄xi andf̄ .

4. Each variable in̄xi appears in some relational atomic for-
mula ofϕi.

The fourth condition is the safety condition for SO tgds. Note that
it is “built into” SO tgds that they are source-to-target. The depth
of nesting of an SO tgd is the maximal depth of nesting of the terms
that appear in it. We say that the SO tgd isunnestedif its depth of
nesting is at most 1. Thus, an unnested SO tgd can contain terms
like f(x), but not terms likef(g(x)).

As was noted in [21, 40], there is a subtlety in the semantics of
SO tgds, namely, the semantics of existentially quantified function
symbols. In particular, in deciding whether(I, J) |= σ, for an
SO tgdσ, what should the domain and range of the functions in-
stantiating the existentially quantified function symbols be? The
obvious choice is to let the domain and range be the active domain

of (I, J), but it is shown in [21, 40] that this does not work prop-
erly. Instead, the solution in [21, 40] is as follows. Letσ be an SO
tgd from a source schemaS to a target schemaT. Then given an
instanceI of S and an instanceJ of T, instance(I, J) is converted
into a structure(U ; I, J), which is just like(I, J) except that it has
a universeU . The domain and range of the functions inσ is then
taken to beU . The universeU is taken to be a countably infinite set
that includesdom(I) ∪ dom(J). The intuition is that the universe
contains the active domain along with an infinite set of nulls. Then
(I, J) is said to satisfyσ, denoted by(I, J) |= σ, if (U ; I, J) |= σ
under the standard notion of satisfaction in second-order logic (see,
for example, [16]). It should be noticed that it is proven in [21] that
in the case of SO tgds, instead of taking the universeU to be infi-
nite, one can take it to be finite and “sufficiently large”, whereas in
[40] this is shown to be insufficient in the presence of unrestricted
target constraints.

The class of SO tgds was introduced in [21] to deal with the prob-
lem of composing schema mappings. More specifically, given a
schema mappingM12 from a schemaS1 to a schemaS2 and a
schema mappingM23 from S2 to a schemaS3, the composition
of these two schemas, denoted byM12 ◦ M23, is defined as the
schema mapping consisting of all pairs(I1, I3) of instances for
which there exists an instanceI2 of S2 such that(I1, I2) belong to
M12 and(I2, I3) belong toM23. It was shown in [21] that the
composition of an arbitrary number of st-tgd mappings is defined
by an SO tgd, and also that SO tgds are closed under composition.

3. A NEGATIVE RESULT: SO TGDS ARE
NOT ENOUGH

In [21], SO tgds were introduced to deal with the problem of com-
posing schema mappings. As we noted, it was proved in [21] that
the composition of a finite number of st-tgd mappings can always
be specified by an SO tgd, and also that SO tgds are closed under
composition. Thus, SO tgds are a natural starting point for the study
of languages for defining the composition of schema mappings with
target constraints, which is the goal of this paper. Unfortunately, it
can be easily proved that this language is not rich enough to be able
to specify the composition of some simple schema mappings with
target constraints. We now give an example.

EXAMPLE 3.1. LetM12 = (S1,S2,Σ12,Σ2) andM23 =
(S2,S3,Σ23), whereS1 = {P (·, ·)}, S2 = {R(·, ·)}, S3 =
{T (·, ·)} and

Σ12 = {P (x, y) → R(x, y)},

Σ2 = {R(x, y) ∧R(x, z) → y = z},

Σ23 = {R(x, y) → T (x, y)}.

Notice thatΣ2 consists of a key dependency overS2.

If a schema mappingM from S1 to S3 is specified by an SO tgd,
then for every instanceI1 of S1, there exists an instanceI3 of S3

such that(I1, I3) ∈ M. On the contrary, for the instanceI1 of S1

such thatP I1 = {(1, 2), (1, 3)}, there is no instanceI3 of S3 such
that(I1, I3) ∈ M12 ◦ M23, sinceI1 does not have any solutions
underM12. Thus, the composition ofM12 andM23 cannot be
specified by an SO tgd. 2

From the previous example, we obtain the following proposition.

132

PROPOSITION 3.2. There exist schema mappingsM12 =
(S1,S2,Σ12,Σ2) andM23 = (S2,S3,Σ23), whereΣ12 andΣ23

are sets of st-tgds andΣ2 is a set of key dependencies, such that
M12 ◦M23 cannot be specified by an SO tgd.

Proposition 3.2 does not rule out the possibility that the compo-
sition of M12 andM23 can be specified by using an SO tgd to-
gether with some source and target constraints. In fact, the compo-
sition M12 ◦ M23 can be specified by a set of st-tgds together
with some source constraints:M12 ◦ M23 = M13. where
M13 = (S1,S3,Σ1,Σ13) and

Σ1 = {P (x, y) ∧ P (x, z) → y = z},

Σ13 = {P (x, y) → T (x, y)}.

A natural question is then whether the language of SO tgds together
with source and target constraints is the right language for defining
the composition of schema mappings with source and target con-
straints. Unfortunately, the following theorem shows that this is not
the case.

THEOREM 3.3. There exist schema mappingsM12 =
(S1,S2,Σ12,Σ2) andM23 = (S2,S3,Σ23), whereΣ12 andΣ23

are sets of st-tgds andΣ2 is a set of key dependencies, such that
M12 ◦ M23 cannot be specified by any schema mapping of the
form (S1,S3, σ1, σ13, σ3), whereσ1 is an arbitrary source con-
straint,σ13 is an SO tgd, andσ3 is an arbitrary target constraint.

If we view a source constraint as a set of allowed source instances,
then when we say thatσ1 is an “arbitrary source constraint” in The-
orem 3.3, we mean thatσ1 allows an arbitrary set of source in-
stances. A similar comment applies toσ3 being an “arbitrary target
constraint”.

To prove this theorem, we use a notion of locality from [5]. No-
tions of locality [22, 25, 30, 35] have been widely used to prove
inexpressibility results for first-order logic (FO) and some of its
extensions. The intuition underlying those notions of locality is
thatFO cannot express properties (such as connectivity, cyclicity,
etc.) that involve nontrivial recursive computations. The setting of
locality is as follows. TheGaifman graphG(I) of an instanceI of
a schemaS is the graph whose nodes are the elements ofdom(I),
and such that there exists an edge betweena andb in G(I) if and
only if a andb belong to the same tuple of a relationRI , for some
R ∈ S. For example, ifI is an undirected graph, thenG(I) is I it-
self. The distance between two elementsa andb in I is considered
to be the distance between them inG(I). Givena ∈ dom(I), the
instanceNI

d (a), called thed-neighborhood ofa in I , is defined as
the restriction ofI to the elements at distance at mostd froma, with
a treated as a distinguished element (a constant in the vocabulary).

The notion of neighborhood of a point is used in [5] to introduce the
following notion of locality for data transformations. In this defini-
tion,NI

d (a) ≡k N
I
d (b) indicates thatNI

d (a) andNI
d (b) agree on

all FO-sentences of quantifier rank at mostk, that is, for everyFO-
sentenceϕ of quantifier rank at mostk, we have thatNI

d (a) |= ϕ
if and only ifNI

d (b) |= ϕ, where the quantifier rank of a formulaϕ
is the maximum depth of quantifier nesting in it.

DEFINITION 3.4. ([5]). Given a source schemaS and a target
schemaT, a mappingF : S → T is locally consistent underFO-
equivalenceif for every r, ℓ ≥ 0 there existd, k ≥ 0 such that, for

every instanceI of S anda, b ∈ dom(I), if NI
d (a) ≡k NI

d (b),
then

1. a ∈ dom(F(I)) if and only if b ∈ dom(F(I)), and

2. NF(I)

r (a) ≡ℓ N
F(I)

r (b).

For a fixed schema mapping(S,T,Σst), we denote byFcan the
transformation fromS to T, such thatFcan(I) is the canonical
universal solution forI . In [5], it was shown thatFcan is locally
consistent underFO-equivalence for schema mappings specified
by st-tgds.

