
Suffix Tree Construction Algorithms on Modern Hardware

Dimitris Tsirogiannis
University of Toronto

Toronto, Canada
dimitris@cs.toronto.edu

Nick Koudas
University of Toronto

Toronto, Canada
koudas@cs.toronto.edu

ABSTRACT
Suffix trees are indexing structures that enhance the per-
formance of numerous string processing algorithms. In this
paper, we propose cache-conscious suffix tree construction
algorithms that are tailored to CMP architectures. The pro-
posed algorithms utilize a novel sample-based cache parti-
tioning algorithm to improve cache performance and exploit
on-chip parallelism on CMPs. Furthermore, several com-
pression techniques are applied to effectively trade space for
cache performance.

Through an extensive experimental evaluation using real
text data from different domains, we demonstrate that the
algorithms proposed herein exhibit better cache performance
than their cache-unaware counterparts and effectively utilize
all processing elements, achieving satisfactory speedup.

Categories and Subject Descriptors
H.3.1, H.3.4 [INFORMATION STORAGE AND RE-
TRIEVAL]: Content Analysis and Indexing, Systems and
Software.

General Terms
Suffix tree, Multi-core, Performance

1. INTRODUCTION
Suffix trees are indexing data structures that allow for ef-

ficient computation of many string operations such as exact
string matching and the longest common substring prob-
lem [14]. Since suffix trees advance the performance of many
string processing operations, they are ideal data structures
for a wide range of domains in which text data are pro-
cessed. For example, in bioinformatics, suffix trees have
been utilized to effectively search for patterns in databases
of genomic DNA data [3]. The full characterization of the
human genome exploded the size of genome data stored1,

1The current size of the GenBank database is 390GB.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

thereby necessitating the development of efficient text in-
dexing techniques.

Text data generation is occurring at unprecedented rates
in the web, corroborated by user generated content in the
form of blogs and other social media. Exploiting this vast
amount of collective knowledge requires efficient text index-
ing techniques. Traditionally, inverted indices have been uti-
lized to index text collections. A major limitation of inverted
indices is that they consider text to be a sequence of words.
Hence, they cannot efficiently answer complex queries such
as phrases which are commonly used in the context of online
advertising [18]. In contrast, suffix trees enable searching for
phrases at a cost that does not depend on the size of the text
collection.

Due to the evident importance of suffix indexing data
structures, several in-memory suffix tree construction algo-
rithms have been proposed in the past [13, 21, 27, 28]. How-
ever, these approaches have not considered the characteris-
tics of modern hardware architectures, namely multi-level
cache hierarchies and on-chip parallelism, thus severely un-
derutilizing hardware resources. This shortcoming did not
draw particular attention in the past, because the large space
requirements of suffix trees had shifted the focus towards the
design of algorithms optimized for disk performance, which
utilized in-memory algorithms as building blocks [2, 7, 12,
16, 22, 26]. Nevertheless, increasing memory sizes enhance
the impact of in-memory tasks on performance. Hence, it is
imperative to reassess the performance of in-memory suffix
tree construction algorithms and to propose new algorithms
that incorporate the characteristics of modern hardware ar-
chitectures, such as multi-level memory hierarchy and chip
multiprocessors.

1.1 Multi-level Memory Hierarchy
The advent of 64-bit hardware architectures removed the

4GB memory size barrier, enabling systems to deploy hun-
dreds of GBs of main memory2 and many operations can
be performed now entirely in memory. A critical drawback
of increasing memory size is that it also increases memory
access cost. That cost is intensified due to TLB (translation
look-aside buffer) misses during the translation of logical
to physical memory addresses. To reduce the memory ac-
cess bottleneck, hardware engineers introduced multi-level
memory hierarchies containing two or three levels of cache
memories.

The multi-level memory hierarchy results in non-uniform
memory access cost. Accessing the L1 cache (closest to the

2http://www.sun.com/servers/

263

CPU) costs 1-3 CPU cycles, while the cost of accessing the
L2 cache is 10-20 cycles [9]. A random memory access is an
order of magnitude more expensive, requiring hundreds of
CPU cycles.

The non-uniform memory access cost necessitates the de-
sign of in-memory algorithms that are optimized for cache
performance. Although several efforts have been made to de-
sign cache-aware query processing and indexing techniques
[6, 23], suffix tree construction algorithms have not yet been
optimized for cache performance.

Figure 1: Execution time breakdown of two suffix
tree construction algorithms.

To quantify this limitation, we analyzed the execution
time breakdown of two widely used suffix tree construc-
tion algorithms for an input string of size 100MB (DNA
sequence). Using Intel’s VTune performance analyzer, we
measured how much time each of these algorithms spends
on useful computation and how much time is wasted on stalls
like cache and TLB misses. As illustrated in Figure 1, all
the algorithms examined spend more than 70-80% of their
time “waiting” for data to arrive from memory and on other
stalls. Hence, there is a significant potential for performance
improvement.

1.2 Chip-Multiprocessors
In a continuous effort to improve CPU performance and

overcome physical limitations such as heat dissipation, CPU
designers introduced the concept of on-chip parallelism or
chip-multiprocessor architectures (CMPs). The placement
of multiple CPUs (cores) on the same die has been enabled
by higher levels of integration, allowing the concurrent exe-
cution of multiple threads of control. Unlike shared memory
architectures, in a CMP the cores share part of the cache hi-
erarchy – the size of which is in the order of few MBs – the
memory bandwidth and the system bus. Thus, in order to
exploit the computational power of CMPs, algorithms must
be carefully designed so that cores are not competing for
shared resources.

In the recent past, there has been a continuous effort to
exploit CMP architectures in order to improve the perfor-
mance of computationally intensive tasks [8, 11]. However,
existing suffix tree construction algorithms have not con-
sidered the potential performance improvement that CMPs
offer.

1.3 Contributions
In this paper, we study the problem of improving the per-

formance of in-memory suffix tree construction algorithms
by incorporating the characteristics of modern hardware ar-
chitectures. In particular, our goals are the following: a) to
improve cache performance, and b) to exploit on-chip par-
allelism of modern CMP architectures.

Initially, we consider the problem of cache-partitioning in
the context of suffix trees. Cache-partitioning provides the
means to parallelizing a task and improving its cache per-
formance. As we demonstrate later, existing partitioning
techniques introduce significant overhead that negates the
benefits of improved cache performance. Hence, we pro-
pose a low overhead cache-partitioning algorithm, termed
PreCache, that is utilized as a building block in suffix tree
construction algorithms.

Next, we propose two suffix tree construction algorithms,
termed CMPUTree and MAPST (MAterialized Prefixes
Suffix Tree), which are tailored to CMP architectures. CM-
PUTree is a cache-conscious parallel adaptation of Ukko-
nen’s algorithm [27]. Ukkonen proposed a linear time suffix
tree construction algorithm that severely underutilizes mod-
ern hardware resources. In contrast, CMPUTree is a linear
time algorithm that utilizes Ukkonen’s algorithm and the
PreCache partitioning technique as building blocks in order
to construct suffix trees in a cache-conscious and parallel
way.

The second algorithm proposed, termed MAPST, is a cache-
conscious suffix tree construction algorithm tailored to CMPs
that is more space efficient than CMPUTree at the expense
of a theoretical worse construction time (O(n logn)). In-
spired by the WOTD algorithm [13], MAPST constructs the
suffix tree in a top-down fashion, allowing for a more space
efficient representation of tree nodes. By utilizing material-
ized prefixes as well as different compression techniques, it
effectively trades space for cache performance, significantly
reducing the suffix tree construction cost. Furthermore, it
employs PreCache as a building block to parallelize the suf-
fix tree construction task and to bound the size of each core’s
working set.

