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ABSTRACT

In XML data exchange, a schema mapping specifies rules for
restructuring a source document under the target schema,

and queries over the target document must be answered in a
way consistent with the source information. Mapping rules
and queries in this scenario are typically based on various
kinds of tree patterns. Patterns with downward navigation

have been studied, and tractable classes of mappings and
queries have been isolated.

In this paper we extend schema mappings and queries

with general tree patterns that include horizontal naviga-
tion and data-value comparisons, and study their impact on
the tractability of the query answering problem. Our main
results state that, in the nutshell, extending the tractable

cases for downward patterns with expressive schema map-
pings is harmless, but adding new features to queries quickly
leads to intractability even for very simple schema mapping.

1. INTRODUCTION

In the problem of data exchange, source data (conforming
to a source schema) must be restructured to form a solu-
tion conforming to a target schema. The restructuring must

follow a specification, known as a schema mapping, which
describes the relationship between the two schemas. Nor-
mally such specifications are given by source-to-target de-
pendencies, which are often formulated as relational calcu-

lus queries of special form. Under a schema mapping, there
could be many possible solutions to materialize as a target
instance. The goal then is to find a solution that would make
it possible to answer queries over the chosen target instance

in a way that is consistent with the source data.

∗Mailling address: School of Informatics, University of
Edinburgh, Edinburgh EH8 9AB, UK.
Email addresses: {s-amano,cdavid,libkin}@inf.ed.ac.uk,
fmurlak@mimuw.edu.pl

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 22–25, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00

The problem of data exchange has been actively studied
over the past few years (see, e.g., recent surveys [19, 10, 8]).
Most research has focused on the relational case, where the
complexity of basic problems in relational data exchange is

by now quite well understood. Systems for handling rela-
tional data exchange have been developed and incorporated
into commercial systems (see, e.g., [24]). Although practi-

cal systems often claim to handle non-relational data, this is
usually done either through relational translations or with
very simple mappings whose power is in manipulating data
values rather than changing the structure [18].

A systematic study of semi-structured data exchange was
initiated in [7] which proposed a simple mapping language
for XML data exchange. Apart from basic static analysis
questions, [7] showed how to build solutions for answering

analogs of conjunctive queries, and isolated a subclass of
mappings admitting a polynomial algorithm for query an-
swering. The mappings considered by [7] were very re-

stricted though, as they only admitted downward naviga-
tion and a limited form of equality comparisons, but dis-
regarded horizontal navigation, and arbitrary (in)equality
comparisons.

A much more expressive language for XML schema map-
pings was proposed recently [4]. The language added the
features that were missing in [7], and it allowed one to re-
structure documents based on arbitrary forms of navigation

and arbitrary comparisons of data values. But while [4] pre-
sented a rather complete picture of the complexity of static
analysis problems, it did not address the key problem of

query answering.
Our goal thus is to study query answering in such expres-

sive XML schema mappings. Once we add new features to
mappings, we can also use them in queries, so there is a

natural question to what extent we can enrich mapping and
query languages while retaining good bounds on the query
answering problem. We show that we cannot extend both

simultaneously; in fact there is a certain tradeoff between
the power of the mapping language and the power of the
query language. We show, informally, that:

• the basic tractable class of queries identified in [7] re-

mains tractable under the most expressive mappings;
but

• adding new features to the query languages quickly
leads to intractability, even for very simple mappings

that behave well with simple queries.
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The plan of the paper is as follows. After presenting the

main definitions in Section 2, we review what is known about
query answering in simple settings, based only on downward
navigation. This is done in Section 3. The key findings of
[7], reviewed there, are that we need to restrict both DTDs

and source-to-target constraints to have any hope of getting
tractability. We thus use the restrictions of [7] (to so-called
nested relational DTDs and fully specified source-to-target

constraints) throughout this paper.
In Section 4 we show that throwing in all the new features

does not increase the upper bound for the query answering
problem – it remains in coNP. We then show that if we add

all the new features to schema mappings while keeping the
basic tractable language of [7], we retain tractability. This
is done in Section 5.

Then, in Section 6, we consider possible extensions of

query languages with the same features as the mappings:
horizontal navigation and comparisons of data values. We
show that any such extension immediately leads to intracta-

bility. This remains true even for very simple mappings.
We explore further possibilities of restricting mappings, by
strengthening the definition of fully specified constraints and
relaxing constraints on the ordering of elements, and show

that even then the query answering problem remains in-
tractable once the queries are extended beyond the class
considered in [7].

2. PRELIMINARIES

2.1 XML documents and DTDs

We view XML documents as unranked trees. Each node

has a label indicating its element type and may also have at-
tribute values associated with attribute names. We assume
attribute values come from an infinite domain V , and also
that attribute names are prefixed by @ so as to be distin-

guished from element types.
Formally, an XML document over a finite labeling alpha-

bet Γ (element types) and a finite set Att of attribute names
is a structure 〈T, ↓,→, lab, (ρa)a∈Att〉, where

• the set T is an unranked tree domain, i.e., a prefix-
closed subset of N

∗ such that n · i ∈ T implies n · j ∈ T
for all j < i;

• the binary relations ↓ and → are the child relation
(n ↓ n·i) and the next-sibling relation (n·i → n·(i+1));

• the function lab is a labeling from T to Γ;

• each ρa is a partial function from T to V . We say that
a node s ∈ T has the value v for the attribute @a when
ρa(s) = v.

