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ABSTRACT

Information networks are ubiquitous in many applications and anal-
ysis on such networks has attracted significant attention in the aca-
demic communities. One of the most important aspects of informa-
tion network analysis is to measure similarity between nodes in a
network. SimRank is a simple and influential measure of this kind,
based on a solid theoretical “random surfer” model. Existing work
computes SimRank similarity scores in an iterative mode. We ar-
gue that the iterative method can be infeasible and inefficient when,
as in many real-world scenarios, the networks change dynamically
and frequently. We envision non-iterative method to bridge the gap.
It allows users not only to update the similarity scores incremen-
tally, but also to derive similarity scores for an arbitrary subset of
nodes. To enable the non-iterative computation, we propose to re-
write the SimRank equation into a non-iterative form by using the
Kronecker product and vectorization operators. Based on this, we
develop a family of novel approximate SimRank computation al-
gorithms for static and dynamic information networks, and give
their corresponding theoretical justification and analysis. The non-
iterative method supports efficient processing of various node anal-
ysis including similarity tracking and centrality tracking on evolv-
ing information networks. The effectiveness and efficiency of our
proposed methods are evaluated on synthetic and real data sets.
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1. INTRODUCTION

In many applications, there exist a large number of individual
agents or components interacting with a specific set of components,
forming large, interconnected, and sophisticated networks. We call
such interconnected networks as information networks, with exam-
ples including the Internet, research collaboration networks, public
health systems, biological networks, and so on. Clearly, informa-
tion networks are ubiquitous and form a critical part of modern
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information infrastructures.

Information network analysis has attracted a lot of attention from
epidemiologists, sociologists, biologists, and more recently also
computer scientists. In recent years, various approaches have been
proposed to deal with a variety of information network related re-
search problems, including power laws discovery [1], frequent pat-
tern mining [2, 3], clustering and community identification [4, 5],
and node ranking [6, 7].

One of the most important aspects of information network anal-
ysis is to measure similarity between nodes in a network. There are
many situations in which it would be useful to be able to answer
questions such as “How similar are these two nodes?” or “Which
other nodes are most similar to this one?”. Motivated by this need,
a great number of similarity measures are reported in the literature
[8,9, 10, 11, 12]. Most of them fall into one of the following two
categories:

1. text- or content-based similarity measures: treat each object
as a bag of items or as a vector of word weights [8];

2. link- or structure-based similarity measures: consider object-
to-object relationships expressed in terms of links [9, 10, 11,
12];

Based on the evaluation of [13], link-based measures produce
better correlation with human judgements compared with text-based
measures. From this perspective, it is reasonable to assume that an-
alyzing information network based on structure similarity is essen-
tial for many applications and worth thoroughly exploring.

Among almost all existing link-based similarity measures, Sim-
Rank [9] is an influential one. Informally speaking, SimRank simi-
larity score relates to the expected distance for two random surfers
to first meet at the same node. In contrast with other measures, Sim-
Rank does not suffer from any field restrictions and can be applied
to any domain with object-to-object relationships. Furthermore,
SimRank takes into account not only direct connections among
nodes but also indirect connections.

SimRank similarity score plays a significant role in the analysis
of information networks and a variety of other applications such
as neighborhood search, centrality analysis, link prediction, graph
clustering and multimedia (image, video clip, or audio song) cap-
tioning. For example, a general problem in image captioning is to
automatically assign keywords to an image. In this case, a graph
is generated from extracted images regions and terms according to
structural characteristics. Then, the graph is used to estimate the
affinity of each term to the uncaptioned image, and the top-k affini-
tive terms are selected as the caption of the image. In this context,
SimRank provides a good way for measuring node similarities.



Unfortunately, the main drawback of SimRank is its computa-
tion complexity. In the spirit of PageRank [6], SimRank computes
similarity of two objects through an iterative mode. Despite the im-
portance of the theoretical guarantee on the convergence, the cost
for iteratively computing SimRank similarity scores can be very
high in practice. In [14], Dmitry, Pavel, Maxim and Denis run the
original iterative SimRank on a 2.1GHz Intel Pentium processor
with 1Gb RAM for a scale-free generated graph which consists of
10000 nodes. It took 46 hours and 5 minutes for the algorithm to
iterate 5 times to compute all node similarities.

In order to optimize the computation of SimRank, a few tech-
niques have been proposed [15, 14]. However, these approaches
are all under the same iterative computation framework, which suf-
fers from the following limitations. First, the iterative algorithm
cannot deal effectively with the dynamic behavior of the network;
when the network is changed, all existing similarity measures will
have to be recomputed, i.e., they cannot be updated incrementally.
Second, the iterative algorithm has the global nature: the whole
similarity scores will be computed even only a portion of them is
required, which wastes a lot of time and space. Therefore, these
optimized solutions are particularly inefficient in practice.

Accordingly, in this paper we propose a rather different opti-
mization approach for SimRank to address the above challenges.
Our key observation is that the iterative computation formula of
SimRank resembles the well-known Sylvester equation [16]. Based
on this, we propose a novel technique that re-writes the SimRank
equation into a non-iterative form by using the Kronecker product
and vectorization operators. Equipped with the powerful low-rank
approximation technology, the non-iterative computation framework
enables us: (1) to derive similarity scores for an arbitrary subset of
nodes in a network on-the-fly; for instance, if only the similarity
score between two nodes ¢ and j is needed, it can be computed
individually in linear time without having to compute the whole
similarity matrix; and (2) to update SimRank scores incrementally;
when the network changs over time, we can provide any-time query
answer by updating SimRank scores incrementally. Specifically,
this paper has made the following contributions.

1. We propose a novel technique that re-writes the SimRank
equation into a non-iterative form by using the Kronecker
product and vectorization operators, which lays the founda-
tion for SimRank’s optimization as well as incremental up-
date.

2. We develop a family of novel approximate SimRank com-
putation algorithms for static and dynamic information net-
works, and give formal proofs, complexity analysis, and er-
ror bounds, showing our methods are provably efficient, with
small loss of accuracy.

3. Based on this efficient computation methods, we develop two

algorithms S_Track and C_Track for performing node sim-

ilarity and centrality tracking analysis on evolving informa-
tion networks respectively.

Extensive experimental studies on synthetic and real data

sets to verify the effectiveness and efficiency of the proposed

methods.

The rest of this paper is organized as follows. Section 2 gives
the background information of our study. Section 3 introduces
our techniques for non-iterative SimRank computation. Section
4 presents two approximate SimRank computation algorithms for
static information network while Section 5 gives one incremental
update algorithm for dynamic network. Section 6 investigates the
applications of these algorithms in performing node similarity and
centrality tracking analysis on evolving information networks. A
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performance analysis of our methods is presented in Section 7. We
discuss related work in Section 8 and conclude the study in Section
9.2.

2. PRELIMINARIES

In this section, we provide the necessary background for the sub-
sequent discussions. We first present some notations and assump-
tions that are adopted in this paper in Section 2.1, and then give a
brief review of SimRank in Section 2.2.

