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ABSTRACT
The availability of indoor positioning renders it possible to deploy
location-based services in indoor spaces. Many such services will
benefit from the efficient support fork nearest neighbor (kNN)
queries over large populations of indoor moving objects. However,
existingkNN techniques fall short in indoor spaces because these
differ from Euclidean and spatial network spaces and because of
the limited capabilities of indoor positioning technologies.

To contend with indoor settings, we propose the new concept of
minimal indoor walking distance (MIWD) along with algorithms
and data structures for distance computing and storage; and we
differentiate the states of indoor moving objects based on a posi-
tioning device deployment graph, utilize these states in effective
object indexing structures, and capture the uncertainty of object lo-
cations. On these foundations, we study the probabilistic threshold
kNN (PTkNN) query. Given a query locationq and a probability
thresholdT , this query returns all subsets ofk objects that have
probability larger thanT of containing thekNN query result ofq.
We propose a combination of three techniques for processing this
query. The first uses the MIWD metric to prune objects that are
too far away. The second uses fast probability estimates to prune
unqualified objects and candidate result subsets. The third uses ef-
ficient probability evaluation for computing the final result on the
remaining candidate subsets. An empirical study using both syn-
thetic and real data shows that the techniques are efficient.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design—access meth-
ods; H.2.8 [Database Management]: Database Applications—
spatial databases and GIS

General Terms
Algorithms, Experimentation, Performance

Keywords
Indoor Moving Objects, Probabilistic Thresholdk Nearest Neigh-
bor Queries, Symbolic Indoor Space, Uncertainty
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1. INTRODUCTION
The availability of indoor positioning renders it possible to sup-

port interesting queries over large populations of moving objects
in indoor spaces such as shopping malls, airports, subway stations,
and office buildings. For example, support fork nearest neighbor
(kNN) queries over indoor moving objects enables the detection
of approaching potential threats at sensitive locations in a subway
system; and it is possible for shops in an airport to target nearby
individuals in promotions.

Two factors render existingkNN techniques in spatial and spa-
tiotemporal databases [10, 17, 18, 20–22] inapplicable to moving
objects in indoor spaces. First, the existing Euclidean and network
distances do not fit indoor spaces that usually feature complex enti-
ties and topologies. Refer to the example in Figure 1. If we ignore
the indoor topology, locationp1’s 1st NN isp3 since the Euclidean
distance between them is the smallest. However,p3 is not reach-
able fromp1 along the straight line segment between them, sop1’s
true 1st NN isp2. Also, the conventional notion of network dis-
tance does not capture the (merely) constrained movements and the
obstructed distances indicated by complex indoor entities such as
rooms, doors, and hallways.
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Figure 1: Example of Indoor Space, Locations, and Distances

Second, indoor positioning technologies such as RFID and Blue-
tooth differ fundamentally from those typically assumed in outdoor
settings. Unlike GPS and cellular positioning technologies that are
capable of continually reporting the position of an object quite ac-
curately, indoor positioning technologies rely on proximity analy-
sis [9] and are unable to report accurate or continuous locations.
In particular, an indoor object is detected only when it enters the
activation range of a positioning device, e.g., an RFID reader or a
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Bluetooth base station, which may occur infrequently. As a result,
the limitations of indoor positioning create inherent uncertainty in
the positioning data of indoor moving objects.

To accommodate the indoor setting, we propose the notion of
minimal indoor walking distance (MIWD) as the distance metric
for indoor spaces. The MIWD between two indoor locations is the
shortest distance a person has to walk to reach the one from the
other. In Figure 1, the MIWD betweenp1 andp2 is the length of
the polyline fromp1 to p2 via the doord32.

Notably, for an indoor space, we capture all doors in a graph in
which each vertex corresponds to a door and edges indicate which
pairs of doors can be reached from one another without using a third
door. This structure and additional mappings enable us to compute
all door-to-door MIWDs efficiently. We then propose an algorithm
that computes the MIWD for two arbitrary indoor locations by ex-
ploiting the pre-computed door-to-door MIWDs.

We also propose a complete set of techniques for indoor moving
object management. A deployment of positioning devices parti-
tions the indoor space into cells in the sense that all movements
between cells are detected by some positioning device. We accord-
ingly present a positioning device deployment graph in which each
vertex corresponds to a cell and each edge corresponds to relevant
devices. We then assign the indoor moving objects to states accord-
ing to the device activation ranges and cells. The resulting states are
utilized to design effective hash based indexing structures for in-
door objects. The above also enable us to formalize the uncertainty
of object locations.

On top of these foundations, we provide a solution for probabilis-
tic thresholdkNN (PTkNN) queries over moving objects. Given an
indoor moving object setO, an indoor query locationq, and a prob-
ability thresholdT , a PTkNN query returns allk sized subsets of
O with probability larger thanT of being thekNNs of q.

We propose a combination of three techniques for the efficient
processing of PTkNN queries. First, MIWDs between the query
locationq and indoor moving objects are used to prune objects too
far away fromq, which reduces the object setO to a smaller can-
didate set. Second, efficient probability estimation is used to prune
unqualified candidatek-subsets from the candidate set. Third, the
final query result is determined by efficient probability evaluation
for the remaining candidate objects andk-subsets.

A comprehensive empirical study is conducted using both syn-
thetic and real data. The results show that the provided data man-
agement foundation is effective and that the proposed PTkNN query
processing is efficient and scalable.

We summarize our contributions as follows. First, we propose
the minimum indoor walking distance for indoor spaces (Section
3.1). Second, we formalize the uncertainty of indoor moving ob-
ject locations (Section 4.2), based on a symbolic indoor position-
ing and hash based object indexing scheme. Third, we provide
efficient means of computing PTkNN queries over indoor moving
objects (Section 5). Fourth, we conduct a comprehensive empiri-
cal study on our proposals using both synthetic and real data (Sec-
tion 6). To the best of our knowledge, this paper is the first work
to model indoor position uncertainty, and the first to study efficient
kNN queries in indoor space.

The remainder of the paper is organized as follows. Section 2
briefly reviews related work. Section 3 presents the foundations.
Section 4 elaborates on the management of indoor moving objects
and the deriving of their uncertain regions. Section 5 details the
techniques for efficient processing of probabilistic thresholdk near-
est neighbor queries over indoor moving objects. Section 6 con-
ducts the empirical study. Finally, section 7 offers conclusions and
discusses directions for future work.

2. RELATED WORK
Symbolic space models are often preferred over geometric mod-

els in the modeling of indoor space because they are better able
to capture the movement-related semantics associated with indoor
entities [2]. A graph-based model for indoor space is proposed
to support efficient indoor tracking [12], which serves as the basis
for the object management in this paper. The state definition and
hash indexing method for indoor moving objects, proposed in [24]
for continuous range monitoring over indoor moving objects, still
form the data management foundations for snapshotkNN queries
queries in this paper. Li and Lee [14] define the indoor nearest
neighbors by the minimal number of doors to go through, whereas
we employ a more refined general metric of minimum indoor walk-
ing distance.

kNN queries constitute fundamental functionality in spatial and
spatiotemporal databases. In Euclidean spaces, spatial data are
usually indexed by some spatial access method, typically an R-
tree [8]. The Euclidean distances between a query point and index
entry MBRs are used to facilitate pruning in R-tree based query
processing, which can be conducted in either a depth-first [17] or
a best-first [10] manner.kNN queries over free-moving objects
come in several variants. In one variant, a query involves a moving
query point and static data points indexed by an R-tree. Song and
Roussopoulos [20] propose a sampling-based method to periodi-
cally reevaluatekNN queries via the R-tree. Tao et al. [22] propose
an algorithm that searches the R-tree only once to findk NNs for
all query positions along a line segment. Other variants support
both static and moving query points over moving objects. Typi-
cally, such proposals [18, 21] search a TPR-tree [19] that indexes
the moving objects. In the context of spatial networks, network
distance is the metric used [11]. Different techniques are proposed
for static query points [13, 16] and moving query points [4]. All
thesekNN proposals fall short in our setting, which requires spe-
cific modeling, indexing, and query processing.