Most often, when the interpretations of ↓,→, lab, and ρa are

understood, we write just T to refer to an XML document.
A document type definition (DTD) over a labeling alpha-

bet Γ and a set of attributes Att is a triple D = 〈r, PD, AD〉,
where

• r ∈ Γ is a distinguished root symbol;

• PD is a function assigning regular expressions over

Γ − {r} to the elements of Γ, usually written as ℓ → e,
if PD(ℓ) = e;

• AD is a function from Γ to 2Att which assigns a (pos-
sibly empty) set of attribute names to each element

type.

For notational simplicity we assume that attribute names
come in some order, just as in the relational case where

attribute names for a relation R are ordered in some way
so that we can write R(a1, . . . , an). Similarly, we describe a
node that is labeled ℓ and has n attributes as ℓ(a1, . . . , an).

A tree T conforms to a DTD D if its root is labeled with

r and for each node s ∈ T with lab(s) = ℓ it holds that

• ρa(s) is defined iff @a ∈ AD(ℓ),

• the sequence of labels of children of s is in the language

of PD(ℓ).

For example consider the following DTD D1:

europe → country∗

country → (ruler)∗ country : @name

ruler → ε ruler : @name

(1)

A tree T1 that conforms to this DTD is shown in Figure 1.

We shall use a class of nested relational DTDs [2, 4, 7, 11]
that generalize nested relations. Such DTDs are common
in practice (accounting for more than 50% of DTDs in one
empirical study [11]) and they have been shown to reduce

the complexity of many XML static analysis problems.
A DTD is nested relational if it is non-recursive (i.e., the

graph in which we put edges between ℓ and the element types

in PD(ℓ) does not contain cycles) and all of its productions
are of the form ℓ → ℓ̂1 · · · ℓ̂m, where the ℓi’s are distinct
elements of Γ and each ℓ̂i is one of ℓi, or ℓ∗i , or ℓ+i = ℓiℓ

∗
i ,

or ℓi? = ℓi|ε. The DTD D1 is nested relational. On the

other hand, an expression ℓ1ℓ1ℓ
∗
2 cannot occur in a nested

relational DTD (as ℓ1 is used twice), nor can (ℓ1ℓ2)
∗ and

ℓ1|ℓ2.

2.2 XML schema mappings

Recall that a relational schema mapping is a quadruple
〈S,T, Σst, Σt〉, where S and T are relational schemas (called
the source schema and the target schema, respectively), Σst

is a set of source-to-target dependencies, and Σt is the set

of target dependencies. The dependencies are of the form
ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), where ϕ, ψ are conjunctions of atomic
formulae. In the literature, schema mappings without target

dependencies (i.e., mappings such that Σt is empty) have
attracted special attention, e.g., in the study of compositions
of schema mappings [15].

In the XML context, various abstractions of XML Schema

naturally replace relational schemas. These could be DTDs,
or XSDs, or other formalisms (see, e.g., [23]). Following
the tradition of papers on data exchange for semi-structured
data [7, 4, 25] we use DTDs as our schema formalism, al-

though many results can be easily extended to formalisms
capturing the full power of tree automata.

For source-to-target constraints, one can use conjunctive

queries as the specification language; however, in the XML
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europe

country

(Scotland)

ruler

(James V )

ruler

(Mary I )

ruler

(James VI & I )

ruler

(Charles I )

country

(England)

ruler

(Elizabeth I )

ruler

(James VI & I )

ruler

(Charles I )

Figure 1: Tree T1 conforming to DTD D1

scenario this is quite cumbersome because we have two sorts

of objects in an XML database: tree nodes and data values.
Instead, following [7, 4], we use tree patterns, that capture
the expressiveness of two-sorted conjunctive queries but are
easier to handle syntactically.

Extended tree patterns, that handle both vertical and hor-
izontal navigation, are given by the grammar below:

π := ℓ(x̄)[λ] patterns
λ := ε | µ | //π | λ, λ sets
µ := π | π → µ | π →∗ µ sequences

(2)

Here ℓ ranges over the alphabet Γ of labels and the wildcard

symbol that matches every label. We write π(x̄) to indicate
that x̄ is the tuple of variables used in π.

A tree T satisfies ϕ(ā) at a node s, with variables inter-

preted as ā, written (T, s) |= ϕ, iff the following conditions
hold:

(T, s) |= ℓ(ā) iff s is labeled by ℓ and ā is the
tuple of attributes of s;

(T, s) |= ℓ(ā)[λ1, λ2] iff (T, s) |= ℓ(ā)[λ1] and

(T, s) |= ℓ(ā)[λ2];

(T, s) |= ℓ(ā)[µ] iff (T, s) |= ℓ(ā) and (T, s′) |= µ for
some s′ with s ↓ s′;

(T, s) |= ℓ(ā)[//π] iff (T, s) |= ℓ(ā) and (T, s′) |= π for

some descendant s′ of s;

(T, s) |= π → µ iff (T, s) |= π and (T, s′) |= µ for
some s′ with s → s′;

(T, s) |= π →∗ µ iff (T, s) |= π and (T, s′) |= µ for
some s′ with s →∗ s′.

We write T |= ϕ for (T, ε) |= ϕ.
Observe that semantically “sets” in tree patterns are lit-

erally sets: for a node satisfying ℓ(ā)[λ1, λ2], the node wit-

nessing λ1 is not necessarily distinct from the one witnessing
λ2.