2.1 Notations and Assumptions

Symbol Definition and Description

AB, ... matrices (bold upper case)

AG, 5) the element at i*» row and j*" column of matrix A

AG, ) the " row of matrix A

AC, ) the 5" column of matrix A

A transpose of matrix A

gy,... sets (calligraphic)

n the number of nodes in the network

k the rank of a matrix

c the decay factor for SimRank

m the number of changed node in the network

N the number of top objects that have high similarity or cen-
trality scores

Table 1: Symbols

Table 1 lists the main symbols we use throughout the paper.
Without loss of generality, we model objects and relationships in
an information network as a graph G = (V, £) where nodes in V
represent objects of the domain and edges in £ represent relation-
ships between objects. For a node v in a graph, Z(v) and O(v)
denote the set of in-neighbors and out-neighbors of v, respectively.

Given a graph G, M denotes the adjacency matrix of G and M the
transpose of M. Similar to Matlab, we use M(%, j) to represent the
element at the i row and j** column of the matrix M, M(3, :) the
i*" row of M, and so on. Given two nodes i and j, we use S(i, §) to
denote the similarity between nodes ¢ and j. The whole similarity
matrix of G is denoted by S.

In rapidly changing environments such as World Wide Web, the
graph is frequently updated. At each time step t, we use M" to
denote the adjacency matrix at time ¢. We will not use a ¢ subscript
on these variables except where it is needed for clarity. We assume
that the number of network nodes is fixed; if not, we can reserve
rows/columns with zero elements as necessary. In the following
discussions, we focus on the undirected graphs. Our approach can
be easily applied to directed graphs.

2.2 SimRank Overview

In this section, we will give a brief review of SimRank. Let
S(a,b) € [0,1] denote the similarity between two objects a and
b, the iterative similarity computation equation of SimRank is as
follows:

|Z(a)[1Z(b)]

S(a,b) = | F@EDT 2

1,

@) L), atb
=b

Jj=1
a

where c is the decay factor for SimRank (a constant between 0
and 1), |Z(a)| or |Z(b)| is the number of nodes in Z(a) or Z(b).
Individual member of Z(a) or Z(b) is referred to as Z;(a), 1 <
i < |Z(a)|, or Z;(b), 1 < j < |Z(b)]. As the base case, any
object is considered maximally similar to itself, i.e., S(a,a) = 1.



For preventing division by zero in the general formula (1) in case
of Z(a) or Z(b) being an empty set, S(a, b) is specially defined as
zero for Z(a) = @ or Z(b) = @.

3. NON-ITERATIVE SIMRANK COMPUTA-
TION FRAMEWORK

Existing methods compute SimRank measure in an iterative man-
ner; that is, SimRank scores are propagated through the graph in
multiple iterations until convergence. As discussed earlier, this iter-
ative computation framework suffers from some limitations. In this
section, we introduce a non-iterative SimRank computation frame-
work which lays the foundation for SimRank’s optimization as well
as incremental update.

3.1 Key observation

To make the paper self-contained, we first briefly introduce two
useful matrix operators. Interested readers can refer to [17] for
more details.

DEFINITION 1 (KRONECKER PRODUCT). LetAc R**?, Be
RP*4. Then the Kronecker product of A and B is defined as the
matrix

anB . altB
A®B=| : .
as1B ... asuB

Obviously, the Kronecker product of two matrices A and B is a
sp X tq matrix.

DEFINITION 2 (VEC-OPERATOR). Let ¢; € R° denote the
columns of C€ R**' so that C= [c1,...,ct]. Then vec(C) is
defined to be the st-vector formed by stacking the columns of C on
top of one another, i.e.,

vec(C) = e R

Ct

The Kronecker product and the vec operator have many useful
properties. The following theorems are worth noting for the pur-
pose of our further discussion:

THEOREM 1. For any three matrices A, B, and C for which the
matrix product ABC is defined,

vec(ABC) = (C ® A)vec(B).

THEOREM 2. Let Ac R™*", B€ R"*°, C€ R"*P, and D&
R*t. Then

(A ®B)(C ® D) = AC ® BD.

Let W be the column-normalized matrix of M. When the itera-
tion number is sufficiently large, the iterative SimRank similarity
computation equation (1) can be written as the following matrix
form:

S =cWSW + (1 —o)I )

where I is an identity matrix.

Our key observation is that Equation (2) is in the form of the
well-known Sylvester Equation [16]. Specifically, by multiplying
(¢W) ™! to both sides of Equation (2), we get,

(cW) 'S = SW + (¢W) (1 — o)1

LetA = (¢W)™ 1, B = —W, C = (¢W) ' (1—c)I, Equation (2)
thus takes the form: AS+SB = C, which fits the Sylvester Equation.
S is the solution to this Equation if A, B, and C are known. This
motivates us to find a different solution for SimRank.

3.2 SimRank Equation Re-write

Next, we introduce how to re-write Equation (2) into a non-
iterative form.
After applying vec operator on Equation (2), we obtain

vec(S) = c(vec(WSW)) + (1 — ¢)vec(l)
According to Theorem 1,
vec(S) = ¢(W @ W)vec(S) + (1 — ¢)vec(l) 3)

Given a graph G of size n, intuitively, W ® W of Equation
(3) represents the normalized adjacent matrix of the derived graph
G? = (V?,£?). The i'" element of vec(S) represents the expected-
f meeting distance in G? from node (x, %) (x =i mod n, y =i/n
+ 1) to any singleton node (2,z) € V2. In the original graph G,
it can be thought of as that one surfer starts from node x while the
other starts from node y, and finally they meet at the node z. Thus,
Equation (3) is exactly the same as the random surfer-pairs model
discussed in [9]. It also strongly resembles the random walk with
restart model used in [18, 19, 20]. The difference is Equation (3)
computes all similarities for all node pairs while the random walk
with restart model computes the similarities from one fixed node
to all other nodes. If we evenly cut the vec(I) as well as vec(S)
of Equation (3) into n segments , then each of them is actually the
same as what the random walk with restart model uses and gener-
ates for the graph G2.

By further re-writing, now, the problem is reduced to compute

vee(S) = (1 — ¢)(I — ¢«(W @ W) 'wvec(T) 4)

Let L = I—¢(W®W). From Equation (4), we can see that L ™!
contains all information desired to compute the similarity matrix S.
In fact, by rewriting the original iterative definition of SimRank into
the form of Equation (4), we can derive S by computing the RHS
of Equation (4) without multiple iterations. As will be discussed
shortly, such rewriting enables us to develop algorithms to compute
and update SimRank scores efficiently.

A slight technicality here is that the similarity of a data object to
itself derived by Equation (4) may not be equal to 1 now, because
we cannot set the diagonal values of S to 1 as SimRank does at
each iteration. However, this is a trivial problem as it affects only
the absolute similarity value but not the relative similarity ranking.
For instance, in this setting, any object is still maximally similar to
itself. We will further discuss this in Section 7.

4. FAST STATIC SIMRANK COMPUTATION

In contrast with existing methods, Equation (4) provides a com-
pletely different approach for SimRank computation. However,
computing L™ directly is infeasible when the data set is large since
it requires cubic computation time.

4.1 An Approximation Algorithm with Qual-
ity Assurance



Algorithm 1 Non-Iterative SimRank Algorithm (N_Sim)

INPUT: the normalized adjacency matrix w
OUTPUT: The similarity matrix S
ALGORITHM:

01: Do low-rank approximation for W = USV

02: Ky=U®U,Ke=X33,K,=V®YV
03: Kyu =KiKy

04: Compute the core matrix A = (K L cKm)_1
05:  Compute the right vector V, = Kyvec(I)

06: P=K.A

07:  wvec(S) = (1 — c¢)(vec(I) + cPV,)

Because linear correlations commonly exist in many real graphs,
we resort to low-rank approximation to efficiently approximate L "
(recall that a high-dimensional matrix can be well approximated by
the product of several lower dimensional matrices).

