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ABSTRACT 1. INTRODUCTION

The availability of indoor positioning renders it possible to deploy ~ The availability of indoor positioning renders it possible to sup-
location-based services in indoor spaces. Many such services willport interesting queries over large populations of moving objects
benefit from the efficient support foe nearest neighborkfN) in indoor spaces such as shopping malls, airports, subway stations,
queries over large populations of indoor moving objects. However, and office buildings. For example, support fonearest neighbor
existing kNN techniques fall short in indoor spaces because these (kNN) queries over indoor moving objects enables the detection
differ from Euclidean and spatial network spaces and because ofof approaching potential threats at sensitive locations in a subway

the limited capabilities of indoor positioning technologies. system; and it is possible for shops in an airport to target nearby
To contend with indoor settings, we propose the new concept of individuals in promotions. - . . .
minimal indoor walking distance (MIWD) along with algorithms Two factors render existingNN techniques in spatial and spa-

and data structures for distance computing and storage; and wetiotemporal databases [10, 17, 18, 20-22] inapplicable to moving
differentiate the states of indoor moving objects based on a posi- Objects in indoor spaces. First, the existing Euclidean and network
tioning device deployment graph, utilize these states in effective distances do not fit indoor spaces that usually feature complex enti-
object indexing structures, and capture the uncertainty of object lo- ties and topologies. Refer to the example in Figure 1. If we ignore
cations. On these foundations, we study the probabilistic threshold the indoor topology, locatiop:’s 1st NN isp3 since the Euclidean

ENN (PTENN) query. Given a query locatiopand a probability distance between them is the smallest. Howepglis not reach-
thresholdT’, this query returns all subsets bfobjects that have  able fromp, along the straight line segment between thenp:$®
probability larger thar” of containing thekNN query result of;. true 1st NN isps. Also, the conventional notion of network dis-
We propose a combination of three techniques for processing thistance does not capture the (merely) constrained movements and the
query. The first uses the MIWD metric to prune objects that are obstructed distances indicated by complex indoor entities such as
too far away. The second uses fast probability estimates to prunerooms, doors, and hallways.
unqualified objects and candidate result subsets. The third uses ef-

ficient probability evaluation for computing the final result on the 1 0 50 33
remaining candidate subsets. An empirical study using both syn- ~di dyzal
thetic and real data shows that the techniques are efficient. De 4, dy ds P2 &
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Figure 1: Example of Indoor Space, Locations, and Distances

Second, indoor positioning technologies such as RFID and Blue-
Permission to make digital or hard copies of all or part of this work for tooth differ fundamentally from those typically assumed in outdoor
personal or classroom use is granted without fee provided that copies aresettings. Unlike GPS and cellular positioning technologies that are
not made or distributed for profit or commercial advantage and that copies capable of continually reporting the position of an object quite ac-
bear this notice and the full citation on the first page. To copy otherwise, to cyrately, indoor positioning technologies rely on proximity analy-
republish, to post on servers or to redistribute to lists, requires prior specific sis [9] and are unable to report accurate or continuous locations.

permission and/or a fee. . - - . .
EDBT 2010 March 22—26, 2010, Lausanne, Switzerland. In particular, an indoor object is detected only when it enters the

Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00 activation range of a positioning device, e.g., an RFID reader or a
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Bluetooth base station, which may occur infrequently. As aresult, 2. RELATED WORK

the |imitati0ns Of indOOf positioning create inherent Uncertainty in Symbohc Space mode's are often preferred over geometric mod_
the positioning data of indoor moving objects. . els in the modeling of indoor space because they are better able
To accommodate the indoor setting, we propose the notion of 5 capture the movement-related semantics associated with indoor
minimal indoor walking distance (MIWD) as the distance metric entities [2]. A graph-based model for indoor space is proposed
for indoor spaces. The MIWD between two indoor locations is the to support efficient indoor tracking [12], which serves as the basis
shortest distance a person has to walk to reach the one from thefor the object management in this paper. The state definition and
other. In Figure 1, the MIWD between andp: is the length of hash indexing method for indoor moving objects, proposed in [24]
the polyline fromp, to p» via the doordss. for continuous range monitoring over indoor moving objects, still
Notably, for an indoor space, we capture all doors in a graph in form the data management foundations for snapshit queries
which each vertex corresponds to a door and edges indicate WhiChqueries in this paper. Li and Lee [14] define the indoor nearest
pairs of doors can be reached from one another without using a third neighbors by the minimal number of doors to go through, whereas
door. This structure and additional mappings enable us to computeye employ a more refined general metric of minimum indoor walk-
all door-to-door MIWDs efficiently. We then propose an algorithm ing distance.
that computes the MIWD for two arbitrary indoor locations by ex- kNN queries constitute fundamental functionality in spatial and
ploiting the pre-computed door-to-door MIWDs. spatiotemporal databases. In Euclidean spaces, spatial data are
We also propose a complete set of techniques for indoor moving ysyally indexed by some spatial access method, typically an R-
object management. A deployment of positioning devices parti- yree [8]. The Euclidean distances between a query point and index
tions the indoor space into cells in the sense that all movementsentry MBRs are used to facilitate pruning in R-tree based query
between cells are detected by some positioning device. We accord-processing, which can be conducted in either a depth-first [17] or
ingly present a positioning device deployment graph in which each 3 pest-first [10] mannerkNN queries over free-moving objects
vertex corresponds to a cell and each edge corresponds to relevangome in several variants. In one variant, a query involves a moving
devices. We then assign the indoor moving objects to states accordyyery point and static data points indexed by an R-tree. Song and
ing to the device activation ranges and cells. The resulting states areroussopoulos [20] propose a sampling-based method to periodi-
utilized to design effective hash based indexing structures for in- cally reevaluatézNN queries via the R-tree. Tao et al. [22] propose
door objects. The above also enable us to formalize the uncertaintyan algorithm that searches the R-tree only once to AiteNs for
of object locations. all query positions along a line segment. Other variants support
_ On top of these foundations, we provide a_solutic_)n for pr_obabilis- both static and moving query points over moving objects. Typi-
tic thresholdiNN (PTENN) queries over moving objects. Givenan  caly, such proposals [18, 21] search a TPR-tree [19] that indexes

indoor moving object s&b, an indoor query locatiop, and aprob-  the moving objects. In the context of spatial networks, network
ability thresholdT’, a PTeNN query returns alk sized subsets of  djstance is the metric used [11]. Different techniques are proposed
O with probability larger tharf” of being thekNNs of g. for static query points [13, 16] and moving query points [4]. All