NN andkNN queries over uncertain data have also been stud-
ied. Cheng et al. [5] propose a query that returns all objects along
with their non-zero probability of being the NN of a query point.
An R-tree-like index is employed to process such queries. Beskales
et al. [3] propose the top-k probable nearest neighbor (Topk-PNN)
query that returns objects with the highest probability of being the
NN of a query point. The probability in a Topk-PNN query differs
from that in our PTkNN queries. Therefore, a Topk-PNN query
may returnk objects that do not form a qualifiedk-subset ask
NNs. Cheng et al. propose a framework [6] for evaluating prob-
ability thresholdkNN over uncertain moving objects in Euclidean
space, which consists of filtering, probabilistic candidate selection
and verification.

Our PTkNN query definition is similar to that in [6], as both re-
turn thek-subsets with the highest probabilities of being thekNNs.
The query processing framework in [6] is also adopted in this paper.
However, this paper distinguishes itself with several unique charac-
teristics. First, it uses the novel minimum indoor walking distance
(MIWD) as the underlying distance metric instead of the Euclidean
distance. Second, the indoor distance based pruning in this pa-
per is able to prune not only individual objects, but also groups of
objects based on the cells defined in the positioning device deploy-
ment graph. Third, this paper presents a unique formalization of the
uncertainty of indoor moving object locations. Last but not least,
partially due to the previous point, the probability estimation and
evaluation for indoor objects in this paper are different from those
for outdoor moving objects in [6].
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3. INDOOR SPACE MODELING AND PO-
SITIONING

A simplified plan of the first floor of the computer science de-
partment at Aalborg university is shown in Figure 1. The numbers
are labels for rooms, hallways, and staircases. The building is di-
vided into three clusters, each with its own hallway and rooms, that
are connected by a common hallway, labeled 40. Objects can reach
other floors via a staircase, labeled 50, or leave the building through
the main entrance, labeled 0. For simplicity, we regard the hallways
and staircases as rooms. For example, we use “room 10” for “hall-
way 10.” Each room may have several doors, which are labeled as
di. The connections between different clusters are also treated as a
virtual door, e.g.d1, d2 andd3.

Section 3.1 details our proposal of the minimal indoor walking
distance. Sections 3.2 and 3.3 offers background information on
indoor positioning, details of which can be found elsewhere [12].
Important notation is listed in Table 1.

Symbol Meaning
p, q Indoor positions

Σrooms The set of rooms
Σdoors The set of doors

dMIW (p, q) Minimal indoor walking distance betweenp andq

O The set of indoor moving objects
o, oi Indoor moving objects

o.Vmax o’s maximum speed
UR(o, t) o’s uncertain region at timet

CMSC (o, dev, t) o’s maximum-speed constrained circle at timet

Table 1: Notation

3.1 Minimal Indoor Walking Distance
As pointed in Section 1, the predominant Euclidean and network

distances do not work well in indoor spaces. We therefore propose
a new notion ofMinimal Indoor Walking Distance (MIWD)for use
as the distance metric in indoor spaces. For two positionsp and
q, this distance is given asdMIW (p, q). To facilitate computing
minimal indoor walking distances, we need two mappings.

The setΣrooms contains all the rooms in the floor plan; and the
setΣdoors contains all the doors in the indoor space. The mapping
Roomsdetermines the room of an indoor position.

Rooms : positions → Σrooms

Each door connects two adjacent rooms in the sense that one can
move from one room to the other through the door. The mapping
Doorsmaps a room to the doors that connect the room to an adja-
cent room.

Doors : Σrooms → 2Σdoors .

In Figure 1,Rooms(p1) returns room 32, andDoors(room 12)
returns the set{d12, d15}.

If p andq are in the same room, the intra-room obstructed dis-
tance [25] between the two, termed asdo(p, q), is first calculated.
If no obstacles are present betweenp andq, do(p, q) is equal to the
Euclidean distance between the two. In Figure 1, positionsp2 and
p3 are both in room 30, and the line segment between them is fully
in room 30. Therefore, the obstructed distancedo(p2, p3) between
them is exactly|p2p3|

1.

1|pipj | denotes the Euclidean distance between positionspi and
pj .

10

d17

14

d16
c1

c2

p8

p9

Figure 2: Example

Next, consider the indoor posi-
tions p4 and p5 in Figure 1. The
line segment fromp4 to p5 intersects
room 23, which means that no object
can move fromp4 to p5 according to
a straight line segment. In such cases,
the obstructed distance accounts for
the obstacles. In particular, the object
needs to go fromp4 to the cornerc of
room 23 and then top5. Thus,do(p4,
p5) equals|p4c| + |cp5|. It is note-
worthy thatdo(p, q) for p andq in the
same room may not be the truedMIW (p, q), as passing through
other room(s) may result in shorter distance(s). For example, in
Figure 2, the obstructed distancedo(p8, q9) = |p8c1| + |c1c2| +
|c2p9| is longer than the true MIWD|p8d16|+ |d16d17|+ |d17p9|.
Such a MIWD distance is obtained by regardingp andq as loca-
tions in different rooms, as to be deliberated next.

If two indoor positions are in different rooms, the minimal in-
door walking distance should take into account the doors connect-
ing the rooms. In Figure 1, pointp1 and pointp2 is in room 32 and
room 30, respectively. The only connection between the two rooms
is the doord32. Therefore,dMIW (p1, p2) = |p1d32| + |d32p2|.

In a more complicated situation, there may exist several paths
(that go through different rooms and doors) fromp to q. The correct
dMIW (p, q) is then the distance of the shortest such paths. For
example, pointp6 and pointp7 are located in room 12 and room 10,
respectively, and more than one path between them exists. To reach
p7 from p6, one can go either directly through doord12, resulting
in a distance|p6d12| + |d12p7|, or through doord15 followed by
d13, resulting in a distance|p6d15| + |d15d13| + |d13p7|. In this
example,dMIW (p6, p7) = |p6d12| + |d12p7|.

In order to computedMIW (p, q) for any location ofp and q,
we need the ability to retrieve the connecting doors between two
rooms. For that purpose, we define theDoors Graph, in which
each vertex corresponds to a specific door in the indoor space.
Based on theDoors mapping, if two doors belong to the same
room, the two corresponding vertices are connected as an edge.
Formally, theDoors Graphis defined as a weighted graphGd =
〈D, E, ℓweight〉, where:

(1) D = Σdoors is the set of vertices.

(2) E is the set of edges. An edge{di, dj} exists if a roomrm

exists inΣrooms such that{di, dj} ⊆ Doors(rm).

(3) ℓweight: E → R assigns to an edge the obstructed distance
between the two doors represented by the edge:ℓweight

({di, dj}) = do(di, dj).

Due to complex indoor topology, a pair of doors together may
belong to different rooms. Consequently, to get from one door
to the other without leaving a single room, one may have differ-
ent rooms to choose from. In such cases, the shortest intra-room
distance is assigned to the corresponding edge as the weight. For
example, in Figure 2, the weight of edge{d16, d17} is assigned as
the obstructed distance in room 14, i.e.do(d16, d17) = |d16d17|;
but not the obstructed distance in room 10 which isdo(d16, d17) =
|d16c1| + |c1c2| + |c2d17|.