Formally, a rank-k approximation of matrix A is a matrix A
where A is of rank k and ||A — Al|| is small. The low-rank approx-
imation is usually presented in a factorized form, e.g., A = LMR
where L, M, and R are of rank-k. There are many different low-
rank approximations in the literature, for example, in SVD [21],
L and R are orthogonal matrices whose columns/rows are singular
vectors and M is a diagonal matrix whose diagonal entries are sin-
gular values. Since among all the possible rank-k approximations,
SVD gives the best approximation in terms of squared error, in this
paper, we adopt it as our low-rank approximation method. For the
symmetric matrix, we will use eigen-value decomposition instead
to save storage cost.

Algorithm 1 shows the pseudo-code of our non-iterative Sim-
Rank algorithm for a static graph. On the matter of its correctness,
we have the following theorem:

THEOREM 3. IfUXV is a full decomposition for W, Algorithm
1 outputs exactly the same result as Equation (4) does.
proof: Based on theorem 2, we have

WoW=UU)(ZZ)(VeV)
Let
A=(Zex) " —(veV(UaU)™ 5)
Based on the Sherman-Morrison Lemma [22]:
(I—c(W@W) ' =I+cUU)AVRV)
By Equation 4, we have
vece(S) = (1—c)I+ (U U)A(V® V))vec(I) (6)

Error Bound. Developing an error bound for the general case
of Algorithm 1 is difficult. However, for the symmetric matrix, we
have the following theorem:

THEOREM 4. Assume S is the similarity matrix computed by
Equation (4), and S is the similarity matrix computed by Algorithm
1 which takes eigen-value decomposition as low-rank approxima-
tion, then

A1
I—cA1A;

c(l—c¢) Zn:

i=k+1

IS — S8

in which \; is the i*" largest eigen-value of w.
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proof: first, do a full eigen-value decomposition for w.
W=U=U

in which,~2 = diag(\1, ..., An) and \; is the ith

value of W. We have,

largest eigen-

(Zex)! (diag()q)\l, e

diag(—

AoAd, ...

Myt
1

o)

ArAr?

By Equation (5), we have,

A (Ze2) ! -—c(UaU)UeU)™*
Since U U = U® l}) (property of Kronecker Product), and

UeU)(UU) =1,

A = () ' —cUal)(UaU))™!
= (Zex) ' —a)™!
= Uiag(50 )
= diag(= c>\11A1 ) 1-5’3\":'3,1)
By Equations (6), we have:
vec(S) = (1 — ¢)(I + ¢ - diag( 1_A§AA11A1 yeey 1_23’::3\” ))vec(I)
vee(S) = (1 — ¢)(I + ¢ - diag( 13\1:1/\/\11)\1 e 1;\51’3]6 ))vec(I)

Thus, we have

o . A g
IS= 8l = ol —c)ldiag(2555, .., 225 )|
n
= c(l-¢ 1361;\51_

i=k+1

The error bound, ||S — S|+, is very small in practice, since it is
monotonically decreasing w.r.t. A;, which is small when ¢ > k.

4.2 Further Efficiency Improvement

One drawback of Algorithm 1 is, the similarity matrix is com-
puted for the entire graph in a holistic manner even if the similar-
ities for a small subset of nodes are required. The size of network
can cause computation to take very long time to complete. This de-
lay is unacceptable in most real environments, as it severely limits
productivity. The usual requirement for the computation time is a
few seconds or a few minutes at the most.

There are many ways to achieve such performance goals. A com-
monly used technique is to do some pre-computation and then ma-
terialize the result. Picking the right information to materialize is
an important task, since by materializing some information we may
be able to get the similarities quickly. A nice observation to Algo-
rithm 1 is that, matrices K., A, K,, and V,. carry all information
desired to compute all possible similarity scores. If they can be
pre-computed and stored, we can get the similarity on-the-fly for
any query node pair.

Here, we propose another version of Algorithm 1, which con-
sists of two phases: pre-computation phase and query phase. The
pseudo-code for these two phases is shown in Algorithm 2. We can
see that, having the pre-computed matrices K., A, K, and V,,
we only need to do one vector-matrix and one vector-vector mul-
tiplications in query phase to get the proper answer. Comparing
to the pre-computation time, the query time is much less. So our
algorithm can give the quick answer for any query nodes.

7)\71)\”))71



Algorithm 2 Improved version of N_Sim (NI_Sim)

INPUT: The normalized adjacency matrix w
The query node pair ¢ and j
OUTPUT: The similarity between nodes ¢ and j
ALGORITHM:
1. Pre-computation
01-05: The same as Algorithm 1

06: Store the matrices: K., A, K, V.

I1. Query Processing
07:  Compute the left vector V; = Ko ((¢ — 1)n + 7,:)A
08:  S(i,5) = (1 — ¢)(I(3,5) + cViVy)

4.3 Cost Analysis

In this section, we make a detailed analysis in terms of pre-
computational, query, and storage cost for Algorithm 2.

Pre-computational Cost: In our implementation, we adopt the
Krylov-Schur SVD algorithm to calculate a_truncated SVD with
the k largest singular values of the matrix W [23]. The Krylov-
Schur SVD algorithm is an iterative method. Before iterations, the
algorithm reduces the matrix to r-dimensional bidiagonal form, in
which r is roughly twice of k, ie. r = 2k. In each iteration, the
algorithm calculates the SVD of the r-dimensional bidiagonal ma-
trix, picks up £ singular values with desired tolerance and extends
the picked-up matrix back into r-dimensional bidiagonal form. The
algorithm stops until the total tolerance of the picked-up values is
small enough. In this algorithm, the bidiagonal reduction step costs
O(rn?) in time complexity; in each iteration, it only takes O(r®)
time to calculate the SVD of the r-dimensional bidiagonal matrix
and O((r — k)n?) time to extend the picked-up matrix. So after
applying the Krylov-Schur SVD algorithm, the pre-computational
cost is dominated by: 1) the multiplication of K, and K,; 2) the
computation of the core matrix A. They all take O(k*n?) (k < n).
As an off-line procedure, such complexity should be acceptable in
most cases. Moreover, we only need to do such pre-computation
one time. Once it is done, the pre-computation result can be incre-
mentally updated later when the graph is changed. Details will be
explained in the next section.

Query Cost: It is not hard to see that, at the query stage, we only
need to do: (1) multiply one vector and one matrix(O(1 X k2 x k2));
and (2) multiply two vectors (O(k?)). Therefore, the complexity is
O(k"). Since k < n, the algorithm is capable of meeting the near
real-time response requirement.

