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ABSTRACT
The wide adaptation of GPS and cellular technologies has
created many applications that collect and maintain large
repositories of data in the form of trajectories. Previous
work on querying/analyzing trajectorial data typically falls
into methods that either address spatial range and NN queries,
or, similarity based queries. Nevertheless, trajectories are
complex objects whose behavior over time and space can
be better captured as a sequence of interesting events. We
thus facilitate the use of motion “pattern” queries which al-
low the user to select trajectories based on specific motion
patterns. Such patterns are described as regular expressions
over a spatial alphabet that can be implicitly or explicitly
anchored to the time domain. Moreover, we are interested in
“flexible” patterns that allow the user to include “variables”
in the query pattern and thus greatly increase its expressive
power. In this paper we introduce a framework for efficient
processing of flexible pattern queries. The framework in-
cludes an underlying indexing structure and algorithms for
query processing using different evaluation strategies. An
extensive performance evaluation of this framework shows
significant performance improvement when compared to ex-
isting solutions.

1. INTRODUCTION
The wide availability of location and mobile technologies
(cheap GPS devices, ubiquitous cellular networks) as well as
the improved location accuracy (A-GPS) has enabled many
applications that generate and maintain data in the form of
trajectories. Examples include AccuTracking, tracNET24,
Path Intelligence’s FootPath, InSTEDD’s GeoChat, among
many others. Each trajectory has a unique identifier and
consists of location data gathered for a specific moving ob-
ject over an ordered sequence of time instants. Given the
high data volume, more efficient techniques for query eval-
uation over trajectory data are needed.

Previous work on querying trajectories can be divided in
two categories, (a) querying the future movements of mov-
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ing objects based on their current positions (e.g. [12][17]),
and, (b) querying trajectory archives, which is also the focus
of this paper. Recent research efforts on querying trajectory
archives has concentrated on (i) traditional spatiotemporal
queries, such as range searches and nearest neighbors (e.g.
[10][18]) (e.g. finding all trajectories that passed by down-

town LA at 10:30am), or (ii) similarity/clustering based
tasks (e.g. [13][14]), such as extracting similar movement
patterns and periodicities from a trajectory archive (e.g.
finding all trajectories in the archive that are similar to a
given query trajectory according to some similarity mea-
sure).

However, given the nature of trajectories as typically long
sequences of events, a single range predicate may provide
too many results (many trajectories passed through down-

town LA) while a similarity-based query may be too restric-
tive (not many trajectories match the full extent or large
part of the query trajectory). We thus advocate a different
approach, i.e., using motion “pattern” queries. A motion
pattern query specifies a combination of predicates that can
thus capture only the parts of the trajectories that are of
interest to the user. For example: “find all trajectories that
first went by downtown LA, later by West Hollywood and
ended up in Beverly Hills”. This query simply provides a
collection of range predicates that have to be satisfied in the
specified order. One can also add Nearest-Neighbor (NN )
conditions as well (in the above query: “... and they were
closest to the LAX airport”) as well as explicit time con-
straints: “ended up in Beverly Hills at 10am”. Concep-
tually, motion pattern queries cover the query choices be-
tween the above two extremes (single predicates and simi-
larity queries).

In this paper we introduce a general and powerful frame-
work that describes pattern queries as regular expressions
over a finite spatial alphabet. Each letter in the spatial al-
phabet corresponds to a non-overlapping region; their union
covers the whole space where the trajectories lie. We note
that there are various advantages from these choices. (1)
The use of non-overlapping regions is natural: trajectories
correspond to real entities and hence a trajectory can be
in a single region at a given time. (2) Raw trajectory data
typically come from sensors, GPS and/or RFID readers, etc.
and provide extra detail that becomes cumbersome to query.
Instead, the regions offer a more user-friendly way to express
queries since the user is more familiar with the spatial re-
gions [7] (for example, Downtown, LAX, etc.) (3) The use
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of spatial regions allows high-level summarization/filtering
of the trajectories. The region description of a trajectory is
much smaller, leading to faster query processing (while the
raw data is still kept if more detail is needed). (4) This en-
ables easy and effective indexing; it further enables the use
of alternative evaluation algorithms (joins among inverted
indexes, pattern matching, NFAs). (5) The region alpha-
bet facilitates querying by regular expressions as a query
language: the user can now describe complex queries over
paths using this fixed alphabet.

This work is part of a larger prototype we are building for
querying trajectories using regions. This system uses a hi-
erarchical region alphabet, where the user has the ability
to define queries with finer alphabet granularity (zoom in)
for the portions of greater interest and higher granularity
(zoom out) elsewhere. Through a GUI the user specifies a
pattern query by selecting regions (using various levels of
the hierarchy); this query is automatically translated into
a regular expression over the finest region granularity and
then executed. This paper describes the query engine of our
prototype, i.e., how queries are executed at the finer gran-
ularity. Hence in the rest we assume that all query regions
are at the same (finer) granularity. This finer granularity is
chosen by and depends on the application needs.

Our framework further allows the use of variables within
the pattern query. We term these variable-enabled queries
as “flexible” patterns as they lead to a very powerful way
to query the trajectory archive. Moreover, in our frame-
work, the fixed and/or variable spatial predicates can ex-
press explicit temporal constraints (“between 10 a.m. and
11 a.m.”) and/or implicit temporal ordering between them
(“anytime later”). Queries can also include “numerical” con-
ditions (nearest neighbors and their variants) over the du-
ration of the trajectory. Using this general and powerful
querying framework the user can “focus” only on the por-
tions/events in a trajectory’s lifetime that are of interest.

Novel methods are needed to efficiently process such com-
plex queries over large trajectory repositories. We propose
two query evaluation algorithms which first concentrate on
trajectories that“satisfy”the fixed predicates specified in the
query. As such, they prune effectively large portions of the
repository that cannot lead to query answers. The first pro-
posed algorithm uses the merge-join paradigm over the lists
of trajectories associated with the query predicates. The
second algorithm is based on a dynamic programming tech-
nique that finds subsequence matches between the trajectory
representations and the query pattern. Efficient techniques
are then used for the evaluation of the remaining variable

predicates.

We note that patterns as effective ways to query have been
examined in the past. [19][21] examine patterns over time
series while [2] over event streams. Trajectories differ since
they have both spatial and temporal behavior. In spatiotem-
poral databases patterns have been examined in [5][6][9][20];
as detailed in the related work section, these approaches ei-
ther concentrate on language/modeling related issues, pro-
vide less query support (e.g. no temporal and/or numerical
constraints) and have less efficient/general evaluation meth-
ods.

To summarize, the contributions of this paper are the fol-
lowing: (1) we define a simple yet powerful framework using
a query language based on regular expressions; (2) we allow
patterns to contain variables over the query space regions;
(3) using lightweight index structures that can be easily im-
plemented in most commercial DBMS nowadays, we propose
two efficient evaluation algorithms; (4) finally, we present
an extensive experimental evaluation of the proposed tech-
niques against two other methods that we extended and im-
plemented in our framework: a NFA-based method [2] and
a KMP -based approach [5]. It should be noted that none
of the (original) previous approaches can evaluate our pro-
posed pattern query language. The experimental results re-
veal that the proposed evaluation framework achieves always
better query performance over modified existing solutions,
making our framework a very robust approach for querying
and analyzing very large trajectory repositories.

The remainder of the paper is organized as follows: Section 2
discusses the related work; Section 3 provides the basic def-
initions and formal description of the spatiotemporal query
language; The proposed framework is described in details in
Section 4 and its experimental evaluation appears in Section
5; Section 6 concludes the paper.