Finally, we present an extensive experimental evaluation
of the algorithms proposed herein using real text corpora
from different domains. We demonstrate that the applied
techniques improve cache performance of in-memory suf-
fix tree construction algorithms. Furthermore, all the algo-
rithms proposed achieve satisfactory speedup as we increase
the number of cores.

The remainder of this paper is organized as follows. An
extended related work as well as background information on
suffix trees are presented in Sections 2 and 3, respectively.
In Section 4, we describe the cache-partitioning algorithm
(PreCache) that is utilized as a building block in the suf-
fix tree construction algorithms (CMPUTree and MAPST),
presented in Section 5. We experimentally demonstrate the
efficacy and efficiency of the proposed algorithms in Sec-
tion 6 and we conclude in Section 7.

2. RELATED WORK
In this section, we describe existing suffix tree construc-

tion algorithms by categorizing them as follows: a) in-memory
algorithms (Section 2.1), b) algorithms that are optimized
for disk performance (Section 2.2), and c) parallel algorithms
(Section 2.3). This is by no means an exhaustive list of ex-
isting approaches; due to space constraints, we only consider
those that are most relevant to our work.

264

2.1 In-memory Algorithms
Linear time algorithms for constructing suffix trees in main

memory have been proposed by Weiner [28], McCreight [21],
and Ukkonen [27]. One common characteristic of these al-
gorithms is that, due to the use of suffix links, they all have
irregular tree traversal patterns and hence, they exhibit poor
cache performance. However, Ukkonen’s is the algorithm of
choice due to the following reasons: a) it poses less space
requirements in practice, b) it is constructed online, and
c) it is easier to understand and implement. A high level
description and the limitations of Ukkonen’s algorithm are
presented in detail in Section 3.

Several algorithms have been proposed that abandoned
the use of suffix links in order to reduce the space require-
ments of suffix trees and improve temporal locality [7, 13].
These algorithms exhibit an O(n2) worst time complexity;
O(n logn) for finite alphabets. The most space efficient suf-
fix tree construction algorithm in this category is the write-
only top-down algorithm (WOTD) proposed by Giegerich
et al. [13]. The WOTD algorithm proceeds in a top-down
fashion, completely evaluating each tree node (identifying
child nodes and edge labels) before it proceeds to the next
one. Hence, it is able to apply a more space efficient rep-
resentation of tree nodes. Furthermore, the child nodes of
a particular tree node are stored in contiguous memory lo-
cations, resulting in better cache performance during query
time. Nevertheless, WOTD exhibits poor temporal locality
during the evaluation of tree nodes and it is not designed
for CMP architectures.

Other linear time algorithms have also been proposed in [10,
17]. Karkkainen and Ukkonen introduced the notion of sparse
suffix trees (SST) to represent a subset of suffixes and pro-
posed a linear time construction algorithm for sparse SSTs [17].
Farach et al. proposed a linear time in-memory suffix tree
construction algorithm for integer alphabets [10]. However,
these algorithms have not been optimized for cache perfor-
mance.

2.2 Disk-based Algorithms
Existing in-memory algorithms exhibit random access pat-

terns which renders them ill-suited for disk-based scenarios.
To address these issues, many suffix tree construction al-
gorithms have been proposed that are optimized for disk
performance [2, 7, 12, 16, 22, 26].

Hunt et al. proposed a disk-based suffix tree construction
algorithm for biological sequences [16]. Instead of using suf-
fix links, their algorithm performs multiple passes over the
input string in order to construct the suffix tree. In every
pass, the suffixes with a specific prefix are indexed. Be-
dathur and Haritsa proposed a low-overhead buffering pol-
icy, called TOP-Q, to improve the on-disk behavior of suffix
tree construction algorithms [2]. Cheung et al. proposed
a top-down disk-based suffix tree construction algorithm,
termed DynaCluster, that utilizes a fixed-length prefix-based
partitioning technique [7].

A disk-based suffix tree construction algorithm, termed
TDD, that utilizes WOTD as building block was proposed
by Tian et al. [26]. TDD applies a different buffer replace-
ment policy for every data structure of WOTD. A fixed-
length prefix-based partitioning technique is employed to
divide the suffix tree into independent sub-trees such that
each sub-tree is constructed in memory. A variant of this
algorithm, termed ST-merge, is proposed for the case when

the input string does not fit in memory.
Phoophakdee and Zaki proposed a disk-based suffix tree

construction algorithm that utilizes Ukkonen’s algorithm [22].
Their algorithm, termed TRELLIS, deploys a variable-length
prefix-based partitioning algorithm to partition the suffixes
of the input string into groups such that the suffix tree of
each group fits in main memory. The input string is initially
divided into a number of consecutive and disjoint substrings
and a suffix tree is constructed from each substring in main
memory. The sub-trees are subsequently merged into a sin-
gle suffix tree in a disk optimized way.

Ghoting and Makarychev proposed serial and parallel suf-
fix tree construction algorithms to deal with the case where
the input string does not fit in memory [12]. By carefully
adapting a simple suffix tree construction algorithm, their
algorithm, termed Waterfront, is able to maintain a constant
working set size, effectively reducing the amount of I/O per-
formed. A parallel version is proposed that is tailored to
massively parallel shared-nothing architectures.

2.3 Parallel Algorithms
Theoretical parallel suffix tree construction algorithms have

been proposed in the past [15, 20]. The algorithm in [20]
runs in O(logn) parallel time and uses n processors. The
first work-optimal parallel suffix tree construction algorithm
was presented in [15]. It doesO(n) work and runs inO(log4 n)
time using n processors. To the best of our knowledge, no
practical implementations of these algorithms have been re-
ported.

A parallel algorithm for constructing suffix trees on a com-
putational grid was proposed by Chen and Schmidt [5] in
which the suffixes are partitioned into groups using a fixed-
length prefix-based partitioning technique. A greedy load
balancing algorithm is applied to assign the construction of
each suffix tree to a processing node and a suffix tree is con-
structed from each group utilizing Ukkonen’s algorithm.

Carvalho et al. studied the problem of determining a bal-
anced partition of a lexicographic trie in the context of paral-
lelizing the extraction of structured motifs and proposed an
approximate partition algorithm with explicit load balancing
guarantees [4]. However, their algorithm cannot be utilized
for cache-partitioning as it does not provide any guarantees
with respect to the size of the partitions produced.

3. BACKGROUND
In this section, we present a general description of suffix

trees. We also provide a high level description of Ukkonen’s
algorithm as it is used as building block in CMPUTree (Sec-
tion 5).

3.1 Suffix Trees
Let Σ be an alphabet of |Σ| symbols. We denote S =

s1, . . . , sn$ to be a string over Σ of length n ≥ 1, where
si ∈ Σ and $ is a terminating symbol not occurring in S.
For any i ∈ [1, n], Si = si . . . sn denotes the i-th suffix of S
(S1 = S). A suffix tree of S, ST (S), is a rooted tree with the
following properties. Every node, except from the root, has
at least two edges and every edge has a label representing a
substring of S. For every node, each of its edges starts with
a different symbol from Σ. For every node u, p(u) denotes
the path from the root node to u and u is the concatenation
of edge labels on the path from the root to u. Every leaf
node corresponds to a suffix of S. Finally, a pointer from a

265

node u to another node v is called suffix link if u = αx and
v = x, where α ∈ Σ and x is a substring of S. The suffix
tree of string BANANA$ is presented in Figure 2.