Storage Cost: In terms of storage cost, we have to store one
small k% x k2 core matrix (A), one n? x k? matrix (K,), one
k? x n? matrix (K,), and one small k2 x 1 matrix (V,.). We can
further save the storage cost as shown in the following:

e We observe that many elements in K,, and K, are near zero.
We introduce a threshold 7" and set those elements smaller
than 7" to be zero and then store the matrix as sparse format.
Experiments show that this step can significantly reduce the
storage cost while almost not affecting the approximation ac-
curacy'.

e For the symmetric matrix, we can use eigen-value decompo-
sition when computing the low-rank approximation. In this
case, K, = Ky, and 50% storage cost can be saved.

e Other low-rank decomposition methods such as CUR [24]
or CMD [25] can be used. Since these methods can gener-
ate a sparse representation of the original matrix, significant

'Tn [20], the authors suggest similar strategies to save storage cost.
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savings in space can be achieved’.

S.
DATE

In this section, we propose our similarity computation algorithm
for dynamic, time-evolving graphs. Our goal is to obtain the simi-
larity score between any two nodes at each time step ¢ efficiently.

5.1 Principle and Algorithm

Obviously, Algorithm 2 can be called at each time step ¢ to
compute similarities between nodes. However, in a dynamic set-
ting, the adjacency matrix changes over time, which means the pre-
computed matrices A, K., and K, are no longer applicable and
we will have to re-compute them from the scratch. In other words,
steps 1-6 of Algorithm 2 themselves become a part of on-line query
processing. Since the worst case complexity of pre-computation is
O(k*n?), such performance is undesirable when on-line response
is crucial and the dataset is large.

Thus, given a difference matrix AW =W! — Wt our goal is
to efficiently update A*, K¢, and K’ at time step ¢, based on A*~!,
K K'!, and AW'. Intuitively, if we can incrementally update
low-rank approximation matrices Ui, ¢, and V¢, we should be
able to update Af, Kf,, and K¢,

Suppose there are a total of m (m < n) nodes which had been
changed at time step ¢. Motivated by [26], we first decompose the
difference matrix AW into two smaller matrices A and B, such
that AW' = AB. A is an n x m matrix comprised of rows of zeros
or rows of the m‘" order identity matrix, I,,, and B is a m X mn
matrix whose rows specify the actual differences between W* and
W', For example,

0 10
. ~ 0 00
if AW = 10 0
0 0 0

Let Wt = U'Z!V?, we first introduce how to update Ut, 3¢,
and V! using U1, 71 vi=1 and AW, instead of re-doing
the SVD decomposition.

Since,
W= Wl AW
Uristtivitl L AB
Then,
(OHWHVT) =24 (0HABYT)
Let,
C=x"'4+ @O HABV' )

Now, compute the low-rank approximation for C. Since C is a
small k X k matrix, this step can be finished efficiently. Assume
C =UcXcVe, we have:

Ut = U"'Uc
Vt _ cht—l
s = 3¢

With this result, we next introduce how to update Kf,, K’ and
Al LetKye =Uc®Ug,Kye = Ve®Ve,andKs = o ®@3c.

*How to adapt our algorithms to these low-rank approximation
methods is beyond the scope of the paper.

INCREMENTAL DYNAMIC SIMRANK UP-



Algorithm 3 Incremental SimRank Algorithm (Inc_Sim)

~ t
InpUT: K7L KL AW
outpuT: AY, K}, K}, VL
ALGORITHM:

01: Decompose AW' = AB as discussed in Section 5
02: LetC=3x"1+ (U HABV )
03: Do low-rank approximation for C = UcXcVe
04: Kuye =Uc ®Uc,Kye = Vo ® Ve, Kg =3 ® 3¢
05: Update K!, = K, 'K,
06: Update K{ = K, .K{™*
07: Update A* = (K5' — cK{KE) ™
08:  Compute the right vector V& = Kfvec(I)
We have:
K, = UgU
— U 'Ue U 'Uo
= (U'@U Y (Uc®Uc)
Kf} = chKf)il
A = (Kg' — cKEKE) ™

The complete pseudo-code to update A?, K¢, and V% from time
step t-1 to ¢ is given in Algorithm 3.

5.2 Theoretical Justification and Analysis

We have the following lemma for the correctness of Algorithm
3:

LEMMA 1. FW'
AB, and ' + (U'"HAB(V'™") = UcS Ve hold, similarity
matrix obtained by executing lines 7-8 of Algorithm 2 based on the
output of Algorithm 3 is exactly the same as if we called Algorithm
2 for the time step t from the scratch.

proof: Similar as for Theorem 3. Omitted for brevity.

By lemma 1, the three matrices A*, K!,, and K!, produced by
Algorithm 3 are exactly the same as if we had executed lines 1-6 of
Algorithm 2 for time step ¢ from the scratch. Therefore, we have
the following corollary:

COROLLARY 1. Similarity matrix obtained by executing lines
7-8 of Algorithm 2 based on the output of Algorithm 3 has exactly
the same approximation accuracy as Algorithm 2.

In terms of incremental update efficiency, we have the following
lemma for Algorithm 3:

LEMMA 2. The computation cost of Algorithm 3 is bounded by
O(n?).

proof: The main incremental computation cost consists of the
following parts:

1. decomposing AW, (O(mn));

2. multiplication U and A, (O(kmn));

. multiplication B and v (O(kmn));

. low-rank approximation for a small k x k matrix, (O(k?));
. updating K!, or Kt,, (O(nkk'), k" is the low-rank of C);

. multiplication K, and K%, (O(n?(k")*));

= R T Y

—UISTVE LW = UNSVE AW =
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Algorithm 4 Similarity tracking Algorithm (S_Track)

. . g = ¢
INPUT: The normalized adjacency matrix W, AW,
g g
..., AW'" query node i, parameter N
OUTPUT: N most similar nodes of ¢
ALGORITHM:

01: Initialization (lines 1-6 of Algorithm 2)

02:  For each time step t; Do

03: For each node j Do

04: Compute S(%, j) (lines 7-8 of Algorithm 2)
05: End

06: Sort S(4, :) in descent order

07: Output top N nodes according to S(3, :)

08: Incremental update (Algorithm 3)

09: End

7. inversion of (K5' — cKLKY,), (O(K')%);
8. computation of the right vector V., (O(n*(k')?));

since k < nand k' < k, the overall incremental computation
cost is bound by O(n?).

6. NODE ANALYSIS

The non-iterative computation framework promises efficient pro-
cessing of various node analysis. Following, we present two exam-
ples: node similarity tracking and node centrality tracking.

6.1 Node Similarity Tracking

In many real setting, the networks are evolving and growing over
time, e.g., new links arrive or link weights change. For node sim-
ilarity tracking, our task is to return the N most similar nodes for
query node ¢ at each time step t. For example, over a dynamic
coauthor network, we want to answer “Who are the most similar
authors to Prof. Jennifer Widom in the past five years?”. Given an
image network, we want to know “which are the N most similar
images to a certain query image?”.

Based on the algorithms we developed in previous sections, we
can easily give the solution for the problem. The pseudo-code for
similarity tracking is summarized in Algorithm 4. At the very be-
ginning, we use lines 1-6 of Algorithm 2 to do an initialization for
the matrices K., A, and K,. Then, at each time step ¢, we per-
form the query phase of Algorithm 2 and return the N most similar
nodes of 4; and after that we call Algorithm 3 to update K%, K%,
and A" to prepare for the query at next time step.

6.2 Node Centrality Tracking

For node centrality tracking, our task is to return the N most cen-
tral nodes for the whole network at each time step ¢. For example,
over a dynamic coauthor network, we want to track the top-5 most
central/influential authors over time. Given an image network, we
want to know “which are the /N most representative images for an
object?”.