Following [4], we define a source-to-target dependency (std)
as an expression of the form

π(x̄, ȳ), α=, 6=(x̄, ȳ) −→ π′(x̄, z̄), α′
=, 6=(x̄, z̄),

where π, π′ are tree patterns, and α=, 6= and α′
=, 6= are sets

of equalities and inequalities among variables. Since we can
always state equalities explicitly, we can assume without loss
of generality that no variable appears more than once in π

and π′.

A pair of trees 〈T, T ′〉 satisfies an std of the form above if

for all tuples ā, b̄ so that T |= π(ā, b̄) and α(ā, b̄) holds, there
exists a tuple c̄ such that T |= π′(ā, c̄) and α′(ā, c̄) holds.

An XML schema mapping is a triple M = 〈Ds, Dt, Σ〉,
where

• Ds is the source DTD, Dt is the target DTD,

• Σ is a set of stds.

Given a tree T conforming to Ds, a solution for T under M
is a tree T ′ such that

• T ′ conforms to Dt;

• 〈T, T ′〉 satisfies all the stds in Σ (written as 〈T, T ′〉 |= Σ).

For example, let Ds be the DTD D1 defined in (1), and

let Dt be the following DTD:

rulers → ruler∗

ruler → successor ruler : @name

successor → ε successor : @name

Assuming the rulers are stored in the chronological order,

a natural schema mapping M might be defined with the
following std:

europe[ruler(x) → ruler(y)] −→
rulers/ruler(x)/successor(y) ,

where we use the standard XML abbreviation ℓ(x̄)/π for
ℓ(x̄)[π].

A natural solution for the tree T1 from Figure 1 is a tree T2

shown in Figure 2. Notice that the solution is not unique.
Every tree obtained from T2 by adding new children with
arbitrary data values, or by permuting the existing children,

is also a solution for T1. For instance, a solution T3 shown
in Figure 3 is as good a solution for T1 as any.

Mappings based on downward navigation The lan-

guage of tree patterns used in [7] only referred to downward
navigation, i.e., it did not use sequences and was given by

π := ℓ(x̄)[λ]
λ := ε | π | //π | λ, λ

The stds from that paper did not use inequalities and only
allowed equalities explicitly incorporated into the patterns,
i.e., they were of the form π(x̄, ȳ) → π′(x̄, z̄), with the same

semantics as we use here.
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ruler

(James V )

successor

(MaryI )

ruler

(Mary I )

successor

(James VI & I )

ruler

(James VI & I )

successor

(Charles I )

ruler

(Elizabeth I )

successor

(James VI & I )

Figure 2: T2: a solution for T1

rulers

ruler

(James V )

successor

(Mary I )

ruler

(Mary I )

successor

(James VI & I )

ruler

(James VI & I )

successor

(Charles I )

ruler

(Louis XIII )

successor

(Charles I )

ruler

(Elizabeth I )

successor

(James VI & I )

Figure 3: T3: another possible solution for T1

Classes of mappings In general, mappings can use
vertical and horizontal navigation as well as data compar-
isons. Restricted classes are obtained by limiting downward
navigation (for example, disallowing descendant), horizontal

navigation (disallowing → or →∗ in sequences), and data
value comparisons (disallowing equalities or inequalities).

More precisely, we say that ↓∗, →, and →∗ are used in a

mapping if some pattern uses the //π construction in ‘sets’
in (2), or the π → µ or π →∗ µ construction in ‘sequences’ in
(2). A mapping uses equality if either equalities are present
in formulae α=, or if some variables are repeated in patterns

(which forces two data values to be equal). And finally, a
mapping uses inequality if inequalities are present in formu-
lae α6=.

Thus, for a subset σ ⊆ {↓, ↓∗,→,→∗, =, 6=}, we write

SM(σ) to denote the class of schema mappings in which
stds use only the operations from σ. For example, the map-
ping described above is in SM(↓,→). The class (3) of XML

schema mappings originally considered in [7] is SM(↓, ↓∗, =)
in this notation.

For reasons to be explained shortly, we work extensively
with nested relational schema mappings, i.e., schema map-

pings whose target DTDs are nested relational. By SMnr(σ)
we denote the class of nested relational schema mappings in
SM(σ). Our example of a mapping above is from the class

SMnr(↓,→).
If we use the standard XML encoding of relational data-

bases, then relational schema mappings fall into the class
SMnr(↓, =).

2.3 Query language

We follow the relational case [8, 14, 19] and study query
answering for conjunctive queries and their unions. Con-
junctive queries over trees are normally represented with

tree patterns [16, 12, 13]. Thus, for querying XML docu-

ments we use the same language as for the dependencies:
tree patterns augmented with equalities as well as inequali-
ties, to capture the analog of relational conjunctive queries
with inequalities. And, of course, we allow projection.

That is, a query is an expression of the form

∃x̄ (π,α=, 6=),

where π is a tree pattern and α=, 6= is a set of equalities and
inequalities. The semantics is defined in the standard way.

The output of the query is the set of those valuations of
free variables that make the query hold true. This class of
queries is denoted by CTQ (conjunctive tree queries). Note
that CTQ is indeed closed under conjunctions, due to the

semantics of λ, λ′ in patterns.
We also consider unions of such queries: UCTQ denotes

the class of queries of the form Q1(x̄) ∪ · · · ∪ Qm(x̄), where
each Qi is a query from CTQ. Like for schema mappings, we

write CTQ(σ) and UCTQ(σ) for σ ⊆ {↓, ↓∗,→,→∗, =, 6=}
to denote the subclass of queries using only the symbols
from σ.