PROPOSITION3.5 ([5]). For every st-tgd mapping, the trans-
formationFcan is locally consistent underFO-equivalence.

The previous proposition can be easily extended to the case of a
composition of a finite number of st-tgd mappings.

LEMMA 3.6. Let n ≥ 2. For every i ∈ [1, n − 1], let
Mi = (Si,Si+1,Σi i+1) be a schema mapping specified by a
setΣi i+1 of st-tgds, andFi

can be the canonical universal solution
transformation forMi. Assume thatF is the transformation from
S1 to Sn defined as:

F(I1) = F
n−1

can (· · · (F2

can(F1

can(I1))) · · ·),

for every instanceI1 of S1. ThenF is locally consistent underFO-
equivalence.

Lemma 3.6 is one of the key components in the proof of Theo-
rem 3.3. We give here a sketch of the proof of Theorem 3.3.

PROOF SKETCH OF THEOREM 3.3. Let M12 =
(S1,S2,Σ12,Σ2) and M23 = (S2,S3,Σ23) be schema
mappings, where:

S1 = {E(·, ·), P1(·), Q1(·)},

S2 = {P2(·), Q2(·), R(·, ·), S(·, ·)},

S3 = {V (·)},

and

Σ12 = {P1(x) → P2(x),

Q1(x) → Q2(x),

E(x, y) → ∃z1∃z2∃z3 (R(x, z1) ∧ R(y, z2) ∧

S(z1, z3) ∧ S(z2, z3))},

Σ2 = {R(x, y) ∧R(x, z) → y = z,

S(x, y) ∧ S(x, z) → y = z,

S(y, x) ∧ S(z, x) → y = z},

Σ23 = {P2(x) ∧R(x, z) ∧ R(y, z) ∧Q2(y) → V (x)}.

First, we note that for every instanceI1 of S1, there exists an in-
stanceI3 of S3 such that(I1, I3) ∈ M12 ◦ M23, and for ev-
ery instanceI ′3 of S3, there exists an instanceI ′1 of S1 such that
(I ′1, I

′
3) ∈ M12 ◦ M23. From these two properties, we conclude

that source and target constraints cannot be used in defining the
composition ofM12 andM23.

133

Thus, we need only show thatM12 ◦M23 cannot be specified by
an SO tgd. For the sake of contradiction, we assume that schema
mappingM13 = (S1,S3, σ13) defines this composition, where
σ13 is an SO tgd. From Theorem 8.2 in [21], we know that every
SO tgd is equivalent to the composition of a finite number of st-
tgd mappings. Thus, given thatM13 defines the composition of
M12 andM23, we have that there exist schema mappingsM′

1 =
(S′

1,S
′
2,Σ

′
12), . . ., M

′
n−1 = (S′

n−1,S
′
n,Σ

′
n−1 n) such thatn ≥

2, S′
1 = S1, S′

n = S3, Σ′
i i+1 is a set of st-tgds for everyi ∈

{1, . . . , n − 1}, andM′
1 ◦ . . . ◦ M′

n−1 defines the composition
of M12 andM23, that is, for every pair of instances(I1, I3) ∈
S1 × S3:

(I1, I3) ∈ M12 ◦M23 ⇔ (I1, I3) ∈ M′
1 ◦ . . . ◦M′

n−1.

For everyi ∈ {1, . . . , n − 1}, let F
i
can be the canonical solution

transformation forM′
i, and assume thatF is the transformation

defined asF(I1) = Fn−1

can (· · · (F2

can(F1

can(I1))) · · ·) for every in-
stanceI1 of S1. From Lemma 3.6, we have thatF is locally con-
sistent underFO-equivalence. In particular, we have that forr = 1
and ℓ = 1, there existd, k ≥ 0 such that for every instanceI1
of S1 and for everya, b ∈ dom(I1), if NI1

d (a) ≡k N
I1
d (b), then

a ∈ dom(F(I1)) if and only if b ∈ dom(F(I1)).

To obtain a contradiction, and thus conclude the proof, it is enough
to show an instanceI1 of S1 and elementsa, b ∈ dom(I1) such
thatNI1

d (a) ≡k N
I1
d (b), a ∈ dom(F(I1)) andb 6∈ dom(F(I1)).

Such an instance is defined as follows:P I1
1

= {a, b}, QI1
1

= {c},
andEI1 contains the following tuples:

. . .

. . .b1

E E E E

E E E

a a1 ad c

bdb

As shown in the figure,EI1 is a union of two paths, one containing
d+ 2 elements with first elementa and last elementc, and another
one containingd + 1 elements with first elementb. Observe that
NI1

d (a) ≡k NI1
d (b) sinceNI1

d (a) is isomorphic toNI1
d (b), with

a andb treated as distinguished elements. But not only that, it is
also possible to prove thata ∈ dom(F(I1)) andb 6∈ dom(F(I1)),
which leads us to the aforementioned contradiction.

4. SOURCE-TO-TARGET SO DEPENDEN-
CIES

In Section 3, we showed that SO tgds, even with the assistance of
arbitrary source constraints and arbitrary target constraints, cannot
always be used to specify the composition of mappings with tar-
get constraints, even if only key dependencies are allowed as target
constraints. In this paper, we define a richer class, called source-
to-target SO dependencies (st-SO dependencies). This class of de-
pendencies is the source-to-target restriction of the class Sk∀CQ=

of dependencies introduced in [40]. We show that st-SO depen-
dencies (together with appropriate target constraints) are the right
extension of SO tgds for the purpose of expressing the composition
of standard schema mappings. The definition of st-SO dependen-
cies is exactly like the definition of SO tgds in Section 2, except
that condition (3) is changed to:

3. Eachψi is a conjunction of

• relational atomic formulas of the formT (t1, . . . , tℓ),
whereT is anℓ-ary relation symbol ofT andt1, . . . ,
tℓ are terms based on̄xi andf̄ , and

• equality atoms of the formt = t′, wheret andt′ are
terms based on̄xi andf̄ .

Let Φ be the st-SO dependency∃f̄ (∀x̄1(ϕ1 → ψ1) ∧ · · · ∧
∀x̄n(ϕn → ψn)). From now on, we say that∀x̄i(ϕi → ψi) is
anSO tgd partof Φ if ψi is a conjunction of relational atomic for-
mulas of the formT (t1, . . . , tℓ), and we say that∀x̄i(ϕi → ψi) is
anSO egd partof Φ if ψi is an equality atom of the formt = t′.
Note that ifγt is the conjunction of the SO tgd parts ofΦ, andγe

is the conjunction of the SO egd parts ofΦ, thenΦ is equivalent to
the formula∃f̄(γt ∧ γe).

We adopt the same convention for the semantics of st-SO depen-
dencies as was given in Section 2 for SO tgds, by assuming the
existence of a countably infinite universe that includes the active
domain.

We shall show that the composition of a finite number of standard
schema mappings is given by a schema mapping specified by an
st-SO dependency, together with t-egds and a weakly acyclic set
of t-tgds. It is convenient to give these latter schema mappings a
name. To emphasize the similarity of these second-order schema
mappings with the first-order case, we shall refer to these schema
mappings asSO-standard. Thus, an SO-standard schema mapping
is one that is specified by an st-SO dependency, together with t-egds
and a weakly acyclic set of t-tgds.

Note that st-SO dependencies, like SO tgds, are closed under con-
junction. That is, the conjunction of two st-SO dependencies is
equivalent to a single st-SO dependency. This is why we define
an SO-standard schema mapping to have only one st-SO depen-
dency, not several. Note also that every finite set of st-tgds can be
expressed with an SO tgd, and so with an st-SO dependency. In par-
ticular, every standard schema mapping is an SO-standard schema
mapping.