The doors graph corresponding to Figure 1 are shown in Fig-
ure 3. Based on this graph, all door-to-door shortest path distances
can be computed and recorded in a hash tableD2D :

D2D : {(dp, dq)} → R , dp, dq ∈ Σdoors.
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Consequently, for two positionsp andq located in different rooms,
dMIW (dp, dq) is the minimum sumdo(p, dp) + D2D(dp, dq) +
do(dq, q) wheredp ranges over all doors of roomp anddq ranges
over all doors of roomq.

To summarize,dMIW (p, q) is computed by Algorithm 1.

Algorithm 1 dMIW (Positionp, Positionq)
1: if Rooms(p)=Rooms(q) then
2: minDist← do(p, q);
3: else
4: minDist← +∞
5: for each doordp in Doors (Rooms (p)) do
6: for each doordq 6= dp in Doors (Rooms (q)) do
7: l← do(p, dp) + do(dq , q)+ D2D (dp, dq)
8: if l < minDist then
9: minDist← l;

10: return minDist;

We note that, it is possible to adapt this notion of distance to
accommodate other semantics. For example, a person might prefer
a longer indoor path that, however, passes as few doors as possible.
To support this, we only need to assign a uniform edge weight of 1
to each edge in the doors graph.

3.2 Symbolic Indoor Positioning
We assume the use of presence, or proximity-based, sensing tech-

nologies such as RFID or Bluetooth. We do not consider signal
strength [1], as the activation ranges of RFID readers in our setting
are relatively small (tens of centimeters to a few meters [23]).

These technologies employ proximity analysis [9], which deter-
mines when an object is within the activation range of a device.
Each device detects and reports the observed objects at a relatively
high sampling rate. A reading(deviceID , objectID , t) states that
objectobjectID is detected by devicedeviceID at timet.

A positioning device deployment is shown in Figure 1, where the
numbered red circles indicate the locations and activation ranges of
devices. For positioning devices with overlapping ranges, we treat
the intersection as the activation range of a new, virtual positioning
device. For example, the intersection ofdevice1 anddevice1′ is
assigned to a virtual devicedevice1′1. An object seen bydevice1,
but notdevice1′ , is then in the non-intersecting part of the range of
device1. Different from overlapping devices here, so-called paired
devices (covered in Section 3.3) are used to detect movement di-
rection, e.g., the entry/exit a room.

For each object, only its first and last appearances in a device’s
range are of interest. We thus introduce a pre-processing mod-
ule in-between the sensing devices and our object management
module that continuously (according to the sampling unitTs) re-
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Figure 4: Positioning Device Deployment

ceives readings from all positioning devices and outputs records in
of form (deviceID , objectID , t, flag), whereflag = ENTER
indicates that the object is entering the device’s activation range,
andflag = LEAVE indicates the object is leaving the range. The
deviceID can be a virtual device. Unless explicitly stated other-
wise, this applies to alldeviceIDs in the rest of the paper. Due to
space limitations, we omit the details of the pre-processing module.

3.3 Positioning Device Deployment Graph
In a deployment of a set of positioning devices, we differentiate

between two types of devices.
Partitioning devicespartition the indoor space into cells in the

sense that an object cannot move from one cell to another without
being observed. An example is a device deployed by the single door
of a room. There are two options for partitioning devices. First,
undirected partitioning devices(UP) cannot detect movement di-
rections between cells. For example,device21 cannot tell whether
an observed object enters or leaves cellc21. Note thatdevice1,
device1′ , anddevice1′1 are also undirected. Second,directed par-
titioning devices(DP) consist of entry/exit pairs of sensor that en-
ables the movement direction of an object to be inferred by the
reading sequence, e.g.,device11 anddevice11′ in Figure 4.

Next, presence devices(PR) simply sense the presences of ob-
jects in their range, but do not contribute to the space partitioning.
These are exemplified bydevice10 in Figure 4.

To facilitate query processing, three mappings are defined. A
Devicesmapping structure maintains the activation range, inter-
secting room, and type of each positioning device:

Devices : Σdevices → {(AR, Σrooms ,TYPE)}.

Here,Σdevices is the set of all devices;AR is the set of activation
ranges (usually a range is a circular region);Σrooms captures the set
of rooms that intersect withAR; andTYPE = {UP ,DP , PR}
is the set of device types.

In thePA2D mapping, each devicedev is mapped to the door
that is covered by its activation range:

PA2D : Σdevices → Σdoors.

For example,device12 in Figure 4 is mapped to doord12.
For each presence devicedev, the distances from its location to

all the doors of the room in which it is deployed are recorded into
thePR2D hash table:

PR2D : {(dev, d)} → R , dev ∈ Σdevices , d ∈ Σdoors .
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For example, presence devicedevice10 is deployed in room 10 in
Figure 4, and the distance from its location ofdevice10 to doors
d1, d11, d12, d13, andd14 (see Figure 1) are recorded inPR2D .

Finally, to facilitate the tracking and querying of moving objects,
a deployment graph is created based on the topological relationship
of the floor plan and the positioning device deployment. Formally,
a deployment graph is a labeled graphG = 〈C, E,Σdevices, ℓE〉,
where:

(1) C is the vertex set. Each vertex corresponds to a cell.

(2) E is the edge set consisting of unordered pairs of vertices.
An edge indicates that its two cells are connected.

(3) ℓE: E → 2Σdevices assigns a set of positioning devices to an
edge. Specifically, a non-loop edge is labeled by the parti-
tioning device(s) partitioning the two cells, and a loop edge
captures the presence devices in a cell.

Using an existing deployment graph construction algorithm [12],
the deployment graph corresponding to Figure 4 is shown in Fig-
ure 5, where labelDi indicates a positioning devicedevicei.
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Figure 5: Positioning Device Deployment Graph

Each cell created by a device deployment corresponds to one or
more rooms in the floor plan. For example, cellc10 corresponds to
rooms 14 and 10 because an object can go from room 14 to room 10
without being observed by a positioning device. Similarly, cellc30

corresponds to rooms 32 and 30. The followingCells mapping
maintains the corresponding relationship.

Cells : C → 2Σrooms .

Also, a room or a long hallway may be divided into cells by a de-
ployment of partitioning devices. The resulting divisions can be re-
garded as virtual doors, which should then be reflected in theDoors
graph and theD2D mapping.

The rooms in a floor plan partition the floor plan in a way in-
dependent of a particular deployment of positioning devices. In
contrast, a cell partitioning is caused by a deployment of posi-
tioning devices. The extent of a cell is the union of the extents
of the rooms that make up the cell, excluding the ranges of in-
tersecting devices. In the running example, cellc10 is the union
of rooms 10 and 14 excluding the activation ranges ofdevice1 ,
device1 ′ , device1 ′1 device10 , device11 ′ , device12 , anddevice13 .
Thus an indoor space is partitioned into activation ranges and cells.

4. UNCERTAINTY OF INDOOR MOVING
OBJECTS

Section 4.1 categorizes indoor moving objects according to their
positions, and it indexes them using hashing structures. A prelim-
inary version of this can be found elsewhere [24]. We include it

here to render the presentation self-contained. Section 4.2 derives
the uncertain region that an indoor moving object can belong to at
a given time.

4.1 Management of Indoor Moving Objects
Given a deployment of indoor positioning devices, an indoor

space is partitioned into anactive subspaceand aninactive sub-
space. The active subspace is the union of the activation ranges
of all positioning devices, and it usually consists of disconnected
sub-regions. The inactive subspace is the part of space that is not
covered by any positioning device.

If an object is in the active space, it must be in some device’s
activation range. With theDevices mapping (see Section 3.3), we
are able to directly determine the object’s whereabouts. If an object
is in the inactive space, additional processing and information is
needed to infer its possible locations.

