
Region-based Online Promotion Analysis∗

Tianyi Wu† Yizhou Sun† Cuiping Li‡ Jiawei Han†
† University of Illinois at Urbana-Champaign

‡ Remin University of China
{twu5,sun22,hanj}@illinois.edu licuiping@ruc.edu.cn

ABSTRACT
This paper addresses a fundamental and challenging problem with
broad applications: efficient processing of region-based promotion
queries, i.e., to discover the top-k most interesting regions for ef-
fective promotion of an object (e.g., a product or a person) given by
user, where a region is defined over continuous ranged dimensions.
In our problem context, the object can be promoted in a region
when it is top-ranked in it. Such type of promotion queries involves
an exponentially large search space and expensive aggregation op-
erations. For efficient query processing, we study a fresh, prin-
cipled framework called region-based promotion cube (RepCube).
Grounded on a solid cost analysis, we first develop a partial mate-
rialization strategy to yield the provably maximum online pruning
power given a storage budget. Then, cell relaxation is performed
to further reduce the storage space while ensuring the effectiveness
of pruning using a given bound. Extensive experiments conducted
on large data sets show that our proposed method is highly practi-
cal, and its efficiency is one to two orders of magnitude higher than
baseline solutions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing

General Terms
Algorithms, Performance

Keywords
Promotion analysis, ranked (top-k) query, region

1. INTRODUCTION
This paper examines a new class of online analytical processing
(OLAP) and data mining queries, called top-k region-based pro-
motion query (REPQUERY), which is a novel yet practically inter-

∗The work was supported in part by NASA grant NNX08AC35A,
and the U.S. National Science Foundation grants IIS-08-42769 and
IIS-09-05215

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

esting type of queries for a broad range of decision support applica-
tions. The goal of REPQUERY can be intuitively stated as follows:
given an object of interest, such as a product or a person, we would
like to discover the top-k promotion regions to promote the given
object. Here a region is defined as a continuous interval or block
over one or a few OLAP range dimensions, and a promotion region
intuitively refers to a region where the given object is highly ranked
among all other objects.

Example 1: To promote a hybrid car model H in a car sales database,
a data analyst may discover that the top promotion region is {Year
= 2008∼2009; Price = $15K∼$20K}, in which H is ranked as the
3rd bestselling model. Another example of such a top promotion
region could be like {CustomerIncome = $20K∼$30K}, in which
H is ranked the top-5. In contrast to the global region where H
has a much lower rank, these regions offer more concrete and in-
sightful information for the analyst to conduct market targeting and
product positioning.

Example 2: In the DBLP database1, one may be interested in find-
ing the best promotion region for a given author. While describing
her as the 300-th most prolific author could be less interesting, us-
ing REPQUERY, however, one may find her to be the most promi-
nent author in {Year=2000∼2010} in the database field.

These examples illustrate the related application scenarios, where
REPQUERY discovers promotion regions by drilling down to dif-
ferent parts of the data and surfacing the regions where the given
object is highly ranked (note that most objects are not highly ranked
in the global region). In business intelligence applications like mar-
keting, REPQUERY is able to assist data analysts to quickly locate
and understand which regions are the most likely to promote some
specified product or business object among a myriad of candidate
regions, and then they can leverage such promotion regions along
with the highly ranked results to serve decision making purposes.
In particular, such region-based ranked results can help, for exam-
ple, (1) analyze the best market segments (e.g., a particular cus-
tomer space or a geographical area) for resource allocation and pro-
motion; (2) advertise and enhance brand image (e.g., a bestselling
car model belonging to a certain price range or time frame); and,
(3) discover and summarize interesting object features in not only
categorical but also numerical feature spaces (e.g., a highest-rated
apartment rental business serving more than ten locations).

The most relevant work to this study is [15], where the multidi-
mensional promotion analysis problem is originally proposed. Its
goal can be briefly stated as finding subspaces (i.e., multidimen-

1http://dblp.uni-trier.de

63

sional selection conditions) where a given object is highly ranked.
In comparison to the multidimensional promotion analysis prob-
lem, REPQUERY introduces three major new challenges.

First, using simple object ranking to measure top-k promotion re-
gions could be insufficient in many cases because different regions
may not be equally interesting; specifically, they may have (1) dra-
matically different sizes, and (2) containment relationships or over-
laps that may cause redundancy in top-k results. To this end, the
semantics of the model must incorporate ad-hoc rank-independent
weights for regions, such that users can impose weights on regions
based on at query time. Also, the redundancy-aware semantics
should be supported such that the top-k results are discriminative,
i.e., no pair of top-k regions returned to user is very similar.

Second, because REPQUERY need to handle continuous, ranged
dimensions whereas the previous problem deals with categorical
dimensions, the search space of REPQUERY would be significantly
larger. For example, a Year dimension with 50 distinct values may
generate only 50 subspaces but 50 × (50 + 1)/2 = 1275 one-
dimensional regions. We can see that if there are d range dimen-
sions, each having cardinality N , the total number of regions would
be (N(N+1)

2
)d, quadratic of the number of subspaces. The huge

search space would dwarf the cost saving of any online pruning
method, making online optimization techniques simply infeasible
on even moderately large data set.

Third, for REPQUERY, we have to tackle the non-monotonicity
property of the aggregate measure when computing object rank-
ings. Indeed, the previous work assumes that the aggregate measure
for ranking be monotone such as SUM for the purpose of shared
computation. The aggregate measures supported in this work can,
nevertheless, be arbitrarily complex, ad-hoc measures defined by
users.

Despite that the need for REPQUERY is commonplace, no exist-
ing work in the literature attempts to address all these challenges.
What happens to users of a conventional database system is that
they would need to go through a trial-and-error process to manually
search for interesting promotion regions, meaning that they have to
rely heavily on prior knowledge. The results obtained in this way
could be rather incomplete or even misleading. On the other hand,
among the numerous top-k query processing techniques, none can
be applied toward solving REPQUERY, because they require that a
region and the number of objects returned be specified as parame-
ters, which are unknown a priori in our context.

Obviously, a naive implementation that exhaustively aggregates each
region and computes the object’s rank can be intolerable to users
performing explorative analysis because of the exponential number
of regions. At the other end of the spectrum, a full materializa-
tion approach would also be extremely costly even on a data set
with moderate size. Thus, to efficiently answer top-k region-based
promotion queries, in this paper we propose a novel, principled
framework called the Region-based Promotion Cube (RepCube),
grounded on a partial materialization strategy with solid theoreti-
cal analysis.

A key ingredient of the framework is a model of the materialized
cube cell’s pruning power, which lays the foundation for an overall
cost model that computes the pruning power of any cube structure.
In the RepCube, the cell structure is similar to quantiles for estimat-
ing probability distributions; here we exploit each cell’s capability

A B O (Object) M (Measure)
a1 b1 t1 0.7
a1 b2 t2 0.8
a1 b2 t3 0.8
a1 b2 t1 0.2
a1 b3 t4 1.2
a2 b1 t3 0.9
a2 b2 t1 0.3
a2 b4 t2 1.6
a2 b5 t1 1.2

Table 1: An example fact table.

in upper- and lower-bounding object ranks and hence pruning un-
interesting regions at an early stage. However, unlike any previous
work, our key observation is that a uniform cell structure book-
keeping scores from evenly spaced rank positions does not generate
satisfactory pruning power. This is due to a unique property of our
problem: an object is likely to be highly ranked in its top-k pro-
motion regions. Thus, we present a cost model and its solution to
generate an optimized cell structure adaptive to query distribution.
These optimized cells are able to yield a provably optimal expected
query execution cost.

Another idea we explore is to condense regions sharing similar
aggregate score distributions. For example, the sales of products
might be similar for regions {Year = 2007 ∼ 2009} and {Year =
2008 ∼ 2010} after proper normalization. Thus, we select a few
relaxed cells to represent score ranges instead of exact scores, and
use them to summarize sets of original cube cells. This would lead
to a further space saving. The effectiveness of a relaxed cell’s prun-
ing power can be controlled by a user-specified parameter ε. In
summary, our contributions are the following:

• (Section 2) Present the class of top-k region-based promotion
queries and the model and semantics;

• (Section 3) Introduce the generic region-based promotion cube
framework that can achieve a desired tradeoff between storage
space and query execution time;

• (Section 4) Propose a cost model and a provably optimal solu-
tion for generating the most cost-effective cell structure through
a solid theoretical analysis;

• (Section 5) Develop a cell relaxation approach to further opti-
mize the storage overhead; and

• (Section 6) Present comprehensive experimental evaluation on
real and synthetic data sets to verify that our framework is 1 to
2 orders of magnitude faster than baseline solutions.