We propose a combination of three techniques for the efficient thesekNN proposals fall short in our setting, which requires spe-
processing of PANN queries. First, MIWDs between the query jfic modeling, indexing, and query processing.
locationg and indoor moving objects are used to prune objects too NN and kNN queries over uncertain data have also been stud-
far away fromg, which reduces the object sétto a smaller can-  jed. Cheng et al. [5] propose a query that returns all objects along
didate set. Second, efficient probability estimation is used to prune ith their non-zero probability of being the NN of a query point.
Unqualiﬁed Candidaté-subsets from the Candidate set. Thll’d, the An R-tree-like index is employed to process such queries_ Beskales
final query result is determined by efficient probability evaluation gt |, [3] propose the top-probable nearest neighbor (ToPNN)
for the remaining candidate objects andubsets. query that returns objects with the highest probability of being the
A comprehensive empirical study is conducted using both syn- NN of a query point. The probability in a TégPNN query differs
thetic and real data. The results show that the provided data man-from that in our PENN queries. Therefore, a TGgPNN query
agement foundation is effective and that the proposeeNRIquery  may returnk objects that do not form a qualifiesubset ag:
processing is efficient and scalable. . NNs. Cheng et al. propose a framework [6] for evaluating prob-
We summarize our contributions as follows. First, we propose apility thresholdkNN over uncertain moving objects in Euclidean
the minimum indoor walking distance for indoor spaces (Section  gpace, which consists of filtering, probabilistic candidate selection
3.1). Second, we formalize the uncertainty of indoor moving ob- 5nd verification.
ject locations (Section 4.2), based on a symbolic indoor position-  our PTENN query definition is similar to that in [6], as both re-
ing and hash based object indexing scheme. Third, we provide tyr thek-subsets with the highest probabilities of being M.
efficient means of computing RNN queries over indoor moving  The query processing framework in [6] is also adopted in this paper.
objects (Section 5). Fourth, we conduct a comprehensive empiri- However, this paper distinguishes itself with several unique charac-
cal study on our proposals using both synthetic and real data (Sec+eristics. First, it uses the novel minimum indoor walking distance
tion 6). To the best of our knowledge, this paper is the first work (WD) as the underlying distance metric instead of the Euclidean
to model indoor position uncertainty, and the first to study efficient gistance. Second, the indoor distance based pruning in this pa-
kNN queries in indoor space. _ ~_peris able to prune not only individual objects, but also groups of
The remainder of the paper is organized as follows. Section 2 gpjects based on the cells defined in the positioning device deploy-
briefly reviews related work. Section 3 presents the foundations. ment graph. Third, this paper presents a unique formalization of the
Section 4 elaborates on the management of indoor moving objectsyncertainty of indoor moving object locations. Last but not least,
and the deriving of their uncertain regions. Section 5 details the partially due to the previous point, the probability estimation and

techniques for efficient processing of probabilistic threshatéar-  evaluation for indoor objects in this paper are different from those
est neighbor queries over indoor moving objects. Section 6 con- for outdoor moving objects in [6].

ducts the empirical study. Finally, section 7 offers conclusions and
discusses directions for future work.
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3. INDOOR SPACE MODELING AND PO-

SITIONING

A simplified plan of the first floor of the computer science de-
partment at Aalborg university is shown in Figure 1. The numbers
are labels for rooms, hallways, and staircases. The building is di-
vided into three clusters, each with its own hallway and rooms, that

are connected by a common hallway, labeled 40. Objects can reacl‘t

other floors via a staircase, labeled 50, or leave the building through
the main entrance, labeled 0. For simplicity, we regard the hallways
and staircases as rooms. For example, we use “room 10" for “hall-

way 10.” Each room may have several doors, which are labeled as
d;. The connections between different clusters are also treated as g

virtual door, e.gd1, d2 andds.

Section 3.1 details our proposal of the minimal indoor walking
distance. Sections 3.2 and 3.3 offers background information on
indoor positioning, details of which can be found elsewhere [12].
Important notation is listed in Table 1.

[ Symbol | Meaning |
P, q Indoor positions
S rooms The set of rooms
Y doors The set of doors
dyrw (p, Q) Minimal indoor walking distance betweenand ¢
O The set of indoor moving objects
0,0; Indoor moving objects
0.Vimaz 0's maximum speed
UR(o,t) o’'s uncertain region at time
Cusc(o,dev,t) | o's maximum-speed constrained circle at titne

Table 1: Notation

3.1 Minimal Indoor Walking Distance
As pointed in Section 1, the predominant Euclidean and network

Next, consider the indoor posi-
tions p, and ps in Figure 1. The Ps
line segment fronp, to ps intersects Cq A
room 23, which means that no object 16
can move fronp, to ps according to 10 [14
a straight line segment. In such cases,
the obstructed distance accounts for c dig
he obstacles. In particular, the object 2
needs to go fronp, to the corner of P9

room 23 and then tps. Thus,d,(p4,
ps) equals|pac| + |eps|. It is note-
worthy thatd, (p, ¢) for p andq in the
ame room may not be the trdgsrw (p, ¢), as passing through
other room(s) may result in shorter distance(s). For example, in
Figure 2, the obstructed distandg(ps, o) = |psci| + |cicz| +

|02p9| is longer than the true M|W[D)8d16| + |d16d17| + |d17p9|.

Such a MIWD distance is obtained by regardim@nd g as loca-

tions in different rooms, as to be deliberated next.

If two indoor positions are in different rooms, the minimal in-
door walking distance should take into account the doors connect-
ing the rooms. In Figure 1, poipt and pointp; is in room 32 and
room 30, respectively. The only connection between the two rooms
is the doordsz. Thereforedarw (p1, p2) = |pidsz| + |d32p2].

In a more complicated situation, there may exist several paths
(that go through different rooms and doors) frpo g. The correct
duiw (p, q) is then the distance of the shortest such paths. For
example, poinps and pointp; are located in room 12 and room 10,
respectively, and more than one path between them exists. To reach
p7 from pg, one can go either directly through dadr., resulting
in a distancdpedi2| + |di2p7|, or through doord;s followed by
d13, resulting in a distanc@sdis| + |disdis| + |dispz|. In this
exampledurw (ps, p7) = [pediz| + [di2p7|.

In order to computeiw (p, q) for any location ofp and g,
we need the ability to retrieve the connecting doors between two
rooms. For that purpose, we define theors Graph in which

Figure 2: Example

distances do not work well in indoor spaces. We therefore propose each vertex corresponds to a specific door in the indoor space.

a new notion oMinimal Indoor Walking Distance (MIWDpr use
as the distance metric in indoor spaces. For two positipaad
g, this distance is given adurw (p, q). To facilitate computing
minimal indoor walking distances, we need two mappings.

The set,,,ms contains all the rooms in the floor plan; and the
setY 400rs CONtains all the doors in the indoor space. The mapping
Roomdetermines the room of an indoor position.

Rooms : positions — Yreoms

Each door connects two adjacent rooms in the sense that one can

move from one room to the other through the door. The mapping

Doorsmaps a room to the doors that connect the room to an adja-

cent room.
Doors : Yrooms — 9% doors

In Figure 1, Rooms(p1) returns room 32, andoors(room 12)
returns the sefdi2, dis}.

If p andq are in the same room, the intra-room obstructed dis-
tance [25] between the two, termed@sgp, q), is first calculated.
If no obstacles are present betweeandgq, d,(p, q) is equal to the
Euclidean distance between the two. In Figure 1, positignsnd
ps are both in room 30, and the line segment between them is fully
in room 30. Therefore, the obstructed distargép-, ps) between
them is exactlypaps|.

pip;| denotes the Euclidean distance between positignand
pj-
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Based on theDoors mapping, if two doors belong to the same
room, the two corresponding vertices are connected as an edge.
Formally, theDoors Graphis defined as a weighted gragh; =

(D, E, lyeight), Where:

(1) D = X4.0rs is the set of vertices.

(2) Eis the set of edges. An eddé;, d; } exists if a roomrm
exists iNXrooms such thaf{d;, d;} C Doors(rm).

(3) Lweignt: E — R assigns to an edge the obstructed distance
between the two doors represented by the edggyr:
({dh dj}) = do(dh dJ)

Due to complex indoor topology, a pair of doors together may
belong to different rooms. Consequently, to get from one door
to the other without leaving a single room, one may have differ-
ent rooms to choose from. In such cases, the shortest intra-room
distance is assigned to the corresponding edge as the weight. For
example, in Figure 2, the weight of ed§és, d17} is assigned as
the obstructed distance in room 14, i®&,(d1¢,d17) = |diedi7|;
but not the obstructed distance in room 10 whicld&die, di7) =
|disci| + |cica| + |cadar].