5. THE CHASE FOR ST-SO DEPENDEN-
CIES

In [21], the well-known chase process is extended so that it applies
to an SO tgdΦ. The idea is that each SO tgd part ofΦ is treated like
a tgd (of course, the conclusion contains Skolem functions rather
than existential quantifiers). In deciding whether the premise of the
SO tgd part is instantiated in the instance being chased, two terms
are treated as equal precisely if they are syntactically identical. So
a premise containing the equality atomf(x) = g(y) automatically
fails to hold over an instance, and a premise containing the equal-
ity atom f(g(x)) = f(g(y)) automatically fails to hold over an
instance unless the instantiation ofx equals the instantiation ofy.

In this section, we discuss how the chase can be extended to apply
to an st-SO dependency. We note that in [40], a chase procedure for
the dependencies studied there (which are like ours but not neces-
sarily source-to-target) was introduced. However, their chase was
not procedural, in that their chase procedure says to set termst1 and
t2 to be equal when the dependencies logically imply thatt1 = t2.
Because of our source-to-target restriction, we are able to give an
explicit, polynomial-time procedure for equating terms.

For space reasons, we keep the discussion here informal. In chasing

134

an instanceI with an st-SO dependencyΦ, we chase first with all
of the SO egd parts ofΦ, and then we chase with all of the SO tgd
parts ofΦ. We no longer consider two terms to be equal precisely
if they are syntactically identical, since an SO egd part may force,
say,f(0) andg(1) to be equal, even thoughf(0) andg(1) are not
syntactically identical.

Given a source instanceI and an st-SO dependencyΦ, we now
describe how to chaseI with the SO egd parts ofΦ. LetD be the
active domain ofI (by our assumptions,D consists of constants
only). Let n be the maximal depth of nesting over all terms that
appear inΦ. Let f̄ consist of the function symbols that appear in
Φ. Let T be the set of terms based onD and f̄ that have depth
of nesting at mostn. This setT is sometimes called theHerbrand
universe(with respect toD andf̄) of depthn. It is straightforward
to see (by induction on depth) that the size ofT is polynomial in
the size ofD, for a fixed choice ofΦ. We note that if we defineT ′

to be the subset ofT that consists of all termst(ā), wheret(x̄) is
a subterm ofΦ, andā is the result of replacing members ofx̄ by
values inD, then we could work just as well withT ′ as withT in
defining the chase. However, the proofs are easier to give usingT
instead ofT ′.

We now define a functionF with domain the members ofT . The
valuesF (t) are stored in a table that is updated repeatedly during
the chase process. Ifa is a member ofD, then the initial value of
F (a) is a itself (in fact, the value ofF (a) will never change for
membersa of D). If t is a member ofT that is not inD (so that
t is of the formf(t1, . . . , tk) for some function symbolf), then
F (t) is initially taken to be a new null value. As we changeF , we
shall maintain the invariant that iff(t1, . . . , tk) andf(t′1, . . . , t

′
k)

are members ofT whereF (ti) = F (t′i), for 1 ≤ i ≤ k, then
F (f(t1, . . . , tk)) = F (f(t′1, . . . , t

′
k)). This is certainly true ini-

tially, sinceF is initially one-to-one on members ofT .

Let N be the set of all of the new null values (the values initially
assigned toF (t) when t is not inD). We create an ordering≺
onD ∪ N , where the members ofD are an initial segment of the
ordering≺, followed by the members ofN .

We now begin chasingI with the SO egd parts ofΦ, to change the
values ofF . Whenevert is a member ofT such that we replace
a current value ofF (t) by a new value during the chase process,
we will always replace the current value ofF (t) by a value that
is lower in the ordering≺. If s1(ȳ1) = s2(ȳ2) is an equality in
the premise of an SO egd part ofΦ, then the equalitys1(ē1) =
s2(ē2) evaluates to “true” wherēe1 andē2 consist of members of
D, precisely if the current value ofF (s1(ē1)) equals the current
value ofF (s2(ē2)). Each time an equalityt1(ā) = t2(b̄) is forced
(because of an SO egd part with conclusiont1(x̄) = t2(ȳ)), and
the current value ofF (t1(ā)) does not equal the current value of
F (t2(b̄)) we proceed as follows. Letc1 be the smaller of these two
values and letc2 be the larger of these two values in our ordering
≺. If c2 is a constant, then the chase fails and halts. Otherwise,
for every members of T where the current value ofF (s) is c2,
change the value so that the new value ofF (s) is c1. Note that
under this change, the new value ofF (t1(ā)) and the new value of
of F (t2(b̄)) are the same (namely,c1).

These changes inF may propagate new changes inF , which we
need to make in order to maintain the invariant. Assume that as
a result of our changes inF so far, there are termsf(t1, . . . , tk)
andf(t′1, . . . , t

′
k) in T whereF (ti) = F (t′i), for 1 ≤ i ≤ k, but

F (f(t1, . . . , tk)) andF (f(t′1, . . . , t
′
k)) are different. As before,

let c1 be the smaller of these two values and letc2 be the larger of
these two values in our ordering≺. If c2 is a constant, then the
chase fails and halts. Otherwise, for every members of T where
the current value ofF (s) is c2, change the value so that the new
value ofF (s) is c1. Note that under this change, the new value
of F (f(t1, . . . , tk)) and the new value ofF (f(t′1, . . . , t

′
k)) are the

same (namely,c1). Continue this process until no more changes
occur. It is easy to see that we have maintained our invariant. Con-
tinue chasing with SO egd parts until no more changes occur. Note
that at most as many changes can occur as the size ofT , since ev-
ery time a change occurs, there are strictly fewer values ofF (t)
ast ranges overT . This is the key reason why the chase runs in
polynomial time.

OnceF has stabilized, so that no more changes are caused by chas-
ing with the SO egd parts ofΦ, then chaseI with the SO tgd
parts ofΦ. If s1(ȳ1) = s2(ȳ2) is an equality in the premise of
an SO tgd part ofΦ, then the equalitys1(ē1) = s2(ē2) evalu-
ates to “true” wherēe1 and ē2 consist of members ofI , precisely
if F (s1(ē1)) = F (s2(ē2)). These chase steps produce the target
relationJ that is taken to be the result of the chase.

We have the following theorem about the chase process.

THEOREM 5.1. Let Φ be a fixed st-SO dependency. The chase
of a ground instanceI with Φ runs in time polynomial in the size of
I . The chase fails precisely if there is no solution forI with respect
to Φ. If the chase succeeds, then it produces a universal solution
for I with respect toΦ.

Note that in particular, Theorem 5.1 tells us that there is a
polynomial-time algorithm for determining, given a source instance
I , whether there is a solution forI , and if so, producing a universal
solution forI .

Because there is a polynomial-time chase for st-SO dependencies,
there is also a polynomial-time chase for SO-standard schema map-
pings: first, chase with the st-SO dependency, and then with the
target dependencies (where there is a polynomial-time chase be-
cause of the weak-acyclicity assumption). It follows that there is a
polynomial-time algorithm for obtaining a universal solution for an
SO-standard schema mapping (if there is a solution).

As shown in [20], we can use a universal solution to obtain the cer-
tain answers to unions of conjunctive queries in polynomial time.
We now recall the definition of the certain answers. Given a schema
mappingM = (S,T, Σ), an instanceI over the source schemaS
and ak-ary queryq posed against the target schemaT, thecertain
answers of q on I with respect toM, denoted bycertainM(q, I),
is the set of allk-tuplest of values fromI such that, for every so-
lution J of I underM, we have thatt ∈ q(J), whereq(J) is the
result of evaluatingq onJ . If J is a universal solution forI under
M, andq is a union of conjunctive queries, then it is shown in [20]
that certainM(q, I) equalsq(J)↓, which is the result of evaluat-
ing q on J and then keeping only those tuples formed entirely of
values fromI (that is, tuples that do not contain nulls). The equal-
ity certainM(q, I) = q(J)↓ holds for arbitrarily specified schema
mappingsM (as long as such a universal solutionJ exists). We
thereby obtain the following corollary to Theorem 5.1, which is
analogous to the same corollary in [21] for mappings specified by

135

SO tgds (except that in the case of SO tgds, there is always a solu-
tion for every ground instanceI).