In addition, Section 7 discusses the related work, and Section 8
concludes this paper.

2. MODEL AND SEMANTICS
In this section we present our data model and formalize the query
semantics.

Data model: Consider a data set FactTable(A,B, T, M) consist-
ing of base tuples with the following dimensions.

• α categorical dimensions A = {A1, A2, . . . , Aα}: for each
Ai ∈ A, dom(Ai) is a finite collection of categorical values;

64

R (Region) F (τ, R) Rank(τ, R) PRank(τ, R)

R1 : {a1, b1 ∼ b1} 0.7 1 100%
R2 : {a1, b1 ∼ b2} 0.9 1 33%
R3 : {a1, b1 ∼ b3} 0.9 2 50%
R4 : {a2, b1 ∼ b4} 0.3 3 100%
R5 : {a2, b1 ∼ b5} 1.5 2 67%

other regions omitted.

Table 2: Example regions and an object of interest τ = t1’s ag-
gregate score (SUM), rank, and percentile rank in each region.

• β continuous ranged dimensions B = {B1, B2, . . . , Bβ}:
these are discretized numeric dimensions. For each Bi ∈ B,
dom(Bj) consists of an ordered set of ranges of values. A typi-
cal example is dom(Year) = {2010, 2009, . . .};

• Object dimension T and measure dimension M : dom(T) is
the collection of objects and let n be the total number of distinct
objects, i.e., n = |T |. Let dom(M) be real numbers R.

A region R is defined as {a1, . . . , aα, b1 ∼ b′1, . . . , bβ ∼ b′β},
where ai ∈ dom(Ai) or ai = “ ∗ ” (the “don’t care" value) and
bj , b

′
j ∈ dom(Bj) and bj ≤ b′j . Denote by R the set of all regions

in the data set (we refer readers to [2, 6, 7] for detailed complexity
analysis of R).

Example 3: Table 1 displays a sample fact table consisting of a
categorical dimension A and a range dimension B. T and M
are the object and measure dimensions, respectively. In Table 2,
the first column R displays several example regions. For instance,
{a1, b1 ∼ b3} represents the region “A = a1 ∧ b1 ≤ B ≤ b3".

Query model: Consider an arbitrary aggregate function F (e.g.,
SUM, Average, Variance). Given any region R ∈ R and any object
t ∈ T , denote by F (t, R) the aggregate score of t in R. Simi-
larly, denote by Rank(t, R) t’s rank in R, obtained by ordering ob-
jects descendingly or ascendingly according to the aggregate score.
For clarity descending order is assumed throughout the paper. The
REPQUERY problem is defined as follows.

Definition 1 (Top-k Region-based Promotion Query): Given a query
Q(τ, k) consisting of an object of interest τ ∈ dom(T) for pro-
motion and a non-negative integer k, return P , the ordered list of
top-k regions, such that for ∀R1 ∈ R− P,∀R2 ∈ P we have
Rank(τ, R1) × w(R1) ≥ Rank(τ, R2) × w(R2), where w(·) is
any positive weight function over R.

Ties are broken arbitrarily. We can see that, by setting w(·) to a
positive constant, the REPQUERY model admits a simple object
ranking semantics in that it asks for the top regions where the given
object τ is highly ranked. A user may further model percentile
rank (PRank) by letting w(R) be the inverse of the number of ob-
jects present in region R. One may also let w(R) be the inverse
of R’s number of tuples to discount small regions. Note that these
rank-independent weights can be specified by users or combined in
an ad-hoc way to tackle more complex scenarios.

Example 4: Continuing from Example 3, let the object of inter-
est τ be t1 and Table 2 shows τ ’s aggregate score (using SUM),
rank, and percentile rank in the example regions. Not counting the
omitted regions, R1 and R2 would be the top-2 promotion regions
using simple ranking (because t1 is ranked top-1 in both regions),
whereas R2 and R3 would be the top-2 promotion regions accord-

ing to PRank (because t1 is ranked top-33% and top-50% in them,
respectively).

Now let us further describe a query model that incorporates the
redundancy-aware semantics.

Definition 2 (Top-k Discriminative Region-based Promotion Query):
Given a query Q(τ, k, θ), return P , the ordered list of top-k dis-
criminative regions, such that for ∀R1 ∈ R− P , we have either
∀R2 ∈ P ⇒ Rank(τ, R1) × w(R1) ≥ Rank(τ, R2) × w(R2),
or ∃R2 ∈ P ⇒ Sim(R1, R2) ≥ θ ∧ Rank(τ, R1) × w(R1) ≥
Rank(τ, R2)× w(R2).

Here we define Sim(R1, R2) = |R1∩R2|
|R1∪R2| , where |R| denotes the

number of base tuples contained in R. Other symmetric similarity
measures can also be applied in principle. Intuitively, this definition
is useful when users want to avoid redundant regions appearing in
top-k results.

Example 5: Following the running example (Tables 1 and 2), con-
sider a top-k discriminative query Q(t1, 2, 0.6). We can see that
R2 and R3 have a similarity value Sim(R2, R3) = |{a1, b1 ∼
b2}|/|{a1, b1 ∼ b3}| = 4/5 = 0.8 > θ = 0.6. Thus, based
on PRank, R3 is no longer a top-2 promotion region since it is re-
dundant with R2; instead, now the top-2 discriminative promotion
regions should be R2 and R5 (not counting the omitted regions in
Table 2).

Before presenting our solutions, assume that the aggregate function
F is fixed. For clarify of presentation, also assume Definition 1 is
used and let w(·) be 1 (i.e., simple object ranking). More complex
semantics will be discussed in Section 4.5.

3. REPCUBE: THE REGION-BASED PRO-
MOTION CUBE FRAMEWORK

In this section we first motivate and present the RepCube frame-
work (Sections 3.1, 3.2, and 3.3) and then present the REPQUERY
execution algorithm as an integral part of the framework (Section
3.4). This framework lays the foundation for the subsequent cube
structure optimization techniques (Sections 4 and 5).

3.1 No Materialization and the GetRank()

Primitive
Let us first consider a no-materialization strategy. In this case, a
promotion query must be computed from scratch. The basic query
execution method is to enumerate each region Ri ∈ R (1 ≤ i ≤
|R|) and compute Rank(τ, Ri); the top-k promotion regions are
maintained and outputted. During query execution, we abstract out
a data access primitive GetRank(i), for computing Rank(τ, Ri).
GetRank(i) accesses all base tuples in Ri, computes aggregate
scores for all objects, and derives τ ’s rank. Clearly, GetRank()
is expensive due to its holistic property: all objects must be aggre-
gated to correctly compute τ ’s rank. This holistic property coupled
with a large number of regions would make on-the-fly execution
extremely expensive even with some aggregation cost sharing and
pruning techniques.

3.2 Full Materialization and the GetAgg()

Primitive
On the other extreme, a full-materialization approach means to pre-
compute all object aggregate scores for all regions. During query

65

Algorithm 1: Query Execution
/* Pruning phase */

1: for i ← 1 to |R| do
2: F (τ, Ri) ← GetAgg(i); /* not costly */
3: LBRanki ← φj + 1, where j satisfies

PCellij > F (τ, Ri) ≥ PCellij+1;
4: UBRanki ← φl − 1, where l satisfies

PCellil−1 ≥ F (τ, Ri) > PCellil ;
5: end
6: δ = the k-th smallest UBRanki for 1 ≤ i ≤ |R|;
7: R∗ ← {Ri|LBRanki ≤ δ}; /* unpruned set of regions */

/* Verification phase */
8: foreach unpruned region Ri ∈ R∗ do
9: Rank(τ, Ri) ← GetRank(i); /* costly */
10: end
11: Return P , the top-k regions with the smallest

Rank(τ, Ri);

Table 3: The complete query execution algorithm.

execution, we abstract out another data access primitive GetAgg(i),
which computes F (τ, Ri) as follows: simply retrieves all base tu-
ples in Ri related to τ and aggregates them. Given a full materi-
alization, a query can be executed in 2 steps for each of the |R|
regions: first, call GetAgg(i) to get F (τ, Ri), and second, de-
rive Rank(τ, Ri) by counting the materialized aggregate scores in
Ri greater than F (τ, Ri). The top-k answers can be subsequently
computed. Compared to GetRank(), GetAgg() is much less
costly because it only accesses τ ’s base tuples, which is especially
efficient in the presence of a clustered index on T .