BANANA$

5 4 2

3 1

0

BANANA$ A NA

$ NA $ NA$

$ NA$

suffix link

Figure 2: Suffix tree of string BANANA$.

3.2 Ukkonen’s Algorithm
Ukkonen’s algorithm constructs the suffix tree of a string

S in n phases, where n is the size of S [27]. It processes
the input string from left to right and during each phase
it expands the partially constructed suffix tree by consider-
ing a larger prefix of S. Algorithm 1 presents a high-level
description of Ukkonen’s algorithm.

Algorithm 1 Ukkonen’s Algorithm

Require: The input string S = s1, . . . , sn of size n
Ensure: The suffix tree of S
1: Initialize an empty suffix tree.
2: for i from 1 to n− 1 do
3: Begin phase i+ 1.
4: for j from 1 to i+ 1 do
5: Locate in the current tree the path with the longest com-

mon prefix with substring sj , . . . , si.
6: if symbol si+1 is not already present at the end of that

path then
7: “extend” the path by adding symbol si+1 to ensure

that substring sj , . . . , si+1 is in the tree.
8: end if
9: end for

10: end for

The time complexity of Algorithm 1 is O(n3). Ukkonen
made several observations that enabled the reduction of time
complexity to O(n). In this section, we discuss those that
are of interest to this paper. The first observation was that
edge labels do not have to be explicitly stored in a suffix
tree. Instead, a pair of string indices is sufficient for repre-
senting the corresponding substring. The indices specify the
beginning and end position of a substring in S.

Secondly, Ukkonen observed that traversing the partially
constructed suffix tree to locate the path that has the longest
common prefix with the currently examined substring is a
frequent and expensive operation. Ukkonen utilized suffix
links to reduce the number of edges examined in this step
and consequently, the algorithm’s time complexity.

Despite its linear time complexity, Ukkonen’s algorithm
has a number of major limitations in practice. Firstly, it
exhibits poor cache performance which is attributed to two
reasons: a) the irregular tree traversal, and b) the implicit
representation of edge labels using indices. Secondly, Ukko-
nen’s algorithm is not space efficient and exhibits poor cache
performance during query time. Even with the most space

efficient implementations of suffix trees [19], Ukkonen’s al-
gorithm requires at least 20 bytes per symbol on a 32-bit
architecture.

4. CACHE-PARTITIONING
Partitioning is the process of dividing data into partitions

so that a particular task can be performed as a set of sub-
tasks, each applied to a different partition. Depending on
the role of partitioning, different requirements are imposed.
For example, if the goal is to improve disk performance, the
requirement is that every sub-task is performed on memory-
resident data. Similarly, when the goal is to improve cache
performance (cache-partitioning), the working set of each
sub-task is required to fit in cache. The working set of each
sub-task must fit in the 1/C-th part of the cache when a
CMP with C cores is considered, otherwise the cores start
competing for the shared resource.

Cache-partitioning is more challenging than partitioning
for disk performance. The performance improvement from
reducing disk accesses compensates by a considerable mar-
gin the overhead of the applied partitioning technique and
the partitioning cost has a minor contribution to overall exe-
cution time [22]. This is not the case for cache-partitioning.
Dividing large datasets into many small (in the order of few
MBs) partitions such that all partitioning requirements are
met may incur significant overhead that negates the benefits
of improved cache performance [25].

In the context of disk-based suffix tree construction al-
gorithms, a prefix-based partitioning technique is typically
employed to distribute the suffixes of a string into a number
of memory-sized partitions such that every partition con-
tains suffixes with the same prefix; variable-length prefixes
are utilized to handle skewed data. As we demonstrate in
Section 6, these techniques are ill-suited for cache perfor-
mance as they introduce notable overhead.

4.1 PreCache Partitioning Algorithm
In this section, we present PreCache, a low overhead par-

titioning algorithm that divides the suffixes of a string into
a number of cache-sized prefix-based partitions. PreCache
is tailored to CMPs and is highly efficient for the follow-
ing reasons: a) it utilizes all processing elements (cores), b)
it exploits the shared L2 cache and the fast inter-processor
communication on CMPs to improve cache performance and
reduce the demand for memory bandwidth, and c) it em-
ploys sampling to reduce partitioning cost.

For a partition p, freq(p) denotes the number of suffixes of
p. Formally, we define the partitioning problem as follows.
Given a string S of size n, compute a set of prefix-based
partitions P such that the following conditions are satisfied:
a) every suffix belongs to exactly one partition (coverage
condition), b) ∀Pi ∈ P : freq(Pi) ≤ th (space condition),
and c) ∀Pi ∈ P , all the suffixes of Pi have prefix Pi in
common; in this case, partition Pi corresponds to prefix Pi.

The PreCache algorithm proceeds in two steps. The par-
titions of P as well as their corresponding prefixes are com-
puted in the first step. The partitions are populated with
the suffixes of the input string in the second step. In the
following sections, we describe these two steps in detail. In
Section 5, we also describe how the space condition is set in
order to improve the cache performance of suffix tree con-
struction algorithms.

266

4.1.1 Computing the Partition Set
Partition expansion is an essential procedure of the Pre-

Cache algorithm. Expanding a partition p, that corresponds
to a prefix of size l, is the process of replacing p with |Σ| new
– potentially smaller – partitions p1, . . . , p|Σ| such that every
partition pi corresponds to a distinct prefix of size l+1. For
example, if we assume an alphabet Σ = {A,C,G, T}, ex-
panding a partition p, where p = A, would result in the re-
placement of p with four new partitions p1 = AA, p2 = AC,
p3 = AG, p4 = AT .

Algorithm 2 PreCache - Partition Set Computation

Require: S: string, l: initial prefix length, th: threshold, B:
number of substrings of length lcur in the sample of S

Ensure: P : partition set
1: Set lcur ← l.
2: Initialize a partition set P ′ with |Σ|l partitions.
3: Compute a sample of S. // The sample units are substrings

of S.
4: while P ′ is not empty do
5: for each sample unit s do
6: for every substring sb of s of length lcur do
7: if sb ∈ P ′ then
8: Increment the counter of the corresponding parti-

tion.
9: end if

10: end for
11: end for
12: for every partition p of P ′ do
13: Set freq(p) = count(p) · n/B
14: if freq(p) > th then
15: Expand p into p1, . . . , p|Σ| and insert them into P ′.
16: else
17: Remove p from P ′ and insert it into P .
18: end if
19: end for
20: Set lcur = lcur + 1. // Increment lcur

21: end while

Given the expansion procedure, the computation of the
prefix-based partitions works as follows (presented in Algo-
rithm 2). PreCache creates an initial set of partitions P ′

(line 2) that cover all suffixes of S and progressively com-
putes the final partition set P by performing multiple passes
over a sample of S (lines 4-21). In every pass, the partitions
that satisfy the space condition are removed from P ′ and
stored in P (line 17). The partitions of P ′ that do not sat-
isfy the space condition are expanded into |Σ| new partitions
which are inserted in P ′ (the original partition is discarded
from P ′) (line 15) and a new pass over the sample of S is
performed. Algorithm 2 terminates when all the conditions
are met, i.e. P ′ is an empty set.