Let us get back to our running example. A query one
might ask over the target database is to list the rulers who
were successors to more that one ruler. This would be ex-
pressed by the following conjunctive query MultiSucc:

∃x ∃y

0

@

rulers[ ruler(x)/successor(z),
ruler(y)/successor(z) ],

x 6= y

1

A

Note that this query uses both inequality and equality,
since the variable z is used twice in the tree pattern. Hence,
this query is in CTQ(↓, =, 6=).

Coming back to our example, on the tree T2 from Fig-
ure 2 the query MultiSucc would return {”James VI & I”},
and on the tree T3 from Figure 3 the answer would be

{”James VI & I”, ”Charles I”}.
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3. DATAEXCHANGE IN SIMPLE SETTINGS

Data exchange is the problem of transforming data in the

source schema into data in the target schema, according to
stds. As we have already explained, the result of this trans-
formation may not be unique. The fundamental problem

of data exchange is to answer queries over the target data.
Suppose we are given a mapping M , a query Q, and a source
tree T conforming to Ds. What answer should we return if
there is more than one solution for T ? Following [14, 7],

we adapt the certain answers semantics, i.e., we return the
tuples which would be returned for every possible solution:

certainM (Q, T ) =
\



Q(T ′)

˛

˛

˛

˛

T ′ is a solution for T
under M

ff

.

The subscript M is omitted when it is clear from the context.
Note that our queries output sets of tuples rather than

trees, so we can define certain answers by taking the inter-
section of the answers over all solutions.

In our running example,

certainM (MultiSucc, T1) = {”James VI & I”} .

Note that when Q is a Boolean query, certainM (Q, T ) is true

if and only if Q is true for all the solutions.
Fix an XML schema mapping M and a query Q. We are

interested in the following decision problem.

Problem: certainM (Q)
Input: a tree T , a tuple s̄

Question: s̄ ∈ certainM (Q, T ) ?

We now recall what is already known about simple set-

tings based on downward navigation [7], i.e., mappings from
SM(↓, ↓∗, =) and queries from UCTQ(↓, ↓∗, =). The prob-
lem is in coNP, and could be coNP-hard. To reduce the
complexity, one can vary three parameters of the problem:

DTDs, stds, and queries.
It turns out that in order to get tractability we have to

restrict the first two parameters simultaneously.
The general idea behind the restrictions is to avoid any

need for guessing where patterns could be put in a target
tree. For that, the mapping has to be as specific as possible.
In terms of DTDs this restriction is well captured by the

notion of nested relational DTDs (for instance, there is no
explicit disjunction). But guessing is also involved whenever
wildcard and descendant are used in the stds. The mappings
which use neither ↓∗ nor in target patterns in stds were

called fully specified. The following theorem summarizes the
results on simple mappings.

Theorem 3.1. (see [7]) For every schema mapping M ∈

SM(↓, ↓∗, =) and every query Q ∈ CTQ(↓, ↓∗, =)

(1) certainM (Q) is in coNP,

(2) certainM (Q) is in PTIME, if M is fully specified and
nested relational.

Moreover, if one of the hypotheses in (2) is dropped, one can
find a mapping M and a query Q such that certainM (Q)

is coNP-complete.

Note that item (2) includes, as a special case, the tractabil-

ity of the certain answers problem for conjunctive queries in
relational data exchange. Indeed, it says that answering
queries from CTQ(↓, ↓∗, =) (and even unions of those) is
tractable for mappings from the class SMnr(↓, =), and as

we remarked earlier, relational schema mappings fall into
this class under the natural representation of relations as
flat trees.

The result of [7] is actually more precise. For fully speci-
fied mappings there is a dichotomy in the first parameter: if
DTDs allow enough disjunction, the problem is coNP-hard,
otherwise it is polynomial. The exact class of tractable

DTDs is the one using so called univocal regular expres-
sions (see [7] for a rather involved definition). Intuitively,
it extends nested-relational DTDs with a very week form of
disjunction. Query answering in this case is based on con-

structing a specific instance using a chase procedure, and
the use of disjunction in DTDs is limited so as to keep the
chase polynomial.

Our goal Given the results of [7], we must stay with a

restricted class of DTDs and fully specified mappings to have
any hope of getting tractability of query answering. Hence,
our questions are:

1. How bad could the complexity of certainM (Q) be
if we extend the classes SMnr(↓, =) of mappings and
CTQ(↓, ↓∗, =) of queries?, and

2. Can we extend the classes SMnr(↓, =) of mappings
and CTQ(↓, ↓∗, =) of queries with new features while

retaining tractable query answering?

In the next section, we show that we do not have to worry
about the first question – the coNP bound is not broken by
adding new features. We also make an observation about
an easy lower bound on the problem that refines question 2

a bit.

4. DATA EXCHANGE IN EXTENDED

SETTINGS

In the previous section we have sketched the tractability
frontier for simple mappings and simple queries. Now, we

would like to see what can be done to extend the tractable
case with horizontal navigation and data comparisons. But
first, we need to verify whether the upper bound remains
the same with all the new features.

Note that unlike in some other cases (e.g., relational que-
ries under the closed world semantics [1]), the coNP upper
bound on certain answers is nontrivial even in the case of

simple downward mappings (3). Now we show that we can
recover the upper bound for much more expressive map-
pings. We do it by casting the problem as a special case of
query answering over incomplete XML documents, for which

the coNP bound has recently been proved [9].