2. RELATED WORK
Single predicate queries (Range and NN queries) for trajec-
tory data have been well studied in the past (e.g. [18][23]).
To make the evaluation process more efficient, the query
predicates are typically evaluated utilizing hierarchical spa-
tiotemporal indexing structures [10]. Most structures use
the concept of Minimum Bounding Regions (MBR) to ap-
proximate the trajectories, which are then indexed using
traditional spatial access methods, like the MVR-tree [22].
These solutions, however, are focused only on single pred-
icate queries. None of them can be used for efficient eval-
uation of flexible pattern queries with multiple predicates.
Moreover, our work is different than (and orthogonal to)
approaches like [15], that can handle many single but inde-
pendent predicates. In our case, all predicates appear in the
same query and should all be satisfied by each trajectory in
the result set. Similarity search among trajectories has been
also been well studied. Work in this area focuses on the use
of different distance metrics to measure the similarity be-
tween trajectories. Examples include [3][4].

Pattern queries have been used in the past for querying
time-series using SQL-like query language [19][21], or event
streams using a NFA-based evaluation method [2]; however,
the environment in these works is different than the trajecto-
ries considered here. For moving object data, patterns have
been examined in the context of query language and model-
ing issues [6][16][20] as well as query evaluation algorithms
[9][5]. In [9] we examined incremental ranking algorithms
in the case of simple spatiotemporal pattern queries. Those
queries consist of range and NN predicates specified using
only fixed regions. Our work differs in that we provide a
more general and powerful query framework where queries
can involve both fixed and variable regions as well as reg-
ular expression structures (repetitions, negations, optional
structures, etc) and explicit ordering of the predicates along
the temporal axis.
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In [5], a KMP -based algorithm [11] is used to process pat-
terns. This work, however, focuses only on range spatial
predicates and cannot handle explicit and implicit tempo-
ral ordering of the predicates. Furthermore, this approach
on evaluating patterns is effectively reduced to a sequential
scanning over the list of trajectories stored in the reposi-
tory: each trajectory is checked individually, which becomes
prohibitive for large trajectory archives.

3. THE QUERY LANGUAGE
We assume that a trajectory Tid of a moving object is stored
as a sequence of w pairs {(ls1, ts1),. . . (lsw, tsw)}, where tsi

is a timestamp and lsi is the object location recorded at tsi

(lsi ∈ R
d, tsi ∈ N, tsi−1 < tsi, and 0 < i ≤ w). Such

raw data is collected from the application and stored in the
repository. Typically, monitored objects report their posi-
tion to the data collection device using data packets contain-
ing their identifier id (Tid), current location lsi and times-
tamp tsi. Depending on the application, objects may report
continuously or simply when they change their location. We
further assume that the spatial domain is partitioned to a
fixed set Σ of non-overlapping regions. Regions correspond
to areas of interest (e.g. school districts, airports, city malls,
etc.) and form the alphabet used in our query pattern spec-
ification. In the following we use capital letters to represent
the region alphabet, Σ = {A, B, C, ...}.

A general pattern query Q = (S [
S

D]) consists of a sequen-
tial pattern S and (possibly) a set of constraints D. Here
S corresponds to a sequence of spatial predicates, specified
using regions from Σ, while D represents a collection of dis-
tance functions (e.g. NN and their variations) that may
contain regions defined in S . A trajectory matches the pat-
tern query Q if it satisfies both S and D. We first describe
how a pattern S is formed and then elaborate on the distance
constraints D. In particular, a pattern S is expressed as a
path expression of an arbitrary number of spatiotemporal
predicates P :

S → S .S | P | !P | P# | ?+ | ?∗

here “!” defines the negation operator, “#” the optional
modifier, “+” the one or more repetition modifier, “∗”
the zero or more repetition modifier, and “?” the wild-
card. The sequence of predicates in S is defined recursively
by S .S where the sequencer “.” appears between every spa-
tiotemporal predicate P in S .

Each spatiotemporal predicate Pi ∈ S is defined by a triplet
Pi = 〈opi,Ri, [inti]〉. Here Ri corresponds to a predefined
spatial region or a variable, i.e., Ri ∈ Σ ∪ Γ (where Γ is
the set of variables, to be discussed later). The operator
opi describes the topological relationship that a trajectory
and the spatial region must satisfy over the (optional) time
interval inti.

In particular, we use the topological relationships described
in [6]; examples of such operators are the relations Equal,
Inside, Touch, Meet, among others. Given a trajectory Tj

and a region Ri, the operator opi returns a boolean value
B ≡ {true, false} whether the trajectory Tj and the region
Ri satisfy the topological relationship opi (e.g., an Inside

operator will be true if the trajectory was sometime inside

region Ri during time interval inti). For simplicity in the
following we assume that the spatial operator is set to Inside

and it is thus omitted from the query examples.

Within the pattern S , the wild-card “?” is used to specify
“don’t care” parts in a trajectory’s lifetime and can be of
two types: (i) “?+”: one or more occurrences of any region
predicate (e.g. Pi.?

+.Pi+1 implies that the predicate Pi+1 is
satisfied after predicate Pi with one or more regions visited
between them); or, (ii)“?∗”: zero or more occurrences of any
region visit (e.g. Pi.?

∗.Pi+1 which implies that the predicate
Pi+1 can be satisfied any time after predicate Pi).

A predefined region (i.e., Ri ∈ Σ) is explicitly specified by
the user in the query predicate (e.g. “the convention cen-
ter”). In contrary, a variable denotes an arbitrary region and
it is denoted by a lowercase letter preceded by the “@” sym-
bol (e.g. “@x”). A variable region is defined using symbols in
Γ, where Γ = {@a, @b, @c, ...}. Unless otherwise specified, a
variable takes a single value (instance) from Σ (e.g. @a=C);
however, in general, one can also specify the possible values
of a variable as a subset of Σ (e.g., “any city district with
museums”). Conceptually, variables work as placeholders for
explicit spatial regions and can become instantiated (bound
to a specific region) during the query evaluation in a process
similar to unification in logical programming.

Moreover, the same variable “@x” can appear in several dif-
ferent predicates of pattern S , referencing to the same region
everywhere it occurs. This is useful for specifying complex
queries that involve revisiting the same region many times.
For example, a query like “@x.?∗.B.@x” finds trajectories
that started from some region (denoted by variable “@x”)
, then at some point passed by region B and immediately
after they visited the same region they started from. Note
that for our purposes, wild-card“?” is also considered a vari-
able; however it refers to any region (and not necessarily the
same region if it occurs multiple times within a pattern).

Finally, a predicate Pi may include an explicit temporal con-
straint inti in the form of an interval, which implies that the
spatial relationship opi between a trajectory and region Ri

should be satisfied in the specified time interval inti (e.g.
“passed by area B between 10am and 11am”). If the tem-
poral constraint is missing, we assume that the spatial re-
lationship can be satisfied any time in the duration of a
trajectory. For simplicity we assume that if two predicates
Pi, Pj occur within pattern S (where i < j) and have tempo-
ral constraints inti, intj , then these intervals do not overlap
and inti occurs before intj on the time axis.