A high level description of Algorithm 2 is presented in Fig-
ure 3. In this particular example, three passes are required
to divide the suffixes of the input string into a number of
partitions such that the space requirement is satisfied, i.e.
the number of suffixes of each partition is less than or equal
to two. The numbers next to the prefixes indicate the num-
ber of suffixes of each partition. Next, we describe in greater
detail the most important implementation aspects of Algo-
rithm 2.
P ′ is initialized with the partitions that correspond to all

possible prefixes of length l, i.e. the size of P ′ is |Σ|l (line
2). P ′ is stored in a hash table and the value of l is set so
that P ′ fits in cache. For every partition of P ′, the corre-
sponding prefix and a counter are stored in a hash bucket.

P' - Pass 1 Final Partition Set
P

Input String: ABBCABCAAB$

A (4)

B (4)

C (2)

AA (1)
AB (3)
AC (0)

BA (0)

BB (1)

BC (2)
B$ (1)

ABA (0)
ABB (1)
ABC (1)
AB$ (1)

C
AA
BB
BC
B$

ABB
ABC
AB$

P' - Pass 2 P' - Pass 3

Threshold = 2

: expansion

Figure 3: Example of variable-length prefix-based
partitioning.

The address of the hash bucket is determined by applying
a hash function on the prefix. Since sampling is utilized,
computing the exact number of suffixes of each partition
is impossible. Instead, a frequency estimate (freq) is com-
puted for each partition of P ′ in every pass (lines 5-11). The
frequency estimate of a partition is stored in the counter of
the corresponding hash bucket.

In every pass, the frequency estimates are computed from
a random sample of S that consists of a number of sample
units (substrings of S), each containing b symbols. We set
the value of b to be a multiple of a cache line size (typically
64 or 128 bytes) and we align sample units to cache line
boundaries in order to improve spatial locality and memory
bandwidth utilization. From every sample unit, we extract
all possible substrings of length lcur to probe the hash table
that stores P ′. If a substring is found in the hash table, we
increment its counter (lines 7-9). If this is not the case, the
substring is ignored. Once all the sample units have been
processed, we scale the counter of each partition p by n/B
to get a frequency estimate (line 13) and we compare this
value with th (threshold) to decide whether to expand p or
place it in P (lines 14-18); B is the number of substrings of
size lcur in the sample of S.

Similar to hash-based aggregation on CMPs, there are
multiple ways to execute Algorithm 2 that either introduce
significant synchronization overhead (single shared hash ta-
ble) or increase memory footprint (multiple hash tables) [8].
In this work, we apply a different approach that avoids the
overhead of synchronization and does not increase memory
requirements at the expense of extra CPU overhead. A sin-
gle hash table is utilized and its hash buckets are partitioned
to cores such that every core updates the frequencies of a
disjoint set of hash buckets. The pitfall of this approach is
that every core has to process the entire sample of S and
discard those substrings that are not hashed to the set of
assigned buckets. However, there is a great advantage when
this approach is applied to a CMP. Since the same input is
processed by all cores, only one core (the fastest) reads the
sample units from memory, operating as a prefetcher. The
remaining cores exploit the fast inter-processor communica-
tion of CMPs to effectively retrieve the sample units from
the cache, thus reducing memory accesses and the demand
for memory bandwidth.

Once all cores have processed the sample of S, the parti-
tions that satisfy the space condition are stored in P while
the remaining partitions are expanded. A single core is re-
sponsible for initializing the hash table with the new parti-
tions of P ′ and for assigning the hash buckets to cores. All

267

cores proceed to the next phase at the same time, this being
the only synchronization point.

4.1.2 Populating the Partitions
Once P has been computed, its partitions are populated

with the suffixes of the input string. A single pass is per-
formed over S to identify the partition of each suffix. The
partitions of P are stored in a hash table using their prefixes
as keys. The payload for each partition is a vector of suffix
indices.

To determine the partition of a suffix s, the hash table
that stores P is probed using at most lmax − l prefixes of
s of sizes l, l + 1, . . . , lmax, where lmax is the length of the
longest prefix that corresponds to a partition of P . The
partition of s is the one corresponding to the smallest of
these prefixes for which a match is found in the hash table;
the index of s is stored in the corresponding suffix indices
vector. Populating the partition set requires n

2
· (lmax − l)

hash probes in expectation.
For the case of populating the partitions on a CMP, the

best approach is to range partition S (divide in consecutive
substrings) among cores and deploy a single hash table in
conjunction with a synchronization mechanism (mutexes).
The “shared input” approach applied in Section 4.1.1 is not
optimal in this case for the following reason. Since S is
significantly larger than the size of the shared cache, the
cores cannot effectively coordinate in order to process the
same part of the input string simultaneously. Consequently,
they end up competing for the shared cache, resulting in a
thrashing behavior. Using a separate hash table per core was
also found to be suboptimal due to the increasing number of
TLB misses, attributed to a considerably larger number of
memory addresses accessed (the number of vectors increase
by a factor of C).

5. SUFFIX TREE CONSTRUCTION ALGO-
RITHMS FOR CMP

In this section, we present CMPUTree and MAPST, two
cache-conscious suffix tree construction algorithms tailored
to CMP architectures. Initially, we present a framework for
exploiting on-chip parallelism that is utilized by both algo-
rithms (Section 5.1). Subsequently, CMPUTree and MAPST al-
gorithms are presented in Sections 5.2 and 5.3, respectively.
The description of the aforementioned algorithms focuses on
how to improve cache performance.

5.1 Exploiting on-chip Parallelism
In this section, we present a framework for constructing

a suffix tree on a CMP with C cores. The framework com-
prises four main phases which are executed in the order pre-
sented herein: a) partition phase, b) construction phase, c)
merging phase, and d) suffix-links recovery phase. As we
demonstrate in Section 6, the total cost of constructing a
suffix tree depends primarily on the time spent on the con-
struction phase. The last two phases are optional as they
affect performance during query time.

5.1.1 Partition Phase
In the partition phase, the suffix tree construction task

is divided into a number of sub-tasks such that each sub-
task can be executed independently by a single core. In this
phase, the PreCache partitioning algorithm (Section 4) is

utilized to divide the input string into a number of prefix-
based partitions such that a suffix tree can be constructed
from each partition in cache. Then, a simple scheduling
algorithm is employed to assign these partitions to cores.
The scheduling algorithm is the best-fit heuristic algorithm
for solving the bin-packing problem [29].

5.1.2 Construction Phase
In the construction phase, every core builds a suffix tree

from each assigned partition. CMPUTree and MAPST, as
well as any other in-memory suffix tree construction algo-
rithm can be utilized as a building block in this phase.

5.1.3 Merging Phase
The merging phase is employed to merge into a single

suffix tree the suffix trees that were produced in the previous
phase. Recall that every suffix tree corresponds to a prefix-
based partition. To merge the suffix trees, the corresponding
prefixes are considered to be suffixes of a single string and
a suffix tree, ST ′, is constructed from these suffixes. By
the definition of suffix trees, the number of leaf nodes of
ST ′ is equal to the number of partitions and every leaf node
corresponds to the root node of a suffix tree. Hence, the
merging phase is reduced to the construction of ST ′.

To execute the merging phase on a CMP with C cores,
the prefixes are divided into |Σ|l fixed-length prefix-based
partitions, where l is the smallest prefix length satisfying
|Σ|l ≥ C. The partitions are assigned to cores using the
same scheduling algorithm as in Section 5.1.1 and every core
constructs a part of ST ′ independently. A single core is
responsible for merging these parts and connecting the leaf
nodes of ST ′ to the root nodes of the suffix trees.