COROLLARY 5.2. LetM be an SO-standard schema mapping.
Let q be a union of conjunctive queries over the target schemaT.
Then for every ground instanceI overS such that there is a solu-
tion for I with respect toΦ, the set certainM(q, I) can be computed
in polynomial time (in the size ofI).

6. A POSITIVE RESULT: SO-STANDARD
SCHEMA MAPPINGS ARE THE
NEEDED CLASS

In this section, we show that SO-standard schema mappings (those
specified by an st-SO dependency, along with target constraints
consisting of t-egds and a weakly-acyclic set of t-tgds) exactly cor-
respond to the composition of standard schema mappings.

6.1 Using SO-standard schema mappings to
define compositions

Before we show that the composition of an arbitrary number of
standard schema mappings is equivalent to an SO-standard schema
mapping, we first show that target constraints are needed (that is,
st-SO dependencies by themselves are not enough). In fact, the
next proposition says that st-SO dependencies, without target con-
straints, are not capable of specifying even schema mappings spec-
ified by st-tgds and a set of key dependencies.

PROPOSITION 6.1. There exists a schema mappingM12 =
(S1,S2,Σ12,Σ2), whereΣ12 is a set of st-tgds andΣ2 is a set of
key dependencies, such thatM12 cannot be specified by an st-SO
dependency.

As we shall see, we get an easy proof of Proposition 6.1 by using
the following simple proposition, which is analogous to the same
result for st-tgds [17].

PROPOSITION 6.2. Letσ12 be an st-SO dependency, letI be a
source instance, and letJ be a target instance. If(I, J) |= σ12

andJ ⊆ J ′, then(I, J ′) |= σ12.

PROOF OFPROPOSITION6.1. LetS1 = {S(·, ·)}, S2 = {T (·, ·)}
andΣ12 = {S(x, y) → T (x, y)}, and assume thatΣ2 consists
of the single key dependencyT (x, y) ∧ T (x, z) → y = z. By
way of contradiction, assume thatM12 can be specified by an st-
SO dependencyσ12. Let I = {S(1, 2)}, J = {T (1, 2)} and
J ′ = {T (1, 2), T (1, 3)}. Given that(I, J) |= Σ12 ∪ Σ2, andσ12

specifiesM12, we have that(I, J) |= σ12. Hence, by Proposi-
tion 6.2, we have that(I, J ′) |= σ12 and, thus,(I, J ′) |= Σ12 ∪Σ2

sinceσ12 specifiesM12. Thus, we obtain a contradiction, since
J ′ 6|= Σ2.

Let M12 and M23 be standard schema mappings. The previous
negative result implies that st-SO dependencies by themselves can-
not necessarily specify the compositionM12 ◦ M23. Our next
theorem implies thatM12 ◦M23 is equivalent to an SO-standard

schema mappingM13. In fact, we can take the target constraints
of M13 to be the target constraints ofM23. Thus, intuitively, st-
SO dependencies are expressive enough to capture the intermediate
target constraints in a composition.

THEOREM 6.3. Let M12 = (S1,S2,Σ12,Σ2) and M23 =
(S2,S3,Σ23,Σ3) be standard schema mappings (so thatΣ12, Σ23

are sets of st-tgds, andΣi (i = 2, 3) is the union of a set of t-
egds and a weakly-acyclic set of t-tgds). Then there exists an st-SO
dependencyσ13 such that the mappingM13 = (S1,S3, σ13,Σ3)
is equivalent to the compositionM12 ◦M23.

In Section 6.2, we show that the composition of SO-standard
schema mappings is also an SO-standard schema mapping. By
combining this result with Theorem 6.3 (and using the simple
fact, noted earlier, that every standard schema mapping is an SO-
standard schema mapping), we obtain our desired result, namely,
that the composition of a finite number of standard schema map-
pings is equivalent to an SO-standard schema mapping.

It is straightforward to show that Theorem 6.3 is a consequence of
the following proposition.

PROPOSITION 6.4. Let M12 be a standard schema mapping,
and letM23 be an st-tgd mapping (no target constraints). Then the
compositionM12 ◦M23 can be specified by an st-SO dependency.

As pointed out in Section 4, the class of st-SO dependencies cor-
responds to the source-to-target restriction of the class of Sk∀CQ=

dependencies introduced in [40]. In fact, Theorem 6.3 and Propo-
sition 6.4 were essentially established in [40] (see Theorems 6 and
9 and the paragraph after Theorem 10 in [40]), but they are restated
and clarified here for the sake of completeness. We also show here
how Proposition 6.4 is proved, which is a straightforward adapta-
tion of the proofs of Theorems 6 and 9 in [40], and the comments
in the paragraph after Theorem 10 to handle a weakly-acyclic set
of target tgds.

We now demonstrate, by example, how an st-SO dependencyσ13

is obtained fromM12 andM23 in Proposition 6.4 (it will be clear
how to extend from the example to the general case). Assume that
S1 = {A(·, ·), B(·)}, S2 = {C(·, ·), D(·, ·)}, S3 = {E(·, ·)}.
Furthermore, suppose thatΣ12 consists of the following st-tgds:

A(x, y) → C(x, y),

B(x) → ∃y C(x, y), (1)

Σ2 consists of the following t-tgds:

C(x, y) ∧ C(y, z) → C(z, x),

C(x, y) → ∃z D(x, z), (2)

C(x, x) → D(x, x),

D(x, y) → D(y, x),

andΣ23 consists of the st-tgd:

D(x, y) → ∃z E(x, y, z). (3)

To obtainσ13, we first Skolemize each dependency inΣ12, Σ2 and
Σ23 to obtain the setsE(Σ12), E(Σ2) andE(Σ23) of dependencies,

136

respectively. In this process, we use distinct Skolem functions for
distinct dependencies. In particular, we replace (1), (2) and (3) by:

B(x) → C(x, f(x)),

C(x, y) → D(x, g(x, y)),

D(x, y) → E(x, y, h(x, y)),

respectively. Then for predicatesC andD, we introduce functions
fC , gC , fD andgD, wherefC , gC have the same arity asC, and
wherefD, gD have the same arity asD, and we defineσ13 as:

∃f∃g∃h∃fC∃gC∃fD∃gD Ψ,

wheref , g andh are the Skolem functions introduced above and
Ψ is a conjunction of a set of dependencies defined as follows. As
predicateC cannot be mentioned inΨ, functionsfC andgC are
used to replace it: the equalityfC(ā) = gC(ā) is used to indicate
thatC(ā) holds. Thus, the first two conjuncts ofΨ are generated
from E(Σ12) by replacingC(x̄) by fC(x̄) = gC(x̄):

A(x, y) → fC(x, y) = gC(x, y),

B(x) → fC(x, f(x)) = gC(x, f(x)). (4)

Similarly, functionsfD andgD are used to replace predicateD,
and the dependencies inE(Σ2) are used to generate the following
conjuncts ofΨ:

dom(x) ∧ dom(y) ∧ dom(z) ∧ fC(x, y) = gC(x, y) ∧

fC(y, z) = gC(y, z) → fC(z, x) = gC(z, x), (5)

dom(x) ∧ dom(y) ∧

fC(x, y) = gC(x, y) → fD(x, g(x, y)) = gD(x, g(x, y)), (6)

dom(x) ∧ fC(x, x) = gC(x, x) → fD(x, x) = gD(x, x), (7)

dom(x) ∧ dom(y) ∧

fD(x, y) = gD(x, y) → fD(y, x) = gD(y, x), (8)

wheredom(·) is a formula that defines the domain of the instances
of S1, that is,dom(x) is ∃y A(x, y) ∨ ∃z A(z, x) ∨ B(x). This
predicate is included in the previous dependencies to satisfy the
safety condition of st-SO dependencies, namely, that every variable
mentioned in a term has to be mentioned in a source predicate. We
then use the standard approach for eliminating disjunctions in a
premise (for example,ϕ1 ∨ ϕ2 → ψ can be replaced by the two
formulasϕ1 → ψ andϕ2 → ψ).