Not surprisingly, the storage overhead would be prohibitive. For
example, if a data set has 1 categorical dimension and 2 range di-
mensions with an average cardinality of 100 as well as 10K ob-
jects, the full materialization approach would approximately gen-
erate 101 ∗ (100 ∗ 101/2)2 ∗ 10K ≈ 2.6 ∗ 1013 values, or nearly
100TB of disk space for a single aggregate function!

3.3 The Uniform RepCube Structure
To balance the storage overhead and online execution time, we use
a method similar to quantization that samples aggregate scores at
predefined positions from a sorted list of aggregate scores for each
region Ri. We call the materialized sample for each region a p-cell,
defined as follows.

Definition 3 (P-Cell): For any region Ri ∈ R, denote by F i
1 , F i

2 ,
. . . , F i

n the ranked object aggregate scores in Ri in decreasing or-
der (w.l.o.g. assume no duplicate scores). Given a position vector
of length m: ~φ = (φj)

m
j=1 (where 0 ≤ m ≤ n, 1 ≤ φj ≤ n, and

j < l ⇒ φj < φl) , define PCelli as the vector of aggregate scores
induced by ~φ, i.e., PCelli = (F i

φj
)m
j=1.

The most common way of choosing the position vector is to select
a collection of evenly spaced values from {1, 2, . . . , n}. A materi-
alization plan consisting of a collection of p-cells based on such a
position vector is called a uniform RepCube.

Definition 4 (Uniform RepCube): A uniform region-based promo-
tion cube is defined as a collection of p-cells, {Ri, PCelli

∣∣1 ≤ i ≤
|R|}, where the position vector is set to ~φ = (1 + b j−1

m
× nc)m

j=1.

Query execution Storage overhead Number of GetRank() calls
No materialization 0 |R|
Full materialization Prohibitive 0
Uniform RepCube Small < |R| (~φ not optimized)
Optimal RepCube Small ¿ |R| (~φ optimized)
Relaxed RepCube Very small Opt. with ε-relaxation bound

Table 4: A roadmap of different strategies studied in this paper.

The only parameter m controls the size of uniform RepCube; in
particular, m = 0 corresponds to the no materialization strategy
while m = n the full materialization strategy. In effect, m is
much smaller than the total number of objects n so that the uni-
form RepCube would be significantly smaller compared to a full-
materialization approach.

3.4 Query Execution Algorithm
Let us describe the query execution algorithm given an object of
interest τ and the uniform RepCube structure. Recall that its goal
is to return the top-k regions where τ is the most highly ranked. The
query execution works in 2 phases. First is a pruning phase, where
upper and lower bound ranks of τ for each region can be computed
using the uniform RepCube. Then the unpromising regions not
possible to be in the top-k are pruned. The second is a verification
phase where each of the potential top-k regions is verified such that
τ ’s true rank can be computed.

Both phases can be succinctly represented using the GetRank()
and GetAgg() primitives. The detailed algorithm is depicted in
Table 3 and we elaborate on each step. The pruning phase com-
putes the lower and upper bound ranks of τ for each region Ri

and conduct pruning (Lines 1–7). Specifically, GetAgg() is called
to get τ ’s aggregate score (Line 2), which is subsequently com-
pared to the region’s materialized p-cell to obtain the highest pos-
sible rank LBRanki (Line 3) and the lowest possible rank UBRanki

(Line 4) of τ in Ri (for correctness we define two dummy posi-
tions φ0 = 0 and φm+1 = n + 1 such that PCelli0 = −∞ and
PCellim+1 = +∞). Next, δ is computed as a threshold, meaning
that τ must rank no lower than δ in any top-k promotion region
(Line 6). All regions with the best possible rank lower than δ can
be safely pruned (Line 7). The second phase verifies the unpruned
regions (Lines 8–10), where the GetRank() method is called for
obtaining the exact rank for each unpruned region (Line 9). Finally,
the top-k promotion regions are outputted (Line 11).

Cost analysis: Since the costly GetRank() method (Line 9) ac-
counts for the bottleneck of the algorithm, the cost of the query ex-
ecution algorithm is dictated by |R∗|, the number of GetRank()
calls, which is in turn determined by the underlying pruning power
of the materialized cube. In fact, the pruning power is correlated
with the user-specified parameter m in the sense that when m = 0
(no materialization) no region would be pruned and when m = n
(full materialization) no GetRank() call is needed since LBRank
and UBRank are tight in this case. Therefore, the RepCube frame-
work offers a controllable tradeoff between storage space and on-
line execution cost.

4. PRUNING POWER OPTIMIZATION FOR
REPCUBE

The uniform RepCube strategy samples aggregate scores at regu-
larly spaced positions; however, an important intuition it fails to
model is that typically in top-k promotion regions τ is very likely

66

to be highly ranked. Rather than using a uniform position vector,
our idea here is to carefully select a position vector adaptive to the
underlying distribution of queries in order to achieve much better
pruning power given a limited amount of storage space. Intuitively,
for example, when k is very small for most queries, it would be a
better idea to store more samples toward lower positions in order to
better bound the ranks. In this section, we model this intuition and
present an optimal solution. Our high-level goal here is to solve the
following optimization problem.

Definition 5 (The Pruning Power Optimization Problem): Given
a limited space budget indicated by m, and a distribution of pro-
motion queries, determine the best position vector ~φ such that the
expected promotion query execution cost is minimized.

To solve the problem, we first formulate a cost model to compute
the expected REPQUERY cost as a function of the position vector
(Sections 4.1 and 4.2). We then discuss a dynamic programming
solution for selecting the positive vector that produces the provably
optimal cost (Section 4.3).

Roadmap: Table 4 presents a summary of the methods studied in
the paper. In the previous section we have explained the first 3
methods, namely on-the-fly execution, naive precomputation, and
the uniform RepCube approaches. The optimal RepCube approach
discussed in this section will further enhance the query efficiency
as a result of a much smaller number of calls to GetRank(). Sec-
tion 5 will discuss the Relaxed RepCube technique for reducing the
storage space of the optimal RepCube.

4.1 The Unit Cost Model
As a building block to the overall cost model, we would like to
model the basic case, that is, the cost of a single fixed REPQUERY

Q(τ0, k0) given a position vector ~φ with length 1 (i.e., m = 1); in
other words, only a single aggregate score sample is drawn for each
region.

Let Rs1 , Rs2 , . . . , Rs|R| be the ordered list of regions sorted ac-
cording to τ0’s rank, where s1, s2, . . . , s|R| is a permutation of
1, 2, . . . , |R| and i < j ⇒ Rank(τ0, Rsi) ≤ Rank(τ0, Rsj). For
ease of exposition we assume τ occurs in all regions and use a short
notation Rank(i) to denote Rank(τ0, Rsi). Since m = 1, let ~φ be a
scalar φ1 (∈ {1, 2, . . . , n}), and assume that φ1’s corresponding p-
cells, {PCells1 , PCells2 , . . . , PCells|R|}, have been precomputed.

Given these p-cells, let us hypothetically compute the rank bounds
in the query execution algorithm. For Q(τ0, k0), the computation
can be divided into two cases: (1) all regions {Rsi} satisfying
Rank(i) < φ1 will have LBRanksi = 1 and UBRanksi = φ1 − 1
because the inequality +∞ = PCellsi

0 < F (τ0, k0) < PCellsi
1

holds; (2) conversely, all regions {Rsi} satisfying Rank(i) > φ1

will have LBRanksi = φ1 + 1 and UBRanksi = n. Without
loss of generality, assume that there does not exist any region Rsi

such that Rank(i) = φ1 (any region satisfying this equation can-
not be pruned since its LBRank would be 1 and UBRank would
be n). Now, define i∗ to be the value in {1, 2, . . . , |R|} such that
Rank(i∗) < φ1 < Rank(i∗ + 1) (let Rank(|R|+ 1) be ∞). Based
on i∗, we can precisely compute R∗, the unpruned set of regions
for Q(τ0, k0), as in either of the following cases:

• When i∗ < k0, since in this case there are less than k0 regions
with UBRank equal to φ1 − 1, the k0-th UBRank would be n,

meaning that δ = n (i.e., the threshold δ has no pruning power).
Hence, no region can be pruned and R∗ = R.

• When i∗ ≥ k0, there would be exactly i∗ regions with UBRank
equal to φ1−1 and LBRank equal to 1, so these regions will not
be pruned. Hence, R∗ = {Rs1 , . . . , Rsi∗ }.