Spatiotemporal predicates however cannot answer queries
with constraints (for example, “best-fit” type of queries –
like NN and the related – that find trajectories which best
match a specified pattern). This is because topological pred-
icates are binary and thus cannot capture distance based
properties of the trajectories. The optional D part of a gen-
eral query Q is thus used to describe distance-based or other
constraints among the variables used in the S part. A simple
kind of constraint can involve comparisons among the used
variables (e.g., @x!=@y). More interesting is the distance-
based constraint which have the form (AGGR(d1, d2, ...); θ)
and is described below.
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For simplicity in the following we assume Euclidean dis-
tance (L2) but other distances, like Manhattan (L1), Infinity

(L∞), among others, can also be used. Consider for example
a Q query whose pattern S contains three variables @x, @y,
@z, i.e., S ≡ A.?∗.B.@x.@y.C.?∗.@z. Among the trajecto-
ries that satisfy S , the user may specify that in addition, the
sum of the distance between regions @x and @y and the dis-
tance between @z and a fixed region E is less than 100 feet.
Hence D contains a collection of distance terms d1, d2, ...,
where term di represents the distance between two variable

regions or between a variable region and a fixed one. In our
example there are two distance terms: d1 = d(@x,@y) and
d2 = d(@z, E).

Distance terms need to be aggregated into a single numeri-
cal value using an aggregation function (depicted as AGGR
in the formal definition of D). In the previous example
AGGR = SUM, but other aggregators like AVG, SDEV,
MIN, MAX, etc., can also be used. The aggregated numer-
ical score for each trajectory still needs to be mapped to a
binary value so as to determine if the trajectory satisfies D.
This is done by the θ operator defined in D. This operator
can be a simple check function (using =, ≤ and others). In
our example θ corresponds to “< 100 feet” and returns true
for all trajectories whose aggregate distance is less than 100
feet. It is also possible to use other θ operators, e.g. MIN,
MAX, Top-k, etc. In the previous example, if the θ operator
is changed to Top-k, the query will return true only for the
trajectories with the Top-k aggregated distances. For sim-
plicity of the description, in the remainder of this paper we
use AGGR = SUM and θ = MIN (which corresponds to a
NN query).

The use of variables in describing both the topological pred-
icates and the numerical conditions provides a very powerful
language to query trajectories. To describe a query, the user
can use fixed regions for the portions of the trajectory where
the behavior should satisfy known (strict) requirements, and
variables for portions where the exact behavior is not known
(but can be described by a sequence of variables and the con-
straints between them). The ability to use the same variable

many times in the query allows for revisiting areas, while the
ability to refer to these variables in the distance functions
allows for easy description of NN and related queries. It is
exactly this “flexibility” allowed by the use of variables in
selecting trajectories that led to the term “flexible pattern
queries”.

4. QUERY EVALUATION FRAMEWORK
To simplify the presentation we first start with the evalua-
tion of the spatial predicates for a pattern S . Later we ex-
tend the discussion to cover queries that in addition contain
distance constraints D. Finally we present the incorporation
of time constraints inside the query Q.

For simplicity we assume that the space is partitioned into
2-dimensional non-overlapping regions (Figure 1). To ef-
ficiently evaluate flexible pattern queries we will facilitate
two lightweight index structures in the form of ordered lists,
that are stored in addition to the raw trajectory data. There
is one region-list per region and one trajectory-list per tra-
jectory. The region-list LA of a given region A acts as an
inverted index that contains all trajectories that passed by

Figure 1: Region-based trajectory representation.

regionA. Each entry in LA is a record that contains a trajec-
tory identifier Tid, the time interval (ts-entry :ts-exit) during
which the moving object was inside A, and a pointer to the
trajectory-list of Tid. If a trajectory visits a given region A
multiple times in different time intervals, we store a record
for each visit. Records in a region-list are ordered first by
the trajectory-id Tid and then by ts-entry. For example, in
Figure 1 the region-list entry for the region D (Downtown)
is {T2(7, 9); T2(21, 23); T3(5, 10); ...}.

In order to fast prune trajectories that do not satisfy the
query S , each trajectory is approximated by the sequence of
regions it visited. A record in the trajectory-list of trajectory
Tid contains the region and the time interval (ts-entry :ts-
exit) during which this region was visited by Ti, ordered by
ts-entry. In the above Figure 1 the trajectory-list entry for
T2 is {X(1, 3); I(3, 5); S(5, 7); D(7, 9); P (9, 10); H(10, 13);
B(13, 15); U(15, 18); M(18, 21); D(21, 23); H(23, 24); B(24,
25); M(25, 27)}. Note that records from a region-list index
point to the corresponding records in a trajectory-list in-
dex. For example, the record T2(21,23) in the region-list LD

(Downtown) contains a pointer to the page in the trajectory-

list of T2 that contains the corresponding record D(21,23).

The only requirement for the region partitioning is that re-
gions should be non-overlapping. In practice, there may be
a difference between the regions presented to the user and
what lists are created. In such scenarios we use uniform
grid and overestimate a region by approximating it with the
smallest collection of grid cells which completely encloses it.
False positives may be generated from regions that do not
completely fit the set of covering grid cells, however, they can
be removed with a verification step using the original trajec-
tory data. Finding the best grid granularity can be done by
an optimization process which combines the number of grid
cells and the total overestimated area into a single objective
function. Moreover, instead of a uniform grid, one could fa-
cilitate instead a dynamic space partitioning structure (e.g.
adaptive grid files, kdb-trees, among many others) that as-
signs grid cells sizes according to the data density. Then,
dense areas will have more, finer cells which in return allow
for better approximation of the regions and thus fewer false
positives are generated.

For evaluating pattern queries we propose two different strate-
gies. The Index Join Pattern (IJP) is based on a merge join
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operation performed over the region-lists corresponding to
every fixed predicate in the query pattern S . The Dynamic

Programming Pattern (DPP) performs subsequence match-
ing between the query pattern S and the trajectory ap-
proximations stored as the trajectory-lists. Both algorithms
use the same two indexing structures for pruning purposes,
but in different ways: IJP uses the region-lists for pruning
and the trajectory-lists for the variable binding; DPP uses
mainly the trajectory-lists for the subsequence matching and
performs an intersection-based pruning on the region-lists.
Which algorithm would behave better will thus depend on
the pruning capabilities provided by its main index; this in
turn depends on the trajectory archive and the query char-
acteristics.

4.1 The Index-Join Pattern Algorithm (IJP)
4.1.1 Spatial Predicate Evaluation
We start with the case where the pattern S does not con-
tain any explicit temporal constraints. In this scenario, the
pattern specifies the order by which its predicates (whether
fixed or variable) need to be satisfied. Assume S contains
m predicates and let Sf denote the set of n fixed predicates,
while Sv denotes the set of r variable predicates (m=n+r).
The evaluation of S with the IJP Algorithm can be divided
in two steps: (i) the algorithm evaluates the set Sf using
the region-list index to fast prune trajectories that do not
qualify for the answer; (ii) then the collection of candidate

trajectories is further refined by evaluating the set of Sv.

(i) Fixed predicate evaluation: All n fixed predicates in
Sf can be evaluated concurrently using an operation sim-
ilar to a “merge-join” among their region-lists Li, i ∈ 1..n.
Records from these n lists are retrieved in sorted Tid order
and then joined by their Tid’s. Records are pruned using the
trajectory ids and the temporal intervals (ts-entry :ts-exit).
In each list Li we keep a pointer pi that points to the record
currently considered for the join. This pointer scans the list
starting from the top.

If the same region appears more than once in the pattern
S , a separate pointer traversing that region-list is used for
each region appearance in the pattern. For example, to pro-
cess the pattern ?∗.M.D.M the region-lists of M and D are
accessed using one pointer for region-list LD (pD) and two
pointers for traversing region-list M (pM1

and pM2
). If a

trajectory-id Tid appears in all of the n region-lists involved
in the query pattern, and their corresponding time intervals
in all n region-lists satisfy the ordering of the predicates in
S , this Tid is saved as a possible solution. The pseudo code
is shown in Algorithm 1.