Notice that if an equalityfC(a, f(a)) = gC(a, f(a)) can be in-
ferred by using dependency (4), then we know thatC(a, f(a))
holds. Thus, sinceD(a, g(a, f(a))) can be obtained from
C(a, f(a)) and the dependencyC(x, y) → D(x, g(x, y)),
it should be possible to infer thatfD(a, g(a, f(a))) =
gD(a, g(a, f(a))) holds by using the fact thatfC(a, f(a)) =
gC(a, f(a)) holds and the dependencies inΨ. However, if
dom(f(a)) does not hold, thenfC(a, f(a)) = gC(a, f(a))
does not satisfy the premise of dependency (6) and, therefore,
fD(a, g(a, f(a))) = gD(a, g(a, f(a))) cannot be inferred by us-
ing this dependency. To overcome this limitation, we also instan-
tiate the above four dependencies with the terms that appear in the
tuples that are generated by repeatedly applying the formulas in
E(Σ2). More precisely, it is possible to infer that only terms of the
form x andf(y) need to be considered for the case of predicate
C and, thus, dependencies (5), (6) and (7) are instantiated with all
the possible combinations of this type of terms. For example, the

following is one of the conjuncts ofΨ generated from formula (5):

dom(x) ∧ dom(y) ∧ dom(z) ∧

fC(f(x), y) = gC(f(x), y) ∧ fC(y, f(z)) = gC(y, f(z)) →

fC(f(z), f(x)) = gC(f(z), f(x)),

while the following dependency is one of the conjuncts ofΨ gen-
erated from formula (7):

dom(x) ∧ dom(y) ∧ fC(f(x), f(y)) = gC(f(x), f(y)) ∧

f(x) = f(y) → fD(f(x), f(y)) = gD(f(x), f(y)).

Notice that in the previous dependency we have included the equal-
ity f(x) = f(y), as it can be the case thatf(a) = f(b) holds
for distinct elementsa andb. Similarly, it is possible to infer that
only terms of the formx, f(y), g(x, y), g(x, f(y)), g(f(x), y)
andg(f(x), f(y)) need to be considered for the case of predicate
D. Thus, dependency (8) is instantiated with all the possible com-
binations of this type of terms. For example, the following is one
of the conjuncts ofΨ generated by this process:

dom(x) ∧ dom(y) ∧ dom(z) ∧

fD(f(x), g(f(y), z)) = gD(f(x), g(f(y), z)) →

fD(g(f(y), z), f(x)) = gD(g(f(y), z), f(x)).

Finally, the last conjuncts ofΨ are generated from dependency
D(x, y) → E(x, y, h(x, y)) as above. For example, the follow-
ing are two of these conjuncts:

dom(x) ∧ dom(y) ∧ fD(x, y) = gD(x, y) → E(x, y, h(x, y)),

dom(x) ∧ dom(y) ∧ dom(z) ∧

fD(f(x), g(f(y), f(z))) = gD(f(x), g(f(y), f(z))) →

E(f(x), g(f(y), f(z)), h(f(x), g(f(y), f(z)))).

It is important to notice that the weak acyclicity ofΣ2 guarantees
that the above process terminates. That is, we need only consider
terms up to a certain fixed depth of nesting. In particular, in the
above example, we only need to consider terms where the nesting
depth of functions is at most 2.

EXAMPLE 6.5. We conclude this section by showing why weak
acyclicity is necessary to guarantee the termination of the above
process. Assume thatM12 = (S1,S2,Σ12,Σ2) and M23 =
(S2,S3,Σ23), whereS1 = {A(·, ·)}, S2 = {B(·, ·)}, S3 =
{C(·, ·)}, Σ12 consists of the following st-tgd:

A(x, y) → B(x, y),

Σ2 consists of the following t-tgd:

B(x, y) → ∃z B(y, z), (9)

andΣ23 consists of the st-tgd:

B(x, y) → C(x, y).

Notice thatM12 is not a standard schema mapping, asΣ2 is not
weakly acyclic.

In order to obtain an st-SO dependencyσ13 that defines the compo-
sition of M12 andM23, the above process first Skolemizes each
dependency inΣ12, Σ2 andΣ23 to obtain the setsE(Σ12), E(Σ2)
andE(Σ23) of dependencies, respectively. In particular, the t-tgd
(9) is replaced by the dependency:

B(x, y) → B(y, h(x, y)). (10)

137

Then binary functionsfB and gB are introduced, andσ13 is defined
as∃h∃fB∃gB Ψ, whereΨ is a conjunction of a set of dependen-
cies defined as follows. The first conjunct ofΨ is generated from
E(Σ12) by replacingB(x, y) by fB(x, y) = gB(x, y):

A(x, y) → fB(x, y) = gB(x, y). (11)

Then functionsfB andgB are used to eliminate predicateB from
E(Σ2). In particular, the following conjunct is included inΨ:

dom(x) ∧ dom(y) ∧ fB(x, y) = gB(x, y) →

fB(y, h(x, y)) = gB(y, h(x, y)), (12)

wheredom(·) is a formula that defines the domain of the instances
of S1, that is,dom(x) is ∃uA(x, u) ∨ ∃v A(v, x). As mentioned
above, predicatedom(·) is included in the previous dependency to
satisfy the safety condition of st-SO dependencies.

It should be noticed if(a, b) is a tuple inA, one can infer that
fB(a, b) = gB(a, b) holds by considering dependency (11), and
then one can infer thatfB(b, h(a, b)) = gB(b, h(a, b)) holds
by considering dependency (12). By definition ofσ13, this im-
plies thatB(b, h(a, b)) holds, from which one concludes that
B(h(a, b), h(b, h(a, b))) also holds (from dependency (10)). Thus,
in this case it should be possible to infer that

fB(h(a, b), h(b, h(a, b))) = gB(h(a, b), h(b, h(a, b))) (13)

holds from the dependencies inΨ. However, ifdom(h(a, b)) does
not hold, then one cannot infer equality (13) from dependency (12)
and the fact thatfB(b, h(a, b)) = gB(b, h(a, b)) holds. This forces
one to instantiate dependency (12) with the terms that appear in the
tuples that are generated by repeatedly applying (10). In particular,
the following dependency is included as a conjunct ofΨ to be able
to infer (13) from equalityfB(b, h(a, b)) = gB(b, h(a, b)):

dom(x) ∧ dom(y) ∧ fB(x, h(x, y)) = gB(x, h(x, y)) →

fB(h(x, y), h(x, h(x, y))) = gB(h(x, y), h(x, h(x, y))).

The previous dependencies are used to deal with the terms where
the nesting depth of functions is at most 2. But given thatΣ2 is
not weakly acyclic, one also needs to deal with the terms where
the nesting depth of functions is 3, which forces one to include the
following dependency as a conjunct ofΨ:

dom(x) ∧ dom(y) ∧

fB(h(x, y), h(x, h(x, y))) = gB(h(x, y), h(x, h(x, y))) →

fB(h(x, h(x, y)), h(h(x, y), h(x, h(x, y)))) =

gB(h(x, h(x, y)), h(h(x, y), h(x, h(x, y)))).

It is not difficult to see that the process does not terminate in this
case, as from the preceding dependency one needs to generate a
formula to deal with the terms where the nesting depth of functions
is 4, which in turn has to be used to generate a dependency to deal
with nesting depth 5, and so on. 2

6.2 Composability of SO-standard schema
mappings

The next theorem implies that the composition of SO-standard
schema mappings is an SO-standard schema mapping. This is the
final step we need to show that the composition of a finite number
of standard schema mappings is given by an SO-standard schema
mapping.