Example 6: Suppose the query parameter k0 is 2 and there are
totally 100 objects and |R| = 6 regions R1, R2, . . . , R6, in which
τ0 is ranked 38th, 35th, 26th, 41st, 29th, and 50th, respectively.
Thus, s1 = 3, s2 = 5, s3 = 2, s4 = 1, s5 = 4, and s6 = 6. If
we set the position vector (scalar) φ1 to 27, we will obtain i∗ = 1
because Rank(1) < φ1 < Rank(2) (i.e., 26 < φ1 < 29). In this
case only in R3 does τ0 have UBRank = φ1 − 1 = 26 and in all
other regions τ0 has UBRank = n = 100, so δ, the k0-th smallest
UBRank, will be 100 and therefore none of the 6 regions can be
pruned after the pruning phase. However, if we set φ1 to 37, we
will obtain i∗ = 3 since Rank(3) < φ1 < Rank(4). Thus R3, R5,
and R2 have UBRank = 36. In this case δ = 36 and the remaining
3 regions can be pruned.

Now we are ready to present the unit cost model. We introduce
some notation. Denote by

• COST(Q|φ1) the overall query execution cost for Q(τ0, k0)
given φ1;

• Ω the constant cost of the pruning phase (Lines 1–7, Table 3);

• COST(si) the cost of calling the GetRank(si) method for re-
gion Rsi .

Since the overall query execution cost given φ1 can be broken down
to (1) the constant cost of the pruning phase and (2) the cost of
the verification phase that consists of multiple GetRank() calls,
we can formulate the unit query execution cost of a single query
Q(τ0, k0) using a 1-length position vector ~φ = φ1 as the following
(note that i∗ can be computed using the method described earlier in
this subsection):

COST(Q|φ1) =

Ω +

i∗∑
i=1

COST(si), if i∗ ≥ k0

Ω +

|R|∑
i=1

COST(si), if i∗ < k0

4.2 The Complete Cost Model
Now a step further. Consider the cost of a single query Q(τ0, k0)

when a position vector ~φ = {φj}m
j=1 with arbitrary length m ∈

[1, n] is given. As a more general case of the unit case, our goal now
is to compute COST(Q|~φ), the overall cost for Q(τ0, k0) given ~φ.

Note that now in each region we materialize m aggregate scores.
For each j ∈ {1, 2, . . . , m}, we let i∗j be the value in {1, 2, . . . , |R|}
which satisfies Rank(i∗j) < φj < Rank(i∗j + 1). This intuitively
means that if we materialize the aggregate score at position φj , we
will be able to distinguish i∗j regions from the remaining ones in
terms of rank bounds. We have i∗1 ≤ i∗2 ≤ · · · ≤ i∗m because of
the monotonicity of {φj} (i.e., φ1 < φ2 < . . . < φm). Using a
similar method for the unit cost model, the total cost of Q(τ0, k0)

given ~φ can be computed in either one of the following cases.

• When i∗m < k0, δ would be n for the same reason as in the case
of m = 1. Hence, no region can be pruned and R∗ = R.

67

• Otherwise, let i∗ be the smallest value in {i∗j} to satisfy i∗ ≥
k0. Let u be the subscript satisfying i∗u = i∗. Observe that,
based on the computation of LBRank and UBRank, there are
exactly i∗ regions having UBRank ≤ φu−1, and the remaining
|R| − i∗ regions having LBRank ≥ φu + 1. This means that
δ = φu − 1 and the latter |R| − i∗ regions will be pruned.
Hence, R∗ = {Rs1 , . . . , Rsi∗ }.

Consequently, COST(Q|~φ) can be formulated as:

COST(Q|~φ) =

Ω +

|R|∑
i=1

COST(si) if i∗m < k0

Ω +

i∗∑
i=1

COST(si) otherwise

Finally, to complete the overall cost model formulation, suppose
the top-k region-based promotion queries are drawn from a multi-
variate distribution Q ∼ p(τ, k), and denote by COSTall the vari-
able of the overall cost induced by p(τ, k). Then the expected over-
all cost for any given position vector ~φ can be computed as:

E(COSTall|~φ) =

∫

Q

COST(Q|~φ)p(Q)dQ. (1)

Because our goal is to decide the best position vector so as to min-
imize the expected overall cost, the objective of the pruning power
optimization problem becomes to obtain

~φ∗ = arg min
~φ

E(COSTall|~φ). (2)

4.3 An Optimal Solution for Maximizing the
Pruning Power

This subsection discusses an efficient dynamic programming solu-
tion to compute the optimal position vector ~φ∗ defined in Equation
2. The idea of the dynamic programming solution is to solve a
series of recurrences represented by a matrix MinCost[i, j] (0 ≤
i ≤ n, 0 ≤ j ≤ m). Each element of the matrix MinCost[i, j]
represents the minimum expected overall cost that can be achieved
when selecting a j-length position vector ~φ with the very last po-
sition value being i (i.e., φ1 < φ2 < . . . < φj = i). Corre-
sponding to MinCost[·, ·], we use another matrix Φ[·, ·] to remem-
ber the optimal position vector that achieves MinCost[i, j], i.e.,
MinCost[i, j] = E(COSTall|Φ[i, j]) and the last value in vector
Φ[i, j] is i. The minimum value in MinCost[·, ·] will be the optimal
expected overall cost.

The set of recurrences can be computed as follows. Initially, set
MinCost[0, j] = MinCost[i, 0] = +∞ for 0 ≤ i ≤ n and 0 ≤
j ≤ m, respectively, as boundary cases; also set the corresponding
Φ[0, j] and Φ[i, 0] to empty vectors. This initial setting means that
the cost is large when nothing is materialized. Then:

MinCost[i, j] = min

MinCost[i, j − 1];
MinCost[l, j − 1]−∆(i, j, l),

for each 0 ≤ l < i;

Φ[i, j] =

Φ[i, j − 1],
if MinCost[i, j] = MinCost[i, j − 1];

Φ[l, j − 1]⊕ i,
if MinCost[i, j] = MinCost[l, j − 1];

Before getting into the details of the above equations, we can see
that the optimal position vector of Φ[i, j] can be derived by consid-
ering either the minimum cost of an existing solution Φ[i, j − 1]
(i.e., the optimal (j − 1)-length position vector by considering the
last positions being i), or a set of new solutions Φ[l, j − 1]⊕ i for
0 ≤ l < i (i.e., new vectors composed by appending the value i to
previous solutions Φ[l, j−1]). For each such new solution Φ[l, j−
1] ⊕ i, its cost can be expressed as MinCost[l, j − 1] −∆(i, j, l),
where ∆(i, j, l) = E(COSTall|Φ[l, j − 1])− E(COSTall|Φ[l, j −
1]⊕ i), i.e., the reduction in expected query execution cost.

Based on Equation 1, the computation of the expected overall costs
E(COSTall|Φ[l, j − 1]) and E(COSTall|Φ[l, j − 1] ⊕ i) requires
the knowledge about query distribution. To obtain the distribution,
we may assume that a query workload W consisting of w queries
{Q1, Q2, . . . , Qw} is given. In the absence of such a query work-
load, one may either assume that p(τ, k) be a uniform distribu-
tion and draw sample queries from it, or use application-dependent
knowledge (e.g., a query interface that returns the top-10 regions).
Given such a workload, ∆(i, j, l) can be computed as

∆(i, j, l)

= E(COSTall|Φ[l,j−1])−E(COSTall|Φ[l,j−1]⊕i)

= ∑
Q∈W p(Q)COST(Q|Φ[l,j−1])−∑

Q∈W p(Q)COST(Q|Φ[l,j−1]⊕i)

= ∑
Q∈W p(Q)

(
COST(Q|Φ[l,j−1])−COST(Q|Φ[l,j−1]⊕i)

)
.

Therefore, using the above procedure, one can iterate through each
0 ≤ i ≤ n and 0 ≤ j ≤ m and fill in the matrices MinCost and
Φ. The recurrence with the minimum cost, min{MinCost[i, j]},
would indicate the minimum expected overall cost.

Claim 1 (Solution Optimality): Letting

(iopt, jopt) = arg min
(i,j)

MinCost[i, j],

we have
~φ∗ = Φ[iopt, jopt],

where ~φ∗ is defined in Equation 2.

Proof sketch: The proof of the optimality of the dynamic pro-
gramming solution follows from two properties. (1) Monotonic-
ity: appending a new position value to an existing vector would
never increase the overall expected cost. This is obvious as mate-
rializing more aggregate scores would not hurt the efficiency query
execution. (2) Substructure optimality: the cost reduction by ap-
pending a new position value, ∆(i, j, l), depends only on position
l but none of the positions prior to l (in other words, once we know
MinCost[l, j− 1], the values of MinCost[l′, j− 1] for l′ < l would
not affect MinCost[i, j]). As a result, at each iteration we can guar-
antee that MinCost[i, j] is optimal to the subproblem corresponding
to that iteration. Based on these properties, we can prove that the
dynamic programming equations generate the best overall solution.