5.1.4 Suffix-links Recovery Phase
Since suffix links are needed in many string processing al-

gorithms, we provide an optional suffix links recovery phase.
Recovering the suffix links requires a depth-first traversal of
the suffix tree. To perform this operation on a CMP, we par-
tition the suffix tree among cores using fixed-length prefix-
based partitions and every core computes the corresponding
suffix links.

5.2 CMPUTree Algorithm
In this section, we present the CMPUTree algorithm, a

cache-conscious suffix tree construction algorithm that uti-
lizes Ukkonen’s algorithm as a building block. In order to
improve cache performance during the construction of a suf-
fix tree, we need to ensure that the working set of Ukkonen’s
algorithm fits in cache. The working set of Ukkonen’s algo-
rithm consists of the partially constructed suffix tree and the
substrings referenced by its edges. CMPUTree employs the
PreCache algorithm to divide the input string into prefix-
based partitions such that each partition contains at most
th suffixes. By properly setting the value of th, we ensure
that all memory accesses are resolved through cache during
the construction of a suffix tree. In particular, we set the
value of th so that the following condition is satisfied:

th · (node size+ cache line) ≤ L2

C
,

where node size is the size of a tree node (it depends on
implementation details), cache line is the cache line size,
and L2 is the size of the L2 cache.

268

The product th ·node size denotes the space requirement
of tree nodes and th · cache line is the space requirement of
edge labels (substrings). We set the space requirement of
every referenced substring to be the cache line size for two
reasons: a) the cache line is the minimum transfer unit from
memory, and b) the length of the longest common prefix and
consequently, the length of every edge label is O(logn) in ex-
pectation [1]. Although, there is no explicit guarantee that
all edge references will be resolved through cache, we ob-
served that considering the cache line size as the space over-
head of each edge label works well in practice (Section 6).

5.3 MAPST Algorithm
In this section, we present the MAPST algorithm, a cache-

conscious suffix tree construction algorithm for CMPs in-
spired by WOTD. MAPST constructs a suffix tree in a top-
down fashion, completely evaluating a tree node before pro-
ceeding to the next one. Furthermore, it utilizes the same
space efficient representation of tree nodes as in WOTD.
Evaluating a tree node is the process of identifying its child
nodes and their corresponding edge labels. In particular,
evaluating a node u is performed by processing the set of
suffixes that have string u as their longest common prefix, a
procedure that generates a large number of random memory
accesses.

To eliminate the accesses to the input string (suffixes)
and improve cache performance during the evaluation of tree
nodes, MAPST materializes a fixed-length prefix from every
suffix. The tree nodes are evaluated using the materialized
prefixes without accessing the input string, thus significantly
reducing the random memory accesses and the suffix tree
construction cost. Different compression techniques are em-
ployed by MAPST, according to the type of text data, to
reduce the space overhead of materialized prefixes and the
CPU overhead for evaluating tree nodes. Compression also
reduces the probability of accessing the input string as it
enables larger prefixes to be materialized in a specific space
budget.

Finally, MAPST utilizes PreCache to ensure that its work-
ing set, i.e. the materialized prefixes for constructing the
suffix tree of each partition, fits in cache. This is accom-
plished by setting the value of th such that the following
condition is satisfied:

th · prefix size ≤ L2

C
,

where prefix size is the size (in bytes) of each materialized
prefix; th is the number of suffixes of each partition. Next,
we describe the MAPST algorithm in detail.

The pseudo-code of the MAPST algorithm is presented in
Algorithm 3. We assume that the partitioning phase has al-
ready been applied and MAPST is utilized to construct the
suffix tree from the suffixes of a particular partition. For the
evaluation of the root node, MAPST produces the initial set
of compressed prefixes that are stored in array Suffixes (line
1). Counting sort is applied to sort these prefixes based on
their first symbol (line 2). After the sorting phase, every
symbol of the alphabet corresponds to a (possibly empty)
group of suffixes, represented as a range of positions in Suf-
fixes. The group corresponding to symbol α ∈ Σ is denoted
as α-group.

For example, assume that Suffixes contains the follow-
ing prefixes of length 3: [AAA,GTA, CAT, TTT, TTT ,

Algorithm 3 MAPST Algorithm

Require: S: input string, p = {s1, . . . , sth}: partition with th
suffixes, Suffixes, Temp: arrays of materialized prefixes, Z:
compression technique (RLE or LZW), Σ: alphabet

Ensure: ST : suffix tree of the suffixes of p
1: For every suffix of p, produce a compressed prefix using Z

and store it in Suffixes.
2: Sort the compressed prefixes using the first symbol of each

prefix as key. The sorted prefixes are stored in Suffixes and
every symbol of Σ corresponds to an α-group (range of pre-
fixes in Suffixes).

3: Store every α-group in a stack.
4: while the stack is not empty do
5: Retrieve the next α-group (range r = [i, j] of compressed

prefixes) from the stack.
6: if r contains a single prefix (j = i) then
7: Generate a new leaf node in ST .
8: else
9: Compute the lcp of the suffixes corresponding to the

compressed prefixes that are referenced by r.
10: Create a new node in ST and use the lcp as the edge

label.
11: Update the compressed prefixes of r by removing the

lcp.
12: Apply counting sort on the updated prefixes of r.
13: Store the α-groups that correspond to the symbols of Σ

in stack.
14: end if
15: end while

AGA, GAC], where Σ = {A,C, T,G}. For simplicity, we
do not present the prefixes in compressed form. After sort-
ing the prefixes based on their first letter, Suffixes becomes
[AAA,AGA, CAT,GAC,GTA, TTT, TTT]. Symbol A cor-
responds to A-group (range [1, 2] of prefixes), symbol C cor-
responds to C-group (range [3, 3]), and so on. The α-groups
that are produced during the evaluation of a tree node are
stored in a stack (lines 3, 13). A new tree node is created
for every α-group that is extracted from the stack and the
algorithm terminates when the stack is empty (lines 4-15).

If an α-group contains a single prefix, a leaf node is pro-
duced (line 7). For instance, when the C-group (represented
by range [3, 3]) is extracted, a leaf node is created to repre-
sent the suffix that corresponds to prefix CAT . An internal
node of the suffix tree is produced for every extracted α-
group (group for simplicity) that contains more than one
prefixes (lines 9-13). The edge label of this node is the
longest common prefix (lcp) of the corresponding suffixes.

The lcp is efficiently computed using the materialized pre-
fixes, without accessing the input string (line 9). For exam-
ple, consider processing the group represented by the range
[1, 2] of prefixes. In this case, the lcp is computed directly
from the cache-resident prefixes, i.e. lcp(AAA, AGA) = A.
However, this may not always be the case. Consider for ex-
ample the range [6, 7] of prefixes. In this case, we are only
certain that the lcp contains at least substring TTT . To find
the exact lcp, the corresponding suffixes must be accessed,
resulting in at least two random memory accesses. However,
by using compression, MAPST materializes larger prefixes
in a specific space budget (cache) and reduces the probabil-
ity of accessing the input string during the evaluation of tree
nodes.

Once the lcp has been computed from a set of prefixes,
these prefixes are updated by removing the lcp (line 11). For
example, prefixes AAA,AGA of range [1, 2] become AA,GA
by removing symbol A. If during that procedure a prefix is

269

exhausted (no more symbols left), a random memory access
is performed to the input string to update the materialized
prefix. Again, the merit of using compression is that it re-
duces the probability of exhausting the materialized prefixes.
Counting sort is employed next to sort the resulting prefixes
and distribute them to new groups which are inserted in
stack (lines 12-13).