Thus, an object isactiveor inactive, depending on its subspace
membership. Inactive objects may be in adeterministic stateand
a nondeterministic state. The deterministic state indicates that an
object’s current location is guaranteed to be in only one specific cell
(as defined in Section 3.3), and the nondeterministic state indicates
that the object’s current location may be in one of several cells.

More specifically, if a moving object leaves (the activation range
of) a presence deviced, it must be still in the cellG.ℓ−1

E (d) before
it is again detected2. Therefore, its state changes from active to
deterministic. In Figures 4 and 5, if an object leavesdevice10 , it
must enterc10. If an object leaves a directed partitioning device,
the cell the object is entering can be determined from the reading
sequence. Therefore, its state also changes from active to determin-
istic. In the running example, if an object is seen atdevice11 ′ and
thendevice11 , it must enterc11.

In contrast, if an object leaves a undirected partitioning device,
the object can be in any of the cell inG.ℓ−1

E (d). Therefore, its state
changes from active to nondeterministic. In the running example,
if a moving object leavesdevice12 , it can be in eitherc10 or c12.

On the other hand, if a moving object enters (the activation range
of) any positioning device, its state changes from inactive (deter-
ministic or nondeterministic) to active.

The resulting state transition diagram is shown in Figure 6. Based
on it, we employ an indexing scheme that utilizes several hash ta-
bles. LetO be the set of all the moving objects in the indoor space.
For positioning devices, aDevice Hash Table (DHT)is created that
maps a given positioning device to the set of active objects in the
device’s activation range:DHT : Σdevices → 2O.

Active

Deterministic Nondeterministic

Leave PR or DP devices

Enter any 

positioning device

Leave UP devices

Inactive

Figure 6: Moving Object State Transition Diagram

2G.ℓ−1
E is the reverse function ofG.ℓE introduced in Section 3.3.

For simplicity, we useG.ℓ−1
E (d) to denoteG.ℓ−1

E (D), whereD ⊆
Σdevices. Specifically,D = {d} if d is a non-overlapping UP
device or the only PR in a cell;D is the set of overlapping UP
devices ifd is one of them;D is the set of two DP devices ifd is
one of them; otherwise,D is the set of all PR devices in the same
cell asd. Note that for an arbitrary deviced, the corresponding set
D is unique.
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Two hash tables are maintained for the cells. ACell Determinis-
tic Hash Table (CDHT)maps a cell to the set of deterministic ob-
jects in it:CDHT : C → 2O. Next, aCell Nondeterministic Hash
Table (CNHT)maps a cell to the set of nondeterministic objects in
it: CNHT : C → 2O .

In addition, theObject Hash Table (OHT)and Object Leave
Hash Table (OLHT)are maintained for all objects.OHT maps
an object identifier to the corresponding object state tuple:OHT :
O → {(STATE , t, IDSet)}. HereSTATE denotes the object’s
current state;t is the start timestamp of the state;IDSet is a set
of cell identifiers or a set of device identifiers, indicating where the
object can currently be. If the object’s state is active,IDSet is a
singleton set of the corresponding device identifier. If the state is
deterministic,IDSet is a singleton set of the corresponding cell
identifier. If the state is nondeterministic,IDSet is a set of identi-
fiers of all the cells in which the object can currently be.

OLHT maps an object identifier to its lastLEAVE observa-
tion, which is designed to facilitate the uncertainty region determi-
nation (to be discussed in detail in Section 4.2):OLHT : O →
{(deviceID , t)}.

These hash tables need updating whenever there is a new output
from the pre-processing module. The update algorithm, described
in Algorithm 2, handles a record received from the pre-processing
module according to itsflag value.

Algorithm 2 UpdateHashTables(Pre-processing outputS, De-
ploymentGraphG)
1: IDSetsSet ← ∅;
2: if S.flag = ENTER then
3: sSet ← OHT [S.objectID].IDSet ;
4: if OHT [S.objectID ].STATE = Active then
5: for the single elementc in sSet do
6: DeleteS.objectID from DHT [c];
7: else ifOHT [S.objectID ].STATE = Deterministic then
8: for the single elementc in sSet do
9: DeleteS.objectID from CDHT [c];

10: else
11: for each elementc in sSet do
12: DeleteS.objectID from CNHT [c];
13: Add S.objectID to DHT [S.deviceID ];
14: OHT [S.objectID]← (Active, S.t, {S.deviceID});
15: else
16: DeleteS.objectID from DHT [S.deviceID];
17: sSet ←G.ℓ−1

E
(S.deviceID);

18: if Devices(S.deviceID).TYPE = UP then
19: OHT [S.objectID]← (Nondeterministic,S.t,sSet);
20: for each elementc in sSet do
21: Add S.objectID to CNHT [c];
22: else
23: OHT [S.objectID]← (Deterministic,S.t,sSet);
24: for the single elementc in sSet do
25: Add S.objectID to CDHT [c];
26: OLHT [S.objectID]← (S .deviceID ,S.t);

For anENTER record, if the object’s previous state is active, it
is deleted from the corresponding device’sDHT (lines 4–6). If its
previous state is deterministic, it is deleted from the corresponding
cell’s CDHT (lines 7–9). Otherwise, its previous state is nonde-
terministic, and it is deleted from all corresponding cells’CNHTs
(lines 10–12). After the deletion, the object is added into theDHT
of the current device, and its state is updated accordingly (lines 13–
14).

For aLEAVE record, the object is deleted from the correspond-
ing device’sDHT (lines 15–16). The possible cells are determined
by the functionG.ℓ−1

E (lines 17). If the object leaves anUP de-
vice, its state is set to nondeterministic, and the object is added into

all the corresponding cells’CNHTs (lines 18–21). If the object
leaves aDP or PR device, its state is set to deterministic, and the
object is added into the corresponding cell’sCDHT (lines 22–25).
At last, the corresponding entry inOLHT is updated (line 26).

4.2 Deriving Uncertain Regions for Indoor
Moving Objects

We capture theUncertainty Region (UR)of an indoor object at
the time a query is issued. As for outdoor moving objects [5],
the uncertainty region of an indoor objecto at timet, denoted by
UR(o, t), is a region such thato must be in this region at timet.

In general terms, the location of an objectoi can be modeled as
a random variable with a probability density functionfoi

(x, y, t)
that has non-zero values only inoi’s uncertainty regionUR(oi, t)
and for which

∫
UR(oi,t)

foi
(x, y, t)dxdy = 1.

Indoor objects have more constraints on their movements than
have free-moving outdoor objects. For example, if an object’s des-
tination is not in its current room, the object must pass through one
or more doors to reach its destination. Because they do not capture
the indoor topologies and the associated constraints and obstacles,
uncertainty models [15] for outdoor objects do not apply well in
our indoor setting.

We thus proceed to present an uncertainty model designed for
indoor moving objects. In the following discussion, we assume that
an object has the same probability to be located anywhere inside its
uncertainty region. That is, the probability is distributed uniformly
in the object’s uncertainty region:

foi
(x, y, t) =

1

Area(UR(oi, t))
, (x, y) ∈ UR(oi, t).

According to the analysis on the states of indoor moving objects
in Section 4.1, the uncertainty regions of indoor moving objects
can be characterized as follows. The uncertainty region of an active
object is the activation range of the corresponding device, and the
uncertainty region of an inactive object is the cell or cells that the
object can belong to.

If the object’s maximum speedVmax is given, its uncertainty re-
gion can be captured at a finer granularity. The uncertainty region
of a deterministic object is refined as the intersection between the
object’s cell and itsmaximum-speed constrained circle. For a non-
deterministic object, the region is the union of the intersection be-
tween each cell and the circle.