Proposition 4.1. For every schema mapping M from
SM(↓, ↓∗,→,→∗, =, 6=) and every query Q from CTQ(↓, ↓∗,

→, →∗, =, 6=), the complexity of certainM (Q) is in coNP.
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Proof sketch. Suppose that the mapping M is of the

form 〈Ds, Dt, {ϕi → ψi | i ∈ [n]}〉. Given a tree T conform-
ing to Ds, what we have is essentially an incomplete tree.
More precisely, we have polynomially many target patterns
ψi(s̄i,1), . . . , ψi(s̄i,ki

), where i ∈ [n] and ki is polynomial in

the size of T . This set of patterns can be seen as a single
XML tree with incomplete information. Thus our problem
is equivalent to the following: given an incomplete tree I

and a tuple s̄, is s̄ a certain answer to Q over I? This was
shown to be in [9]. 2

From the previous section we know that in order to get

tractability, we need to confine ourselves to nested relational
DTDs and fully specified stds. In addition, we must disallow
inequality in the query languages. It is known to lead to
coNP-hardness already in the relational case [14, 22]. Since

the usual translation from the relational setting to the XML
setting produces fully specified nested relational mappings,
we have the following result.

Corollary 4.2. There exist a nested-relational fully spec-
ified schema mapping M in SMnr(↓, =) and a query Q in
CTQ(↓, =, 6=) such that certain(Q) is coNP-complete.

Our goal – revised Now that we know that inequality
in queries immediately leads to intractability, and that we
do not have to worry about potentially worse complexity

bounds than before, our revised goal is as follows: Can we
find σ1 ⊇ {↓, =} and σ2 ⊇ {↓, ↓∗, =} such that certainM (Q)
is tractable for all M ∈ SMnr(σ1) and Q ∈ UCTQ(σ2).

In what follows we show that it is possible to extend

schema mappings, but it is almost impossible to extend the
query language.

5. EXTENDINGTHEMAPPINGLANGUAGE

In this section we show that we can extend mappings with

horizontal navigation and data value comparisons without
losing tractability, provided that we stick to the basic query
language. Recall that mappings must be fully specified to
guarantee tractability, i.e., they use patterns given by the

grammar

π := ℓ(x̄)[λ]

λ := ε | µ | λ, λ
µ := π | π → µ | π →∗ µ

(3)

with ℓ 6= (i.e., they disallow ↓∗ and the wildcard), see [7]).

Theorem 5.1. Suppose that M is a fully specified schema
mapping in SMnr(↓,→,→∗, =, 6=) and Q ∈ UCTQ(↓, ↓∗, =).
Then certain(Q) is in PTIME.

Proof sketch. The proof is based on the observation that
the chase algorithm of [7] can be extended to handle addi-
tional features of schema mappings. Given an source tree
T , the algorithm constructs in polynomial time a “minimal”

solution T ∗ for which Q(T ∗) = certainM (Q, T ).
The algorithm roughly works as follows. First, it con-

structs a canonical presolution, which is essentially the re-

sult of putting together all the target patterns to be satisfied.

That is, for each std ϕ(x̄, ȳ), α(x̄, ȳ) → π′(x̄, z̄), α′(x̄, z̄) and

tuples ā, b̄ so that ϕ(ā, b̄), α(ā, b̄) are satisfied in the source
tree T , we pick a tuple c̄ of fresh nulls so that α′(ā, c̄) is
satisfied and put the pattern π′(ā, c̄) into the target tree.
This construction only involves evaluating patterns and can

be done in polynomial time.
As such a tree need not conform to the target DTD, the

algorithm then tries to “repair” the canonical presolution so

that it actually is a solution, i.e., conforms to the target
DTD. The important property of the class UCTQ(↓, ↓∗, =)
is that queries are insensitive to the horizontal order of chil-
dren in trees. Hence in trying to enforce the conformance to

the target DTD, we do not have to reorder children under
each node. This repairing procedure might fail, in which
case there is no solution for the source tree T . If it success-
fully terminates, then we have the desired solution T ∗ and

we can compute Q(T ∗). 2

6. EXTENDING THE QUERY LANGUAGE

We have seen that extending the mapping language is
harmless, so the next question is whether we can extend the
query language. The answer is exactly the opposite: even

very small additions lead to intractability. We start with the
simplest mappings and show that extending queries with any
form of horizontal navigation leads to intractability. Then,
analyzing the causes of this intractability, we consider two

modifications of the simple class, exploring two complemen-
tary directions. The first deals with mappings which fully
specify the sibling order, the second investigates mappings

based on DTDs invariant under sibling permutations. We
show that even under such restrictions, tractability cannot
be recovered.

6.1 Simple mappings

We start with the simplest class of mappings, those with
only the child-based navigation, with fully specified pat-
terns, and nested relational DTDs. For such mappings, we

cannot extend the query language CTQ(↓, ↓∗, =) with any
form of horizontal navigation.

Theorem 6.1. There exist

• a fully specified schema mapping M ∈ SMnr(↓);

• a query Q1 ∈ CTQ(↓,→, =); and

• a query Q2 ∈ CTQ(↓,→∗, =)

such that both certainM (Q1) and certainM (Q2) are coNP-
complete.