First, we introduce how to define the centrality measure based
on SimRank. Intuitively, a node that has larger average SimRank
score from all nodes in the graph would have high centrality. To our
surprise, experiments show exactly opposite result: central nodes
have low average SimRank scores, while peripheral nodes have
high scores. For example, the SimRank similarity matrix for the



Figure 1: Example of a Network

network in Figure 1 is:

1.00 0.90 0.90 0.79 0.00 0.90 0.00
0.90 1.00 090 0.79 0.00 0.90 0.00
0.90 0.90 1.00 0.79 0.00 0.90 0.00
0.79 0.79 0.79 1.00 0.00 0.79 0.00
0.00 0.00 0.00 0.00 1.00 0.00 0.75
0.90 0.90 0.90 0.79 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.75 0.00 1.00
The average SimRank scores of nodes 1-7 are:
[0.64 0.64 0.64 0.59 0.25 0.64 0.25]

It can be seen that the “central” node 7 in Figure 1 has the small-
est score (0.25), while the “peripheral” nodes 1,2,3, and 6 in Figure
1 have the largest scores (0.64). The result actually makes good
senses if we consider the semantic of SimRank: peripheral nodes
have high average SimRank scores because the central nodes exist
as their common ancestors, while central nodes themselves have
low average scores because they have few common ancestors.

On the other hand, other factors such as the size of the network
and the degree of a node would affect the centrality value as well.
A node locates in a larger network or has a larger degree should
have higher centrality.

In this paper, we combine several factors to gauge the centrality
of a given node, instead of solely relying on the closeness (similar-
ity).

DEFINITION 3 (CENTRALITY). Given a graph G = (V,E),
the centrality of node © € V is defined as:
C(i) = Fs(i) - Fa(i) - Fe(i)
where F (1) is the SimRank factor, Fq(1) is the degree factor, and

F.(4) is the connected component factor.

C/(z) consists of three components: F (), Fy(4), and F,(7). We
elaborate on each component in the following.

e F,(i) is the deciding factor in centrality. According to the
above observation, the lower average similarity a node has,
the more central it is. So F(4) is defined as:

1 n
1—= S(3,j
~ > S(i.j)

j=1

Fs(3)

e F4(7) represents the degree of node 4. It is introduced to
prevent those nodes which have few neighbors from being
considered as a central node. For example, node 5 in Figure
1 has the same average SimRank score as node 7, but it is not
a central node.

e F.(7) measures the connectivity of the network. Let Con(4)
be the connected component that node ¢ belongs to, and Size
(Con(t)) be the size (i.e., the number of nodes) of C'on(z),
F.(4) is defined as:

_ Size(Con(z))

F.(i) -
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Algorithm 5 Centrality Tracking Algorithm (C_Track)

. . = ~ ¢t
INPUT: The normalized adjacency matrix W, AW,
~ 1
..., AW'" parameter N
OUTPUT: N most central nodes
ALGORITHM:

01: Initialization (lines 1-6 of Algorithm 2)

02:  For each time step t; Do

03: Compute S (lines 7-8 of Algorithm 2)

04: Compute centrality for each node

05: Output top N nodes with large centrality values
06: Incremental update (Algorithm 3)

07: End

One might argue that, if we just use F;(z) as the centrality mea-
sure, we can identify node 7 as well. This alternative, however, has
two major drawbacks compared with our centrality measure. First,
it only considers one-step connections. Second, it is not sensitive
to any underlying network structure. For example, if we apply this
measure to a binary tree, it would fail to find the central nodes.

The algorithm for tracking node centrality (C_Track) is summa-
rized in Algorithm 5. It is quite similar to Algorithm 4, and we
omit its details for space.

7. EMPIRICAL RESULTS

To evaluate the effectiveness and efficiency of our algorithms, we
conducted extensive experiments. We implemented all experiments
on a PC with Intel Xeon 2.0GHz CPU, 2.0GB main memory and
200G hard disk, running Microsoft Windows Server 2003 Edition.
We first present a comprehensive study using the synthetic datasets,
which shows high effectiveness and efficiency of our algorithms.
We then evaluate the effectiveness of our tracking algorithms on
two real data sets, the DBLP and Image data.

7.1 Experiments on synthetic datasets

We generated information networks using the complex network
Package®. Configuration parameters for generating networks are
as follows: (1) node number: 10000; and (2) total edge number:
135938.

7.1.1 Efficiency

In this experiment, we conducted experiments to evaluate the
efficiency of our proposed approximate algorithms.

The runtime reported here includes the I/O time. We compare
the performance of our algorithms (NI_Sim and Inc_Sim) with the
iterative algorithm in [9] (Ite_Sim). When update is made to the
original network, we re-run lte_Sim. Although we realize that it is
not viable to re-compute the whole matrix every time the network
is updated, there is no other reasonable benchmark for comparison.
Our experiments show that the non-iterative algorithm without im-
provement (N_Sim) can be up to a hundred time slower than the im-
proved version of the non-iterative algorithm, as such we will only
report results for the improved non-iterative algorithm (NI_Sim).

In the NI_Sim algorithm, parameter k is set to 5, 10, 15, 20 and
25 respectively in the experiments, while c is set to 0.8. In the
Ite_Sim algorithm, the iterative time is set to 5 and 10, while c is
set to 0.8 which is the same as NI_Sim.

*http://www.levmuchnik.net/Content/Networks/Complex
NetworksPackage.html



We first compare the runtime of NI_Sim and Ite_Sim on the static
information network. Fig. 2(a) depicts the runtime for computing
SimRank scores. The X-axis shows the number of query node
pairs, and Y-axis shows the corresponding runtime in log scale.
From this figure we can observe that NI_Sim is about 100 times
faster than Ite_Sim when k is set to 25. The runtime can be further
significantly reduced if a smaller £ is set.

We next report the results on the dynamic network to evaluate
the performance of our proposed incremental algorithm Inc_Sim.
We observe that after initialization, at each step, most time is spent
on updating matrices K¢, K¢, and A",

To simulate a dynamic network environment, we first fetch 105938
edges to construct an initial network, then add 2000, 4000, 6000,
8000, and 10000 edges at each time step. Thus we have 5 time
steps in total.

Figure 2(b) shows the update time with respect to the number of
changed edges. Compared to Ite_Sim, Inc_Sim with small values of
parameter k is much faster, achieving average 100x speed-up when
k is 5 and 10x speed-up when k is 10.

7.1.2  Effectiveness

In this experiment, we evaluate the effectiveness of our algo-
rithms. We adopted two widely-used measures, AvgDiff and NDCG,
to evaluate the accuracy of our methods.

Average Difference (AvgDiff): Given a graph G = (V, ) of
size n, assume Simn; (%, j) represents SimRank values returned
from NI_Sim, and Sim+ (3, j) represents SimRank values returned
from Ite_Sim, where ¢, 7 € V, AvgDiff is defined as

i,jEV

AvgDif f = 2

It is easy to see that AvgDiff actually measures the absolute ac-
curacy of computation results.