Let the lastLEAVE observation of objecto be from devicedev

at time t and let the time duration fromt to the current time be
∆t = tnow−t. Assuming that the objecto moves in a straight line,
the longest possible distanceo can move away from the boundary
of dev’s activation range iso.Vmax · ∆t. Formally, the maximum-
speed constrained circleCMSC (o, dev, t) of o is defined as the cir-
cle centered atdev’s deployment location and with radiuso.Vmax ·
∆t plus the radius ofdev’s activation range. We also exclude the
activation range ofdev from the circle.

Consider Figure 7 and assume that objecto left device16 at time
t. Its maximum-speed constrained circleCMSC (o, device16, t) is
then indicated byR1 in the figure. Sincedevice16 is a presence de-
vice, after leavingdevice16 the inactive objecto must be in the cell
c11 (according toG.ℓ−1

E (device16)). Due to the two constraints,
objecto’s uncertainty region is the intersection of cellc11 and cir-
cleR1, i.e., the shaded region in the top-left part of Figure 7.

If the cell where the deterministic object resides has more than
one room, e.g., the cellc10 contains room 10 and room 14, the
determination of uncertainty region is more complicated. Suppose
objecto left device10 at timestampt. According toG.ℓ−1

E (device10),
o should be in cellc10 after leavingdevice10. From theDevices
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Figure 7: Uncertainty Model for Inactive Objects

and PR2D mappings, we can figure out that thedevice10 resides
in room 10, and the distance fromdevice10 to the doord14 is l. If
the maximum speed constraint does not guarantee thato can have
gone through the doord14, i.e. o.Vmax · (tnow − t) < l, the ob-
ject o must be in the room 10. Thus, the uncertainty region is the
intersection between room 10 andCMSC (o, device10, t), which is
indicated byR2 to the left of Figure 7.

On the other hand, referring to the right part of Figure 7, if
o.Vmax · (tnow − t) ≥ l, the objecto may have entered room 14.
Its uncertainty region therefore contains two parts: the intersection
between room 10 andCMSC (o, device10, t) (indicated byR3); the
intersection between room 14 and the circle with doord14 as the
center andR4 = o.Vmax · (tnow − t − l/o.Vmax) as the radius.

The uncertainty region of an active object can be also refined as
the intersection of the activation range of the corresponding device
and the object’s maximum-speed constrained circle. Using the run-
ning example, suppose objecto left device10 at timet and thato is
then observed bydevice12. The uncertainty region ofo is the inter-
section of the activation range ofdevice12 andCMSC (o, device10,
t), which is shown within the activation range ofdevice12 in Fig-
ure 7.

Algorithm 3 computes the uncertainty region of an objecto at
the current timetnow. Note thato’s lastLEAVE observation can
be obtained from hash tableOLHT , from which the corresponding
devicedev and timestampt are also found (lines 4–5). If objecto is
an active object, the activation rangere of the corresponding device
is obtained from theDevices mapping. Theno’s uncertainty region
is the intersection ofre and the maximum-speed constrained circle
CMSC (o, dev, t) (lines 6–8).

Otherwise, the possible cells in which the object may reside are
determined from the deployment graph (line 10). For each possi-
ble cell, all its corresponding rooms are determined from theCells
mapping (line 11). For each possible roomrm, if the devicedev

is deployed in it,o’s uncertainty region is the intersection of the
room andCMSC (o, dev, t) (lines 12–13). If not, the doord be-
tween roomrm and the room in which the devicedev is deployed
is determined. The distancef from the devicedev to the doord
is computed fromPR2D or D2D according to devicedev’s type.
The uncertainty region is the intersection of roomrm and the circle
with d as center andradius as radius (lines 14–22).

5. PT KNN QUERY PROCESSING

5.1 Definition and Overview
The query under consideration is defined as follows.

DEFINITION 1. (Indoor Probabilistic Threshold kNN Query)
Given a set of indoor moving objectsO ={o1, o2, ..., on} and a

Algorithm 3 UR (Objecto, DeploymentGraphG)
1: RegionUR← ∅;
2: Doord← ∅;
3: Integerradius← 0;
4: Devicedev←OLHT [o].deviceID ;
5: TimeStampt←OLHT [o].t;
6: if OHT [o].STATE=Active then
7: Regionre←Devices(OHT [o].IDSet).AR;
8: UR← re ∩ CMSC (o, dev, t);
9: else

10: for each cellc in G.ℓ−1
E

(dev) do
11: for each roomrm in Cells(c) do
12: if rm in Devices(dev).RoomSet then
13: UR← UR ∪ (rm ∩ CMSC (o, dev, t));
14: else
15: Roomrm2←Cells(c)∩Devices(dev).RoomSet;
16: d← Doors(rm2) ∩Doors (rm);
17: if Devices(dev).TYPE = PR then
18: radius← o.Vmax·(tnow − t)− PR2D(dev, d);
19: else
20: Door d′← PA2D(dev);
21: radius← o.Vmax·(tnow − t)− D2D(d, d′);
22: UR← UR ∪ (rm ∩ Circle(d, radius));
23: return UR;

threshold valueT ∈ (0, 1], a PTkNN query issued at timet with
query locationq returns a result setR = {A | A ⊆ O∧|A| = k∧
prob(A) > T}, whereprob(A) is the probability thatA contains
thek nearest neighbors of the query locationq at timet.

The definition ofprob(A) will be formalized in Section 5.3.
Consider the four moving objects in Figure 8. Objecto1 is be-
ing observed bydevice21, and its uncertainty region is the acti-
vation range of that device. Objecto2, o3, and o4 recently left
device20, device2′ , anddevice33, respectively. According to the
discussion in Section 4.2, their uncertainty regions are captured by
three maximum-speed constrained circles:CMSC (o2, device20, t),
CMSC (o3,device2′ , t), andCMSC (o4, device33, t), shown as solid
circles excluding any activation ranges in Figure 8.

Assuming a2NN query issued at timet with locationq,

(
4

2

)
=

6 2-subsets can be in the result set. When the number of moving
objects in the indoor space increases, the number ofk-subsets (A in
Definition 1) in the result setR will increase exponentially. Specif-

ically, there are

(
n

k

)
possiblek-subsets for a PTkNN query overn

objects. Accordingly, computing the probabilityprob(A) for each
k-subsetA will incur considerable computation cost and thus result
in very slow query response.

We propose three techniques that speed up PTkNN query pro-
cessing. First, minimum indoor walking distances between the
query location and the (uncertainty regions of) objects are used to
prune the objects too far away to be in any possiblek-subsetA
(Section 5.2), which usually results in a much reduced object subset
O′ ⊆ O. Second, for allk-subsets ofO′, cost-efficient probability
estimates are used to prune thek-subsets whose probabilities defi-
nitely are lower than the specified thresholdT (Section 5.3). Third,
for each remainingk-subsetA, prob(A) is evaluated efficiently,
andA is added toR only if prob(A) > T (Section 5.4).

5.2 Indoor Distance Based Pruning
The exact MIWD from a query locationq to an objectoi, i.e.,

dMIW (q, oi), is not known because the location ofoi is described
by an uncertainty regionUR(oi, t) at timet. Instead, we define the
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Figure 8: Indoor kNN Query Processing

minimum and maximum MIWD betweenq andoi. Let si (li) be
the minimum (maximum) MIWD fromq to the uncertainty region
of oi:

si = min
p∈UR(oi,t)

dMIW (q, p), li = max
p∈UR(oi,t)

dMIW (q, p).