Proof. The coNP upper bound follows from Proposition
4.1. For the lower bound, we prove the first claim of the
theorem, and the proof for the second can be obtained by

replacing →∗ with → in the following proof.
We describe an XML schema mapping M and a query

Q ∈ CTQ(↓,→, =) such that 3SAT is reducible to the com-

plement of certainM (Q). More specifically, there exist an
XML schema mapping M and a Boolean query Q such that

certainM (Q, Tϕ) is false iff ϕ is satisfiable,

where Tϕ is a tree encoding of the formula ϕ.
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The idea of the reduction is the following: we transform a

3CNF formula ϕ into a source tree Tϕ. The mapping is de-
fined so that a solution of Tϕ corresponds to a selection of (at
least) one literal for each clause in the formula. Finally we
provide a query that is true when such a selection contains

a variable and its negation. Thus the existence of a solution
falsifying the query implies the existence of a well-defined
(partial) assignment that satisfies the formula ϕ.

Suppose we are given a 3-CNF formula ϕ =
Vn

i=1

W3
j=1 cij ,

where cij is a literal. We construct a source tree Tϕ by
the following encoding, which we explain with a concrete
example. A formula (x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4) is

encoded as follows:

r

C

(1)

H1

(1)

H2

(6)

H3

(7)

C

(2)

H1

(3)

H2

(5)

H3

(8)

L

(1,2)

L

(3,4)

L

(5,6)

L

(7,8)

Each L node has two attribute values encoding a variable
and its negation, respectively. For example L(1, 2) indicates

that x1 is encoded by the data value ‘1’ and ¬x1 by ‘2’. In
general, for each variable we have an L node encoding it
and its negation with distinct values. Also for each clause in
the formula we have C node that has three children labeled

H1, H2, H3, respectively. The data value held at C is an
identifier for it, and Hi holds the data value encoding the
i-th literal in the clause. In the example above, the second

literal of the first clause is ¬x3 and hence the data value of
H1 under the middle C node is ‘6’.

Formally the source DTD Ds is

r → C∗L∗ C : @a1 L : @a2, @a3

C → H1H2H3 H1, H2, H3 : @b1.

The target DTD Dt is quite similar to the source DTD

above:

r → C∗L∗ C : @a1 L : @a2, @a3

C → H∗ H : @b1

The last component of the schema mapping are the stds
Σ. The idea for the mapping is that, given Tϕ, we essen-
tially copy it in the target, but allow the reordering of chil-

dren under each C node with the use of ‘,’(comma). This
reordering corresponds to ‘choosing one literal per clause’
mentioned earlier. Intuitively, we choose a literal having
more than two following siblings. Since each C node has

three H nodes below, clearly at least one literal is chosen
for each clause.

r[C[H1(x),H2(y),H3(z)]] → r[C[H(x), H(y),H(z)]]

r[L(x, y)] → r[L(x, y)]

Finally we define the query. It is true if a variable and
its negations are contained among the chosen literals. The

query is:

∃x∃y

„

r
ˆ

L(x, y), C[H(x) → H → H ],
C[H(y) → H → H ]

˜

«

Formally, the correctness of the reduction can be proved
as follows. We prove that certainM (Q,Tϕ) is false if and
only if a 3-CNF formula ϕ is satisfiable.

(⇒) Suppose certainM (Q, Tϕ) is false. Then there exists
a tree T ′ that is a solution for the tree encoding of ϕ and
falsifies the query. We extract an assignment v from T ′ as

follows. For each fragment matching r[C[H(x) → H → H ]],
v assigns true to the variable encoded by x. This assignment
is consistent since the query is false over T ′. Finally the
assignment satisfies ϕ. The dependency requires that there

should be at least three H ’s (holding values appearing in the
source) below a C node. Hence, for each C node, there is at
least one H node beneath it that has two following siblings,

so that the corresponding literal is true by the assignment.
(⇐) Suppose that ϕ is satisfiable. Assume v is a satisfying

assignment. Then we construct a solution of the mapping
for Tϕ that falsifies the query in the following way. Basically

what we do is to change the order of H ’s under each C
node so that, for each clause, a literal assigned true has
at least two following siblings. More specifically, for each
tree fragment of the form r[C[H1(d1), H2(d2), H3(d3)]], the

corresponding clause has at least one literal that is assigned
true by v. We choose the data encoding one such literal (we
choose the one corresponding to a literal with the smallest

index if there are more than one literal to which v assigns
true). For example, suppose it is d2. Then we make the tree
fragment r[C[H(d2) → H(d1) → H(d3)]]. After we process
all the fragments corresponding to clauses, we simply copy

all the L nodes in the target. Since v never assigns true
to a variable and its negation, the query is false over the
constructed tree. 2

6.2 Fully specified sibling order

We have seen that even if we stick to basic downward map-
pings, we cannot extend the query language. But perhaps
we can find a more suitable class of mappings?

Observe that in the setting of the previous section, we

violated the idea behind the principle of being fully spec-
ified (although not the formal definition), as queries used
horizontal navigation, and yet mappings did not specify it
completely, by allowing the set constructor λ, λ′ in (3). Such

nondeterminism in placing patterns in target trees leads to
intractability.

So it seems natural to restrict the use of this nondetermin-

ism and properly redefine the notion of being fully specified
for horizontal navigation. We do it now, but show that, un-
like in the easier case of [7], it does not lead to tractability.

There are two possible ways to define the notion of being

fully specified with respect to the horizontal ordering. In
the more relaxed notion, called →∗-fully specified, we insist
that for every two subpatterns which start at children of the
same node, we know their relative ordering. In the stronger

notion, called →-fully specified, we completely specify the →
relation among the siblings.