Normalizing Discounted Cumulative Gain (NDCG): NDCG
is widely used to measure the accuracy of multi-level ranking model
[27, 28]. Here, it is used to measure the relative accuracy of compu-
tation results. Since our non-iterative computation model slightly
differs from the original SimRank iterative computation model (for
example, we do not set the diagonal values of S to 1 as SimRank
does at each iteration), the absolute value difference of SimRank
scores generated by NI_Sim and Ite_Sim may be large. But we
contend that this is not a big problem if the relative ranking of node
similarities keeps almost the same. For example, in Fig. 1, we order
all nodes according to their similarities to node 1. If the two rank-
ing lists, based on the computation results of NI_Sim and Ite_Sim,
are all (1, 2, 3, 6, 4, 5, 7), we say algorithm NI_Sim has 100%
accuracy since it loses nothing on precision of ranking results.

Given a query node, NDCG at position p is defined as

P )
2rankl -1

Z log, (i + 1)

i=1

NDCG,

1
=7
where p denotes position, rank; denotes the SimRank score of
rank ¢ from NI_Sim, and Z,, is a normalization factor to guarantee
that NDCG of a perfect ranking generated by Ite_Sim at position p
equals 1. In evaluation, NDCG is further averaged over all nodes.
Considering that users always concern about the top-K SimRank
scores, we will only report NDCG@5 and NDCG@10 in our ex-
periments.

Figure 3(a) shows the average difference between results from
NI_Sim and Ite_Sim. Clearly, the average difference is rather small
(0.003 for k=25). When the parameter k increases, the average
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difference decreases monotonically, meaning that higher accuracy
can be achieved with higher k.

Figure 3(b) shows the NDCG@5 and NDCG@10 of NI_Sim.
One can find that, with a rank-25 approximation, our method can
achieve very high ranking accuracy (94% for NDCG@5 and 92%
for NDCG@10). When higher value of parameter k is set, the ac-
curacy can be further enhanced.

7.1.3  Pre-Computation Cost

In Figures 4(a) and 4(b), results are evaluated from two perspec-
tives: pre-compute time (PT) vs. # of nodes and pre-storage (PS)
vs. parameter k. We increase the number of nodes from 10k to
50k. Figure 4(a) shows that although both algorithms are of lin-
ear scalability, the run time of the NI_Sim algorithm scales better
than that of the Ite_Sim algorithm. When k is larger than 25, the
pre-computation of NI_Sim may consume more time than Ite_Sim
with 5 iterations. As discussed in Section 4, this result is acceptable
since it can be done off-line and once for all. It is also worthwhile
since it hugely benefits runtime query performance as shown in
Figure 2(a).

7.2 Experiments on Real datasets

7.2.1 DBLP Dataset

The experiment is used to verify the effectiveness of our S_Track
algorithm. We extract the 10-year (from 1998 to 2007) author-
paper-term information from the whole DBLP data set*. Every
two publication years form a time step, so there are 5 time steps
in total. For each time step, we construct an information network.
The network nodes represent authors, papers, or terms, and edges
represent author-paper or paper-term relationships. We restrict pa-
pers published on 7 major conferences (‘ICDE’, ICML’, ‘KDD’,
‘SIGIR’, ‘SIGMOD’, ‘VLDB’, “‘WWW?’), and get 5782 papers in
total. We rank authors according to the number of papers they pub-
lished on these conferences and take the top-1000 authors. Sim-
ilarly, we rank terms according to their occurrence frequency in
titles of papers and take the top-1000 terms. Thus, there are 7782
nodes in total with an average of 10041 edges per time step.

Figures 5 and 6 list the top-10 most similar terms and authors
for ‘Prof. Jennifer Widom’ over the years. The results make good
sense. The terms list in Figure 5 indicate the major research inter-
est of ‘Prof. Widom’ is changing over time. For example, during
1998-2001, her major interests were semi-structured data process-
ing (‘xml” and ‘semistructured’) and data warehouse (‘warehouse’
and ‘incremental’). Her research group developed and declared the
‘Lore’ and “WHIPS’ prototype systems at that time. However, dur-
ing 2002-2005, data stream attracted lots of her attention (‘stream’
and ‘continuous’), while recently (during 2006-2007), uncertainty
and data lineage techniques became one of her new research fo-
cuses (‘uncertainty’,‘integrity’, and ‘uncertain’). In response to
the change of her research interest, one can find that her top-10
most similar authors have changed accordingly. For example, in
the years 2000-2001, the top similar authors of ‘Prof. Widom’
are: (1)‘7Jun Yang’ and ‘Chris Olston’ (they are Prof. Widom’s
students); and (2) ‘Latha S. Colby’ and ‘Ramez Elmasri’(they share
similar research topics, xml or data warehouse, with ‘Prof. Widom’
at that time). During 2006-2007, the top similar authors of ‘Prof.
Widom’ are ‘Omar Benjelloun” and ‘Anish Das Sarma’, and they
are Prof. Widom’s coauthors.

7.2.2  Image Dataset

*http://kdl.cs.umass.edu/data/dblp/dblp-info.html
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1998-1999 2000-2001 2002-2003 2004-2005 2006-2007
Sudarshan Chawathe Jun Yang Chris Olston Kamesh Munagala Omar Benjelloun
Serge Abiteboul Chris Olston Shivnath Babu Shivnath Babu Anish Das Sarma
Ravi Krishnamurthy Wilburt Labio Mayur Datar Zachary G. Ives Rajeev Motwani
Z. Meral Ozsoyoglu Stefano Ceri Arvind Arasu Rajeev Motwani Shawn R. Jeffery
Gultekin Ozsoyoglu Latha S. Colby Roger King Arvind Arasu Wei Hong

Lei Sheng William McKenna Sudarshan Chawathe Richard Snodgrass Alon Halevy
Jarek Gryz Roberta Cochrane Joseph Hellerstein Utkarsh Srivastava Utkarsh Srivastava
Kalervo Jarvelin Felipe Carino David Maier Christian Jensen Kamesh Munagala
Sumit Ganguly Ramez Elmasri Tomasz Imielinski David DeWitt Michael J. Franklin
Limsoon Wong Jose A. Blakeley B. R. Badrinath Kyu-Young Whang Gustavo Alonso

Figure 6: Top-10 Most Similar Authors for ‘Prof. Jennifer Widom’ up to Each Time Step

(d)

Figure 7: Top-5 Most Central Images for ‘tiger’

This experiment is used to evaluate the effectiveness of our cen-
trality measure. The image dataset is obtained by querying on
Google’s Image Search and downloading the top result images (We
download about 100 images for different query images such as
‘tiger’, ‘white house’, and we have totally 1019 images). We use
two types of image features: color and texture features. For RGB
color histogram, we set 10 bins for each of the three colors, and
thus we have 30 dimensions. For the texture features, we have
22 dimensions®. There are overall 52 dimensions. Each color di-
mension is normalized to be in the range [0, 1], and each texture
dimension is normalized to be within [0, 0.5] to set lower weight to
the texture features. We first use Euclidean distance to calculate a
similarity matrix, then convert the similarity matrix to a network by
assigning an edge between two nodes when their similarity is over
a threshold. After that, we run C_Track on this network and get the
top-5 images as the result.

Figure 7 shows the top-5 central images for query image ‘tiger’.
We can find that the result makes perfect sense. All these images
are the representative images for the given query. The result con-
firms the appropriateness of our centrality measure as indicator of
“actual” centrality.