If the uncertainty regionUR(oi, t) is in the same room as the
query locationq, si andli can be obtained based on the obstructed
distance. IfUR(oi, t) is a circle,si and li can be determined by
using the line passing the circle’s center and the query locationq

(or the obstacle nearest to the center). For example, the minimum
(maximum) distance fromq to o2 is shown ass2 (l2) in Figure 8. If
UR(oi, t) is a polygon, all its sides and vertices need to be checked.
As a special case, if the query locationq is inside the uncertainty
region,si is 0.

If the uncertainty regionUR(oi, t) is not in the same room as
query locationq, the doors connecting the different rooms need to
be considered when computing the MIWD. For objecto4 in Fig-
ure 8, doorsd2 andd3 are considered. Thesi and li for the four
objects are shown in Figure 8.

Let f be thek’th minimal one of all objects’lis. If si of object
oi is greater thanf , objectoi has no chance to be in anyk-subset
of the result setR becausek objects exist that are definitely closer
to q thanoi. Thisf value is called thek-bound[6].

Using thek-bound, some objects can be pruned early. Consider
the2NN query in Figure 8. The order among alllis is l1 < l2 <

l3 < l4, sof = l2. As s4 > f , objecto4 can be pruned safely.
This pruning yields a potentially much reduced candidate object set
O′ (⊆ O) to be considered for the given PTkNN query.

Two important observations can be used to conduct distance based
pruning even more efficiently. First, thek-boundcan be calculated
and updated dynamically during the distance based pruning. The
initial k-boundf can be obtained as soon ask objects have been
seen fromO. When new objects fromO are being processed,f

helps prune unqualified objects, and whenever possible,f is up-
dated to a smaller value for better subsequent pruning.

Second, we do not have to determine the exact uncertainty region
and calculate the exactsi (ii) for each object during distance based
pruning. By taking advantage of the indoor space distance defini-
tion and object positioning (detailed in Section 3), we can reduce
the computation cost.

This also allows us to prune objects together, based on the cells
that result from the deployment of indoor positioning devices. The
basic idea is this: Given a cellcell, if minp∈cell{dMIW (q, p)} is
greater than the currentk-boundf , all the objects currently in the
cell can be safely pruned. In Figure 8, after processing objectso1

ando2, the currentk-boundf is l2, andminp∈c30{dMIW (q, p)} =
dMIW (q, d3) as doord3 is the only door toc30. SincedMIW (q, d3)
> f , for any objectoi in c30 we havedMIW (q, oi) > f . Any such
objectoi can be safely pruned without further processing. In this
example, there is no need to compute the uncertainty region ofo4

(or any other object inc30).
The distance-based pruning is described in Algorithm 4. First,

the candidate object setO′ and thek-boundf are initialized as
empty and infinity, respectively (lines 1–2). A cell setseeds records
the cells we have examined, which is initialized as empty (line 3).
Also, a min-heapH〈〈d, v〉〉 (line 4) gives priority to doors closer
to the query locationq, thus controlling the access order of rele-
vant doors during the distance-based pruning. NoteH enqueues
the〈d, dMIW (d, q)〉 pair for each involved doord (line 4 in Algo-
rithm 5).

If the query locationq is in a devicedev’s activation range, the
active objects indev are added to the candidate setO′, and the
corresponding cells obtained throughG.ℓ−1

E (dev) are added to the
cell setseeds (lines 5–7). For each cellc obtained, both determin-
istic and nondeterministic objects inc are added toO′, and function
EnheapDoors (see Algorithm 5) is called to push all the doors in
c onto the min-heapH (lines 7–8).

Algorithm 4 DistancePruning(Positionq, int k)
1: ObjectSetO′←∅;
2: Doublef←+∞;
3: CellSetseeds←∅;
4: Initialize a min-heapH〈〈d, v〉〉;
5: if q is in the activation range of a devicedev then
6: O′← DHT [dev]; seeds←G.ℓ−1

E
(dev);

7: for each cellc in seeds do
8: O′← O′∪CDHT [c]∪CNHT [c]; EnheapDoors (H, c);
9: else

10: Roomr← Rooms (q);
11: Cell c← Cells−1 (r);
12: O′← CDHT [c] ∪CNHT [c];
13: Add c into seeds; EnheapDoors (H, c);
14: if |O′| ≥ k then
15: f ← Bound(O′);
16: while H is not emptydo
17: e← deheap(H);
18: if e.v > f then
19: break;
20: Sete.d as visited;
21: dev←PA2D−1(e.d); O′← O′ ∪ DHT [dev];
22: for each cellc in G.ℓ−1

E
(dev) do

23: if c 6∈ seeds then
24: O′← O′∪CDHT [c] ∪CNHT [c];
25: for eachdev in G.ℓE({ c, c}) do
26: if (PR2D(dev, d)+e.v)≤ f then
27: O′← O′∪DHT [dev];
28: Add c into seeds; EnheapDoors (H, c);
29: if |O′| ≥ k then
30: f ← Bound (O′);

Otherwise,q is not in any activation range, and it must be in
some cellc. Both the deterministic and nondeterministic objects
in c are added to the candidate setO′. The cell c is added to
the cell setseeds, and all its doors are pushed ontoH by call-
ing EnheapDoors (lines 10–13). Note thatCells−1 (line 11) is
the reverse function ofCells, defined in Section 3.3, which maps a
roomr to the cell coveringr.
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If the current candidate setO′ has at leastk objects, function
Bound (see Algorithm 6) is called (lines 14–15). It determines
the currentk-boundf using all candidate objects, and it prunes
unqualified ones according tof .

In the sequel, we need to expand to further away cells or activa-
tion ranges via doors, as an object must go through a door to reach
another cell. Following the philosophy of Dijkstra’s algorithm [7],
the expansion is controlled by the min-heapH that stores the dis-
tances from query locationq to all relevant doors.

At the beginning of each expansion step, the first entrye from
H is deheaped (line 17). The expansion stops if the current door
e.d being processed is too far away (lines 18–19); otherwise,e.d

is set as visited to avoid duplicate visits (line 20). If the doore.d

is covered by a devicedev’s activation range, its active objects are
added toO′ (line 21).

For each cellc of the corresponding cells inG.ℓ−1
E (dev), if c is

not in seeds, both the deterministic and nondeterministic objects
in c are added toO′ (lines 22–24). For each presence device in cell
c, if its indoor distance toq is smaller thanf , all active objects in
c are also added toO′ (lines 25–27). After cellc is processed, it
is added toseeds, and its doors are enheaped by calling function
EnheapDoors (line 28). At the end of each expansion step, if the
current candidate setO′ has at leastk objects, functionBound is
called again to dynamically updatef and reduce the candidate set
O′ (lines 29–30).

Algorithm 5 EnheapDoors(HeapH , Cell c)
1: for each roomr in Cells(c) do
2: for each doord in Doors(r) do
3: if d is not visitedthen
4: enqueue(H, 〈d, dMIW (d, q)〉);

Algorithm 6 Bound (ObjectSetO′)
1: f ← thek’th smallest element in {li | oi ∈ O′};
2: for each objectoi in O′ do
3: if si < f then
4: Deleteoi from O′;
5: return f ;

We regard heap insertions and deletions as characteristic opera-
tions. The worst-case time complexity of Algorithm 4 is2 · |Σdoors |
because each door is inserted once and deleted once.

5.3 Probability Threshold Based Pruning
After the distance based pruning, a possibly smaller candidate

object setO′ of k or more objects is obtained. There can still be(
|O′|

k

)
possiblek-subsets in the result setR. We proceed to prune

both unqualified objects inO′ and unqualifiedk-subsets inR, by
making use of fast probability estimates and the given probability
thresholdT . We assume that the distributions of all indoor moving
objects are independent on each other. While, objects may move
inter-dependently in some scenarios. However, determining such
dependencies is a hard task that may involve large amounts of his-
torical data. How to exploit dependencies for better performance
is beyond the scope of this paper and it is an interesting future re-
search direction.