During the merge-join, there are cases where records from
a region-list can be skipped, thus resulting in faster pro-
cessing. For example, assume that predicate Pi ∈ S (cor-
responding to the region-list Li) is before predicate Pj ∈ S
(corresponding to Lj). Further assume that in list Li the
current record considered for the join has trajectory iden-
tifier Tr, while in list Lj the current record considered has
trajectory identifier Ts. If Ts < Tr, processing in list Lj

can skip all its records with Tid < Tr. That is, the pointer
pj in list Lj can advance to the first record with Tid ≥ Tr.
Essentially, predicate Pi cannot be satisfied by any of the
trajectories in Lj with smaller Tid than Tr. Since records in

Figure 2: Trajectory examples T1, T2 and T3.

a region-list are sorted by Tid, Li does not contain trajecto-
ries with smaller identifiers than r.

Similarly, when a record from the same trajectory (e.g. Ts) is
found in two region-lists (e.g. Li,Lj), the algorithm checks
whether the corresponding time intervals of the records match
the order of predicates in the pattern S . Hence a trajectory
that satisfies S should visit the region of Li before visit-
ing the region of Lj . If the record of Ts in Li has ts-entry

that falls after the corresponding ts-entry of Ts in list Lj ,
this record can be skipped in Li, since it cannot satisfy the
query. Since region-lists are stored in ordered way, advanc-
ing a region-list forward to a specific location stamp by Tid

or by (Tid, ts-entry) can be easily implemented using an
index B+-tree on the (Tid, ts-entry) composite attribute.

Example: The first step of IJP algorithm is illustrated us-
ing the example in Figure 2. Assume the pattern S in the
query Q contains three fixed (M, D, M) and three variable

predicates (?+, @x,@x), as in:

S = {?+.@x.?∗.M.?∗.D.?∗.@x.?∗.M}

This pattern looks for trajectories that first visited an arbi-
trary region (denoted by ?+) one or more times, then visited
some region denoted by variable @x, then (after visiting zero
or more regions) it visited region M , then region D and then
visited again the same region @x before finally returning to
M . The first step of the join algorithm uses the region-list

for M and D (LM and LD). For simplicity, instead of using
two separate pointers in list LM , Figure 2 depicts two copies
of list LM , namely LM1

and LM2
. Conceptually, LM1

rep-
resents the first occurrence of M in S (before D) and LM2

the second occurrence of M (after D).

The algorithm starts from the first record in list LM1
, namely

T1(10,13). It then checks the first record in list LD, i.e., tra-
jectory T2. We can deduce immediately that T1 is not a
candidate trajectory, since it does not appear in the list of
LD, so we can skip T1 from the LM1

list and continue with
the next record there, trajectory T2(18,21). Since T2(7,9) in
list LD has interval before (18,21), list LD moves to its next
record T2(21:23). These two occurrences of T2 coincide with
the pattern M.?∗.D of S so we need to check if T2 passes
again by region M . Thus we consider the first record of list
LM2

, namely trajectory T1(10:13). Since it is not from T2

it cannot be an answer so list LM2
advances to the next
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Algorithm 1 IJP : Fixed Spatial Predicates

Require: Query S
Ensure: Trajectories satisfying Sf

1: n← |Sf | ⊲ number of fixed predicates in S
2: for i← 1 to n do ⊲ for each Sf

3: Initialize Li with the cell-list of Pi

4: Candidate Set U ← ∅
5: for w ← 1 to |L1| do ⊲ analyze each entry in L1

6: p1 = w ⊲ set the pointer for L1

7: for j ← 2 to n do ⊲ examine all other lists
8: if L1[w].id 6∈ Lj then
9: break ⊲ L1[w].id does not qualify
10: Let k be the first entry for L1[w].id in Lj

11: while L1[w].id = Lj [k].id and Lj−1[pj−1].t >
Lj [k].t do

12: k ← k + 1 ⊲ align Lj−1[pj−1].t and Lj [k].t
13: if L1[w].id 6= Lj [k].id then

14: break ⊲ L1[w] does not qualify
15: else pj = k ⊲ set the pointer for Lj

16: if L1[w] qualifies then

17: U ← U ∪ L1[w].id ⊲ L1[w] satisfy all Sf

record T2(18,21). Now pointers in all lists point to records
of T2. However, T2(18,21) in LM2

does not satisfy the pat-
tern since its time interval should follow the interval (21,23)
of T2 in D. Hence LM2

is advanced to the next record,
which happens to be T2(25,27). Again we have a record
from the same trajectory T2 in all lists and this occurrence
of T2 satisfies the temporal constraints and thus the pattern
S . As a result, trajectory T2 is kept as a candidate in U .
The processing moves to the next record in list LM1

, namely
T2(25,27). However, this record cannot satisfy the pattern
S so it is skipped. Eventually LM1

will consider T3(10,11)
which causes list LD to move to T3(5,10). Trajectory T3

cannot satisfy the temporal constraint, so it is skipped from
list LD and the algorithm terminates since one of the lists
reached its end. 2

(ii) Variable predicate evaluation: The second step of
the IJP algorithm evaluates the variable predicates r in Sv,
over the set of candidate trajectories U generated in the
first step. For a fixed predicate its corresponding region-list

contains all trajectories that satisfy it. However, variable

predicates can be bound to any region, so one would have to
look at all region-lists, which is not realistic. We will again
need one list per each variable predicate (termed variable-

list), however such variable-lists are not precomputed (like
the region-lists). Rather they are created on the fly using
the candidate trajectories filtered from the fixed predicate
evaluation step.

To populate a variable-list for a variable predicate Pj ∈ Sv

we compute the possible assignments for variable Pj by an-
alyzing the trajectory-list for each candidate trajectory. In
particular, we use the time intervals in a candidate trajec-
tory to identify which portions of the trajectory can be as-
signed to this particular variable predicate. An example is
shown in Figure 3, using the candidate trajectory T2 from
Figure 2. From the previous step we know that T2 satis-
fies the fixed predicates at the following regions: M(18,21),
D(21,23), M(25,27) (shown in bold in the trajectory-list of
T2). Using the pointers from the region-lists of the previ-
ous step, we know where the matching regions are in the
trajectory-list of T2. As a result, T2 can be conceptually
partitioned is three segments (Seg1, Seg2, Seg3) shown in

Figure 3: Segmentation of T2 for IJP (Seg2 = ∅).

Figure 3. Note that Seg2 is empty since there is no region
between M(18,21) and D(21,23).

These trajectory segments are used to create the variable-

lists by identifying the possible assignments for every vari-

able. Since a variable’s assignments need to maintain the
pattern, each variable is restricted by the two fixed predi-
cates that appear before and after the variable in the pat-
tern. All variables between two fixed predicates are first
grouped together. Then for every group of variables the
corresponding trajectory segment (the segment between the
fixed predicates) is used to generate the variable-lists for
this group. Grouping is advantageous, since it can create
variable lists for multiple variables through the same pass
over the trajectory segments. Moreover, it ensures that the
variables in the group maintain their order consistent with
the pattern S .