THEOREM 6.6. For every pairM12 = (S1,S2, σ12,Σ2) and
M23 = (S2,S3, σ23,Σ3) of schema mappings, whereσ12, σ23

are st-SO dependencies andΣi (i = 2, 3) is the union of a
set of t-egds and a weakly acyclic set of t-tgds, there exists an
st-SO dependencyσ13 such that the schema mappingM13 =
(S1,S3, σ13,Σ3) is equivalent to the compositionM12 ◦M23.

Note that, just as in Theorem 6.3, the setΣ3 used inM23 is also
used inM13. Theorem 6.6 was essentially established in [40] (see
Theorems 6 and 9 and the paragraph after Theorem 10 in [40]),
since the class of st-SO dependencies corresponds to the source-to-
target restriction of the class of Sk∀CQ= dependencies introduced
in [40].

As pointed out in Section 6.1, the previous result is fundamental to
showing that SO-standard schema mappings can define the compo-
sition of standard schema mappings, since from the combination of
this result with Theorem 6.3 (and using the simple fact that every
standard schema mapping is an SO-standard schema mapping), we
obtain the following theorem as a consequence.

THEOREM 6.7. The composition of a finite number of standard
schema mappings is equivalent to an SO-standard schema map-
ping.

6.3 SO-standard schema mappings are ex-
actly the needed class

We have introduced st-SO dependencies (and SO-standard schema
mappings) because of Theorem 6.7. In this section, we show that
SO-standard schema mappings are exactly the needed class, since
the converse of Theorem 6.7 also holds. Specifically, we have the
following theorem.

THEOREM 6.8. Every SO-standard schema mapping is equiva-
lent to the composition of a finite number of standard schema map-
pings.

This is proven by showing the following:

THEOREM 6.9. Every schema mappingM = (S,T, σst),
whereσst is an st-SO dependency, is equivalent to the composition
of a finite number of schema mappings, each specified by st-tgds
and t-egds.

Note that, somewhat surprisingly, we do not need to make use of
a weakly acyclic set of t-tgds (or any t-tgds at all) in Theorem 6.9.
In particular, letM12 andM23 be as in Proposition 6.4 (where
the specification ofM12 may make use of a weakly-acyclic set of
t-tgds). By Proposition 6.4, the composition is given by a schema
mappingM13 specified by an st-SO dependency, and by Theo-
rem 6.9, we know thatM13 is the composition of a finite number
of schema mappings, each specified by st-tgds and t-egds (no t-
tgds). SoM12 ◦ M23 needs no t-tgds to specify it, even though
M12 makes use of t-tgds.

We now show how Theorem 6.8 follows from Theorem 6.9. Let
M = (S,T, σst, Σt) be an SO-standard schema mapping (where

138

σst is an st-SO dependency, andΣt is the union of a set of t-
egds and a weakly acyclic set of t-tgds). LetM′ = (S,T, σst),
where we discardΣt from M. By Theorem 6.9, where the role
of M is played byM′, we know that there are schema map-
pingsM1, . . . ,Mk, each specified by st-tgds and t-egds, such that
M′ = M1 ◦ · · · ◦Mk. Assume thatMk = (S′,T, σst, Tk), with
Tk consisting only of t-egds. LetM′

k = (S′,T, σst, Tk ∪ Σt).
ThenM1, . . . ,Mk−1,M

′
k are standard schema mappings (M′

k

is a standard schema mappings, since its only t-tgds are those
in Σt). Since(S,T, σst) = M1 ◦ · · · ◦ Mk, it follows eas-
ily that (S,T, σst, Σt) = M1 ◦ · · · ◦ Mk−1 ◦ M′

k. Thus,
M = M1 ◦ · · · ◦Mk−1 ◦M′

k.

We now demonstrate, by example, how Theorem 6.9 is proved
(again, it will be clear how to extend from the example to the gen-
eral case). Our proof is an extension of the proof in [21] that every
SO tgd specifies the composition of a finite number of st-tgd map-
pings (see Theorem 8.4 in [21]).

Assume thatS = {S(·)}, T = {T (·, ·)}, Σt = ∅ andσst is the
following st-SO dependency:

∃f∃g [∀x (S(x) → T (f(g(x)), g(f(x)))) ∧

∀x∀y (S(x) ∧ S(y) ∧ f(x) = f(y) → g(x) = g(y))].

Next we construct schema mappingsM12 = (S1,S2,Σ12,Σ2),
M23 = (S2,S3,Σ23,Σ3) andM34 = (S3,S4,Σ34) such that
(1) S1 = S, (2) S4 = T, (3) Σ12, Σ23 andΣ34 are sets of st-tgds,
(4) Σ2 andΣ3 are set of t-egds, and (5) the mapping specified by
σst is equivalent toM12 ◦M23 ◦M34.

DefineS2 as{R1(·), F1(·, ·), G1(·, ·)} andΣ12 to consist of the
following st-tgds:

S(x) → R1(x),

S(x) → ∃y F1(x, y),

S(x) → ∃y G1(x, y).

Intuitively, we takeR1 to copy S, we takeF1(x, y) to encode
f(x) = y, and we takeG1(x, y) to encodeg(x) = y. In par-
ticular, the second and third dependencies have the effect of guar-
anteeing thatf(x) andg(x) are defined for every elementx in S,
respectively.

Given thatΣ12 cannot guarantee thatF1 andG1 each define a sin-
gle image for every element inS, we letΣ2 consist of the following
t-egds:

F1(x, y) ∧ F1(x, z) → y = z,

G1(x, y) ∧G1(x, z) → y = z,

that guarantee thatF1 andG1 encode functions. In the same way,
defineS3 as{R2(·), F2(·, ·), G2(·, ·)} and Σ23 to consist of the
following st-tgds:

R1(x) → R2(x),

F1(x, y) → F2(x, y),

G1(x, y) → G2(x, y),

F1(x, y) → ∃z G2(y, z),

G1(x, y) → ∃z F2(y, z).

Intuitively, we takeR2 to copyR1, F2 to copyF1, andG2 to copy
G1, and we include the fourth dependency to guarantee thatg(y)
is defined for ally in the range off , and we include the fifth de-
pendency to guarantee thatf(y) is defined for ally in the range of

g. Also as in the previous case, we include inΣ3 two t-egds that
guarantee thatF2 andG2 are indeed functions:

F2(x, y) ∧ F2(x, z) → y = z,

G2(x, y) ∧G2(x, z) → y = z.

Given that at this point, we have predicates that encode the values
of all the terms that are used inσst, we also include inΣ3 de-
pendencies that encode the conjuncts ofσst of the form∀x̄ (ϕ →
t1 = t2). More precisely, in this case we include inΣ3 the follow-
ing t-egd that encodes the conjunct∀x∀y (S(x) ∧ S(y) ∧ f(x) =
f(y) → g(x) = g(y)):

R2(x) ∧R2(y) ∧ F2(x, z) ∧

F2(y, z) ∧G2(x, u) ∧G2(y, v) → u = v.

Finally, we useR2, F2 andG2 to encode the remaining conjuncts
of σst, which indicate how to populate the target relations ofσst.
Thus, we defineΣ34 to consist of the following st-tgd:

R2(x) ∧G2(x, y1) ∧ F2(y1, y2) ∧

F2(x, z1) ∧G2(z1, z2) → T (y2, z2).

This concludes the demonstration by example of how to prove The-
orem 6.9. This demonstration gives, as a special case (when the st-
SO dependency is unnested) the following lemma (where we note
also the number of schema mappings that are composed).

LEMMA 6.10. Every schema mappingM = (S,T, σst),
whereσst is an unnested st-SO dependency, is equivalent to the
composition of two schema mappings, each specified by st-tgds and
t-egds.

We note that Theorem 6.9 follows immediately from Lemma 6.10
and the fact, as we show later, that every st-SO dependency is
equivalent to an unnested st-SO dependency, Therefore, we really
needed to prove only Lemma 6.10 (the unnested case) rather than
the general case that we dealt with in proving Theorem 6.9.

7. COLLAPSING RESULTS: NESTING IS
NOT NECESSARY

In this section, we present collapsing results about the depth of
nesting of function symbols in st-SO dependencies and SO tgds.
Specifically, we prove the following two theorems.