4.4 Implementation
Based on the selection of optimal positions, an optimal RepCube
can be implemented in 2 steps. First, given a query distribution
or workload, compute the optimal position vector ~φ∗ through dy-
namic programming. Second, for each region, materialize its p-cell
according to ~φ∗. In this subsection, we discuss several issues con-
cerning the implementation.

Dynamic programming complexity: The dynamic programming
algorithm can be implemented using 3 nested loops for i, j, and

68

Algorithm 2: Generalized Query Execution
/* Line 1 here is the same as Algorithm 1 Lines 1–5 */

1: for i ← 1 to |R| do compute LBRanki and UBRanki

2: C ← {R1, R2, . . . , R|R|}; /* candidate regions */
3: P ← empty list;
4: while |P| ≤ k ∧ |C| > 0 do
5: R ← the region in C having the highest rank of τ ;
6: Append R to P ;
7: C ← C\{R′|Sim(R′, R) ≥ θ};
8: end
9: Return P , the top-k discriminative regions;

Table 5: Computing top-k discriminative promotion regions.

l, respectively. At each loop iteration, evaluating ∆(i, j, l) is the
bottleneck because of repetitive evaluations of COST(Q|~φ). To be
more efficient, we materialize {Rank(τ, R1), . . . , Rank(τ, R|R|)}
for each Q ∈ W upfront. This way, COST(Q|~φ) can be evaluated
efficiently without accessing the original data set. The complex-
ity of the nested loop would be O(n2mw). When n is extremely
large (e.g., 1M), a heuristic is to limit the choices of positions to a
regularly sampled subset of {1, 2, . . . , n}.

Cost model parameters: The assignment of the cost model’s pa-
rameters Ω and COST(si) (Sections 4.1 and 4.2) can be as follows:
set Ω to τ ’s cardinality (i.e., the number of base tuples containing
τ) and COST(si) to region Rsi ’s number of tuples. Other parame-
ters may be used depending on the actual implementation.

4.5 Extensions
In our previous discussion we have proposed techniques for the
simple object ranking semantics. We now discuss how we can ex-
tend those to support ad-hoc weight function as well as the top-k
discriminative query semantics.

Ad-hoc weight function: To handle REPQUERY with arbitrary
weight functions, the query execution algorithm can be extended
with only minor modification. Specifically, in Algorithm 1, when
computing the threshold δ (Line 6) and the unpruned set of re-
gions R∗ (Line 7), LBRanki and UBRanki should be replaced by
LBRanki × w(Ri) and UBRanki × w(Ri) (Lines 3–4) respec-
tively. Correspondingly, in the cost model formulation (Section
4.2), COST(Q|~φ) need to compute the unpruned set of regions R∗
in the same fashion.

Top-k discriminative promotion regions: To compute the top-k
discriminative regions according to Definition 2, we show a gen-
eralized query execution algorithm in Table 5. The pruning phase
of Algorithm 2 (Line 1) is the same as that in Algorithm 1 in that
rank bounds are computed based on the RepCube. However, the
verification phase of Algorithm 2 differs from the previous one in
that the top-k discriminative regions are now computed one-by-one
(Lines 4–8) rather than as a batch; in other words, at each iteration
we verify only the next top discriminative region and remove all its
similar regions.

In fact this algorithm generalizes Algorithm 1, because if we set
θ = 1, the two algorithms will verify the same set of regions.
The only additional cost of Algorithm 2 lies in computing Sim(·, ·)
(Line 7), which can be done efficiently. Also, for any region, Al-
gorithm 2 guarantees that GetRank() will be called at most once.
Due to the limited space, a detailed analysis of the cost model based

on this generalized algorithm is not discussed here.

5. RELAXING CELLS FOR SPACE REDUC-
TION

In this section, we study techniques to further reduce the storage
overhead of the RepCube. The idea here is to merge multiple
p-cells with similar aggregate scores and represent them using a
single relaxed cell. Specifically, instead of materializing the exact
scores of a p-cell, we store score ranges within a predefined bound.
Thus, other p-cells whose exact scores are covered by these score
ranges can be represented by the relaxed cell.

Definition 5 (ε-Relaxed Cell): Given a region R’s p-cell, PCell =
{f1, f2, . . . , fm}, define its normalized cell as {1.0, f2

f1
, . . . , fm

f1
}.

Given a relaxation parameter ε ≥ 0, define the corresponding ε-
relaxed p-cell as RCell = {1.0± ε

m
, f2

f1
± ε

m
, . . . , fm

f1
± ε

m
}.

We elaborate on this definition. The normalization step normal-
izes aggregate scores that could be at very different scales for sub-
sequent cell merging. This step is important as we observe that
different regions may have very similar trends in aggregate score
distributions but the absolute values could be quite different. For
example, the distribution of the SUM of sales in {Year = 2010}
could be similar to that in {Year = 2009 ∼ 2010} but differ by
a factor 2 in scale. Since in any p-cell f1 is the largest aggregate
score, dividing each cell value by f1 would make all normalized
values to be within range [0, 1]. In principle, other normalization
methods may also be applied here for the same purpose. Given the
relaxation parameter ε, each value in an ε-relaxed cell would repre-
sent a set of ranges of aggregate scores. Specifically, the i-th value
of the relaxed cell represents [fi − f1 × ε

m
, fi + f1 × ε

m
] if f1 is

known. Now, we are ready to introduce a more compact RepCube
structure based on a set of ε-relaxed cells.

Definition 6 (ε-Relaxed RepCube): An ε-relaxed RepCube consists
of a collection of r ε-relaxed cells {RCell1, RCell2, . . . , RCellr}
(1 ≤ r ≤ |R|), and a surjective mapping function g from each
Ri to some relaxed cell, i.e., g : {1, 2, . . . , |R|} → {1, 2, . . . , r}.
Also the normalization score f1 is stored for each Ri.

The ε-relaxed RepCube contains no more than r relaxed cells. This
means that one or more regions are mapped to a same relaxed cell.
We require that these regions’ p-cells be covered by the ranges of
the relaxed cell they are mapped to. Notice that each region still
maintains m values, so the total size of a relaxed cube would be
much smaller than the original cube when r ¿ |R|.

The query execution algorithm in Table 3 need slight modifica-
tion at the pruning phase (Lines 3–4) to accommodate the relaxed
cube. Given Ri, F (τ, Ri), and a relaxed cell RCellg(i) = {1.0 ±
ε
m

, f2
f1
± ε

m
, . . . , fm

f1
± ε

m
}, the computation of LBRanki (Line 3)

now should be computed as φj +1 for j satisfying fj − ε
m
× f1 >

F (τ, Ri) ≥ fj+1− ε
m
×f1. Similarly, UBRanki (Line 4) should be

φl− 1 for l satisfying fl−1 + ε
m
× f1 ≥ F (τ, Ri) > fl + ε

m
× f1.

Note that these bounds guarantee the precision of the query exe-
cution algorithm. The pruning power of the relaxed RepCube, on
the other hand, will be similar to the original RepCube when the
relaxation parameter ε is chosen to be very small.

5.1 A Greedy Algorithm
Given an original RepCube with |R| p-cells, we would like to se-
lect the smallest subset of their corresponding relaxed cells (i.e., to

69

 1

 10

 100

 1000

 10000

 100000

1 10 20 30 40 50

R
un

tim
e

(s
ec

)

Top-k

Empty
Uniform RepCube
Optimal RepCube

(a) Runtime vs. top-k.

 1

 10

 100

 1000

 10000

 100000

 1e+006

1 10 20 30 40 50

N
um

be
r

of
 r

eg
io

ns
 v

er
ifi

ed

Top-k

Empty
Uniform RepCube
Optimal RepCube

(b) Number of verified regions vs.
top-k.

 1

 100

 10000

 1e+006

 1e+008

 1e+010

5 10 20 50 100

C
ub

e
si

ze
 (

va

lu
es

)

Size of p-cell (m)

Full
Uniform RepCube
Optimal RepCube

(c) Storage overhead vs. the size
of p-cell

 1

 10

 100

 1000

 10000

5 10 20 50 100

R
un

tim
e

(s
ec

.)