The doors graph corresponding to Figure 1 are shown in Fig-
ure 3. Based on this graph, all door-to-door shortest path distances
can be computed and recorded in a hash tad®:

D2D : {(dpde)} - R7 dpvdq S Edoor's-
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Consequently, for two positionsandg located in different rooms, Figure 4: Positioning Device Deployment

duiw (dp, dg) is the minimum sumid,(p, dp) + D2D(dp,dq) +
do(dq, q) whered,, ranges over all doors of roomandd, ranges
over all doors of roong.

To summarizedyrw (p, ¢) is computed by Algorithm 1.

ceives readings from all positioning devices and outputs records in
of form (deviceID, objectID, t, flag), whereflag = ENTER
indicates that the object is entering the device’s activation range,
andflag = LEAVE indicates the object is leaving the range. The
i deviceID can be a virtual device. Unless explicitly stated other-
% if R"’?ml;(f”):R’[’i”ms(‘I). then wise, this applies to alleviceIDs in the rest of the paper. Due to

» minDist —do(p, q); space limitations, we omit the details of the pre-processing module.

Algorithm 1 dw (Positionp, Positiong)

3: else

4:  minDist «+ +oco e . .

5: for each doot, in Doors(Rooms(p)) do 3.3 Positioning Device Deployment Graph

6:  for each dooly # dp in Doors(Rooms(q)) do In a deployment of a set of positioning devices, we differentiate
g' L —do(p, dp) + do(dg, g)*+ D2D(dp, dg) between two types of devices.

9 i lﬂi?ﬁfng }.hen Partitioning devicegartition the indoor space into cells in the

10: return minDist: sense that an object cannot move from one cell to another without
being observed. An example is a device deployed by the single door
- . . . . of a room. There are two options for partitioning devices. First
We note that, it is possible to adapt this notion of distance to . . . L
accommodate other sgmantics For egample a person might preferund!rected partitioning deviceUP) CarT“Ot detect movement di-
a longer indoor path that, however, passes as few doors as possiblerecmnS between cells. For examplepicez cannot tell whether

To support this, we only need to assign a uniform edge weight of 1 an observed object enters or leaves egll. Note thatdevice;,
pp ! y 9 9 9 device,r, anddevice,,; are also undirected. Secortirected par-
to each edge in the doors graph.

titioning devicegDP) consist of entry/exit pairs of sensor that en-
3.2 Symbolic Indoor Positioning ables the movement direction of an object to be inferred by the
L . reading sequence, e.ggvicei1 anddevice;q: in Figure 4.

We assume the use of presence, or proximity-based, sensing tech- ’ )

. . : Next, presence device@®R) simply sense the presences of ob-
nologies such as RFID or Bluetooth. We do not consider signal . . : . .

o . .~ jects in their range, but do not contribute to the space partitioning.
strength [1], as the activation ranges of RFID readers in our setting o . P
These are exemplified hievice1o in Figure 4.

are relatively small (tens of centimeters to a few meters [23]). . . . )
A o . - To facilitate query processing, three mappings are defined. A
These technologies employ proximity analysis [9], which deter- - ; 2 L .
Devicesmapping structure maintains the activation range, inter-

mines when an object is within the activation range of a device. secting room, and type of each positioning device:
Each device detects and reports the observed objects at a relatively ' )
high sampling rate. A readir(gievigeID, objectID, t) states that Devices : Saevices — {(AR, Srooms, TYPE)}.
objectobjectID is detected by devic@evicelD at timet.

A positioning device deployment is shown in Figure 1, where the Here,X e is the set of all devicesd R is the set of activation
numbered red circles indicate the locations and activation ranges ofranges (usually a range is a circular region),..s captures the set
devices. For positioning devices with overlapping ranges, we treat of rooms that intersect witdl R; and TYPE = {UP, DP, PR}
the intersection as the activation range of a new, virtual positioning is the set of device types.
device. For example, the intersectiondafvice; anddeviceys is In the PA2D mapping, each devicéev is mapped to the door
assigned to a virtual deviegevice;/;. An object seen bylevices, that is covered by its activation range:
but notdevice,, is then in the non-intersecting part of the range of
device; . Different from overlapping devices here, so-called paired PAZD : Bdevices — Bdoors-
devices (covered in Section 3.3) are used to detect movement di-gq, exampledeviceys in Figure 4 is mapped to doahs.

rection, e.g., the entry/exit a room. For each presence devidev, the distances from its location to

For each object, only its first and last appearances in a device's 5| the doors of the room in which it is deployed are recorded into
range are of interest. We thus introduce a pre-processing mod-ihe PR2D hash table:

ule in-between the sensing devices and our object management
module that continuously (according to the sampling dni re- PR2D : {(dev,d)} — R, dev € Zgevicess d € Zdoors-
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For example, presence devideviceio is deployed in room 10 in

Figure 4, and the distance from its locationdafviceio to doors

d1, di11, d12, d13, andd14 (see Figure 1) are recorded fiR2D.
Finally, to facilitate the tracking and querying of moving objects,

here to render the presentation self-contained. Section 4.2 derives
the uncertain region that an indoor moving object can belong to at
a given time.

a deployment graph is created based on the topological relationship4.1 ~ Management of Indoor Moving Objects

of the floor plan and the positioning device deployment. Formally,
a deployment graph is a labeled gra@h= (C, E, Ygevices, LE),
where:

(1) Cisthe vertex set. Each vertex corresponds to a cell.

(2) E is the edge set consisting of unordered pairs of vertices.
An edge indicates that its two cells are connected.

(3) ¢r: E — 2¥devices gssigns a set of positioning devices to an
edge. Specifically, a non-loop edge is labeled by the parti-
tioning device(s) partitioning the two cells, and a loop edge
captures the presence devices in a cell.

Using an existing deployment graph construction algorithm [12],
the deployment graph corresponding to Figure 4 is shown in Fig-
ure 5, where labeD; indicates a positioning deviegvice;.

AER.D2E®

D11, Dy D4 Ds,Ds5,Ds'5 D33
Dis

D12
@ D4,D1,Dq @ Ds,Ds',Ds'SO,Dsz
D13

D1, D14 D2.D2.D2.D22,Dz>  Da

Dol ®

D22 D23

D1s

Figure 5: Positioning Device Deployment Graph

Each cell created by a device deployment corresponds to one or

more rooms in the floor plan. For example, egll corresponds to
rooms 14 and 10 because an object can go from room 14 to room 1
without being observed by a positioning device. Similarly, egil
corresponds to rooms 32 and 30. The followiGglls mapping
maintains the corresponding relationship.

Cells : C' — 2%,

Also, a room or a long hallway may be divided into cells by a de-
ployment of partitioning devices. The resulting divisions can be re-
garded as virtual doors, which should then be reflected iDtws
graph and thé®2D mapping.

The rooms in a floor plan partition the floor plan in a way in-
dependent of a particular deployment of positioning devices. In
contrast, a cell partitioning is caused by a deployment of posi-
tioning devices. The extent of a cell is the union of the extents
of the rooms that make up the cell, excluding the ranges of in-
tersecting devices. In the running example, egfll is the union
of rooms 10 and 14 excluding the activation rangesiefice;,
device;, deviceys; devicejp, deviceyqs, devicesz, anddevice;s.

Thus an indoor space is partitioned into activation ranges and cells.

4. UNCERTAINTY OF INDOOR MOVING
OBJECTS

Given a deployment of indoor positioning devices, an indoor
space is partitioned into aamctive subspacand aninactive sub-
space The active subspace is the union of the activation ranges
of all positioning devices, and it usually consists of disconnected
sub-regions. The inactive subspace is the part of space that is not
covered by any positioning device.