Given an objectoi, let Poi
(r) be the cumulative distribution

function (cdf) thatoi’s MIWD to the query locationq is r. In other
words,Poi

(r) = Pr(dMIW (q, oi) ≤ r). Let A be ak-subset of
O′. The probabilityprob(A) thatA contains thek nearest neigh-

bors ofq satisfies:

prob(A) ≤
∏

oi∈A

Poi
(f).

This is because only those objects within thek-boundf can be
among thek nearest neighbors ofq.

If Poi
(f) is less than the thresholdT , anyk-subsetA that con-

tainsoi satisfies:

prob(A) ≤
∏

oj∈A

Poj
(f) ≤ Poi

(f) < T.

This means thatA cannot satisfy the probability thresholdT . There-
fore, if Poi

(f) < T , oi can be safely pruned from the candidate
object setO′.

All those locations with MIWD to query locationq no greater
than r are constrained by abounding regionBRq(r), which is
usually composed of several intersections of rooms and circular re-
gions. Formally,BRq(r) is defined asRooms(q)∩Circle(q, r)

⋃
∪rmi∈Rr

rmi ∩ Circle(q, r′i), whereRr is a set of rooms. Any
roomrmi in Rr satisfies the condition that the MIWDli from its
door to the query locationq is smaller thanr, and the correspond-
ing r′i equalsr-li. For example, the bounding regionBRq(f) in
Figure 8 is indicated by two dashed circular regions:BRq(f) =
(room20 ∩Circle(q, f)) ∪ (room21 ∩Circle(d21, f −|qd21|)).

Based on the bounding regionBRq(r), thePoi
(r) can be eval-

uated using the following equation:

Poi
(r) =

Area(UR(oi, t) ∩ BRq(r))

Area(UR(oi, t))
(1)

In Figure 8,Po3(f) = 0.5. If the specified thresholdT > 0.5, o3

can be safely eliminated fromO′.
The pseudo code of the probability threshold based pruning is

given in Algorithm 7. For each objectoi in O′, if its probability
Poi

(f) is less than the thresholdT , the object is removed fromO′

(lines 1–3). Next, we generate all possiblei-subsets step by step
(lines 4–15). Each i-subsetA is the union of an (i − 1)-subsetB
in R and a singleton set{c}. In particular,{c} is not inB but is in
another (i − 1)-subset inR. All i-subsets inSubSet are obtained
from all such combinations ofB and{c} based onR. Thei-subset
is included in the temporary result setR only if the product of all
its members’ probabilities is greater than the thresholdT (lines 16–
18). This way, some unqualifiedi-subsets are eliminated without
probability estimates. For example, if a 2-subset{o1, o2} cannot
satisfy the probability threshold, anyi-subset (wherei > 2) which
contains{o1, o2} cannot satisfy the probability threshold either.

We regard the calculation ofPoi
(f) as the characteristic op-

eration. If the calculated probabilities cannot be kept in mem-
ory and every probability has to be recalculated on-the-fly each
time it is needed, the worst-case time complexity of Algorithm 7

is |O′| +
∑k

i=2

(
|O′|

i

)
· i = O(k · 2|O′

|). With enough memory

for holding at least|O′| double values, the worst-case time com-
plexity is |O′| because every calculated probability can be reused.

5.4 Probability Evaluation
After the probability threshold based pruning, eachk-subsetA

in R may have a probabilityprob(A) greater than the threshold
T . We next present a technique to evaluate those probabilities effi-
ciently.

Formally, the probabilityprob(A) thatk-subsetA (A ∈ R) con-
tains thek nearest neighbors of the query locationq is defined as
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Algorithm 7 ProbTPruning (ObjectSetO′, doubleT )
1: for each objectoi ∈ O′ do
2: if Poi

(f) < T then
3: Removeoi from O′;
4: ResultSetR← ∅;
5: for each objectoi ∈ O′ do
6: R← R ∪ {{oi}};
7: for i← 2 to k do
8: SubSet← ∅;
9: ObjectSetRR← ∅;

10: for each(i− 1)-subsetB in R do
11: RR← RR ∪ B;
12: for each(i− 1)-subsetB in R do
13: for each objectc in RR \B do
14: Add {B ∪ c} into SubSet;
15: R← ∅;
16: for eachi-subsetA in SubSet do
17: if

∏
oi∈A Poi

(f) ≥ T then
18: R←R ∪ {A};
19: return R;

follows:

prob(A) =
∑

oz∈A

∫ +∞

0

poz
(r)

∏
oi∈A\{oz}

Poi
(r)

∏
oj∈O′

\A

(1 − Poj
(r))dr

Here,poz
(r) is the pdf that the distance fromoz to query pointq is

r;
∏

oi∈A\{oz}
Poi

(r) indicates the probability that all objects inA
excludingoz are withinr of q;

∏
oj∈O′

\A(1−Poj
(r)) indicates the

probability that all objects not inA are further away fromq thanr.
For each objectoz ∈ A, the integral calculates the probability that
oz is thek-th nearest neighbor ofq and that all the remaining ones
in A are the first to the(k − 1)-th nearest neighbors. As a result,
the summation over all objects inA is the desired probability.

To evaluate the probabilities efficiently, we use a partition based
approximate evaluation method. Let an arraysl record all the min-
imum distancessi in O′ and the maximum distancesli that satisfy
li≤f . This array should haveg (g=|O′| + k) elements. We sortsl
in ascending order.

Using the arraysl, the bounding regionBRq(f) can be parti-
tioned intog − 1 partitions. In particular, partitionPAx is the
contour betweenBRq(sl[x − 1]) andBRq(sl[x]). For Figure 8,
we haveO′ = {o1, o2, o4} after distance based pruning and prob-
ability threshold based pruning, and thereforeg = 3+2 = 5. Four
partitions are created:PA1[BRq(s1), BRq(s2)], PA2[BRq(s2),
BRq(l1)], PA3[BRq(l1), BRq(s3)] and PA4[BRq(s3), BRq

(l2)].
In the evaluation, we use the following formula to compute the

approximate probability for a givenk-subsetA:

prob(A) ≈
∑

oz∈A

g−1∑
x=1

poz
(PAx)

∏
oi∈A\{oz}

0.5 · (Poi
(PAx)+

Poi
(PAx−1))

∏
oj∈O′

\A

0.5·(1−Poj
(PAx)+1−Poj

(PAx−1))dr

Here,poz
(PAx) is the pdf ofoz in this partition;Poi

(PAx)
(Poi

(PAx−1)) is the upper (lower) bound cdf of the objectoi

whose distance to the query location is in partitionPAx. Aver-
age values are used to calculate approximations. Similarly,1 −
(Poj

(PAx) (1 − Poj
(PAx−1)) is the upper (lower) bound cdf of

the objectoj that is farther than partitionPAx.
For an object inO′, its cdf value in each partition can be com-

puted once and recorded in a two-dimensional array of size|O′| ×

(g−1). The cdf value of objectoi in partitionPAx, i.e.,Poi
(PAx),

is evaluated asPoi
(sl[x]) using Equation 1.