Assume that a group of variable predicates has w members.
Each trajectory segment that affects the variables of this
group is then streamed through a window of size w. The
first w elements of the trajectory segment are placed in the
corresponding predicate lists for the variables. The first ele-
ment in the segment is then removed and the window shifts
by one position. This proceeds until the end of the segment
is reached. In the above example there are two groups of
variables: the first consists of variables “?+” and “@x” in
that order (i.e., w=2), while the second group has a single
member “@x” (w=1). Figure 4 depicts the first three steps
in the variable list generation for the group of variables “?+”
and “@x”. This group streams through segment Seg1, since
it is restricted on the right by the fixed predicate M in pat-
tern S . Each list is shown under the appropriate variable.
A different variable list will be created for the second group
with variable “@x”, since this group streams through seg-
ment Seg3 (the second “@x” variable is restricted by fixed
predicates D and M).

The generated variable-lists are then joined in a way similar
to the previous step. Because the variable-lists are popu-
lated by trajectory segments coming from the same trajec-
tory (trajectory T2 in our example) the join criteria checks
only if the ordering of pattern S is obeyed. In addition, if
the pattern contains variables with the same name (like @x)
the join condition verifies that they are matched to the same
region and time interval.
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Figure 4: Variable list generation for IJP.

Complexity Analysis for variable predicate evaluation:
Assume that the fixed predicate evaluation step generates k
candidate trajectories in U and let l denote the maximum
trajectory segment length. The worst case scenario is when
all variable lists have length l. Thus the variable predicate
evaluation in the worst case scenario is O(klr).

Explicit Temporal Constraints: The IJP algorithm can
easily support explicit temporal constraints (assigned to the
spatial predicates) by incorporating them as extra conditions
in the join evaluations among the list records. Due to lack
of space we omit further discussion.

4.1.2 Adding Distance-based Constraints
The evaluation of distance constraints D inside a query Q is
performed as a post filtering step after the pattern S evalu-
ation. The intuition is that the spatial predicates in S will
greatly reduce the number of candidate trajectories which
need to be examined by the distance-based algorithm. Nev-
ertheless, since the distance terms contain variables, there
are still many possibilities to bound the values of these vari-

ables. The IJP algorithm has the advantage of re-using the
variable lists created during the spatial predicate search.
These lists effectively enumerate all possible value bindings.
However, instead of using a brute force approach that will
examine all possible bindings, the IJP approach uses a vari-
ation of the Threshold Algorithm [8] and examines these pos-
sibilities in an incremental ordered fashion. As a result, it
avoids examining all possible bindings.

Regarding the IJP approach, assume that the S evaluation
has returned a collection of trajectories T . For each variable

in S one variable-list per trajectory in T is also created.
All variable-lists for a given variable are concatenated and
sorted, first by region and then by trajectory id. Note that
the same region may be associated with different trajectory
ids. For simplicity consider the scenario where the distance
terms are combinations of a variable with a fixed region (i.e.,
d(@x,A)). The case where the distance term contains two
variables is omitted for brevity.

For each distance term in D a separate list is created. As
with the variable-lists, distance-lists are also computed on-

the-fly. The idea is to incrementally examine the vicinity
around the fixed variable of each distance term di. To eval-
uate distances between regions, we use the uniform grid that
has been introduced in Section 3. We will use the distance

between grid cells to lower bound the Euclidean distance
between regions.

For example, given a term d(@x,A), in the first iteration
we examine the grid cells (and the regions approximated
with those grid cells) that are one cell away from the grid
approximation of region A. The next iteration will expand
the vicinity by one cell, and so on. When we discover a
region which appears also in the sorted concatenated list for
@x, we load all the corresponding trajectory ids and place
them in the list for this distance term.

As the lists for all distance terms in D have been created
incrementally, the TA algorithm finds the trajectory that
appears in all distance-lists and minimizes the sum of the
distances.

4.2 The Dynamic Programming Pattern Al-
gorithm (DPP)

The DPP algorithm is divided into two steps: (i) Trajec-
tory Selection and (ii) Matching . Using the trajectory-

lists the first step selects a candidate set of trajectories T̄
based on the fixed predicates in S . The second step uses pat-
tern matching to eliminate trajectories that do not match
the sequence order in S . It also checks for appropriate vari-

able bindings with possible verification on duplicate vari-

ables in S . The pseudo code for the DPP algorithm is shown
in Algorithm 2.

(i) Trajectory Selection: For each region-list of a fixed
region that appears in S , we select the ids Tid for all trajec-
tories that visited this region. Candidate set T̄ is computed
by intersecting the collected ids (per region). That is, T̄
contains ids of the trajectories that have visited (indepen-
dently of what order) all the regions in S . Nevertheless,
since no order of these appearances has been verified, a fur-
ther verification step must be performed on each T ′ ∈ T̄ to
enforce the order of S . This verification step is performed
using dynamic programming.

(ii) Matching: For each trajectory T ′ ∈ T̄ a dynamic pro-
gramming matrix M (function BuildDPM ) is first created;
it will later retrieve the matches of S in the trajectory T ′

(function ScanDPM ). The M matrix enables the DPP al-
gorithm to match all occurrences of the pattern S in T ′ in
the specified order defined in S . Matrix M has a column j
for each region visited by the trajectory T ′. Multiple visits
to the same region are represented with multiple columns
in M, as it is stored the same way in the trajectory-list in-
dex. The rows i in the matrix correspond to the predicates
Pi ∈ S . Therefore, the size of M is |S|.|T ′|. The value in
each entry in M[i][j] is computed based on the predicate
Pi and the j-th element in the region approximation of the
trajectory T ′ denoted as T ′

j . (This is the j-th element in the
trajectory-list of T ′).

It should be noted that if pattern S contains only fixed spa-
tial predicates, the matrix M can be shrunk by eliminating
the regions in T ′ that are not present in S . This optimiza-
tion does not compromise the sequence of patterns found
because for each Rj in T ′, the attribute (ts-entryj :ts-exitj )
is also kept.
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Algorithm 2 DPP : Fixed and Variable Spatial Predicates

Require: Query S which consists of predicates Pi

Ensure: Trajectories satisfying S
1: Let T̄ be the set of candidate trajectories from trajectory-list

having all fixed predicates in S
2: Answer Set A ← ∅ ⊲ initialize the answer set
3: for each trajectory T ′ ∈ |T̄ | do

4: BuildDPM (T ′, S) ⊲ construct matrixM
5: if ABS(M[|S|][|T ′|]) ≥ P

|S|
.idx then

6: ScanDPM (|S|,|T ′|) ⊲ analyze matrixM

Function: BuildDPM (T , S)
1: for i← 0 to |S| do ⊲ for each row ofM
2: for j ← 0 to |T | do ⊲ for each column ofM
3: if i = 0 or j = 0 thenM[i][j]← 0 ⊲ trivial case
4: else
5: if Pi.type is a Fixed Spatial Predicate then

6: if Pi.R = T.Rj then

7: M[i][j]← (−(ABS(M[i − 1][j − 1]) + 1))
8: else
9: M[i][j] ← MAX(ABS(M[i − 1][j]),

ABS(M[i][j − 1]))
10: else ⊲ Pi.type is a variable or wild-card
11: if Pi.type = {?+, @} then

12: M[i][j]← (−(ABS(M[i− 1][j − 1]) + 1))
13: else ⊲ case where Pi.type = {?∗}
14: if i = Pi.idx then
15: M[i][j]← ABS(M[i− 1][j])
16: elseM[i][j]← (−(ABS(M[i−1][j−1])+

1))

Function: ScanDPM (i,j)
1: if i > 0 then ⊲ valid column inM
2: for k ← j to k ≥ Pi.idx downto 1 do

3: if ABS(M[i][k]) ≥ Pi.idx then

4: if M[i][k] ≤ 0 then ⊲ found a match inM
5: if Pi.type = {@} and Match[Pi.link] 6=

T ′.Rk then continue

6: Match[i]← T ′.Rk ⊲ found a match for T ′.Rk

7: if Pi−1.type = {?∗} then
8: ScanDPM (i − 1, k) ⊲ next iteration
9: else

10: ScanDPM (i − 1, k − 1) ⊲ next iteration
11: else A ← A ∪ T ′.id ⊲ found T ′.id to the answer set

Each matrix entry can a take numerical value in the range
(-|S|;|S|). The absolute value stored in the matrix entries
corresponds to the length of the longest match between the
pattern S and the trajectory approximation T ′ discovered so
far. A negative number inM[i][j] denotes a match between
the pattern Pi and the trajectory region Ri, and its absolute
value is the length of the longest match found so far. In
this way, the matrix M is used to store both the match
occurrences, represented with negative value, and the length
of each match, the absolute values in M[i][j].