If an object is in the active space, it must be in some device’s
activation range. With théevices mapping (see Section 3.3), we
are able to directly determine the object’'s whereabouts. If an object
is in the inactive space, additional processing and information is
needed to infer its possible locations.

Thus, an object isctive or inactive depending on its subspace
membership. Inactive objects may be inleterministic statand
a nondeterministic stateThe deterministic state indicates that an
object’s current location is guaranteed to be in only one specific cell
(as defined in Section 3.3), and the nondeterministic state indicates
that the object’s current location may be in one of several cells.

More specifically, if a moving object leaves (the activation range
of) a presence deviag it must be still in the celG.¢5" (d) before
it is again detected. Therefore, its state changes from active to
deterministic. In Figures 4 and 5, if an object leavesice;y, it
must entercyo. If an object leaves a directed partitioning device,
the cell the object is entering can be determined from the reading
sequence. Therefore, its state also changes from active to determin-
istic. In the running example, if an object is seeniatice;;, and
thendewvice;, it must entele: ;.

In contrast, if an object leaves a undirected partitioning device,
the object can be in any of the cell@i¢,,' (d). Therefore, its state
changes from active to nondeterministic. In the running example,
if a moving object leavedevice; 2, it can be in eithet;o or c12.

On the other hand, if a moving object enters (the activation range
of) any positioning device, its state changes from inactive (deter-

gMinistic or nondeterministic) to active.

The resulting state transition diagram is shown in Figure 6. Based
on it, we employ an indexing scheme that utilizes several hash ta-
bles. LetO be the set of all the moving objects in the indoor space.
For positioning devices, Bevice Hash Table (DHTi} created that
maps a given positioning device to the set of active objects in the
device’s activation rangeDHT : Ygevices — 20,

Leave PR or DP devices Leave UP devices

Enter any
positioning device

2 X

Deterministic ) Nondeterministic
Inactive

Figure 6: Moving Object State Transition Diagram

2G4, is the reverse function af.¢x introduced in Section 3.3.
For simplicity, we use.£5" (d) to denoteG.¢;' (D), whereD C
Sdevices- Specifically, D = {d} if d is a non-overlapping UP
device or the only PR in a cellD is the set of overlapping UP
devices ifd is one of them;D is the set of two DP devices if is

Section 4.1 categorizes indoor moving objects according to their gne of them: otherwiseD is the set of all PR devices in the same

positions, and it indexes them using hashing structures. A prelim-

inary version of this can be found elsewhere [24]. We include it
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cell asd. Note that for an arbitrary deviag the corresponding set
D is unique.



Two hash tables are maintained for the cellSCéll Determinis-
tic Hash Table (CDHT)naps a cell to the set of deterministic ob-
jectsinit: CDHT : C — 29 Next, aCell Nondeterministic Hash
Table (CNHT)maps a cell to the set of nondeterministic objects in
itt CNHT : C — 2°.

In addition, theObject Hash Table (OHTand Object Leave
Hash Table (OLHT)are maintained for all objectsOHT maps
an object identifier to the corresponding object state tuQIET :

O — {(STATE, t, IDSet)}. Here STATE denotes the object’s
current statet is the start timestamp of the statB)Set is a set

of cell identifiers or a set of device identifiers, indicating where the
object can currently be. If the object’s state is actilBSet is a
singleton set of the corresponding device identifier. If the state is
deterministic,IDSet is a singleton set of the corresponding cell
identifier. If the state is nondeterministitl)Set is a set of identi-
fiers of all the cells in which the object can currently be.

OLHT maps an object identifier to its ladtEAVE observa-
tion, which is designed to facilitate the uncertainty region determi-
nation (to be discussed in detail in Section 4.2)LHT : O —
{(devicelD, t)}.

all the corresponding cellSCNHT's (lines 18-21). If the object
leaves aDP or PR device, its state is set to deterministic, and the
object is added into the corresponding cell®HT (lines 22-25).

At last, the corresponding entry BLHT is updated (line 26).

4.2 Deriving Uncertain Regions for Indoor
Moving Objects

We capture théJncertainty Region (UR)f an indoor object at
the time a query is issued. As for outdoor moving objects [5],
the uncertainty region of an indoor objectt timet¢, denoted by
UR(o,t), is a region such that must be in this region at time

In general terms, the location of an objegtcan be modeled as
a random variable with a probability density functign (z,y, t)
that has non-zero values only éi's uncertainty regionUR(o;, t)
and for WhiCthR(oi,t) Joi (m,y, t)dzdy = 1.

Indoor objects have more constraints on their movements than
have free-moving outdoor objects. For example, if an object’s des-
tination is not in its current room, the object must pass through one
or more doors to reach its destination. Because they do not capture
the indoor topologies and the associated constraints and obstacles,

These hash tables need updating whenever there is a new OUtp”Encertainty models [15] for outdoor objects do not apply well in

from the pre-processing module. The update algorithm, described
in Algorithm 2, handles a record received from the pre-processing
module according to itglag value.

Algorithm 2 UpdateHashTableqPre-processing outpu$, De-
ploymentGraphG)

1: IDSetsSet «— 0;
2: if S.flag = ENTER then

3. sSet « OHT[S.objectID].IDSet;

4: if OHT[S.objectID].STATE = Active then

5: for the single element in sSet do

6: DeleteS.objectID from DHTc];

7. elseif OHT[S.objectID].ST AT E = Deterministic then
8: for the single element in sSet do

9: DeleteS.objectID from CDHT][c];

10: else

11: for each element in sSet do

12: DeleteS.objectID from CNHT|c];

13:  Add S.objectID to DHT[S.devicelD];

14:  OHTI[S.objectID] — (Active, S.t, {S.deviceID});
15: else

16: DeleteS.objectID from DHT[S.devicelD];

17:  sSet «— G.Zgl(S.deviceID);

18:  if Devices(S.devicelD).TYPE = UPthen

19: OHT[S.objectID] «— (Nondeterministic,S.t,sSet);
20: for each element in sSet do

21: Add S.objectID to CNHT[c];

22:  else

23: OHT[S.objectID] « (Deterministic,S.t,sSet);
24: for the single elementin sSet do

25: Add S.objectID to CDHTc];

26:  OLHTI[S.objectID] + (S.devicelD,S.t);

For anENTER record, if the object’s previous state is active, it
is deleted from the corresponding devic®#/ T (lines 4-6). If its
previous state is deterministic, it is deleted from the corresponding
cel’'s CDHT (lines 7-9). Otherwise, its previous state is nonde-
terministic, and it is deleted from all corresponding cell8VHT's
(lines 10-12). After the deletion, the object is added intoHET

our indoor setting.

We thus proceed to present an uncertainty model designed for
indoor moving objects. In the following discussion, we assume that
an object has the same probability to be located anywhere inside its
uncertainty region. That is, the probability is distributed uniformly
in the object’s uncertainty region:

. 1
"~ Area(UR(0;,t))

According to the analysis on the states of indoor moving objects
in Section 4.1, the uncertainty regions of indoor moving objects
can be characterized as follows. The uncertainty region of an active
object is the activation range of the corresponding device, and the
uncertainty region of an inactive object is the cell or cells that the
object can belong to.

If the object’'s maximum spe€l,,... is given, its uncertainty re-
gion can be captured at a finer granularity. The uncertainty region
of a deterministic object is refined as the intersection between the
object’s cell and itsnaximum-speed constrained circkor a non-
deterministic object, the region is the union of the intersection be-
tween each cell and the circle.