Size of p-cell (m)

Uniform RepCube
Optimal RepCube

(d) Runtime vs. the size of p-
cell

Figure 1: Comparison with baseline solutions on the default TPCH data set.

minimize r) with the constraint that each p-cell must be covered by
some relaxed cell. It turns out that this problem is NP-hard with
a reduction from the SETCOVER problem: the set of original p-
cells are transformed to the universe of elements and each potential
relaxed cell is transformed to a set of elements.

Due to the hardness of the problem, we use a greedy algorithm to
iteratively select relaxed p-cells as follows. First, initialize the set
of selected relaxed cells as an empty set, and mark all p-cells as
“uncovered". Then, add the relaxed cell that is able to cover the
largest number of uncovered p-cells into the selected set, and mark
those newly covered p-cells as “covered". Repeat the above step
until all p-cells are marked as “covered". The corresponding map-
ping function can be maintained during the above process. Finally
the selected relaxed p-cells will be kept in memory or written back
to disk.

The parameter ε controls the resulting size of the relaxed RepCube.
When ε = 0, only identical p-cells will be merged. On the other
hand, when ε is too large, a single relaxed cell suffices to cover all
p-cells but is unlikely to provide any pruning power. In effect, a
small ε less than 0.1 often produces good tradeoff. We manually
set it in our experiments and it remains an open problem to auto-
matically determine ε.

6. EXPERIMENTS
We conduct case study on the DBLP data set and comprehensive
experiments on the standard TPC-H benchmark. Our goal is to:
(1) demonstrate the top-k results through a case study, (2) show
that our proposed methods can significantly outperform a baseline
solution in terms of query execution time, and (3) verify that the
storage space used by our methods is very small.

All our experiments were done on a machine with a 2.5GHz duo-
core CPU, 4GB of RAM, and 250GB hard disk. The OS is Win-
dows XP Pro SP3 and all source code was written and compiled in
Microsoft Visual C# 2008.

6.1 A Case Study on DBLP
We constructed a fact table from the DBLP data set using Confer-
ence as the categorical dimension, Year as the continuous ranged
dimension, Author as the object dimension, and Paper Count as
the measure dimension. The table contains about 1.8 million base
tuples and 450K authors.

For the query author Bruce Lindsay, we found his global rank to
be 5112th. However, the top-3 regions (except the global region)

based on PRank are {VLDB, 1990 ∼ 1991}, {ICDE, 1993 ∼
1993}, and {SIGMOD, 1998 ∼ 2002}, where he is ranked (5th,
top-2.1%), (4th, top-2.2%), and (4th, top-2.8%), respectively. Not
surprisingly, the results are quite meaningful.

On the other hand, his (Rank, PRank) in the promotion region
{SIGMOD, 1998 ∼ 2002}’s five child regions, namely {SIGMOD,
1998 ∼ 1998} through {SIGMOD, 2002 ∼ 2002}, are only
(21st, top-9.3%), (36th, top-14.6%), (28th, top-11.8%), (29th, top-
12.6%), and (37th, top-16%), respectively. These results indicate
that it is indeed interesting to discover the “right" region for promo-
tion. We leave a systematic evaluation of various other semantics
to our future work.

6.2 Evaluation on TPCH
For efficiency evaluation, we chose the TPC-H benchmark2 to gen-
erate large decision support data. The default fact table was gener-
ated as follows. We ran the dbgen executable with default parame-
ters to generate a set of data files and extracted the lineitem.tbl file
containing 6,001,215 base tuples. We set l_linenumber (cardinal-
ity=7) as the categorical dimension, l_quantity (50) and l_linestatus
(2) as the range dimensions, l_suppkey (10000) as the object dimen-
sion (i.e., n = 10000), and l_extendedprice (real numbers) as the
measure dimension. Thus, for this default fact table there are to-
tally 30600 regions. This table is stored in Microsoft SQL Server
2008.

Algorithm implementation: We implemented the following 5 meth-
ods.

• (Empty) On-the-fly query execution without any auxiliary ma-
terialization as a baseline for online query execution time;

• (Full) Precomputing aggregate scores for all objects in all re-
gions as a baseline for storage overhead;

• (Uniform) The uniform RepCube approach;

• (Opt) The optimal RepCube approach; and

• (Relax) The relaxed RepCube approach.

All of these 5 methods rely on 2 interface primitives GetAgg() and
GetRank(). The former primitive was implemented by ourselves,
while the latter was implemented as a query in SQL Server. To
speedup query processing, a clustered index was built on the object

2http://www.tpc.org/tpch/

70

RepCube method Position vector ~φ
Uniform 1, 1001, 2001, 3001, 4001, 5001, 6001, 7001, 8001, 9001

Opt + Default 6, 18, 33, 48, 89, 142, 234, 357, 593, 1084
Opt + Large entropy 214, 659, 1009, 1621, 1869, 2465, 3326, 3726, 4416, 5448

Opt + Accurate 4, 7, 23, 26, 76, 111, 132, 187, 283, 328

Table 6: Position vectors used by different RepCube methods.

dimension and multi-key non-clustered indices were built on cate-
gorical and range dimensions. All materialization files were stored
as plain text files.

To formulate a cost model and derive the optimal position vector
for Opt, we set Ω, the constant cost of the pruning phase, to 0,
and let COST(si) be 1 for any region Rsi (see Section 4 for the
definitions of Ω and COST(si)).

To produce the set of top-k regions, SUM was used as the aggre-
gation function F and we consider the k regions with the largest
percentile rank as the top-k results.

Performance measure: We focus on runtime (i.e., average online
query processing time per query, in terms of seconds) and size (i.e.,
offline storage space an algorithm is used, in terms of number of
values stored) as the main performance metrics of these algorithms.
We do not count the time for loading the materialized data.

6.3 Online Query Execution Time vs. Top-k
Now we compare the runtime of Empty, Uniform, and Opt by
varying the query parameter k. The performance results for Re-
lax will be reported shortly.

We set m = 10 for both Uniform and Opt such that the result-
ing size of Uniform is 367,201 values and that of Opt is 367,210
values. To compute the position vector for Opt based on the cost
model, we generated a default workload consisting of 200 promo-
tion queries Q(τ, k), where for each query τ was uniformly ran-
domly generated and k was uniformly randomly distributed over
[1, 160].

A set of 5 random test queries was generated as follows: 5 ob-
jects were uniformly randomly generated, and k was varied from
1 to 50. Figure 1(a) displays the average runtime (in log-scale) of
Empty, Uniform, and Opt on these 5 test queries. We can see that
the baseline solution Empty is over an order of magnitude slower
than Uniform, the basic RepCube strategy, while Empty is over 3
orders of magnitude slower than Opt at k = 1, and > 300 times
slower than Opt at k = 50. Also, the performance of Empty does
not change with respect to top-k because it does not involve any
pruning. This test clearly shows that computing the region-based
promotion query from scratch can be prohibitively expensive. In
our subsequent experiments we will not evaluate Empty any more
due to its apparent low efficiency.

Observe that Uniform it is 190 times slower than Opt at k = 1 and
24 times slower at k = 50. The Uniform approach, with some pre-
computed information, is able to significantly outperform Empty,
but it turns out to be quite insensitive to k as well, because it is not
able to leverage the fact that the object of interest is often highly
ranked in the top-k promotion regions; in other words, the pruning
power of Uniform would be similar no matter the object is highly
ranked in the top-k regions or not. On the contrary, Opt offers

much better pruning power as it is able to precompute sample ag-
gregate scores in an adaptive way. As a result, it is more sensitive
to k and more efficient when k is smaller.

To accurately explain the gap of runtime between different meth-
ods, in Figure 1(b) we plot the average number of verified regions
(i.e., the number of unpruned regions as shown in Table 3, Line
7) with respect to k in the same test. As can be seen, this figure
matches Figure 1(a) well. This validates our claim that the query
execution time is dominated by the cost of GetRank(). Indeed,
Empty need on average about 30000 calls of GetRank() (note
that there are some regions where the object of interest does not
appear so GetRank() does not have to be called for them), while
Uniform and Opt need no more than 2300 and 160 calls for any k,
respectively.

6.4 Storage Overhead vs. P-Cell Size
Now we compare the storage overhead of Full, yet another base-
line strategy, with Uniform and Opt. We vary m, the size of p-
cell from 5 to 100 (i.e., 5 to 100 aggregate scores are sampled for
each region) and show the resulting storage space required by each
method in Figure 1(c). Fully precomputing aggregate scores for all
objects in all regions requires about 3 ∗ 108 values. Suppose each
aggregate score uses 8 bytes to store, Full would consume 2.2GB of
disk space, which is much larger than the size of the input data set.
This tells us that Full may not be a practical solution for large ap-
plications. In contrast, Uniform and Opt store no more than 220K
values (1/1380 of Full’s size) at m = 5; 370K values (1/805 of
Full’s size) at m = 10; and 3.2M values (1/94 of Full’s size) at
m = 100, which significantly alleviate the problem of expensive
storage overhead. Note that the difference of storage overhead be-
tween Uniform and Opt is very small (< 10−4 of the total cube
size). In principle, the resulting size of Opt is linearly related to m,
so users are able to conveniently specify m to control the size and
obtain their desired performance.