7.2.3  Wikipedia Dataset

Our practical goal of implementing the suggested algorithms was
to speed up the time-consuming SimRank score computation on
large data graph, such as Wikipedia.

Wikipedia® is “a multilingual, Web-based, free-content encyclo-
pedia project which is written collaboratively by volunteers from all
around the world”. The English version of Wikipedia is the largest
version among the available versions in many languages. There

Suse the Matlab code from http://www.mathworks.com/ matlab-
central/fileexchange/22187

®http://www.wikipedia.org/
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are 2.8M articles in English Wikipedia by March 2009. As a most
popular online encyclopedia, Wikipedia has recently obtained a big
interest from academic communities, such as [29] and [30].

In this experiment, we want to compute the SimRank scores of
Wikipedia. With these scores, many applications including word
disambiguation and concept classification can be conducted.To this
end, we organized data from Wikipedia into the SimRank graph
model by the method presented in [30]. An article in Wikipedia,
which describes a single encyclopedia concept, becomes an node
in the graph. The relationships “an article belongs to a category
which is also an article itself” is chosen to be links in the graph.
Note that, category links constitute a subset of links in Wikipedia,
so the graph covers only a subset of the whole Wikipedia.

We set the threshold 7" to be 1.0e-6. For k=15, the pre-compute
time of the Wikipedia dataset is approx. 5.68 hours, and the query
time for every 1000 node pairs is 3.718 seconds. The result is
promising and indicates that the non-iterative method proposed in
this paper is practical and can scale well on large graphs.

8. RELATED WORK

A great many analytical techniques have been proposed toward
a better understanding of information networks and their proper-
ties. Below we briefly describe the work that is most relevant to the
current work. It can be categorized into three parts: static network
analysis, dynamic network analysis, and the methods for low-rank
approximation.

Static Network Analysis. There is a lot of research work on
static information network analysis, including power laws discov-
ery [1], frequent pattern mining [2, 3], clustering and community
identification [4, 5], and node ranking [6, 7].

In terms of node similarity, a great number of measures have
been reported. With respect to the focus of this paper, a detailed dis-



cussion is given to link-based similarity measures. [11] proposed to
use the total delivered current as the similarity measure. [10] devel-
oped a new way of measuring and extracting proximity in networks
called afcycle free effective conductancea$ (CFEC). Random walk
with restart model is used to compute the node similarity in [18,
19, 20]. In [12], the authors proposed a similarity measure based
on the principle that ¢ is similar to j if ¢ has a network neighbor v
that is itself similar to j.

Similar to SimRank, Xi et al. proposed another similarity-calculating

algorithm called SimFusion that also utilizes the idea of recursively
computing node similarity scores based on the scores of neigh-
boring nodes [31]. The key of these methods is that they are ap-
plicable to any domain with object-to-object relationships. Nev-
ertheless, the time complexity of the straightforward SimRank or
SimFusion computation becomes a substantial obstacle for using
them on practical applications. A variety of optimization tech-
niques have been proposed to reduce the computation cost of Sim-
Rank. [15] presented a scalable framework for SimRank compu-
tation based on Monte Carlo method, in which three optimiza-
tion strategies, finger-print trees, coupled random walks generation,
and parallelization possibilities for SimRank computation, are pro-
posed. [14] introduced another three excellent optimization ideas,
selecting essential node pairs, partial sums, and threshold-sieved
similarities, to speed up the computation of SimRank. As discussed
in Section 1, they are all under the iterative framework. In contrast,
the method introduced in this paper optimizes SimRank in a non-
iterative mode.

Dynamic Network Analysis. Recently, there is an increasing
interest in mining dynamic networks, such as group or community
evolution [32, 33], power laws of dynamic networks [34], dynamic
tensor analysis [35], and dynamic clustering [36]. In terms of simi-
larity and centrality tracking, to the best of our knowledge, the only
existing work is [20]. The authors proposed two fast algorithms to
update the similarity matrix incrementally based on the Random
Walk with Restart (RWR) model. Experiments on real data show
that their methods are effective and efficient. Unfortunately, this
paper has one inherent limitation: it is tailored to bipartite graphs;
efficient extension of the method to graphs which are not bipartite
is hard since the incremental algorithms rely on the assumption that
one of the two partitions is small, and updates involve a small num-
ber of nodes in one of the two partitions. In contrast, the method
introduced in this paper can be applied to arbitrary graphs.

Low-Rank Approximation. The SVD [21] principle has been
successfully used for diverse applications, such as latent semantic
index (LSI) [37], principle component analysis (PCA) [38], and so
on. For LSI, a term-document matrix is constructed to describe the
occurrences of terms in documents; it is a sparse matrix whose rows
correspond to terms and whose columns correspond to documents.
Here, the SVD principle is used to deal with linguistic ambiguity is-
sues by calculating the best rank-k approximation of the keyword-
document matrix. For image compression, an image is represented
as a matrix. SVD is used to look for a compressed image to reduce
the overhead for disk storage and network transmission. More re-
cently, for sparse matrices, some new matrix decomposition tech-
niques have been proposed; for instance, P. Drineas et al. proposed
CUR [24] and J. Sun et al. proposed CMD [25].

9. DISCUSSION AND CONCLUSION

9.1 Discussion

We can further reduce the pre-computation and storage cost as

shown in the following:

1. We observed that the most time-consuming part in the pre-
computation is the multiplication of Ku and Kv. In our ex-
periments, we only used the naive and non-parallel matrix
multiplication method. Actually, we tried to improve the ef-
ficiency by utilizing various hardware acceleration methods
(including GPU, Multi-core, and cluster). The results of our
parallel methods are promising (for example, only several
hours when k is 100 on a 256M NVIDIA GeForce 9600GT
GPU). We are currently comparing different parallel meth-
ods.

2. We can improve the low-rank approximation performance by
exploring the parallel too. Recently, parallel SVD algorithm’
has been implemented by Google. We believe this can be
utilized to enhance our non-iterative computation method.

3. Although the SVD gives the best approximation in terms of
squared error, it does not preserve sparsity, i.e., after the de-
composition, most of the entries of the result matrices are
non-zero, even if the original matrix is sparse. Other low-
rank approximation alternatives such as CUR and CMD can
be considered. Since these methods can generate a sparse
representation of the original matrix, dramatic saving in pre-
computation and storage can be achieved.

9.2 Conclusion

This paper addresses the issues of optimization as well as in-
cremental update of SimRank for static and dynamic information
networks. We have proposed a novel non-iterative framework for
SimRank computation. Based on this, we have developed three
efficient algorithms to compute SimRank scores for static and dy-
namic information network. We provide theoretical guarantee for
our methods and demonstrate its applications on real information
network analysis. Extensive experimental studies on synthetic and
real data sets verified the effectiveness and efficiency of the pro-
posed methods. Overall, we believe that we have provided a new
paradigm for exploration of and knowledge discovery in large in-
formation networks. This work is just the first step, and there are
many challenging issues. We are currently investigating into de-
tailed issues as a further study.

10. ACKNOWLEDGMENTS

The work was supported in part by NASA grant NNX08AC35A,
the U.S. National Science Foundation grants IIS-08-42769 and IIS-
09-05215, China National 863 grant 2008AA01Z2120, and NSFC
grants 60673138 and 60603046. Any opinions, findings, and con-
clusions expressed here are those of the authors and do not neces-
sarily reflect the views of the funding agencies.