Let the lastLEAVE observation of objeat be from devicelev
at timet¢ and let the time duration from to the current time be
At = tnhow—t. AsSsuming that the objeetmoves in a straight line,
the longest possible distanoecan move away from the boundary
of dev’s activation range i®.Viqz - At. Formally, the maximum-
speed constrained circlésc (o, dev, t) of o is defined as the cir-
cle centered afev’s deployment location and with radivsV,,,q.. -

At plus the radius oflev’s activation range. We also exclude the
activation range oflev from the circle.

Consider Figure 7 and assume that objeleift deviceis at time
t. Its maximum-speed constrained cirdgssc (o, devicess, t) is
then indicated byR; in the figure. Sincéevicess is a presence de-
vice, after leavinglevice;s the inactive object must be in the cell
c11 (according toG.¢;" (deviceis)). Due to the two constraints,
objecto’s uncertainty region is the intersection of cell and cir-

foi(w7yat) ) (mvy) € UR(Oi7t)‘

of the current device, and its state is updated accordingly (lines 13—cle Ry, i.e., the shaded region in the top-left part of Figure 7.

14).

ForaL EAVE record, the object is deleted from the correspond-
ing device'sDHT (lines 15-16). The possible cells are determined
by the functionG.£3" (lines 17). If the object leaves aliP de-

If the cell where the deterministic object resides has more than
one room, e.g., the cell;p contains room 10 and room 14, the
determination of uncertainty region is more complicated. Suppose
objecto left devices at timestamp. According toG.£3 " (deviceio),

vice, its state is set to nondeterministic, and the object is added intoo should be in celk;o after leavingdeviceio. From theDevices
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Figure 7: Uncertainty Model for Inactive Objects

and PR2D mappings, we can figure out that tleviceo resides

in room 10, and the distance frodevice1o to the doord 4 is (. If

the maximum speed constraint does not guaranteeptbab have
gone through the doati4, i.€. 0.Vinaz - (thow — t) < I, the ob-
ject o must be in the room 10. Thus, the uncertainty region is the
intersection between room 10 attlssc (o, deviceio, t), which is
indicated byR» to the left of Figure 7.

On the other hand, referring to the right part of Figure 7, if
0.Vimaz * (tnow — t) > 1, the objecto may have entered room 14.
Its uncertainty region therefore contains two parts: the intersection
between room 10 an@sc (o, deviceio, t) (indicated byRs); the
intersection between room 14 and the circle with ddor as the
center andRy = 0.Vimaz - (tnow — t — 1/0.Vimae) @s the radius.

Algorithm 3 UR (Objecto, DeploymentGrapldx)

1: RegionUR « ;

2: Doord « 0;

3: Integerradius « 0;

4: Devicedev«— OLHT|[o].devicelD,;

5: TimeStampt« OLHT[o].t;

6: if OHT[o0]. STATE=Active then

7: Regionre« Devices(OHT[o0].IDSet). AR,

8. UR <« renCuygc(o,dev,t);

9: else

10:  for each celein G.¢5" (dev) do

11: for each roomrm in Cells(c) do

12: if m in Devices(dev).RoomSet then

13: UR «— URU (rm N Cpysc (o, dev, t));

14: else

15: Roomrm2«— Cells(c)NDevices(dev).RoomSet;
16: d < Doors(rm2) N Doors(rm);

17: if Devices(dev). TYPE = PR then

18: radius < 0.Vmag-(tnow — t) — PR2D(dev, d);
19: else

20: Doord’'«+ PA2D(dev);

21: radius «— 0.Vmaz-(tnow — t) — D2D(d, d’);
22: UR < URU (rm N Circle(d, radius));

23: return UR;

threshold valuel” € (0,1], a PTENN query issued at timewith
query locationg returns aresult seR = {A | AC OA|A| = kA
prob(A) > T}, whereprob(A) is the probability thatd contains
the k nearest neighbors of the query locatigmt timet.

The uncertainty region of an active object can be also refined as The definition ofprob(A) will be formalized in Section 5.3.
the intersection of the activation range of the corresponding device Consider the four moving objects in Figure 8. Objegtis be-

and the object’'s maximum-speed constrained circle. Using the run-

ning example, suppose objecteft deviceio at timet and thab is

then observed byevicei2. The uncertainty region afis the inter-
section of the activation range @tvice12 andCusc (o, deviceio,

t), which is shown within the activation range @¢vice12 in Fig-

ure 7.

Algorithm 3 computes the uncertainty region of an objectt
the current time,,..,. Note thato’s last LEAVE observation can
be obtained from hash tabi@L HT', from which the corresponding
devicedev and timestamp are also found (lines 4-5). If objecis
an active object, the activation rangeof the corresponding device
is obtained from théevices mapping. Thew’s uncertainty region
is the intersection ofe and the maximum-speed constrained circle
Cusc (o, dev, t) (lines 6-8).

Otherwise, the possible cells in which the object may reside are
determined from the deployment graph (line 10). For each possi-
ble cell, all its corresponding rooms are determined from@h&s
mapping (line 11). For each possible roem, if the devicedev
is deployed in it,0’s uncertainty region is the intersection of the
room andCsc (o, dev, t) (lines 12-13). If not, the dood be-
tween roomrm and the room in which the deviev is deployed
is determined. The distangefrom the devicedev to the doord
is computed fromPR2D or D2D according to devicéeuv's type.
The uncertainty region is the intersection of roem and the circle
with d as center andadius as radius (lines 14-22).

5. PT kNN QUERY PROCESSING

5.1 Definition and Overview
The query under consideration is defined as follows.

DEFINITION 1. (Indoor Probabilistic Threshold kNN Query)
Given a set of indoor moving objeafs ={o01, 02, ...,0,} and a
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ing observed bydevicez1, and its uncertainty region is the acti-
vation range of that device. Objeat, o3, and o4 recently left
deviceso, deviceyr, anddevicess, respectively. According to the
discussion in Section 4.2, their uncertainty regions are captured by
three maximum-speed constrained circl€sisc (o2, deviceso, t),
Cusc (03,devicey , t), andCuysc (04, devicess, t), shown as solid
circles excluding any activation ranges in Figure 8.

Assuming &NN query issued at timewith locationg,

6 2-subsets can be in the result set. When the number of moving
objects in the indoor space increases, the numbkrsefbsets 4 in
Definition 1) in the result s&R will increase exponentially. Specif-

n
k

objects. Accordingly, computing the probabilityob(A) for each
k-subsetA will incur considerable computation cost and thus result
in very slow query response.

We propose three techniques that speed upNN query pro-
cessing. First, minimum indoor walking distances between the
query location and the (uncertainty regions of) objects are used to
prune the objects too far away to be in any possibleubsetA
(Section 5.2), which usually results in a much reduced object subset
O’ C 0. Second, for alk-subsets of)’, cost-efficient probability
estimates are used to prune theubsets whose probabilities defi-
nitely are lower than the specified thresh@ldSection 5.3). Third,
for each remaining:-subsetA, prob(A) is evaluated efficiently,
and A is added tdR only if prob(A) > T (Section 5.4).

5.2 Indoor Distance Based Pruning

The exact MIWD from a query locatioq to an objecto;, i.e.,
durw (g, 0i), is not known because the location®fis described
by an uncertainty regioR (o, t) at timet. Instead, we define the

ically, there ar possiblek-subsets for a PANN query ovem
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Figure 8: Indoor KNN Query Processing

minimum and maximum MIWD betweeqando;. Lets; (I;) be
the minimum (maximum) MIWD frony to the uncertainty region
of 0;.