Poi
(PAx) = Poi

(sl[x])

If sl[x] < si, Poi
(PAx) equals 0 because there is no chance for

oi appearing in the partition. On the other hand, ifsl[x]≥ li,
Poi

(PAx) equals 1 because the objectoi must appear nearer than
the partition. The pdf value of objectoi in partitionPAx can be
evaluated as the difference between the cdf value in the current par-
tition and the cdf in the previous partition.

poi
(PAx) = Poi

(PAx) − Poi
(PAx−1), x > 1

For the special case wherex = 1, poi
(PA1)=Poi

(PA1). The cdfs
of the running example are shown in Figure 9.

sl[0]=s1

0.2 1 1 1o1

0 0.3 0.7 1o2

0 0 0 0.5o3

PA1 PA2 PA3 PA4

sl[1]=s2 sl[2]=l1 sl[3]=s3 sl[4]=l2

Figure 9: Partition Based CDF Values

6. EMPIRICAL STUDY

6.1 Experimental Settings
Synthetic Data SetWe generate moving objects using a 3-floor

building plan with 30 rooms and 3 staircases on each floor. All
rooms and staircases are connected by doors to a hallway in a star-
like manner. An RFID reader is deployed by the door of each
room. In addition, readers are deployed along the hallways and
in the staircases. A total of 143 RFID readers are deployed: the
readers deployed by doors are undirected partitioning devices; and
those deployed along the hallways and in the staircases are pres-
ence devices.

Three rules are used to generate movements: 1) an object in a
room can move to the hallway or move inside the room; 2) an object
in a staircase can move to the hallway or move in the staircase; 3)
an object in the hallway can move in the hallway, move to one of
the staircases, or move to one of the rooms. At each step, an object
randomly chooses a room as the destination. If the destination room
chosen is on the same floor as the object, it will move according
to MIWD. Otherwise, it will use the nearest staircase. When the
object enters the destination room, it will move inside the room for
a random time duration and then start a new movement.

Real Data SetOver 1,000,000 tracking records are collected
each day from 25 Bluetooth hotspots in Copenhagen Airport. We
extract the tracking data on the most active day between April 2008
and October 2008. As a result, over 1.1M tracking observations are
recorded in about 110K sampling units for a total of 9,638 moving
objects, i.e., individuals with Bluetooth enabled devices.

We run all experiments on a Windows XP Pro enabled PC with
a 2.66GHz Core2 Duo CPU and 3.25GB main memory.
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6.2 Costs of Indoor Moving Object Indexing
We first evaluate the performance of the proposed hashed based

indexing structures with respect to the synthetic data.
We implement the object sets in these hash tables as bitmaps,

which require less memory space and are update-efficient. We use
a 4-byteint value for each table key (object, device, cell identifier).
A 6,250 byte bitmap is enough for representing the largest 50K
objects in our setting. As a result, each entry inDHT , CDHT ,
CNHT is 6,254 bytes. Therefore, 143 RFID readers and 97 cells
need (143+97·2)·6254=2.1M bytes memory. The device identifier
and timestamps inOLHT are represented asint values. Thus, each
entry in OLHT needs 12 bytes, and 50K objects need 50K·12 =
600K bytes of memory, a modest memory consumption.

At each sampling unit, the costs of updating these memory resi-
dent hash tables are insignificant, as reported in Figure 10. As the
number of objects increases, the update cost increases slowly ac-
cording to Figure 10(a). Note the cost for 50K objects is still very
low. Figure 10(b) shows that varying the activation range does not
affect the update cost significantly.
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Figure 10: Update Efficiency of Indexes

6.3 Pruning Effectiveness and Query Efficiency
Using the synthetic data set, we fix the device activation range

at 100 cm, and 20K objects and thresholdT = 0.9 are used unless
stated otherwise. We choose 20 random indoor positions askNN
query locations. We varyk from 1 to 9. For each query location, 50
kNN queries are issued with different timestamps. We report the
average results over all these queries.

To measure the effectiveness of the MIWD-based pruning, we
record the ratio of object reduction, i.e.,|O′|/|O|. The results are
reported in Figure 11(a). For|O| = 100, only about 20% of the
objects are left in the candidate setO′ after pruning. For larger
|O|s, the pruning ratio is still as high as around 50%. This indicates
that the distance based pruning is very effective. For larger|O|s,
the ratio stays constant ask varies because indoor objects overlap
much more than do outdoor objects. For example, after some time,
the uncertain regions of all objects that leftdevice20 are in cellc20

(in Figure 8).
We measure the effectiveness of probability threshold based prun-

ing using two metrics. First, we measure|O′| as the pruning is able
to eliminate unqualified objects (lines 1–3 in Algorithm 7). Ac-
cording to the results shown in Figure 11(b), for higher threshold
T , only very few objects remain inO′ after the pruning. Second,
we compare the number of qualifiedk-subsets ofO′ before and af-
ter the pruning. According to the results reported in Figure 11(c), a
significant portion ofk-subsets is eliminated by the pruning. These
results indicate that probability threshold based pruning is very ef-
fective.

The results on overall query response time are reported in Fig-
ure 11(d). Probability threshold based pruning is efficient because
fast estimates are calculated. For largerk values, the time spent on
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Figure 11: Pruning Effectiveness and Query Efficiency on Syn-
thetic Data

the probability evaluation is much higher than the other two, which
is due to: (1) Our partition based estimation (can be regarded as
coarse-grained numerical integration) is more time consuming than
“Prob Pruning” and “MIWD Pruning”. (2) For largek, fewer can-
didatek-subsets are filtered out in pruning step 2, so morek-subsets
need prob evaluation.

We also test our PTkNN query processing techniques on the real
data. We choose 5 Bluetooth hotspot locations as query locations
and issuekNN query with differentk value at 100 separate times-
tamps. The results on the effectiveness of the probability threshold
based pruning are shown in Figure 12(a). Largerk values render
the pruning more effective. The results on overall query response
time are reported in Figure 12(b). Largerk values result in more
k-subsets, which call for more probability evaluations.
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Figure 12: Results on Real Data

6.4 Query Processing Scalability
In this part, we evaluate the scalability of query processing us-

ing the synthetic data set. First, we fix the activation range radius
at 100 cm, and then vary the object numbers from 10K to 50K.
As shown in Figure 13(a), the total query response time increases
steadily fork = 3. The increase fork = 9 at 30K objects is at-
tributed to the high probability evaluation cost (See Figure 11(d)).

Second, we fix the number of objects at 10K and vary the radius
of the activation range from 100 cm to 250 cm. The resulting total
query response times are reported in Figure 13(b). Larger ranges
have two effects: larger imprecise uncertain regions for the moving
objects and more active objects being detected by positioning de-
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Figure 13: Query Processing Scalability

vices. The former tends to prolong the query processing time due to
the uncertain region based probability calculations. The latter tends
to have the opposite effect because active objects’ uncertain regions
become much simpler. Therefore, Figure 13(b) exhibits increases
from 100 cm to 200 cm followed by slight decreases at 250 cm.

7. CONCLUSION AND FUTURE WORK
Given an indoor locationq and a probability thresholdT , a prob-

abilistic thresholdkNN (PTkNN) query returns all subsets ofk
indoor moving objects that have probability larger thanT of con-
taining thekNN query result ofq. The paper proposes a complete
set of techniques for computing PTkNN queries. We propose the
minimum indoor walking distance (MIWD) as the distance metric
for indoor spaces. Assuming symbolic indoor positioning, we de-
sign a hash-based indexing scheme for indoor moving objects. We
then formalize the uncertainty of indoor moving object locations.
On these foundations, we propose MIWD based pruning, probabil-
ity threshold based pruning, and efficient probability evaluation for
processing PTkNN queries. Finally, we conduct a comprehensive
empirical study using both synthetic and real data. The results show
that the proposed techniques are effective, efficient, and scalable.

Some interesting research directions exist. As discussed in Sec-
tion 5.3, analyzing historical trajectory data may discover associa-
tions among object movements, which can be used to design more
efficient group pruning in processing a PTkNN query. Regarding
the uncertainty model of indoor moving objects, it is also interest-
ing to conduct probabilistic analysis on other kinds of object distri-
butions, e.g., Gaussian distribution.
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