11. REFERENCES

[1] M.E.J.Newman, “The structure and function of complex
netwroks,” SIAM Review, 2003.

[2] X. Yan, P. S. Yu, and J. Han, “Substructure similarity search
in graph databases,” in Proc. Of ACM-SIGMOD Int’l
Conference on Management of Data, 2005.

[3] X. Yan and J. Han, “Closegraph: Mining closed frequent
graph patterns,” in Proc. of the 9th Int’l Conference on
Knowledge discovery and data mining(KDD’03), 2003.

"http://googlechinablog.com/2007/01/blog-post.html



(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” in Proc. Of the Advances in
Neural Information Processing Systems(NIPS), 2002.

M. Girvan and M. Newman, “Community structure in social
and biological networks,” in Proc. Of the National Academy
of Sciences, 2002.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The
pagerank citation ranking: Bringing order to the web,”
Technical report, Stanford University Database Group,
http://citeseer.nj.nec.com/368196.html, 1998.

J. Kleinberg, “Authoritative sources in a hyperlinked
environment,” Journal of the ACM, 1999.

P. Ganesan, H. Garcia-molina, and J. Widom, “Exploiting
hierarchical domain structure to compute similarity,” ACM
Transactions on Information Systems, vol. 21, pp. 64-93,
2003.

G. Jeh and J. Widom, “Simrank: a measure of
structural-context similarity,” in Proc. of the 8th Int’l
Conference on Knowledge discovery and data
mining(KDD’02), 2002.

Y. Koren, S. North, and C. Volinsky, “Measuring and
extracting proximity in networks,” in Proc. of the 12th Int’l
Conference on Knowledge discovery and data
mining(KDD’06), 2006.

C. Faloutsos, K. S. McCurley, and A. Tomkins, “Fast
discovery of connection subgraphs,” in Proc. of the 10th Int’l
Conference on Knowledge discovery and data
mining(KDD’04), 2004.

E. Leicht, P. Holme, and M. Newman, “Vertex similarity in
networks,” Phys. Rev., vol. 026120, p. E 73, 2006.

A. G. Maguitman, F. Menczer, F. Erdinc, H. Roinestad, and
A. Vespignani, “Algorithmic computation and approximation
of semantic similarity,” in Proc. of the 15th Int’l Conference
on World Wide Web (WWW’06), 2006.

D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov,
“Accuracy estimate and optimization techniques for simrank
computation,” in Proc. of the 34st Int’l Conference on Very
Large Databases (VLDB’08), 2008.

D. Fogaras and B. Racz, “Scaling link-based similarity
search,” in Proc. of the 14th Int’l Conference on World Wide
Web (WWW’05), 2005.

P. Benner, “Factorized solution of sylvester equations with
applications in control,” in Proc. of the 16th International
Symposium on Mathematical Theory of Network and Systems
(MTNS 2004), 2004.

A. J. Laub, Matrix Analysis for Scientists and Engineers.
Society for Industrial and Applied Mathematics, 2004.

J. Pan, H. Yang, C. Faloutsos, and P. Duygulu, “Automatic
multimedia cross-modal correlation discovery,” in Proc. of
the 9th Int’l Conference on Knowledge discovery and data
mining(KDD’04), 2004.

H. Tong, C. Faloutsos, and J. Pan, “Fast random walk with
restart and its application,” in Proc. IEEE 2001 Int. Conf.
Data Mining (ICDM’06), 2006.

H. Tong, S. Papadimitriou, P. S. Yu, and C. Faloutsos,
“Proximity tracking on time-evolving bipartite graphs.” in
Proc. of SDM, 2008.

G. Golub and C. Loan, Matrix Computation.
Hopkins, 1996.

W. Piegorsch and G. Casella, “Inverting a sum of matrices,”
SIAM Rev., vol. 32, pp. 470-470, 1990.

Johns

476

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

(35]

(36]

(371

(38]

M. Stoll, “A krylov-schur approach to the truncated svd,” in
NA Group technical reports,
http://www.comlab.ox.ac.uk/files/721/NA-08-03.pdf, 2008.
L. Page, S. Brin, R. Motwani, and T. Winograd, “The
pagerank citation ranking: Bringing order to the web,”
Technical report, Stanford University Database Group,
http://citeseer.nj.nec.com/368196.html, 1998.

J. Sun, Y. Xie, H. Zhang, and C. Faloutsos., “Less is more:
Compact matrix decomposition for large sparse graphs,” in
Proc. of SDM, 2007.

M. W. Berry, S. T. Dumais, and G. W. O’brien, “Using linear
algebra for intelligent information retrieval,” SIAM Rev.,

vol. 37, pp. 573-595, 1995.

C. Burges, T. Shaked, E. Renshaw, A. .Lazier, M. Deeds,

N. Hamilton, and G. Hullender., “Learning to rank using
gradient descent,” in Proc. 22th Int. Conf. Machine Learning
(ICML’05), 2005.

K. Jarvelin and J. Kekalainen, “Cumulated gain-based
evaluation of ir techniques,” ACM Transactions on
Information Systems, 2002.

L. Buriol, C. Castillo, D. Donato, S. Leonardi, and

S. Millozzi, “Temporal analysis of the wikigraph,” in
Proceedings of the Web Intelligence Conference (WI 2000).
Los Alamitos, CA, USA: IEEE Computer Society, December
2006, pp. 45-51. [Online]. Available:
http://www.dcc.uchile.cl/ ccastill/papers/buriol_2006_
temporal_analysis_wikigraph.pdf

D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov,
“Accuracy estimate and optimization techniques for simrank
computation.” PVLDB, vol. 1, no. 1, pp. 422-433, 2008.
[Online]. Available:
http://dblp.uni-trier.de/db/journals/pvldb/pvldb1.html

W. Xi, E. A. Fox, W. Fan, B. Zhang, Z. Chen, J. Yan, and

D. Zhuang, “Simfusion: measuring similarity using unified
relationship matrix,” in Proc. Of the 28th international ACM
SIGIR conference on Research and development in
information retrieval, 2005.

C. Tantipathananandh, T. Y. Berger-Wolf, and D. Kempe, “A
framework for community identification in dynamic social
networks,” in Proc. of the 13th Int’l Conference on
Knowledge discovery and data mining(KDD’07), 2007.

L. Backstrom, D. Huttenlocher, and J. Kleinberg, “Group
formation in large social networks: membership, growth, and
evolution,” in Proc. of the 12th Int’l Conference on
Knowledge discovery and data mining(KDD’06), 2006.

J. Leskovec, J. M. Kleinberg, and C. Faloutsos, “Graphs over
time: densification laws, shrinking diameters and possible
explanations,” in Proc. of the 13th Int’l Conference on
Knowledge discovery and data mining(KDD’07), 2007.

J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and
graphs: dynamic tensor analysis,” in Proc. of the 12th Int’l
Conference on Knowledge discovery and data
mining(KDD’06), 2006.

Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng,
“Evolutionary spectral clustering by incorporating temporal
smoothness,” in Proc. of the 13th Int’l Conference on
Knowledge discovery and data mining(KDD’07), 2007.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman., “Indexing by latent semantic analysis.” in
Journal of the Society for Information Science, 1990.

L. Jolliffe, “Principal component analysis,” Springer, 2002.