I =

min
pEUR(0;,t)

s = max

d .
pe U ) MIW(‘LP)

durw (g, p),
If the uncertainty regionUR(o;, t) is in the same room as the
query locationg, s; andl; can be obtained based on the obstructed
distance. IfUR(os,t) is a circle,s; andl; can be determined by
using the line passing the circle’s center and the query location

(or the obstacle nearest to the center). For example, the minimum 5:

(maximum) distance from to o is shown as; (I2) in Figure 8. If

UR(os,t) is a polygon, all its sides and vertices need to be checked. 7:

As a special case, if the query locatigris inside the uncertainty
region,s; is 0.

If the uncertainty region/R (o, t) is not in the same room as
query locatiory, the doors connecting the different rooms need to
be considered when computing the MIWD. For objegtin Fig-
ure 8, doorsd, andds are considered. The and!; for the four
objects are shown in Figure 8.

Let f be thek’th minimal one of all objects;s. If s; of object
o0; is greater tharf, objecto; has no chance to be in akysubset
of the result seR becausé: objects exist that are definitely closer
to g thano;. This f value is called thé&-bound[6].

Using thek-bound some objects can be pruned early. Consider
the 2NN query in Figure 8. The order among &l isly < l2 <
I3 < la,sof = ls. Asss > f, objectos can be pruned safely.

This pruning yields a potentially much reduced candidate object set 25:

O’ (C 0) to be considered for the given RRIN query.

Two important observations can be used to conduct distance basegl7§

pruning even more efficiently. First, theboundcan be calculated

and updated dynamically during the distance based pruning. The29f

initial k-bound f can be obtained as soon A®bjects have been
seen fromO. When new objects fron® are being processed,
helps prune unqualified objects, and whenever possjbis, up-
dated to a smaller value for better subsequent pruning.

This also allows us to prune objects together, based on the cells
that result from the deployment of indoor positioning devices. The
basic idea is this: Given a celbll, if minyeceu{dmrw(q,p)} is
greater than the currektbound f, all the objects currently in the
cell can be safely pruned. In Figure 8, after processing objgcts
andoo, the currenk-boundf is I, andminpcc,o {dmrw (g, p)} =
durw (g, ds) as doords is the only door t@so. Sincedrw (g, d3)
> f, for any objeci; in c3o we havedyrw (g, 0;) > f. Any such
objecto; can be safely pruned without further processing. In this
example, there is no need to compute the uncertainty region of
(or any other object ims0).

The distance-based pruning is described in Algorithm 4. First,
the candidate object s€2’ and thek-bound f are initialized as
empty and infinity, respectively (lines 1-2). A cell setds records
the cells we have examined, which is initialized as empty (line 3).
Also, a min-heapH ((d, v)) (line 4) gives priority to doors closer
to the query locatiory, thus controlling the access order of rele-
vant doors during the distance-based pruning. N@tenqueues
the (d, darrw (d, q)) pair for each involved doai (line 4 in Algo-
rithm 5).

If the query locationy is in a devicedev’s activation range, the
active objects indev are added to the candidate €t, and the
corresponding cells obtained throu@h@l(dev) are added to the
cell setseeds (lines 5-7). For each cetl obtained, both determin-
istic and nondeterministic objectsdérare added t@’, and function
EnheapDoors (see Algorithm 5) is called to push all the doors in
c onto the min-heap (lines 7-8).

Algorithm 4 DistancePruning(Positiong, int k)

1: ObjectSetO’«—0;

2: Double f«—+o0;

3: CellSetseeds—;

4: Initialize a min-heapH ((d, v));

if g is in the activation range of a devidev then
6: O’ — DHT[dev]; seeds — G.L5;" (dev);
for each celk in seeds do

8: O’ +— O'UCDHT[c]JUCNHT|c]; EnheapDoors(H, c);
9: else

10: Roomr « Rooms(q);

11: Cellc— Cells—1(r);

12: O’ — CDHT[c] UCNHTIc];

13: Addcinto seeds; EnheapDoors(H, c);
14:if |O’| > k then

15.  f < Bound(O’);

16: while H is not emptydo

17: e« deheap(H);

18: if ev > fthen

19: break;
20: Sete.d as visited,;
21:  dev—PA2D (e.d); O' — O’ U DHT[dev];

22:  for each celkin G.¢3,!
23: if ¢ € seeds then
24: O’ — O'UCDHT[¢] UCNHTI[¢];

for eachdev in GLg({c, c}) do

if (PR2D (dev, d)+e.v)< fthen
O’ «— O'UDHT|[dev];

Add cinto seeds; EnheapDoors(H, c);

if |O’| > k then
f «— Bound(O');

(dev) do

28:

Otherwise,q is not in any activation range, and it must be in
some celle. Both the deterministic and nondeterministic objects

Second, we do not have to determine the exact uncertainty regionin ¢ are added to the candidate €2t. The cellc is added to

and calculate the exast (i;) for each object during distance based

pruning. By taking advantage of the indoor space distance defini-

the cell setseeds, and all its doors are pushed onid by call-
ing EnheapDoors (lines 10-13). Note tha€ells~! (line 11) is

tion and object positioning (detailed in Section 3), we can reduce the reverse function af'ells, defined in Section 3.3, which maps a

the computation cost.
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roomr to the cell covering-.



If the current candidate sé?’ has at leask objects, function
Bound (see Algorithm 6) is called (lines 14-15). It determines
the currentk-bound f using all candidate objects, and it prunes
unqualified ones according o

In the sequel, we need to expand to further away cells or activa-

bors ofq satisfies:

tion ranges via doors, as an object must go through a door to reach! NiS IS because only those objects within théound f can be

another cell. Following the philosophy of Dijkstra’s algorithm [7],
the expansion is controlled by the min-heHpthat stores the dis-
tances from query locatiopto all relevant doors.

At the beginning of each expansion step, the first eatfsom
H is deheaped (line 17). The expansion stops if the current door
e.d being processed is too far away (lines 18-19); otherwise,
is set as visited to avoid duplicate visits (line 20). If the deat
is covered by a devicédev’s activation range, its active objects are
added taD’ (line 21).

For each celt of the corresponding cells i@.£5" (dev), if cis
not in seeds, both the deterministic and nondeterministic objects
in c are added t®’ (lines 22—-24). For each presence device in cell
¢, if its indoor distance tg is smaller thanf, all active objects in
c are also added tO®’ (lines 25-27). After celt is processed, it
is added toseeds, and its doors are enheaped by calling function
EnheapDoors (line 28). At the end of each expansion step, if the
current candidate s&€’ has at leask objects, functionBound is
called again to dynamically updafeand reduce the candidate set
O’ (lines 29-30).

Algorithm 5 EnheapDoors(HeapH, Cell ¢)
1: for each roomr in Cells(c) do

2:  for each doow in Doors(r) do
3: if d is not visitedthen
4: enqueueld, (d, durw (d; 9)));

Algorithm 6 Bound (ObjectSetD’)

1: f — thek’'th smallest elementin | o; € O'};
2: for each objecb; in O’ do

3: if s; < fthen
4: Deleteo; from O’;
5: return f;

among thek nearest neighbors qf
If Py, (f) is less than the thresholf, any k-subsetA that con-
tainso; satisfies:

prob(A) < [] Po,(f) < Po(f) < T.

0;€EA

This means thatl cannot satisfy the probability threshdld There-
fore, if P,,(f) < T, o; can be safely pruned from the candidate
object selD’.