Figure 1(d) further displays how the p-cell’s size would affect the
online performance of our proposed methods. For each m, we
used exactly the same set of 5 test queries and fix k to 20. We
also used the same default workload to generate Opt’s position
vector as we did for the previous test. The average query exe-
cution time is reported for both Uniform and Opt. We can see
that when m increases, the efficiency of both Uniform and Opt be-
comes higher. This is expected as increasing the p-cell size would
help derive tighter upper- and lower- bounds for any object in any
region, thereby leading to more pruned regions.

The relation between Uniform and Opt as shown in Figure 1(d) is
also interesting. When m = 5, Opt is 66 times faster than Uni-
form. As m is increasing, the gap between the two approaches
actually become smaller. For example, the speedup ratio is 15 at
m = 50 and 9.1 at m = 100. Indeed, too large m might lead
to a convergence of Opt to Uniform; an extreme case is that when
m = n, the performance of Opt and Uniform would be identical

71

 1

 10

 100

 1000
C

ub
e

si
ze

 (

va
lu

es
)

Method

Uniform RepCube
Opt w/ default wl.

Opt w/ large entropy wl.
Opt w/ accurate wl.

Figure 2: Query execution time
vs. query distribution.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 3 4 5 6 7 8 9 10

T
ot

al
 n

um
be

r
of

 p
-c

el
ls

/r
el

ax
ed

 c
el

ls

Relaxation parameter ε (*0.01)

Optimal RepCube
Relaxed RepCube

(a) Num. of relaxed cells gen-
erated by the greedy algorithm.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

.01
.02

.0225
.0275

.0325
.04

.05
.06

C
ub

e
si

ze
 (

of

 v
al

ue
s)

Relaxation parameter ε

Optimal RepCube
Relaxed RepCube

(b) Size of Opt (by varying m)
and Relax (by varying ε).

 0

 20

 40

 60

 80

 100

 120

.01
.02

.0225
.0275

.0325
.04

.05
.06

R
un

tim
e

w
/ e

qu
al

 s
pa

ce
 (

se
c.

)

Relaxation parameter ε

Optimal RepCube
Relaxed RepCube

(c) Query execution time vs.
storage overhead

Figure 3: Performance results on the relaxed RepCube.

due to a same position vector. Nevertheless, this result validates
our idea that Opt performs much better than Uniform when m is
reasonably small (e.g., m

n
< 1%), which is desirable for large data

sets.

6.5 Performance of the Optimal RepCube over
Different Query Distributions

In our previous tests we computed Opt’s position vector ~φ using
the default workload, i.e., we assumed that in the query distribu-
tion object IDs were drawn uniformly and k uniformly randomly
from 1 through 160. Because in different applications, such query
distributions can be vastly different, in this subsection we test the
performance of Opt using different workloads. Besides the default
workload used earlier, we generated two other workloads:

• Large-entropy workload: Consists of queries with τ uniformly
randomly sampled from the set of all objects and k uniformly
distributed on 1 through 10000. In other words, this workload
assumes the promotion query has a large entropy (i.e., random-
ness).

• Accurate workload: Given the 5 test queries used earlier, we
generated a superset of them as an accurate workload (totally
10 queries). Therefore, Opt would be specifically optimized for
the test queries using this workload.

We ran Opt against the 3 workloads and obtained 3 position vec-
tors. Figure 2 plots the average query execution time of Opt vs.
these workloads over the 5 test queries; we also plot the result of
Uniform for comparison. Interestingly, we observe that Opt out-
performs Uniform in all 3 cases. In particular, Opt based on large-
entropy workload runs 5 times faster than Uniform, whereas Opt
based on the accurate workload does 60 times faster. These re-
sults match our intuition, because the large-entropy workload can
be considered as “adversarial" since the query distribution used by
the cost model largely deviates from test queries, while the accurate
workload would help maximize the pruning power of the optimal
RepCube generated for those test queries. The gap between Uni-
form and Opt with the large-entropy workload, however, is unex-
pected.

To clearly explain the performance gap, Table 6 shows the position
vectors used by each method. Uniform uses 10 evenly spaced posi-
tions. For Opt, however, the position vectors have smaller values;
in fact, even the uniform workload “prefers" smaller position val-
ues strictly based on the cost model. Therefore, these results empir-
ically proved that choosing an evenly spaced position vector (i.e.,

uniform quantization) cannot produce desirable pruning power for
promotion query.

6.6 Performance of the Relaxed RepCube
Now we evaluate Relax. Recall that Relax’s parameters m and ε
dictates the resulting size of materialization. Based on the optimal
RepCube (m = 10) for the default fact table discussed earlier, we
varied ε and ran the greedy relaxed cell selection algorithm. Figure
3(a) depicts the resulting size of Relax for ε ranging from 0.01 to
0.1 on an increment of 0.01. While Opt must store 30600 p-cells
constantly, Relax need fewer and fewer relaxed cells as ε increases.
For example, when ε = 0.01, 28695 relaxed cells can cover all p-
cells, and when ε = 0.1, only 1865 cells would suffice, where each
relaxed cell covers an average of 16.4 p-cells. Hence the result
confirms that similar p-cells and can be merged effectively.

Let us turn to a comparison between Relax and Opt. Since it is
unfair to compare their runtime using different amounts of storage
space, the methodology adopted here is to first generate Relax and
Opt with similar size, elaborated as follows. First, we generated
a set of 8 optimal RepCubes by varying the p-cell size m from
10 down to 3. The resulting sizes of Opt ranges from 367,210 to
153,003. Second, to generate a relaxed cube with comparable size
to each of the 8 optimal RepCubes, we manually tried different ε
parameters and ran the greedy algorithm on Opt with m = 10.
Finally we chose ε to be 0.01, 0.02, 0.0225, 0.0275, 0.0325, 0.04,
0.05, and 0.06, respectively, and Figure 3(b) displays the size of
both Opt and Relax in the 8 cases. For instance, when m = 8 for
Opt, we set ε to 0.0225, and then Opt’s size is slightly above 300K
and Relax’s size is slightly less than 300K. We guarantee that the
size of Relax be no larger than Opt in all cases.

For each matched pair of Relax and Opt, we ran the 5 test queries
and reported the average query execution time in Figure 3(c). The
figure shows that Relax beats Opt in all but the first case. Relax is
considerably more efficient than Opt in the last two cases. For the
second to last case, Relax with ε = 0.05 is 3.2 times faster than
Opt with m = 4; whereas for the last case, Relax with ε = 0.06
is 6.7 times faster than Opt with m = 3. Even in the first case
the performance gap can be neglected. Hence, our conclusion is
that Relax indeed gives the best tradeoff between storage space
and query execution time, since it is faster than Opt yet using less
space.

6.7 Varying Data Characteristics
To compare the performance of the proposed methods on differ-
ent data characteristics, we first generated a new fact table using
the 6M -tuple lineitem table. We fixed the categorical dimension to

72

 0

 10

 20

 30

 40

 50

 60

10K 200K

R
un

tim
e

(s
ec

.)

Total number of objects (n)

Uniform RepCube
Optimal RepCube
Relaxed RepCube

(a) Query execution time vs.
number of objects (n).

 1

 10

 100

 1000

 10000

Low Medium High

R
un

tim
e

(s
ec

.)

Total number of subspaces

Uniform RepCube
Optimal RepCube
Relaxed RepCube

(b) Query execution time vs.
number of regions (|R|).

Figure 4: Performance results with different data characteristics.

l_linenumber (7) but changed range dimensions to l_discount (11)
and l_linestatus (2). We fixed the measure dimension to l_extendedprice,
whereas the object dimension was changed to l_partkey (200K),
indicating that the number of object is 200K. The workload was
the default one and the test queries were the same before.

The new data with n = 200K contains a total number of 1584
regions. Full would consume more than 187M values, or 1.4G
of disk space equivalently. When setting m to 10, Uniform and
Opt have about the size of 19K values, about 1

9850
of Full’s size.

We can see that the RepCube approaches achieve a better storage
saving for larger number of objects as expected. For Relax, we
first generated an optimal RepCube with m = 18 and then set ε
to 0.059 to produce a relaxed RepCube using < 19K values (701
relaxed cells generated).