More precisely, →∗-fully specified patterns exclude, in ad-

dition to //π and wildcard, the ability to take union (i.e.,
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the λ, λ′ construct) and are given by :

π := ℓ(x̄)[µ]

µ := ε | π | π → µ | π →∗ µ

The →-fully specified patterns in addition exclude →∗ and
are given by :

π := ℓ(x̄)[µ] µ := ε | π | π → µ

For example, an std using a[b, c] is neither →- nor →∗-fully

specified; an a[b →∗ c] → a[c →∗ d] is →∗-fully specified,
but not →-fully specified, and an std using a[b → c → d] is
→-fully specified.

We start with the →-fully specified mappings.

Theorem 6.2. There exist a →-fully specified schema

mapping M ∈ SMnr(↓,→) and a query Q ∈ CTQ(↓,→, =)
such that certain(Q) is coNP-complete.

Proof sketch. As in the previous proof, we will provide
an XML schema mapping M = 〈Ds, Dt, Σ〉 and a query
Q such that we can reduce 3SAT to the complement of

certainM (Q, Tϕ), where Tϕ is the same encoding of formulas
as in the previous proof.
The source DTD Ds is:

r → C∗L∗ C : @a1 L@a2, @a3

C → H1H2H3 H1, H2, H3 : @b1,

The target DTD is again almost the same as the source,
except that it has Gi’s. With these extra element types, we
‘choose’ a literal from each clause. Intuitively we select Hi’s

that are ‘two step to the right of G1’.

r → C∗L∗ L : @a1, @a2

C → G1G2?G3?H1H2H3 H1, H2, H3 : @b1.

The stds are simply copying :

r[L(x, y)] → r[L(x, y)]

r[C[H1(x) → H2(y) → H3(z)]] →

r[C[H1(x) →H2(y) → H3(z)]]

The query Q is selected so that it is true if a variable and
its negation are both ‘chosen’, just as in the previous proof.
It is given by :

∃x∃y

„

r
ˆ

L(x, y), C[G1 → → → (x)],
C[G1 → → → (y)]

˜

«

Correctness is shown in the appendix. 2

We now show intractability for →∗-fully specified map-
pings.

Theorem 6.3. There exist a →∗-fully specified schema
mapping M ∈ SMnr(↓,→∗) and a query Q from the class

CTQ(↓,→∗, =) such that certain(Q) is coNP-complete.

Proof sketch. As before we provide M = 〈Ds, Dt, Σ〉 and

a query Q to which 3SAT is reducible to the complement of
certainM (Q).

The DTD Ds is similar to the one we used before:

r → C∗L∗ C : @a1 L : @a2, @a3

C → H∗ H : @b1

Note that the subscript in H is dropped. We encode a given

3CNF formula ϕ as Tϕ, by simply dropping the subscript in
the previous encoding.

The target DTD is the following:

r → A∗L∗ A : @b1, @b2 L : @a2, @a3

The constraint is the following: it “flattens” the structure
using multi-attributes. Each A node contains two attributes,
the first of which indicates a clause and the second of which
encodes a literal. Formally the stds are:

r/C(x)/H(y) → r/A(x, y)

r/L(x, y) → r/L(x, y)

In a target tree, we choose a literal that has at least two
following siblings in each clause (i.e., with the same first

attribute value).
Finally we define the query Q as follows. As in the pre-

vious reductions, the query is true when the set of selected
literals contains a variable and its negation. It is given by

r[L(x, y), r[A(v, x) →∗ A(v, u1) →
∗ A(v, u2)],

A(w, y) →∗ A(w,u3) →
∗ A(w, u4)]

with all the variables x, y, v, w, u1, u2, u3, u4 quantified exis-
tentially. Note that the stds in M do not use →∗.

Observe that we cannot replace →∗ with → here because
the above constraints do not guarantee all the a’s with the
same first coordinate (identifier for clause) appear consecu-

tively in the target. 2

6.3 Threshold DTDs

To motivate our last attempt to find a tractable class,

consider the following example. Suppose we have a depen-
dency ϕ(x, y) → r[a(x) → b(y)] with the target DTD being
r → a∗b∗. Once a source tree has more than one pair satis-

fying ϕ(x, y), it does not have solution since a(v1) → b(v2)
and a(v3) → b(v4) can never coexist (assuming v1 6= v3 or
v2 6= v4). Arguably this is rather anomalous and it is more
natural, at least for nested relational DTDs, to allow arbi-

trary permutations of letters.
Such an approach was taken by [2]. They used threshold

DTDs which assign each element type ℓ its multiplicity atom

µ(ℓ), an expression of the form ℓ̂1 · · · ℓ̂m, where ℓ̂ is one of
ℓi, ℓ∗i , ℓ+, and ℓ? = ℓi, which limits the number of children
of type ℓi of a node labeled ℓ in the obvious way, without
imposing any restriction on the order of the children. For

example, a∗b∗ viewed as a multiplicity atom says that there
are some (perhaps none) a’s and some b’s, but not that all
a’s should precede all b’s, as the usual regular expression
would say.

We write SMth and SMth(σ) for classes of schema map-
pings using such threshold DTDs.

Do such mapping admit a better algorithm for computing

certain answers? Again, the answer is negative, this time
for unions of conjunctive queries (note that previous results
for tractable query answering in both relational and XML
data exchange work for both conjunctive queries and their

unions).