The matrixM is computed row by row, column by column
starting from theM[0][0] entry until theM[|S|][|T ′|] entry.
At every step the BuildDPM function compares the values
of the current predicate Pi and the current region from the
trajectory approximation Tj (the same as the T ′

j). If there
is no match between Pi and Tj , then the value ofM[i][j] is
the biggest absolute value among the neighbors (M[i− 1][j]
or M[i][j − 1]). If there is a match between Pi and Tj then
the entry M[i][j] takes the value |M[i− 1][j − 1]| + 1, but
it is stored as a negative number indicating that the current
pair Pi, Tj participates in the match.

The previous description applies only for fixed spatial pred-

icates. For wild-card (?+,?∗) and variable (@) spatial pred-
icates, the computation of the entry M[i][j] is done differ-
ently. Because such variables can be bound with any value
of Tj , the value ofM[i][j] is computed as a “match”. There-
fore, the entry value is −(|M[i−1][j−1]|+1), as previously
described. This phase does not handle the case where a pat-
tern S contains variables which appear multiple times. This
verification step is performed in the ScanDPM function.
Instances of the same variable are “linked” in a backward
way using a “pointer” (link) with the following constraint:
Pi.link ← Pj if Pi = Pj and i < j. Because matrix M is
verified for matching in a “backward”way (fromM[|S|][|T ′|]
toM[1][1] entry), the pointers are associated to the next oc-
currence in the pattern S .

There is also a special case where the predicate Pi is optional

in the pattern S . In this case, the computation and further
verification of matrix M has to consider the case where Pi

does not match Tj . To deal with this, another attribute
Pi.idx is associated with each predicate in S . Basically, this
attribute stores the position of each predicate Pi in cases
the optional predicate does not match with any Tj . This
idx attribute is defined in the following manner:

Pi.idx←

8

<

:

1 if i = 1

Pi−1.idx if Pi.type = {?∗, ?#}
Pi−1.idx + 1 otherwise

After the matrix M is computed, the matches on it have
to be searched. This is performed by the ScanDPM func-
tion which “searches” for negative numbers stored in M;
such numbers denote the occurrence of a match. The op-
eration goes row by row, column by column in a direc-
tion opposite to the direction of construction, starting with
the bottom right entry. If the last matrix entry M[i][|T ′|]
has an absolute value greater than the last idx in P (i.e.
ABS(M[|S|][|T ′|]) ≥ P|S|.idx), then there is at least one
match between S and T ′. Otherwise we can safely prune
the trajectory avoiding further processing. Because we are
only interested in finding the longest and complete match
between S and T ′, we only look for entries that have val-
ues greater or equal than the Si.idx index (smaller values
indicate that there is a partial match but not a complete
one). If the cell value is less than the current pattern index
Si.idx, then the function ScanDPM aborts the processing
of the current row i.

If there is a match in M[i][j], then the function ScanDPM

is called recursively to process the sub-matrix with bottom
right corner M[i− 1][j − 1]. If the predicate Pi is optional
(# and ∗) then the function is called for theM[i−1][j] entry
instead. The algorithm stops when all predicates in S are
processed (i=0), thus finding all possible matches of S in
T ′.

Complexity Analysis: The BuildDPM function calculates
the value for each matrix entry just once. Let s denote the
length of a trajectory T ′ in terms of number of regions vis-
ited. Then the matrix M has m rows (|S|) and s columns,
and the complexity of this method is O(sm). The com-
plexity of ScanDPM is O(m + s) because at each step we
move one step left-up diagonally or up (e.g., at least one of
i and j is decremented). Therefore, the time complexity for
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Table 1: Matrix M for T2 and S example
T2 X I S D P H B U M D H B M

j 1 2 3 4 5 6 7 8 9 10 11 12 13

S i idx 0 0 0 0 0 0 0 0 0 0 0 0 0 0

?
+

1 1 0 -1
⊛

-1
⊛

-1
⊛

-1
⊛

-1
⊛

-1
∗

-1 -1 -1 -1 -1 -1 -1

@x 2 2 0 0 -2 -2 -2 -2 -2
◦

-2
∗

-2 -2 -2 -2 -2 -2

?
∗

3 2 0 0 2 -3 -3 -3 -3 -3
◦

-3
⊛

-3 -3 -3 -3 -3

M 4 3 0 0 0 3 3 3 3 3 3 -4
⊛

4 4 4 -4

?
∗

5 3 0 0 0 3 -4 -4 -4 -4 -4 -4 -5 -5 -5 -5

D 6 4 0 0 0 0 -4 4 4 4 4 4 -5
⊛

5 5 5

?
∗

7 4 0 0 0 0 4 -5 -5 -5 -5 -5 -5 -6
∗

-6 -6

@x 8 5 0 0 0 0 0 -5 -6 -6 -6 -6 -6 -6
◦

-7
∗

-7

?
∗

9 5 0 0 0 0 0 5 -6 -7 -7 -7 -7 -7 -7
◦

-8

M 10 6 0 0 0 0 0 0 6 7 7 -8 8 8 8 -8
⊛

processing a single trajectory T ′ with the DPP algorithm
is O(vsm), where v = |T̄ | (i.e., the number of candidate
trajectories produced from the trajectory selection step).
The reader should note that the two algorithms produce
candidate trajectory sets using different methods (IJP con-
siders the temporal order and DPP does not); hence in the
complexity analysis they are represented as k and v.

Explicit Temporal Constraints: When the pattern query
S has explicit temporal constrains inti in its definition, the
DPP algorithm only performs a check along with the match
checks in order to satisfies inti too (not shown in Algorithm
2). If only one of the above conditions is satisfied, then the
value of M[i][j] is computed as not a match. Otherwise, it
is computed as a match.