THEOREM 7.1. Every st-SO dependency is equivalent to an
unnested st-SO dependency.

THEOREM 7.2. Every SO tgd is equivalent to an unnested SO
tgd

These two results, especially the second one, are the most techni-
cally difficult results in the paper. Both results are surprising, since
the “obvious” way to try to denest, which we now describe, does
not work. Consider for example the SO tgd

∃f∃g∀x∀y(P (x,y) ∧ (f(g(x)) = y) → Q(x, y)) (14)

139

The “obvious” way to denest (14) is to introduce a new variablez
and rewrite (14) as

∃f∃g∀x∀y∀z(P (x,y) ∧ (g(x) = z) ∧

(f(z) = y) → Q(x, y)) (15)

However, the formula (15) is not an SO tgd, since it violates the
safety condition (because the variablez does not appear inP (x, y),
the only relational atomic formula in the premise of (15)).

It should be mentioned that in [36], Libkin and Sirangelo intro-
duce the second-order language of Skolemized STDs (SkSTDs),
and study some of its fundamental properties. In particular, it is
shown in [36] that this language is closed under composition if the
premises of SkSTDs are restricted to be conjunctive queries. In-
terestingly, this fragment of SkSTDs is similar to the language of
SO tgds but does not allow nesting of functions, which may lead
one to think that Theorem 7.2 can be deduced from the results in
[36]. However, no safety condition is imposed on the premises of
SkSTDs in [36] and, thus, nesting of functions is not needed in this
language as it can be eliminated in the “obvious” way shown above.
In fact, dependency (15) is a valid constraint according to [36].

We now present and discuss two corollaries of Theorem 7.2.

COROLLARY 7.3. The composition of a finite number of st-tgd
mappings can be specified by an unnested SO tgd.

This is a strengthening of the result (Theorem 8.1 in [21]) that the
composition of a finite number of st-tgd mappings can be speci-
fied by an SO tgd (thus, we replace “SO tgd” by “unnested SO
tgd”). Corollary 7.3 follows immediately from the result we just
cited (Theorem 8.1 in [21]) and our Theorem 7.2. It was not even
known before that the composition of two st-tgd mappings can be
specified by an unnested SO tgd. Thus, although it was shown in
[21] that each unnested SO tgd specifies the composition of some
pair of st-tgd mappings, the converse was not shown. In fact, for
the composition of two st-tgd mappings, the composition construc-
tion in [21] produces an SO tgd whose depth of nesting can be 2,
not 1.

We feel that nested dependencies are difficult to understand
(just think about an equality likef(g(x), h(f(x, y))) =
g(f(x, h(y)))), and probably also difficult to use in practice. On
the other hand, unnested dependencies seem to be more natural and
readable. For example, it is easy to see that the “nested mappings”
in [23] can be expressed by unnested SO tgds. Corollary 7.3 tells
us that unnested SO tgds are also expressive enough to specify the
composition of an arbitrary number of st-tgd mappings.

Theorem 7.2 has as another corollary the following collapsing re-
sult about the number of compositions of st-tgd mappings.

COROLLARY 7.4. The composition of a finite number of st-tgd
mappings is equivalent to the composition of two st-tgd mappings.

This follows from Corollary 7.3 and the fact (which is a special
case of Theorem 8.4 of [21]) that a schema mapping specified by
an unnested SO tgd is equivalent to the composition of two st-tgd
mappings.

The next two corollaries follow from Theorem 7.1 just as Corollar-
ies 7.3 and 7.4 follow from Theorem 7.2.

COROLLARY 7.5. The composition of a finite number of stan-
dard schema mappings can be specified by an unnested st-SO de-
pendency, along with t-egds and a weakly acyclic set of t-tgds.

COROLLARY 7.6. The composition of a finite number of stan-
dard schema mappings is equivalent to the composition of two stan-
dard schema mappings.

In fact, it follows from Corollary 7.5 and Lemma 6.10 that we can
slightly strengthen Corollary 7.6 as follows

COROLLARY 7.7. The composition of a finite number of stan-
dard schema mappings is equivalent to the compositionM1 ◦M2

of two standard schema mappingsM1 andM2, where the target
constraints ofM1 are only t-egds (no t-tgds).

Corollary 7.6 has a direct, almost trivial proof that does not use our
heavy machinery, as we now show. LetM12, M23, . . ., Mk−1 k

be standard schema mappings. DefineM′
12 to have source schema

the same asM12, target schema equal to the union of the target
schemas ofM12, . . ., Mk−2 k−1, and constraints equal to the
union of the constraints ofM12, . . ., Mk−2 k−1. Because all of
the schemas are disjoint, it is easy to see thatM′

12 is a standard
schema mapping (note that the st-tgds ofM23, . . ., Mk−2 k−1 are
now being treated as t-tgds ofM′

12). Then it is clear that

M12 ◦M23 ◦ . . . ◦Mk−1 k = M′
12 ◦Mk−1 k.

In contrast to Corollary 7.6, the reason that Corollary 7.4 is quite
unexpected is that there is no obvious way to deal with all of the
st-tgds in the intermediate schema mappings.

Corollary 7.5, unlike Corollary 7.6, does not seem to have a simple
direct proof that avoids the machinery of Theorem 7.1. This is be-
cause our construction of the composition of two standard schema
mappings produces an st-SO dependency whose nesting depth can
be arbitrarily large.

Based on our collapsing results, there are two alternative ways to
deal with the composition of multiple st-tgd mappings. First, by
Corollary 7.3, we can replace this composition by a single schema
mapping, specified by an unnested SO tgd. Second, by Corol-
lary 7.4, we can replace the composition by the composition of only
two st-tgd mappings. Similarly, by using Corollaries 7.5 and 7.6,
we have two alternative ways to deal with the composition of a
large number of standard schema mappings.

8. CONCLUDING REMARKS
We have investigated the question of what language is needed
to specify the composition of schema mappings with target con-
straints. In particular, we showed thatst-SO dependencies(along
with appropriate target constraints) are exactly the right language
for specifying the composition ofstandard schema mappings
(those specified by st-tgds, target egds, and a weakly-acyclic set
of target tgds). By contrast, we showed that SO tgds, even with
arbitrary source and target constraints, are not rich enough to be

140

able to specify in general the composition of two standard schema
mappings. In addition to their expressive power, we also showed
that st-SO dependencies enjoy other desirable properties. In partic-
ular, they have a polynomial-time chase that generates a universal
solution. which can be used to find the certain answers to unions of
conjunctive queries in polynomial time.

We proved the surprising results that SO tgds and st-SO dependen-
cies can be denested: that is, each such dependency is equivalent to
another dependency of that type with no nested function symbols.
These denesting results can be used to “collapse” multiple compo-
sitions of schema mappings into the composition of two schema
mappings of that type. In particular, we obtain the unexpected re-
sult that the composition of an arbitrary number of st-tgd mappings
is equivalent to the composition of only two st-tgd mappings.

Our results gave us two ways to “simplify” the composition of an
arbitrary number of st-tgd mappings. First, we could replace the
composition by a single schema mapping, specified by an unnested
SO tgd. Second, we could replace the composition by the compo-
sition of only two st-tgd schema mappings. A similar comment ap-
plies to the composition of an arbitrary number of standard schema
mappings.

Acknowledgments
The authors are grateful to Phokion Kolaitis for helpful discussions.
Most of the work on this paper was done while Alan Nash was
at IBM Research – Almaden and Marcelo Arenas was a visitor at
IBM Research – Almaden. Marcelo Arenas was also supported by
FONDECYT grant 1090565.

9. REFERENCES
[1] F. Afrati and N. Kiourtis. Query Answering Using Views in

the Presence of Dependencies. InNew Trends in Information
Integration (NTII), pages 8–11, 2008.

[2] F. Afrati and P. Kolaitis. Repair Checking in Inconsistent
Databases: Algorithms and Complexity. InInternational
Conference on Database Theory (ICDT), pages 31–41, 2009.