Although compression significantly reduces the tree node
evaluation cost, it also introduces significant CPU overhead
during decompression. Next, we describe two variants of
MAPST that leverage the “internals” of different compres-
sion techniques to effectively reduce the tree node evaluation
cost for different types of text data. The following com-
pression techniques are considered: a) run-length encoding
(RLE), and b) Lempel-Ziv-Welch (LZW). RLE is appropri-
ate for strings with many sequences of repeated symbols such
as biological data. However, for other types of text data that
do not have this property, such as English texts, a directory
based compression technique such as LZW is more suitable.
Both compression techniques are lossless and require a single
pass over the input string.

5.3.1 Using RLE
An RLE-character is a (α, n) pair, denoting that symbol

α ∈ Σ appears n consecutive times. For every suffix s of
an α-group we materialize the following fields: a) a com-
pressed prefix of s that consists of k RLE-characters, where
k is a user defined parameter, and b) a pointer to s in the
input string. For example, for the first suffix (S1) of string
AAACCCCCAGG we would store the pair (A3C5, 1), as-
suming k = 2. Larger values of k enable the evaluation of
more tree nodes without accessing the input string. How-
ever, the space requirements for storing an α-group increase
with k. We demonstrate these tradeoffs in Section 6.

Next, we describe how the RLE encoding is leveraged to
reduce the cost of computing the lcp of an α-group. For
every α-group g, we explicitly store the maximum (maxn)
and minimum (minn) n of the first RLE-character of every
suffix of g. We consider three cases with respect to the values
of these two variables:

• Case 1: maxn > minn. This is the best case, as we
can automatically infer at a cost of a single arithmetic
comparison that the lcp of g is the single symbol α.

• Case 2: maxn = minn > 1. We know that lpc ≥
αα . . . α (symbol α appears at least maxn times). In
this case, we need to examine the materialized prefixes
of g to determine the exact lcp. However, we do not
need to consider the first maxf symbols of each prefix
since we already know that they are part of the lcp.

• Case 3: maxn = minn = 1. This is the worst case, as
we don’t have any information regarding the lcp and
we must examine the prefixes of g exhaustively.

In all but the first case, we have to examine the com-
pressed prefixes in order to compute the lcp of g. However,
this procedure is highly efficient for the following reasons:
a) the compressed prefixes reside in cache, b) the prefixes
are stored in contiguous memory locations and are accessed
sequentially, and c) the comparisons are performed on RLE-
characters, thereby reducing the computational cost. The
above are verified in Section 6.

Once the lcp of an α-group has been computed, the pre-
fixes are updated by removing the lcp and then sorted using
counting sort. Both operations can be performed directly
on compressed prefixes.

5.3.2 Using LZW
LZW is an efficient dictionary-based compression tech-

nique. Commonly, the dictionary, the size of which is user
defined, is stored in an LZW-trie, where every trie node cor-
responds to a dictionary entry. We refer to a dictionary
entry as LZW-code. When LZW is employed in MAPST,
for every suffix of an α-group we store the following: a) a
compressed prefix that consists of k LZW-codes, and b) a
pointer to the position of the suffix in the input string.

Computing the lcp and sorting the suffixes of an α-group is
performed at low cost by accessing the LZW-trie. In MAPST,
we set the size of the dictionary to be significantly smaller
than the cache (in the order of few KBs). The small size
of the LZW-trie and the fact that it is frequently accessed,
increase the probability of it residing in cache during the
construction of the suffix tree.

Algorithm 4 Algorithm for computing the lcp

Require: g: α-group, m: number of suffixes represented in g,
P1, . . . , Pm: compressed prefixes of g

Ensure: lcp of the suffixes of g
1: lcp ← P1

2: for i = 2, . . . ,m do
3: lcp ← compute lcp(lcp, Pi)
4: if size(lcp) == 1 then
5: Terminate
6: end if
7: end for

Algorithm 4 presents the pseudo-code for computing the
lcp of an α-group. The lcp is initialized with the first pre-
fix (line 1) and is progressively refined as more prefixes are
processed (line 3). If the lcp is reduced to a single symbol
during this refinement, Algorithm 4 terminates (line 5).

We illustrate Algorithm 4 with the following example.
Assume that the lcp is initialized with compressed prefix
P1 = C1C2C3, where C1, C2, C3 are dictionary entries and
consider the process of refining the lcp by computing the
longest common prefix between the current value of lcp (P1)
and the second prefix P2 = C′1C

′
2C

′
3. To compute the lcp be-

tween any pair of compressed prefixes, we initially inspect
their code values to efficiently identify a common prefix.
Subsequently, we compute the exact longest common pre-
fix by accessing the LZW-trie.

C1

LZW_TRIE

C2

C2'

C' = lca(C2, C2') A C G T

A T

C G

T A

Figure 4: LZW-trie

270

If we assume in our example that C1 = C′1 and C2 6= C′2,
the lcp between P1 and P2 contains at least C1 and thus, we
only need to compute the lcp between C2 and C′2. Notice,
that we do not need to consider codes C3 and C′3. Since ev-
ery code corresponds to a trie node, computing the longest
common prefix is equivalent to computing the lowest com-
mon ancestor (lca) of the corresponding trie nodes. Hence,
we employ a constant-time lca retrieval algorithm, proposed
in [24].

In our example, the lcp between C2 and C′2 is the trie node
that corresponds to code C′ (Figure 4) and the new value
of lcp is C1C

′. The same refinement procedure is then ap-
plied to the remaining prefixes as illustrated in Algorithm 4
(line 2) until either the lcp contains a single symbol or all
the prefixes have been processed. If at some point a pre-
fix is exhausted, the corresponding suffix is accessed and a
new compressed prefix is produced. Once the lcp has been
computed, the prefixes are updated by removing the lcp and
they are sorted using counting sort. All these operations are
performed at low cost by accessing the LZW-trie which with
high probability resides in cache.

6. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of

the proposed suffix tree construction algorithms using real
text corpora. In Section 6.1, we describe implementation
details of our algorithms, the datasets used to assess their
performance, and the hardware configuration of the CMP
on which we run our experiments. The results are presented
in Sections 6.2 and 6.3.

6.1 Experimental Setting
We compare the two suffix tree construction algorithms

proposed (MAPST, CMPUTree) against WOTD and Ukko-
nen’s algorithm, respectively. Implementations of the latter
were retrieved from publicly available sources34. Initially,
the implementation of Ukkonen’s algorithm utilized sibling
lists (linked lists) to store the child nodes of each tree node.
We altered its implementation using a combination of hash
map and sibling lists to reduce the number of random mem-
ory accesses during the evaluation of tree nodes.

Two factors affect the cost of constructing a suffix tree
besides the size of the input string: a) the alphabet size,
and b) the average longest-common-prefix. To demonstrate
the effectiveness of the proposed suffix tree construction al-
gorithms on datasets with different characteristics, we se-
lected two text collections from Ferragina and Navarro’s
Pizza&Chilli corpus5. The first text collection has small al-
phabet size (16 symbols) and contains gene DNA sequences
from the Human Genome Project. The second collection
has a relatively larger alphabet size (239 symbols) and is
a concatenation of English text files from the Gutenberg
Project6. The characteristics of the selected collections are
summarized in Table 1.