All those locations with MIWD to query location no greater
thanr are constrained by hounding regionBR,(r), which is
usually composed of several intersections of rooms and circular re-
gions. FormallyBR,(r) is defined aRooms(q)NClircle(q,r) U
Urm, er,. Tm; N Circle(q,r;), whereR,. is a set of rooms. Any
roomrm; in R, satisfies the condition that the MIWD from its
door to the query location is smaller than, and the correspond-
ing r; equalsr-l;. For example, the bounding regid®R,(f) in
Figure 8 is indicated by two dashed circular regiofisR, (f)
(roomaoo NClircle(q, f)) U (rooma1 NClircle(da1, f —|gd21])).

Based on the bounding regid®R,(r), the P,, (r) can be eval-
uated using the following equation:

_ Area(UR(0i,t) N BRy(T))

Po,(r) Area(UR(0;,1))

@)

In Figure 8,P,, (f) = 0.5. If the specified threshol@ > 0.5, o3
can be safely eliminated frod’.

The pseudo code of the probability threshold based pruning is
given in Algorithm 7. For each objeet; in O/, if its probability
P,,(f) is less than the thresholf, the object is removed fror®’
(lines 1-3). Next, we generate all possilileubsets step by step
(lines 4-15). Each i-subset is the union of ani— 1)-subsetB
in R and a singleton seic}. In particular,{c} is notinB butis in
another { — 1)-subset inR.. All i-subsets inSubSet are obtained
from all such combinations a8 and{c} based orR. Thei-subset

We regard heap insertions and deletions as characteristic operais included in the temporary result Sgtonly if the product of all

tions. The worst-case time complexity of Algorithm 2igX goors |
because each door is inserted once and deleted once.

5.3 Probability Threshold Based Pruning

After the distance based pruning, a possibly smaller candidate
object setD’ of k& or more objects is obtained. There can still be

/
('i |> possiblek-subsets in the result sBt. We proceed to prune

both unqualified objects i®’ and unqualifieds-subsets iR, by
making use of fast probability estimates and the given probability
thresholdl". We assume that the distributions of all indoor moving

its members’ probabilities is greater than the thresho(tines 16—
18). This way, some unqualifiedsubsets are eliminated without
probability estimates. For example, if a 2-sub$et, o2} cannot
satisfy the probability threshold, arysubset (where > 2) which
contains{o1, o2} cannot satisfy the probability threshold either.

We regard the calculation aP,,(f) as the characteristic op-
eration. If the calculated probabilities cannot be kept in mem-
ory and every probability has to be recalculated on-the-fly each
time it is needed, the worst-case time complexity of Algorithm 7
sl + 2, (191)

i = O(k - 21°'). With enough memory

objects are independent on each other. While, objects may movefor holding at leastO’| double values, the worst-case time com-
inter-dependently in some scenarios. However, determining suchplexity is |O’| because every calculated probability can be reused.
dependencies is a hard task that may involve large amounts of his-

torical data. How to exploit dependencies for better performance 5.4  Probability Evaluation

is beyond the scope of this paper and it is an interesting future re-  agter the probability threshold based pruning, edebubsetA
search direction. in R may have a probabilitprob(A) greater than the threshold

Given an objecto;, let P, (r) be the cumulative distribution 7 \we next present a technique to evaluate those probabilities effi-
function (cdf) thaio;’s MIWD to the query locatiory is r. In other ciently.

words, %, (r) = Pr(dmiw(g,0:) < r). Let A be ak-subset of Formally, the probabilityrob(A) thatk-subsetd (A € R) con-
O’. The probabilityprob(A) that A contains thek nearest neigh- tains thek nearest neighbors of the query locatipis defined as
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Algorithm 7 ProbTPruning (ObjectSetD’, doubleT)
1: for each objecv; € O’ do

2:  if Py, (f) < T then
3: Removeo; from O’;
4: ResultSeR — 0;
5: for each objecb; € O’ do
6. R—RuU{{oi}};
7: for i — 2tok do
8:  SubSet — ;
9.  ObjectSetRR — 0;
10:  for each(i — 1)-subsetB in R do
11: RR «+— RRU B;
12: for each(i — 1)-subsetB in R do
13: for each object in RR \ B do
14: Add {B U c} into SubSet;
15 R~ 0;
16: for eachi-subsetA in SubSet do
17: if [T, ca Po, (f) > T then
18: R+~ RU{A}
19: return R;
follows:
400
o= Y [t I Pt T[0 =Py )ar
0

0.€A 0;€A\ {0} 0;€0"\ A

Here,p,, (1) is the pdf that the distance from to query poiny is

7 11,, ¢ a\ {0} Fo: (r) indicates the probability that all objects.h
excludingo. are withinr of g; Hojeo,\A(l—Poj (r)) indicates the
probability that all objects not ial are further away frong thanr.
For each object. € A, the integral calculates the probability that
o, is thek-th nearest neighbor gfand that all the remaining ones
in A are the first to thék — 1)-th nearest neighbors. As a result,
the summation over all objects i is the desired probability.

To evaluate the probabilities efficiently, we use a partition based
approximate evaluation method. Let an arsayecord all the min-
imum distances; in O’ and the maximum distancésthat satisfy
I;<f. This array should havg (9=|O’| + k) elements. We sow!
in ascending order.

Using the arrays!, the bounding regioBR,(f) can be parti-
tioned intog — 1 partitions. In particular, partitiol® A, is the
contour betweeB R, (sl[z — 1]) and BR,(sl[z]). For Figure 8,
we haveO’ = {01, 02, 04} after distance based pruning and prob-
ability threshold based pruning, and therefgre 342 = 5. Four
partitions are created? A1[BRy(s1), BRq4(s2)], PA2[BRy(s2),
BR4(l1)], PA3[BR4(l1), BRq(s3)] and PA4[BRy(s3), BRq
(I2)].

In the evaluation, we use the following formula to compute the
approximate probability for a givelrsubsetA:

prob(A) =~ i:poz(PAw) Il o5 (P, (PA)+

o,€Ax=1 o;€A\{o=}

Po(PAy—1)) [ 05:(1=Po,(PA.)+1—P,;(PAy—1))dr
0;€0/\A

Here,p,, (P A.) is the pdf ofo. in this partition;P,, (P A.)
(Po,(PAz—-1)) is the upper (lower) bound cdf of the object
whose distance to the query location is in partitiBal,,. Aver-
age values are used to calculate approximations. Similarly,
(Po;(PAz) (1 — P,;(PA;_1)) is the upper (lower) bound cdf of
the objecto; that is farther than partitio® A...

For an object inD’, its cdf value in each partition can be com-

puted once and recorded in a two-dimensional array of|€zpx

344

(¢g—1). The cdf value of objeat; in partition P A, i.e.,P,,(PAz),
is evaluated a#,, (s![z]) using Equation 1.

Po,(PAz) = Po, (sl[z])

If sifx] < s;, Po,(PAz) equals 0 because there is no chance for
o; appearing in the partition. On the other handsifz]> 1,
P,,(PA;) equals 1 because the objegtmust appear nearer than
the partition. The pdf value of objeet in partition PA, can be
evaluated as the difference between the cdf value in the current par-
tition and the cdf in the previous patrtition.

Do, (PAw)

For the special case whete= 1, p,, (PA1)=P,,(PA;). The cdfs
of the running example are shown in Figure 9.

r>1

Poi (PAw) - Poi (PAw,1)7

sl[0]=s4 sl[1]=s, sli2]=l; __sl[3]=ss  sl[4]=l,
4 Y Y Y N\

o 0.2 1 1 1

0z 0 0.3 0.7 1

03 0 0 0 0.5

- AN AN
PA, PA; PA;

AN
PA4

J

Figure 9: Partition Based CDF Values

6. EMPIRICAL STUDY

6.1 Experimental Settings

Synthetic Data SetWe generate moving objects using a 3-floor
building plan with 30 rooms and 3 staircases on each floor. All
rooms and staircases are connected by doors to a hallway in a star-
like manner. An RFID reader is deployed by the door of each
room. In addition, readers are deployed along the hallways and
in the staircases. A total of 143 RFID readers are deployed: the
readers deployed by doors are undirected partitioning devices; and
those deployed along the hallways and in the staircases are pres-
ence devices.