[3] F. Afrati, C. Li, and V. Pavlaki. Data Exchange in the
Presence of Arithmetic Comparisons. InExtending Data
Base Technology (EDBT), pages 487–498, 2008.

[4] F. Afrati, C. Li, and V. Pavlaki. Data Exchange: Query
Answering for Incomplete Data Sources. In3rd International
Conference on Scalable Information Systems, 2009.

[5] M. Arenas, P. Barceló, R. Fagin, and L. Libkin. Locally
Consistent Transformations and Query Answering in Data
Exchange. InProceedings of the 23rd ACM Symposium on
Principles of Database Systems, PODS’04, pages 229–240,
2004.

[6] M. Arenas, J. Pérez, and C. Riveros. The Recovery of a
Schema Mapping: Bringing Back Exchanged Data. In
Proceedings of the 27th ACM Symposium on Principles of
Database Systems, PODS’08, pages 13–22, 2008.

[7] P. Barceló. Logical Foundations of Relational Data
Exchange.SIGMOD Record, 38(1):49–58, 2009.

[8] P. A. Bernstein. Applying Model Management to Classical
Meta-Data Problems. InConference on Innovative Data
Systems Research (CIDR), pages 209–220, 2003.

[9] M. Casanova, R. Fagin, and C. Papadimitriou. Inclusion
Dependencies and their Interaction with Functional
Dependencies.J. Computer and System Sciences,
20(1):29–59, 1984.

[10] B. Cautis, A. Deutsch, and N. Onose. Querying Data Sources
that Export Infinite Sets of Views. InInternational
Conference on Database Theory (ICDT), pages 84–97, 2009.

[11] R. Chirkova and M. Genesereth. Equivalence of SQL
Queries in Presence of Embedded Dependencies. InACM
Symposium on Principles of Database Systems (PODS),
pages 217–226, 2009.

[12] S. S. Cosmadakis and P. C. Kanellakis. Functional and
Inclusion Dependencies: A Graph Theoretic Approach. In
Advances in Computing Research, volume 3, pages 163–184.
1986.

[13] A. Deutsch, A. Nash, and J. Remmel. The Chase Revisited.
In ACM Symposium on Principles of Database Systems
(PODS), pages 149–158, 2008.

[14] A. Deutsch, L. Popa, and V. Tannen. Query Reformulation
with Constraints.SIGMOD Record, 35(1):65–73, 2006.

[15] A. Deutsch and V. Tannen. Reformulation of XML Queries
and Constraints. InInternational Conference on Database
Theory (ICDT), pages 225–241, 2003.

[16] H. B. Enderton.A Mathematical Introduction to Logic:
Second Edition. Academic Press, 2001.

[17] R. Fagin. Inverting Schema Mappings.ACM Trans.
Database Syst., 32(4), 2007.

[18] R. Fagin, L. Haas, M. Hernandez, R. Miller, L. Popa, and
Y. Velegrakis. Clio: Schema mapping creation and data
exchange. In A. Borgida, V. Chaudhri, P. Giorgini, and E. Yu,
editors,Conceptual Modeling: Foundations and
Applications, Essays in Honor of John Mylopoulos, volume
5600 ofLecture Notes in Computer Science, pages 198–236.
Springer-Verlag, 2009.

[19] R. Fagin, P. Kolaitis, A. Nash, and L. Popa. Towards a
Theory of Schema-Mapping Optimization. InProceedings of
the 27th ACM Symposium on Principles of Database
Systems, PODS’08, pages 33–42, 2008.

[20] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering.Theoretical
Computer Science, 336:89–124, 2005. Preliminary version in
Proc. 2003 International Conference on Database Theory,
pp. 207–224.

[21] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Composing
schema mappings: Second-order dependencies to the rescue.
ACM Trans. Database Syst., 30(4):994–1055, 2005.

[22] R. Fagin, L. Stockmeyer, and M. Vardi. On monadic NP vs
monadic coNP.Information and Computation,
120(1):78–92, 1995.

[23] A. Fuxman, M. A. Hernández, C. T. H. Ho, R. J. Miller,
P. Papotti, and L. Popa. Nested Mappings: Schema Mapping
Reloaded. InVery Large Data Bases (VLDB), pages 67–78,
2006.

[24] A. Fuxman, P. Kolaitis, R. Miller, and W.-C. Tan. Peer Data
Exchange.ACM Transactions on Database Systems,
31(4):1454–1498, 2006.

[25] H. Gaifman. On local and non-local properties. In
Proceedings Herbrand Symposium Logic Colloquium, North
Holland, 1982, pages 105–135, 1982.

[26] G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. On
Reconciling Data Exchange, Data Integration, and Peer Data
Management. InACM Symposium on Principles of Database
Systems (PODS), pages 133–142, 2007.

[27] G. Gottlob and A. Nash. Efficient Core Computation in Data
Exchange.Journal of the ACM, 55(2), 2008.

141

[28] G. Gottlob and S. Szeider. Fixed-Parameter Algorithms For
Artificial Intelligence, Constraint Satisfaction and Database
Problems.Computer Journal, 51(3):303–325, 2008.

[29] T. Green, G. Karvounarakis, Z. Ives, and V. Tannen. Update
Exchange with Mappings and Provenance. InInternational
Conference on Very Large Data Bases (VLDB), pages
675–686, 2007.

[30] W. P. Hanf. Model-theoretic methods in the study of
elementary logic. InThe Theory of Models; Addison, Henkin,
and Tarski, eds., North Holland 1965, pages 132–145, 1965.

[31] A. Hernich and N. Schweikardt. CWA-solutions for Data
Exchange Settings with Target Dependencies. InACM
Symposium on Principles of Database Systems (PODS),
pages 113–122, 2007.

[32] G. Karvounaraki and V. Tannen. Conjunctive Queries and
Mappings with Unequalities. Technical Report
MS-CIS-08-37, University of Pennsylvania, 2008.

[33] P. G. Kolaitis. Schema Mappings, Data Exchange, and
Metadata Management. InACM Symposium on Principles of
Database Systems (PODS), pages 61–75, 2005.

[34] M. Lenzerini. Data integration: a theoretical perspective. In
Proceedings of the 21st ACM Symposium on Principles of
Database Systems, PODS’02, pages 233–246, 2002.

[35] L. Libkin. Elements of Finite Model Theory. Springer-Verlag,
1st edition, 2004.

[36] L. Libkin and C. Sirangelo. Data exchange and schema
mappings in open and closed worlds. InACM Symposium on
Principles of Database Systems (PODS), pages 139–148,
2008.

[37] J. Madhavan and A. Y. Halevy. Composing Mappings
Among Data Sources. InInternational Conference on Very
Large Data Bases (VLDB), pages 572–583, 2003.

[38] M. Meier. Towards Rule-Based Minimization of RDF
Graphs under Constraints. InWeb Reasoning and Rule
Systems, volume 5341 ofLecture Notes in Computer
Science, pages 89–103. Springer-Verlag, 2008.

[39] S. Melnik.Generic Model Management: Concepts and
Algorithms, volume 2967 ofLecture Notes in Computer
Science. Springer, 2004.

[40] A. Nash, P. A. Bernstein, and S. Melnik. Composition of
Mappings Given by Embedded Dependencies. In
Proceedings of the 24th ACM Symposium on Principles of
Database Systems, PODS’05, pages 172–183, 2005.

[41] P. Papotti and R. Tortone. Schema Exchange: Generic
Mappings for Transformaing Data and Metadata.Data and
Knowledge Engineering, 68(7):665–682, 2009.

[42] B. ten Cate and P. Kolaitis. Structural Characterizations of
Schema-Mapping Languages. InInternational Conference
on Database Theory (ICDT), pages 63–72, 2009.

[43] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. On the
Logical Modeling of ETL Processes. InInternational
Conference on Advanced Information Systems Engineering
(CAiSE), pages 782–786, 2002.

142