All the experiments were conducted on a Dell PowerEdge
2950 server with two quad-core Intel E5355 CPUs (8 cores)
running at 2.6GHz. Each quad-core has a 4MB of shared
L2 cache (8MB is total), and every core has a private 64KB

3http://www.cs.ucdavis.edu/gusfield/strmat.html
4http://bibiserv.techfak.uni-bielefeld.de/wotd
5http://pizzachili.dcc.uchile.cl/index.html
6http://www.gutenberg.org/wiki/Main Page

Table 1: Characteristics of Text Collections
Collection Alphabet Size Average LCP

DNA 16 59
English 239 9390

L1 cache. The server runs the 64-bit Linux operating sys-
tem with kernel 2.6.15 and has 32GB of main memory. All
the algorithms proposed were implemented in C using Posix
threads (Pthreads) and the gcc-4.3 compiler was used with
optimization level 02. In all the experiments conducted, the
sched setaffinity system call of the Linux OS was employed
to schedule the threads to specific cores and ensure that they
were not re-scheduled during execution.

6.2 Improving Cache Performance
A set of experiments is presented below to demonstrate

that the proposed cache-aware algorithms exhibit better cache
performance and run faster than their cache-unaware coun-
terparts. In all the experiments presented in this section, a
single core was utilized to construct a suffix tree. The wall-
clock time required to construct and store the suffix tree
in memory was measured in all the experiments; the input
string was preloaded in memory. Intel’s VTune performance
analyzer was utilized to measure performance counters such
as TLB and L2 cache misses. We also report the memory
usage of the proposed algorithms.

6.2.1 Evaluation of CMPUTree
Initially, we compare the performance of CMPUTree against

that of Ukkonen’s algorithm. We consider two variants of
the CMPUTree algorithm, namely CMPUTree E and CM-
PUTree PC. CMPUTree PC utilizes the PreCache parti-
tioning algorithm (Section 4). In contrast, CMPUTree E
employes the variable length, prefix-based partitioning tech-
nique proposed in [22]. The latter is an exact partition-
ing technique that performs multiple passes over the in-
put string. It has been utilized in several disk-based suffix
tree construction algorithms to effectively partition skewed
datasets such as DNA sequences. Since the suffix links re-
covery phase is optional, we also consider a variant that does
not apply this phase, termed nsl (no suffix links).

In Figure 5, we present the suffix tree construction time of
these algorithms as we increase the size of a DNA sequence
from 20MB to 80MB. The memory usage of CMPUTree is
reported in Table 2. For the entire range of string sizes ex-
amined, CMPUTree PC performs 1.5X − 1.6X faster than
Ukkonen’s algorithm and 1.2X − 1.7X faster than CMPU-
Tree E. For small string sizes, the overhead of the partition-
ing technique is small, and CMPUTree E performs better
than Ukkonen’s algorithm. However, as the string size be-
comes larger, the improved cache performance of the suffix
tree construction phase does not compensate for the over-
head introduced by the partitioning algorithm and CMPU-
Tree E performs worse than Ukkonen’s algorithm (when the
input string is 80MB in our experiment). In contrast, CM-
PUTree PC consistently outperforms both CMPUTree E and
Ukkonen’s algorithm, verifying its improved cache perfor-
mance and the effectiveness of our low overhead partitioning
algorithm.

The same experiment was conducted using English text
data (Figure 6). As in the case of DNA sequences, CMPU-
Tree PC consistently performs 1.3X−1.5X faster than both

271

Table 2: Memory Usage of CMPUTree
String Size (MB) Memory Usage (GB)

20 2.1
40 4.3
60 6.7
80 8.9

Figure 5: Evaluation of CMPUTree for biological
text data.

Ukkonen’s algorithm and CMPUTree E. The performance
difference between CMPUTree and Ukkonen’s algorithm is
smaller compared to the case of biological text data for a
given input string size. Due to the larger average LCP of
the English text collection, CMPUTree underestimates the
space overhead of some edge labels, resulting in higher num-
ber of random memory accesses while traversing a partially
constructed suffix tree.

Figure 6: Evaluation of CMPUTree for English text
data.

In the next experiment, the goal is to study the tradeoffs
in using a sample-based partitioning technique. Figure 7
presents the execution time breakdown of CMPUTree E and
CMPUTree PC algorithms on different phases when the in-
put string size is 80MBs. The cost of the merging phase
is not reported as it is negligible in this experiment. The
sample-based partitioning technique clearly reduces the par-
titioning cost. However, since it relies on estimates of the
number of suffixes of each partition, it typically produces
more partitions (depending on the sample size) than the ex-
act method (applied in CMPUTree E). Although, the larger
number of partitions increases the time spend on the remain-

Table 3: Memory Usage of MAPST.
String Size (MB) Memory Usage (GB)

20 0.8
40 1.7
60 2.7
80 3.6

ing phases (construction, suffix link recovery, merging), the
reduction of the partitioning cost compensates for the over-
head introduced.

Figure 7: Execution time breakdown of CMPU-
Tree E and CMPUTree PC algorithms when the in-
put string size is 80MBs.

6.2.2 Evaluation of MAPST
The performance of the MAPST algorithm is assessed

next. The suffix tree construction time of MAPST and
WOTD is compared for biological and English text data.
The results are presented in Figures 8 and 9, respectively.
The memory usage of MAPST is reported in Table 3. For
small string sizes (20MB in our experiment) MAPST and
WOTD exhibit the same performance (Figure 8). How-
ever, as the string size increases from 20MB to 100MBs,
their performance difference grows from 1% to 43%, respec-
tively. The working set of the WOTD algorithm decreases
as the construction of the suffix tree moves downwards, i.e.
as lower nodes of the suffix tree are being evaluated. Hence,
for the case of small strings, it takes only few node eval-
uations for the working set to fit in cache. As the string
size increases, more tree nodes are evaluated by accessing
memory resident data. Consequently, the performance dif-
ference between WOTD and MAPST is amplified, as the
latter ensures that every node evaluation is performed in
cache by utilizing PreCache and the compressed material-
ized prefixes.

For the case of English text data (Figure 9), the perfor-
mance difference between WOTD and MAPST also esca-
lates as we increase the string size, but at a lower pace com-
pared to the case of biological data. For small strings (20MB
in our experiment) WOTD is 20% faster than MAPST and
when the string size is 100MBs, the latter is 27% faster.
Compared to the case of biological data, the smaller perfor-
mance difference is attributed to two reasons: a) the consid-
erably larger alphabet size of English text, and b) the rela-
tively higher overhead of LZW compared to RLE. The larger
the alphabet size, the faster the reduction of the working set

272

Figure 8: Evaluation of MAPST for biological text
data.

size (factor of |Σ|) and consequently, fewer node evaluations
are required for the working set of WOTD to fit in cache
(for a given string size).

Figure 9: Evaluation of MAPST for English text
data.

In the next experiment, we study the effect of prefix size
on the performance of MAPST. Figure 10 presents the time
required to construct a suffix tree from a DNA sequence of
size 100MBs as we vary the number of RLE codes (k) of
each materialized prefix. As we increase the prefix size to 8
codes, more nodes are evaluated from the materialized pre-
fixes before they are exhausted, thus improving the cache
performance of MAPST. However, as we increase the value
of k, MAPST performs worse. Larger values of k increase
the space requirements of each partition, the number of par-
titions created and the compression cost. The same effect
was observed with English text data; the results are omitted
due to space constraints.