Example: We use the same example of pattern S in Figure
2 to illustrate how the DPP algorithm works. Using the
region-list the trajectory identifiers that have all the grids
M and D are in T̄ = {T2, T3}. For each trajectory T ′ in T̄ ,
the matrix M is computed using the function BuildDPM.
The computation of matrixM for T2 and S appears in Ta-
ble 1. Since P|S|.idx is 6, the ScanDPM function looks for
entry values equal to M[10][j] ≥ | − 6| in the 10-th row of
matrix M. In ScanDPM, the entry M[10][13] passes the
checks of the algorithm and the entry M[10][13] is stored
as a match in Match[10] (M was found in the 13th col-
umn of T2) and then the function ScanDPM is called for
the M[9][12] matrix. Again, entry M[9][12] passes all the
checks and it is called forM[8][12]. Because P8 is a variable

(i.e., variable @x) and it is the first variable encountered
so far, it passes the bounded value check (link test) and
then it is bounded to the grid B. Then the function Scan-

DPM is called in the following sequence for entries in M:
M[7][11], M[6][10],M[5][10], M[4][9],M[3][8] and then for
M[2][8], but it fails for this last one because the link test
does not pass (M[2][8] 6= M[8][12]). Then it is called for
M[2][7], and the link test satisfies because variable @x is
bounded to grid B (M[2][7] = M[8][12]). Then ScanDPM

is called for M[1][6] until j is 0. In the end, the pattern
?+.B.?∗.M.?∗.D.?∗.B.?∗.M is found and added to A. The
backtracking also evaluates the entryM[8][11] and finds pat-
tern ?+.H.?∗.M.?∗.D.?∗.H.?∗.M . Other calls for other en-
tries are called, e.g. M[10][9] (-8), but they all fails to bound
to other predicates in S . The 2 patterns found for the query
pattern S in trajectory T2 are highlighted in Table 1 (yellow∗

for the first pattern found, blue◦ for the second, and green⊛

when the entries are found for both of patterns). 2

4.2.1 Adding Distance-based Constraints
The evaluation of distance constraints D inside a query Q is
performed as a post filtering step after the pattern S eval-
uation. The DPP algorithm can only use a brute force ap-
proach since it maintains a trajectory as a sequence of re-
gions but loses the spatial properties of these regions. There-
fore, the DPP algorithm can only compute the distance for
the constraint as a final step.

5. EXPERIMENTAL EVALUATION
We run various experiments with real world and synthetic
datasets to test the behavior of each technique under differ-
ent settings. All experiments were run on an Intel Pentium-4
2.6 GHz processor running Linux 2.6.22 with 1 GBytes main
memory. All implementations used the same disk manager
framework with disk page size set to 4KB for each index
(region-list and trajectory-list indexes) and 16KB for the
raw trajectory archive.

For comparison purposes, we examined two previous pattern
matching approaches. In particular, we modified [5] and [2]
(called here Extended-KMP (E-KMP) and Extended-NFA

(E-NFA) respectively) and implemented them in our pro-
posed framework in order to fair compare them against the
IJP and DPP algorithms. The E-KMP contains extensions
to handle the variable predicates (?∗, ?+) as well as the im-
plicit/explicit temporal constraints. The NFA used in [2]
finds simple event patterns in streaming data. Hence it is
not formulated to evaluate topological relations or temporal
constraints as described in this paper. We thus extend it
to cover these as well, as to process queries with variables.
To this end, a stack is created for each variable “@x”. If
a variable appears in the query many times, a post pro-
cessing check is performed at the accept state of the NFA.
For fairness, all algorithms were tested using the same in-
dex framework (i.e., the E-KMP and the E-NFA algorithms
receive a candidate set of trajectories similar to the DPP

approach).

For real datasets, we use the Truck and Buses trajectorial
data from [1]. Both datasets represent moving objects in
the metropolitan area of Athens, Greece. The Truck dataset
has 276 trajectories of 50 trucks where the longest trajectory
timestamp is 13,540 time units. The Buses has 145 trajec-
tories of school buses with maximum timestamp 992. For
simplicity of the experimental evaluation, we do not use real
regions; instead we assume that the spatial domain (area of
Athens) is partitioned into (artificial) regions using a uni-
form grid. These grid cells become the alphabet for our
queries; hence in the rest the terms “region” and “cell” have
the same meaning. To examine the effect of the alphabet size
on the index structures we experiment with grid granularity
starting from 25×25 up to 100×100.

For the synthetic datasets, we generated datasets of mov-
ing object trajectories. The dataset represents the free-
way network of Indiana and Illinois states together. The
2-dimensional spatial universe is 1,000 miles long in each di-
rection and contains up to 200,000 objects. Objects start at
random positions on predefined routes in a road network and
follow a Normal distribution with mean 60 mph and stan-
dard deviation 15 mph. We run simulations for 500 minutes
(timestamps). For these datasets, the spatial universe was
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Table 2: Query time (s) for real datasets.
P Dataset |S| |Sf | |A| E-NFA E-KMP DPP IJP

S1 Buses 10 3 57 2.46 1.90 1.11 1.53
S2 Buses 20 7 29 89.62 62.75 28.99 3.03

S3 Trucks 20 7 76 111.91 54.68 30.28 10.57

S4 Trucks 46 29 11 3.06 0.73 0.22 1.56

partitioned with a grid 100×100.

In order to generate relevant query patterns, we randomly
sample and fragment 100 trajectories. The length and loca-
tion of each fragment are randomly chosen. These fragments
are then concatenated to create a query. For the synthetic
datasets we used pattern length from 5 up to 10 predicates.
We also generated sets of query patterns with different num-
ber of variable predicates (from 0 to 2). The location of each
variable inside the query was randomly chosen. For queries
with 2 variables, half of the patterns have the same variable
twice, and the other half use two different variables (i.e. @x
and @y). For each experiment, we measured the average
total time (in seconds) and the average I/O for a set of 100
queries. The query cost shown consists of the CPU time and
the I/O time.

5.1 Queries with Spatial Predicates
The first experiment, shown in Table 2, evaluates the total
time (in seconds) required to execute four complex pattern
queries on the Buses and Truck datasets. Since in the real
datasets objects move in relatively similar ways, we experi-
mented with larger number of predicates so as to create more
selective queries. Moreover, queries S1 - S4 contain between
2 and 4 variables and several wild-cards ?+ and ?∗. The
total number of predicates is specified by |S|, the number of
fixed predicates is |Sf |, the number of trajectories returned
is shown under |A|.

The results show that the E-NFA algorithm performs worse
for all queries. This is because it cannot take advantage of
the existing indexing structures so as to focus the search
only on those parts of the trajectories that might contain
answer (except from the original trajectory pruning using
the region-list intersection). This is to be expected since
the method has been designed for identifying patterns over
streaming (non-archived) data. We experienced a similar
behavior with the other real and also the synthetic datasets;
hence we remove the E-NFA method from the following com-
parisons. Among the rest, the DPP and IJP algorithms,
have typically more robust behavior; nevertheless, E-KMP

still shows competitive behavior for some queries.

To examine the effect of the size of the alphabet on the index
size, we experimented with the real datasets and different
alphabets (by changing the grid size). As expected the in-
creased number of letters in the alphabet increases the size
of the index (see Figure 6). Each trajectory visits more re-
gions (which have smaller size) during its lifetime and thus
generates more records in the index structure. Note that in
this experiment, the size of index was very small compared
to the raw data size (varying between 4% and 6% for the
Buses and 2% and 5% for the Trucks dataset). The number
of I/Os during the query evaluation however stays the same
because each predicate in the query still corresponds to a
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Figure 6: Total number of index records for different
alphabet sizes

single (though smaller) grid cell. As a result, the observed
query times remain similar to the ones shown in Table 2
(and thus omitted).

To further examine the performance of the DPP, IJP and E-

KMP algorithms we use the (controlled) synthetic datasets.
The next experiment evaluates the total time required to ex-
ecute 100 pattern queries while varying the number of spa-
tial predicates in P from 5 to 10. It uses a synthetic dataset
with 50,000 trajectories. The results appear in Figure 5 (in
log-scale) and for patterns with: no variable, 1 variable and
2 variables (Figures 5(a), (b) and (c) respectively).