Three rules are used to generate movements: 1) an object in a
room can move to the hallway or move inside the room; 2) an object
in a staircase can move to the hallway or move in the staircase; 3)
an object in the hallway can move in the hallway, move to one of
the staircases, or move to one of the rooms. At each step, an object
randomly chooses a room as the destination. If the destination room
chosen is on the same floor as the object, it will move according
to MIWD. Otherwise, it will use the nearest staircase. When the
object enters the destination room, it will move inside the room for
a random time duration and then start a new movement.

Real Data SetOver 1,000,000 tracking records are collected
each day from 25 Bluetooth hotspots in Copenhagen Airport. We
extract the tracking data on the most active day between April 2008
and October 2008. As a result, over 1.1M tracking observations are
recorded in about 110K sampling units for a total of 9,638 moving
objects, i.e., individuals with Bluetooth enabled devices.

We run all experiments on a Windows XP Pro enabled PC with
a 2.66GHz Core2 Duo CPU and 3.25GB main memory.



6.2 Costs of Indoor Moving Object Indexing 100 orior ——

We first evaluate the performance of the proposed hashed based _ & ‘
indexing structures with respect to the synthetic data. 60
We implement the object sets in these hash tables as bitmaps,
which require less memory space and are update-efficient. We use 2
a 4-byteint value for each table key (object, device, cell identifier). L T
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A 6,250 byte bitmap is enough for representing the largest 50K 53 4 5 6 7 8 9
objects in our setting. As a result, each entry&/ ', CDHT, k
CNHT is 6,254 bytes. Therefore, 143 RFID readers and 97 cells (a) MIWD Based Pruning (b)Y Based Object Pruning
need (143+92)-6254=2.1M bytes memory. The device identifier 0 10° Zfer Bromiig —5= pu— 2 400 b Evaiation ==
and timestamps iOLHT are represented ast values. Thus, each G| BeforePrning e ! g s0p| MW Pronng —
entry in OLHT needs 12 bytes, and 50K objects need 8@K= 2 E
600K bytes of memory, a modest memory consumption. 2 3 200
At each sampling unit, the costs of updating these memory resi- % 2
dent hash tables are insignificant, as reported in Figure 10. As the 3 3
number of objects increases, the update cost increases slowly ac- 2 S
cording to Figure 10(a). Note the cost for 50K objects is still very Tes ﬁ 6789 1es 5k 6789

low. Figure 10(b) showg th.qt varying the activation range does not  (¢) 7 Basedk-Subset Pruning (d) Overall Response Time
affect the update cost significantly.

Figure 11: Pruning Effectiveness and Query Efficiency on Syn-
200

Hash Indexes Update Cost —— _ 100 Hash Indexes Update Cost —— thetic Data
g 150 % 75
§ 100 g 50 / the probability evaluation is much higher than the other two, which
s s is due to: (1) Our partition based estimation (can be regarded as
é’ 50 g * coarse-grained numerical integration) is more time consuming than
a “Prob Pruning” and “MIWD Pruning”. (2) For largg, fewer can-
5K10K 20K 30K 40K 50K 100 150 200 250 i i i i
Number of Moving Objects Radius of Activation Range (cm) didatek-subsets are filtered outin pruning step 2, so nieseibsets
(a) Effect of Object Numbers (b) Effect of Activation Range need prob evaluation. . .
We also test our PANN query processing techniques on the real
Figure 10: Update Efficiency of Indexes data. We choose 5 Bluetooth hotspot locations as query locations

and issugtNN query with differentk value at 100 separate times-
tamps. The results on the effectiveness of the probability threshold
6.3 Pruning Effectiveness and Query Efficiency based pruning are shown in Figure 12(a). Largemlues render
Using the synthetic data set, we fix the device activation range t_he pruning more (_effec_:tive. The results on overall query response
at 100 cm, and 20K objects and threshdld= 0.9 are used unless  Ume are reported in Figure 12(b). Largewalues result in more
stated otherwise. We choose 20 random indoor positioris\aé k-subsets, which call for more probability evaluations.
query locations. We vark from 1 to 9. For each query location, 50

kNN queries are issued with different timestamps. We report the o [ jAferruning —%— :04
average results over all these queries. 2 10° <]
To measure the effectiveness of the MIWD-based pruning, we £ 4¢ gwa
record the ratio of object reduction, i.¢Q’|/|O|. The results are ;103 g
reported in Figure 11(a). FJO| = 100, only about 20% of the e , §102
objects are left in the candidate set after pruning. For larger g0 F
|O|s, the pruning ratio is still as high as around 50%. This indicates = 10", s 3 0 5 10, s 3 ) 5
that the distance based pruning is very effective. For laQé¢s, k k
the ratio stays constant asvaries because indoor objects overlap (a) T basedk-subset Pruning (b) Overall Response Time
much more than do outdoor objects. For example, after some time,
the uncertain regions of all objects that l@éwicezo are in cellcag Figure 12: Results on Real Data
(in Figure 8).

We measure the effectiveness of probability threshold based prun- . -
ing using two metrics. First, we measue?| as the pruningisable 0.4 Query Processing Scalability
to eliminate unqualified objects (lines 1-3 in Algorithm 7). Ac- In this part, we evaluate the scalability of query processing us-
cording to the results shown in Figure 11(b), for higher threshold ing the synthetic data set. First, we fix the activation range radius
T, only very few objects remain i®’ after the pruning. Second, at 100 cm, and then vary the object numbers from 10K to 50K.
we compare the number of qualifigéesubsets of)’ before and af- As shown in Figure 13(a), the total query response time increases
ter the pruning. According to the results reported in Figure 11(c), a steadily fork = 3. The increase fok = 9 at 30K objects is at-
significant portion ofk-subsets is eliminated by the pruning. These tributed to the high probability evaluation cost (See Figure 11(d)).
results indicate that probability threshold based pruning is very ef-  Second, we fix the number of objects at 10K and vary the radius
fective. of the activation range from 100 cm to 250 cm. The resulting total

The results on overall query response time are reported in Fig- query response times are reported in Figure 13(b). Larger ranges
ure 11(d). Probability threshold based pruning is efficient because have two effects: larger imprecise uncertain regions for the moving
fast estimates are calculated. For largealues, the time spenton  objects and more active objects being detected by positioning de-
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[12] C. S. Jensen, H. Lu, and B. Yang. Graph model based indoor

7. CONCLUSION AND FUTURE WORK

Given an indoor location and a probability threshold, a prob-
abilistic thresholdkNN (PTENN) query returns all subsets &f
indoor moving objects that have probability larger thamf con-
taining thekNN query result ofy. The paper proposes a complete
set of techniques for computing RMN queries. We propose the

tracking. InProc. MDM, pp. 122-131, 2009.
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empirical study using both synthetic and real data. The results show

that the proposed techniques are effective, efficient, and scalable. [18]

Some interesting research directions exist. As discussed in Sec-
tion 5.3, analyzing historical trajectory data may discover associa-

tions among object movements, which can be used to design more[19]

efficient group pruning in processing a PNN query. Regarding
the uncertainty model of indoor moving objects, it is also interest-

ing to conduct probabilistic analysis on other kinds of object distri- [20]

butions, e.g., Gaussian distribution.
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