In order to properly set the value of k, we must have
explicit knowledge of the characteristics (distribution of the
lcp) of a text collection. If that knowledge is available, we
can compute the value of k that minimizes the expected
number of memory accesses. If this is not the case, sampling
could be utilized to provide this information.

6.2.3 Under the Microscope
In all the aforementioned experiments, the wall-clock time

required to construct a suffix tree is measured and it is
demonstrated that the proposed cache-conscious algorithms
perform better than their cache-unaware counterparts. Next,
we use hardware performance counters to corroborate that

Figure 10: Effect of prefix size on execution time of
MAPST for biological data.

this performance improvement is attributed to the reduction
of cycles wasted on various stalls and to the improved CPU
utilization.

In Figure 11, we present the normalized execution time
breakdown (in cycles) of all the algorithms that were exam-
ined in our experimental evaluation for processing a DNA
sequence of size 100MBs. It can be seen that all cache-aware
algorithms increase the amount of time spent on useful com-
putation and reduce the number of cycles wasted on stalls.
CMPUTree reduced the L2 cache misses by 63% and the
TLB misses by 80%. The wasted cycles accounted for the
82% of the total execution time for the case of Ukkonen’s
algorithm and for the 49% for the case of the CMPUTree
algorithm. Significant reduction of the number of wasted
cycles is also reported for the case of the MAPST algorithm.

Figure 11: Execution time breakdown of suffix tree
construction algorithms.

6.3 Exploiting on-chip Parallelism
In this section, we study the ability of the proposed algo-

rithms to exploit the processing elements (cores) of a CMP.
In Figures 12 and 13, we demonstrate the performance of
CMPUTree and MAPST, respectively for processing a DNA
sequence of size 100MBs as we increase the number of uti-
lized cores. We present the normalized execution time with
respect to the case when a single core is utilized.

As illustrated in Figures 12 and 13, the proposed algo-
rithms effectively utilize the computational power of CMPs,
significantly reducing the suffix tree construction cost. In
both cases, the execution time is reduced by a factor of 6
when eight cores are utilized (in our experiment). The non-

273

Figure 12: Speedup of CMPUTree as we increase
the number of cores utilized.

linear speedup is attributed to the approximate partitioning
technique and the online scheduling algorithm applied to as-
sign the partitions to cores. This experiment demonstrates
the effectiveness of the PreCache partitioning algorithm in
parallelizing the suffix tree construction task. This exper-
iment was also conducted with English text data with the
same results, verifying that algorithms designed for CMP
architectures can significantly reduce the suffix trees con-
struction cost.

Figure 13: Speedup of MAPST as we increase the
number of cores utilized.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the problem of improving the

performance of in-memory suffix tree construction algorithms.
Initially, we proposed PreCache, a low-overhead cache par-
titioning algorithm that is utilized as a building block to im-
prove the cache performance and parallelize the suffix tree
construction task. We proposed, CMPUTree and MAPST,
two novel suffix tree construction algorithms that are tai-
lored to CMP architectures. Through a detailed experimen-
tal evaluation, we demonstrated that the algorithms pro-
posed exhibit improved cache performance and effectively
utilize the computational power of CMP architectures, thus
achieving very good speedup.

8. REFERENCES
[1] A. Apostolico and W. Szpankowski. Self-alignment in words

and their applications. J. Algorithms, 13:446–467, 1992.

[2] S. J. Bedathur and J. R. Haritsa. Engineering a fast online
persistent suffix tree construction. In ICDE, page 720, 2004.

[3] P. Bieganski. Genetic sequence data retrieval and
manipulation based on generalized suffix trees. PhD thesis,
University of Minnesota, 1995.

[4] A. M. Carvalho, A. L. Oliveira, A. T. Freitas, and M.-F.
Sagot. A parallel algorithm for the extraction of structured
motifs. In SAC, pages 147–153, 2004.

[5] C. Chen and B. Schmidt. Constructing large suffix trees on
a computational grid. Journal of Parallel and Distributed
Computing, 66(12):1512–1523, 2006.

[6] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry.
Inspector joins. In VLDB, pages 817–828, 2005.

[7] C.-F. Cheung, J. X. Yu, and H. Lu. Constructing suffix tree
for gigabyte sequences with megabyte memory. IEEE
TKDE, 17(1):90–105, 2005.

[8] J. Cieslewicz and K. A. Ross. Adaptive aggregation on chip
multiprocessors. In VLDB, pages 339–350, 2007.

[9] I. Coorporation. Intel 64 and IA-32 architectures
optimization reference manual, May 2009.

[10] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On
the sorting-complexity of suffix tree construction. J. ACM,
47(6):987–1011, 2000.

[11] B. Gedik, R. R. Bordawekar, and P. S. Yu. Cellsort: high
performance sorting on the cell processor. In VLDB, pages
1286–1297, 2007.

[12] A. Ghoting and K. Makarychev. Serial and parallel
methods for I/O efficient suffix tree construction. In
SIGMOD ’09, pages 827–840, 2009.

[13] R. Giegerich, S. Kurtz, and J. Stoye. Efficient
implementation of lazy suffix trees. Software - Practice and
Experience, 33:1035–1049, 2003.

[14] D. Gusfield. Algorithms on strings, trees, and sequences:
computer science and computational biology. Cambridge
University Press, 1997.

[15] R. Hariharan. Optimal parallel suffix tree construction. In
STOC, pages 290–299, 1994.

[16] E. Hunt, M. P. Atkinson, and R. W. Irving. A database
index to large biological sequences. In VLDB, pages
139–148, 2001.

[17] J. Kärkkäinen and E. Ukkonen. Sparse suffix trees. In
COCOON, pages 219–230, 1996.

[18] A. Konig, K. Church, and M. Markov. A data structure for
sponsored search. In ICDE, pages 90–101, 2009.

[19] S. Kurtz. Reducing the space requirement of suffix trees.
Softw. Pract. Exper., 29(13):1149–1171, 1999.

[20] G. Landau, B. Schiever, and U. Vishkin. Parallel
construction of a suffix tree. Lecture Notes in Computer
Science, 267:314–325, 1987.

[21] E. M. McCreight. A space-economical suffix tree
construction algorithm. J. ACM, 23(2):262–272, 1976.

[22] B. Phoophakdee and M. J. Zaki. Genome-scale disk-based
suffix tree indexing. In SIGMOD, pages 833–844, 2007.

[23] J. Rao and K. A. Ross. Making B+- trees cache conscious
in main memory. SIGMOD Rec., 29(2):475–486, 2000.

[24] B. Schieber and U. Vishkin. On finding lowest common
ancestors: simplification and parallelization (extended
summary). pages 111–123, 1988.

[25] A. Shatdal, C. Kant, and J. F. Naughton. Cache conscious
algorithms for relational query processing. In VLDB, pages
510–521, 1994.

[26] Y. Tian, S. Tata, R. A. Hankins, and J. M. Patel. Practical
methods for constructing suffix trees. The VLDB Journal,
14(3):281–299, 2005.

[27] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14(3):249–260, 1995.

[28] P. Weiner. Linear pattern matching algorithms. In In
Proceedings of the 14th Annual Symposium on Switching
and Automata Theory, IEEE, 1973.

[29] M. Yue. A simple proof of the inequality ffd(l) <
(11/9)opt(l) + 1, for all l, for the ffd bin-packing algorithm.
Acta Mathematicae Applicatae Sinica, 7:321–331, 1991.

274