As observed from these experiments, when increasing the
number of predicates in the pattern, the query time of the
DPP and E-KMP algorithms increases. For the DPP the
larger pattern implies a larger matrix and thus more pro-
cessing. The E-KMP is very sensitive to the number of “?∗”
in the query; as the pattern increases in size the probability
of more “?∗” increases (this effect will be examined further
later). Nevertheless, the DPP algorithm is always more effi-
cient than the E-KMP (typically by an order of magnitude).

The IJP algorithm is affected the least by the number of
predicates. This is because processing in the IJP algorithm
is guided by the region-lists of the first few predicates in the
pattern (for example, the third list is accessed after a match
in the first two lists is found, etc.). Hence, adding more lists
does not directly affect the processing. As more predicates
are added, the processing of the E-KMP and DPP starts
increasing making the IJP a faster solution.

For the same experiments, Figure 7 depicts the average I/O’s
for 1 variable and 2 variables. In particular E-KMP and
DPP have identical I/O behavior since they are using the
same approach to pick candidate trajectory-lists (without us-
ing the time constraints). Even though all three algorithms
use the same indexes to retrieve objects, the IJP uses a dif-
ferent strategy (as described in Section 4) which results in
a different I/O behavior. Nevertheless, all algorithms have
comparable I/O behavior, leading us to the conclusion that
the major differences in the overall processing time among
the algorithms are not I/O based but mainly CPU bound.

We also performed experiments comparing the proposed in-
dex structure with R-trees. The R-tree was outperformed
by our simpler grid structure (not reported here for lack of
space). Since R-trees are data-driven structures the overlap-
ping implies that several sub-trees need to be analyzed. Fur-
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Figure 5: Query Time for pattern with (a) no variable, (b) 1 variable, and (c) 2 variables

thermore, when MBRs over-approximate regions, the ver-
ification step at the end of the algorithm had to process
significant amount of false positives.
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Figure 7: Query I/O for 1 and 2 variables

5.2 Scalability Experiments
Number of wild-cards in P: We next examined the per-
formance of the three algorithms when varying the number
of “?∗“ wild-cards in the pattern. For these experiments, we
randomly sampled 100 trajectories from the previous syn-
thetic dataset and then extracted query patterns of length
10. These patterns contain only the “.” sequencer (i.e., no
“?∗”) and 2 variables. Using this query set we created a new
set that has queries with one “.?∗.”. This set was created by
randomly replacing one “.” by a “.?∗.”. We continued in the
same way creating a new query set with queries having two
“?∗” by replacing an additional “.”, etc. Figure 8(a) shows
the average total time (in log-scale) to execute 100 queries
varying the total number of“?∗”(from 0 to 8) in each pattern
with 2 variables.

Again we observed that in all experiments the DPP algo-
rithm is always faster than the E-KMP. As the number of
“?∗” increases, the performance of E-KMP deteriorates dras-
tically, showing the dependence of E-KMP to the “?∗” wild-
cards. This is because each such wild-card forces the E-KMP

approach to run more, shorter queries. More queries add to
the processing time but also since these queries are smaller,
the shifting function of E-KMP is not as effective. The DPP

is up to 4 times faster than the E-KMP when there are 8“?∗”
wild-cards (Figure 8(a)). For the DPP, the total processing
time increases because more matches qualify as an answer.
The performance of the IJP algorithm is independent of the
number of the “?∗” wild-cards, since they are evaluated in
the same way as the “.” sequencers. As a result, as more
wild-cards appear in the query, IJP will eventually become
faster than the DPP.

Number of Trajectories: We then varied the indexed
dataset size to examine the scalability of the proposed algo-
rithms. For these experiments, we used a synthetic dataset
of 200,000 trajectories. We started with inserting the first
50,000 trajectories in the indexes and measured the query
time (for an average of 100 queries each with 5 predicates,
including 0, 1 and 2 variables). We repeated the experiment
after adding an additional 25,000 trajectories. This incre-
mental process continued with increments of 25,000 trajec-
tories until the total of 200,000 trajectories in the archive.

The behavior of all algorithms grows linearly with the dataset
size, as shown in Figure 8(b). Recall that from our com-
plexity analysis, both the IJP and DPP algorithms are pro-
portional to the number of candidate trajectories; as more
trajectories are added, this number increases thus affecting
the overall performance accordingly. Again, the DPP algo-
rithm behaves consistently better than the E-KMP. Among
all algorithms, the IJP has the faster rate of increase. This
is because, the larger datasets create large region-lists which
directly affects the join processing cost. Moreover, IJP per-
forms two join operations (one in the region-lists and one in
the variable-lists) and both of them are directly affected by
the size of the lists.

5.3 Patterns with Spatial Predicates and Near-
est Neighbors

We also performed experiments to examine how the algo-
rithms behave when adding nearest neighbor predicates (i.e.,
pattern queries that contain both P and D). We examined
four query datasets varying the number of distance terms
from one to four. Each distance term uses two variables
(i.e., it is of the form d(@x,@y) which corresponds to the
very processing demanding NN query). All variables in each
query pattern are different and their positions were ran-
domly chosen. Figure 8(c) shows the results for queries using
10 predicates while increasing the number of distance terms.
Clearly, the IJP approach outperforms the “brute-force” ap-
proach of the DPP (up to two orders of magnitude). This is
because IJP maintains the spatial properties of trajectories
and can thus reuse the variable lists to avoid examining all
possible bindings.

Discussion: In all our experiments the previous E-KMP -
based approach (even optimized to use indexes) was out-
performed by the DPP algorithm. Furthermore, its perfor-
mance deteriorates drastically as the number of “?∗” wild-
cards increases. Similarly, the E-NFA was outperformed by
all algorithms. When comparing our two new algorithms, we
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Figure 8: Total time (s) when increasing (a) the number of “?∗” in P; (b) the number of trajectories indexed,
and (c) the number of distance terms in D

observed the following: (i) For a small number of predicates
the DPP algorithm is faster than the IJP algorithm. This is
because the matrix M is small and thus it is processed very
fast. (ii) For larger number of predicates the IJP algorithm
becomes faster since its performance is not affected by the
increase in predicates, while the DPP is affected by the in-
crease in the matrix size. (iii) On the other hand, IJP is a
join-based algorithm, hence the larger the dataset, the more
expensive is the join step. (iv) Nevertheless, IJP has more
robust performance when considering distance-based queries
(NN ) as well, while the DPP (and E-KMP) algorithm needs
to use a very consuming “brute-force” approach.

6. CONCLUSIONS AND FUTURE WORK
We introduced a framework for processing “flexible pattern
queries” over trajectory archives. Such queries combine the
ability of fixed and variable predicates, with explicit or im-
plicit temporal constraints and distance-based constraints.
Previous works have considered only subsets of this frame-
work and are based on variations of the KMP algorithm
or use finite automata. We introduced two query process-
ing techniques, one based on merge joins (IJP) and one
based on subsequence matching (DPP). The experimental
evaluation shows that our techniques improve substantially
even over optimized (using indexing and preprocessing tech-
niques) KMP and NFA approaches. Among our approaches,
IJP is more robust in that it can easily support NN queries,
while DPP is better for patterns with smaller number of
predicates or wild-cards. Since however both approaches use
the same indexing schemes, they can both be available to the
user. As a next step in this research we are examining cost
models that will enable a query optimizer to pick the best
technique based on the query parameters (size of the query
pattern, number of variables, wild-cards, etc). Furthermore,
we plan to extend our framework to support complex pat-
tern trajectory joins and density-based pattern queries.
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