162



Theorem 6.4. There exist

• a →-fully specified schema mapping M from
SMth(↓,→), and a query Q from UCTQ(↓,→, =),

• a →∗-fully specified schema mapping M ′ from
SMth(↓,→), and a query Q′ from CTQ(↓,→∗, =),

such that both certainM (Q) and certainM′(Q′) are coNP-
complete.

Proof sketch. For the second item, the proof of Theorem
6.3 applies verbatim, so we prove only the first item. We will
describe an XML schema mapping M = 〈Ds, Dt, Σ〉 and a
query Q such that 3SAT is reducible to the complement of

certainM (Q). We use the same encoding Tϕ of a given
3CNF formula ϕ as in the proof of Theorem 6.1.

The idea of the reduction is the following: we transform a

3CNF formula ϕ into a source tree Tϕ. The mapping is de-
fined so that a solution of Tϕ corresponds to a selection of (at
least) one literal for each clause in the formula. Finally we
provide a query that is true when such a selection contains

a variable and its negation. Thus the existence of a solution
falsifying the query means the existence of a well-defined
(partial) assignment that satisfies the formula ϕ. The dif-
ference from the previous proofs is how we “choose” literals.

The source DTD Ds is the familiar one:

r → C∗L∗ C : a1 L : @a1, @a2

C → H1H2H3 H1, H2, H3 : @b1

The target DTD Dt is the following. The difference from
the source DTDs is that each Hi has A, B below. Since we
are working with a threshold DTD, A, B can appear in ei-

ther order. The set of the selected (values encoding) literals
having “A → B” below.

r → C∗L∗ L : @a1, @a2

C → H1H2H3 H1, H2, H3 : @b1

Hi → AB

The stds are copying. Note that they are →-fully-specified.
r[C[H1(x) → H2(y) → H3(z)]] →

r[C[H1(x) → H2(y) → H3(z)]],
r[L(x, y) → r[L(x, y)].

We define the query that is true when both a variable and
its negation are selected or there is a clause where no literal
is selected. Formally, it is q1 ∪ q2, where

q1 =
[

i,j∈{1,2,3}

∃x∃y

„

r
ˆ

L(x, y), C[Hi(x)[B → A]],
C[Hj(y)[B → A]]

˜

«

and

q2 = r
h

C
ˆ

H1[B → A] → H2[B → A] → H3[B → A]
˜

i

The correctness of the reduction follows from these two
observations:

• Due to q1, the assignment is consistent;

• Due to q2, each clause has at least one variable assigned
true.

2

7. CONCLUSION

We have studied query answering for XML data exchange

with the language allowing vertical and horizontal naviga-
tion and data comparisons. Earlier work on XML data ex-
change with a less expressive language showed that query an-

swering is tractable for simple mappings, and coNP-complete
for more complex ones. Our main finding is that we can nat-
urally extend the simple mappings with horizontal naviga-
tion and inequality, retaining tractability, provided we stick

to the basic query language. On the other hand, tractability
is lost when extended query languages are considered, even
for very simple mappings.

Figure 4 presents the summary of the main results. When
we write coNP, we mean that the problem could be coNP-
complete for some choice of a mapping and a query from the
relevant classes (and is in coNP for all such choices). We

use ‘f.s.’ as an abbreviation for ‘fully specified’. The last
line says that beyond the class of fully specified mappings,
there is no hope to get tractability. Within the class of fully
specified mappings, it is clear that we have the freedom to

increase the expressiveness of the mappings, but not the
queries.

The conclusion, therefore, is that one must restrict the

usage of sibling order and inequality to the mappings. What
sense does it make to use sibling order in the mapping if we
cannot ask queries about it? Our running example shows
how one can meaningfully use sibling order on the source

side, and store the result on the target side as labeled tuples.
In fact, the semantics of the mappings makes it impossible
to copy from the source to the target ordered sequences of
children of arbitrary length. Hence, whatever we encode on

the target side with sibling order, we can equally well encode
using labeled tuples, provided we have a little influence on
the target DTD. Thus, forbidding horizontal navigation in

the target database and queries we do not lose much in terms
of expressiveness.

There are several directions to extend the results of this
paper. So far, we have concentrated on data complexity of

the problem. We would also like to look at combined com-
plexity in the future in order to have a better understanding
of query answering in XML schema mappings.

Although we have shown that it is rather difficult to ex-
tend the query language, there might still be some hope to
extend it in a limited way, as was done for queries with in-
equalities in relational data exchange [6].

Yet anther dimension that has not been investigated is
the distinction between open world assumption (OWA) and
closed world assumption (CWA). Here, we have worked un-
der OWA. In the relational case, an anomaly is observed

when the query involves negation [5, 14]. As a remedy to
such unintuitive behaviour, the notion of solutions under
CWA was proposed in [20], further extended in [17, 21, 3].

This direction is hardly explored for XML: it is not even
clear how to define the notion of CWA in the XML context.
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f.s. SMnr(↓, =) PTIME PTIME [7] coNP coNP coNP [14, 22]

→-f.s. SMnr(↓,→, =) PTIME PTIME coNP coNP coNP

coNP coNP
→∗-f.s. SMnr(↓,→∗, =) PTIME PTIME coNP (even for queries coNP

in CTQ(↓,→∗
, =))

f.s. SMnr(↓, ↓∗,→,→∗, =, 6=) PTIME PTIME coNP coNP coNP

SM(↓, =) coNP [7] coNP coNP coNP coNP

Figure 4: The complexity of certainM(Q)
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