As shown in Figure 4(a), Opt outperforms Uniform by 2 times.
Since the total number of regions is smaller than in the previous test
cases, the speedup ratio is not as large as in the previous tests; in
fact, this ratio would increase with respect to |R| as will be shown
shortly. Relax is in turn 1.4 times faster than Opt, thereby again
beating Opt in both storage overhead and runtime. It also turns
out that for n = 10K (i.e., using l_suppkey (10K) as the object
dimension while keeping other dimensions fixed), the performance
of Opt and Relax is similar due to fewer regions.

Let us turn to the total number of regions. In previous tests we have
synthesized two fact tables with 1584 regions (denoted by “LOW"
hereafter) and 30600 regions (denoted by “MEDIUM" hereafter),
respectively. In addition to LOW and MEDIUM, we produced an-
other HIGH data set from the lineitem table by setting l_quantity
(50) and l_returnflag (3) as range dimensions while keeping other
dimensions fixed (10K objects). HIGH contains 61156 regions
and the Full approach would generate > 580M values (4.5G disk
space). For HIGH, we again set m to 10 and generated Uniform
and Opt with considerably smaller space overhead (i.e., < 734K
values), while repeated the previous approach for Relax (i.e., <
730K values and each relaxed cell on average covers 2.16 p-cells).
Figure 4(b) shows the performance comparison of Uniform, Opt,
and Relax on LOW, MEDIUM, and HIGH, respectively. We can
see that (1) Opt becomes increasingly faster than Uniform, i.e., 4.9
times faster on LOW and 113.6 times on HIGH; and (2) Relax
again shows its scalability, i.e., using less space than Opt yet being
1.7 times faster than it on HIGH.

Based on the experimental results displayed in Figure 4, our con-
clusions are: (1) Both Opt and Relax perform consistently and

significantly faster than the basic RepCube implementation (Uni-
form) during online processing; and (2) Relax, although using less
space, is more efficient than Opt on large data sets, demonstrating
its scalable tradeoff in terms of the number of objects as well as
regions.

6.8 Performance on Aggregate Function AVG
Our final test case in Figure 5 compares Uniform, Opt, and Relax
based on another aggregate function AVG. That is, in each region,
objects are ordered descendingly according to their average mea-
sure dimension values. The MEDIUM fact table is used here. The
generation of Uniform and Opt remains unchanged with m = 10.
For Relax, we first generated an optimal RepCube using m =
18. Then, ε was set to 0.027 such that we ensure Relax’s size
be smaller than Opt; this is a notable difference between AVG and
SUM in that here the p-cells can be merged more easily using a
smaller value of ε. This indicates that each relaxed cell represents
a “tighter" range than for the SUM aggregate function.

Figure 5(a) reports the runtime of the methods when varying k from
1 to 50. We can see that Uniform does not have satisfactory perfor-
mance, while Relax is consistently about 2 times faster than Opt.
Figure 5(b) further confirms that the verification step dominates the
query execution cost, which is invariant to the aggregate function.
The results obtained here thus prove that the efficiency gain of Opt
and Relax are not restricted to some particular monotone measures.

7. RELATED WORK
Data warehousing and online analytical processing (OLAP) tech-
niques have been extensively studied over a decade for decision
support applications [6, 2]. In a typical OLAP system, data is col-
lected and consolidated in a repository for subsequent analysis and
mining. The data cube model [5] is a widely accepted tool which
materializes multidimensional aggregates to speedup online opera-
tions like roll-up, drill-down, thereby greatly facilitating interactive
exploration of warehoused data. Researchers have also proposed
methods for effectively and efficiently computing various OLAP
functions, such as range queries [7], ranking [14, 16], regression
and classification [3, 10], sequence data [4, 9], and others [1, 8].
However, none of these methods can be applied to solve the range-
based promotion analysis problem, since for a promotion query the
cube space (region) must be searched at query time as opposed to
be given by user.

The most related work to our study is [15], which proposes the pro-
motion analysis concept and discusses methods for removing spu-
rious conditions and avoiding searching too “deep" into the mul-

73

 0.1

 1

 10

 100

 1000

1 10 20 30 40 50

R
un

tim
e

(s
ec

.)

Top-k

Uniform RepCube
Optimal RepCube
Relaxed RepCube

(a) Runtime vs. top-k on AVG.

 1

 10

 100

 1000

 10000

1 10 20 30 40 50

N
um

be
r

of
 r

eg
io

ns
 v

er
ifi

ed

Top-k

Uniform RepCube
Optimal RepCube
Relaxed RepCube

(b) Number of verified regions vs.
top-k.

Figure 5: Performance results on aggregate function AVG.

tidimensional space. Compared to the previous work, this paper
addresses a new problem with three salient features: (1) we model
the region-based semantics with ad-hoc rank-independent weights
which may or may not be monotone with respect to the size of
region; also region similarities (e.g., containment or overlapping
relationships) are considered and the top-k discriminative query
problem is formulated; (2) the REPQUERY problem is faced with
a significantly larger search space than [15], making previously
proposed query processing techniques infeasible; and, (3) the non-
monotonicity property is assumed in our problem context, meaning
that aggregate scores are not monotone across parent-children re-
gions.

In addition to the above papers, [11] presents an algorithm that
can simultaneously rank objects and cluster them into proper com-
munities. However, such communities discovered must belong to
some predefined granularity (e.g., research areas) that cannot be
combined with continuous dimensions like “Year". Moreover, [12]
studies the reverse top-k query processing problem that aims to
search for interesting user preference spaces where a given prod-
uct is highly ranked. The techniques developed cannot address the
region-based promotion query because they do not consider mul-
tidimensional aggregation. [13] is yet another paper discussing a
problem related to marketing applications. Nevertheless, they use
skyline dominance relationship rather than numerical ranking as
the criteria to judge the interestingness of query results.

8. CONCLUSION
This paper studied a novel class of decision support queries called
the top-k (discriminative) region-based promotion query. A region-
based promotion cube framework was developed. We showed that
a uniform materialization approach is indeed not the best; instead,
an adaptive approach was developed based on a solid theoretical
analysis to produce the provably optimal structure. In addition,
a compact relaxed cube structure was studied to further optimize
storage overhead. Comprehensive experiments on both real and
synthetic data sets verified both the effectiveness and efficiency our
proposed techniques.

9. REFERENCES
[1] D. Burdick, P. M. Deshpande, T. S. Jayram,

R. Ramakrishnan, and S. Vaithyanathan. Olap over uncertain
and imprecise data. VLDB J., 16(1):123–144, 2007.

[2] S. Chaudhuri and U. Dayal. An overview of data
warehousing and olap technology. SIGMOD Record,
26(1):65–74, 1997.

[3] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang.

Multi-dimensional regression analysis of time-series data
streams. In VLDB, pages 323–334, 2002.

[4] C. K. Chui, E. Lo, B. Kao, and W.-S. Ho. Supporting ranking
pattern-based aggregate queries in sequence data cubes. In
CIKM, pages 997–1006, 2009.

[5] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by,
cross-tab, and sub totals. Data Min. Knowl. Discov.,
1(1):29–53, 1997.

[6] J. Han and M. Kamber, editors. Data mining: concepts and
techniques, second edition. Morgan Kaufmann, 2006.

[7] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range
queries in olap data cubes. In In Proceedings of the 1997
ACM SIGMOD International Conference on Management of
Data, pages 73–88, 1997.

[8] C. X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao. Text cube:
Computing ir measures for multidimensional text database
analysis. In ICDM, pages 905–910, 2008.

[9] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W.
Cheung. Olap on sequence data. In SIGMOD Conference,
pages 649–660, 2008.

[10] R. Ramakrishnan and B.-C. Chen. Exploratory mining in
cube space. Data Min. Knowl. Discov., 15(1):29–54, 2007.

[11] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu.
Rankclus: integrating clustering with ranking for
heterogeneous information network analysis. In EDBT,
pages 565–576, 2009.

[12] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Norvag.
Reverse top-k queries. In ICDE, 2010.

[13] Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. Özsu, and Y. Peng.
Creating competitive products. PVLDB, 2(1):898–909, 2009.

[14] T. Wu, D. Xin, and J. Han. Arcube: supporting ranking
aggregate queries in partially materialized data cubes. In
SIGMOD Conference, pages 79–92, 2008.

[15] T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in
multi-dimensional space. In VLDB, 2009.

[16] D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k
queries with multi-dimensional selections: The ranking cube
approach. In VLDB, pages 463–475, 2006.

74

