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ABSTRACT
Secure data sharing in multi-party environments requires that both
authenticity and confidentiality of the data be assured. Digital sig-
nature schemes are commonly employed for authentication of data.
However, no such technique exists for directed graphs, even though
such graphs are one of the most widely used data organization
structures. Existing schemes for DAGs are authenticity-preserving
but not confidentiality-preserving, and lead to leakage of sensitive
information during authentication.

In this paper, we propose two schemes on how to authenticate
DAGs and directed cyclic graphs without leaking, which are the
first such schemes in the literature. It is based on the structure of
the graph as defined by depth-first graph traversals and aggregate
signatures. Graphs are structurally different from trees in that they
have four types of edges: tree, forward, cross, and back-edges in a
depth-first traversal. The fact that an edge is a forward, cross or a
back-edge conveys information that is sensitive in several contexts.
Moreover, back-edges pose a more difficult problem than the one
posed by forward, and cross-edges primarily because back-edges
add bidirectional properties to graphs. We prove that the proposed
technique is both authenticity-preserving and non-leaking. While
providing such strong security properties, our scheme is also effi-
cient, as supported by the performance results.

1. INTRODUCTION
Authentication of data is an important problem, and has been

widely investigated [9, 24], especially in the context of databases [22,
27, 28, 29, 30]. Authentication is a stronger security requirement
than integrity assurance [19]. An authentication scheme is used to
verify (1) the integrity of data, and (2) the fact that whether the
received data object O is indeed sent by the claimed sender from
the claimed data source. For example, for a message M , a signed
cryptographic hash of the message M is generally used to verify
the authenticity of the source as well as the integrity of the mes-
sage. Specific authentication requirements and techniques depend
on the structure according to which data is organized [1, 21, 26].
Since one of the most widely used data organization structures is
the graph structure, the development of such techniques specific to
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graph structures is crucial.
Graph-structured data widely occurs in various practical fields

such as GIS (Geographical Information Systems), ontology, health-
care, biology, molecular science and military. Graph data structures
are either explicitly stored as part of the data such as in biological
databases and XML graphs, or extracted through techniques such
as data mining [18, 32] (and link mining [11]). In what follows,
"graph" refers to a directed acyclic graph (DAG) or a directed graph
with cycles.

When addressing the problem of authentication of graph struc-
tures, it is important to note that a graph consists of nodes and
edges; each node contains some contents, and the edge between
two nodes represents some relationship between the contents of
these nodes. Integrity of such relationships is referred to as struc-
tural authenticity, while the authenticity of the contents is referred
to as content authenticity. An authenticity scheme for graph struc-
tures must thus preserve both structural and content authenticity. In
many cases, such as healthcare, biological and military scenarios,
an additional requirement is to maintain the confidentiality of the
content and structural information [1, 21, 33]. By confidentiality
we mean that: (i) a prover, the entity that verifies data authenticity
(also referred to as a receiver or user)1, receives only the nodes and
structural information that it is allowed to access according to the
stated access control policies; (ii) a prover should not receive nor
should be able to infer any information about the content and pres-
ence of nodes and structural relationships that it is not authorized to
access. We refer to such information as extraneous information. In
case of sensitive information being shared, the process of authenti-
cation should not lead to information leakage. Information leakage
leads to confidentiality breaches and violation of privacy policies.
Because of the increasing number of applications requiring the abil-
ity to be able to store, manage and share (query/search/publish)
graph-structured data, authentication schemes with confidentiality
guarantees must not only be devised but should also be efficient in
terms of implementation at each party involved.

Digital signature schemes are commonly used for authentication
of data. However no such technique exists for graphs in the lit-
erature, even though there are authentication schemes for directed
acyclic graphs (DAGs) and trees, which do not contain cycles and
are a restricted form of graphs. The Merkle hash technique [26]
is the most widely adopted technique for authentication of trees,
which is however authenticity-preserving (binding) but not confidentiality-
preserving (hiding) [7]. Martel et al. [25] proposed a technique for
DAGs; however since it uses the Merkle hash technique, it is bind-
ing but not hiding. In our earlier work [21], we proposed a leakage-
free integrity assurance technique for trees. In this paper, we de-

1A prover is typically a software running on behalf of the user to
verify data authenticity.
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Figure 1: A graph with depth-first tree in bold.

velop a leakage-free authentication scheme for DAGs and graphs
with cycles. However, since graphs are more complex structures
than trees and graphs with cycles cannot be topologically sorted,
the problem addressed in this paper is harder to solve than the one
addressed in [21].

Graphs are structurally different from trees. Edges in a graph
can be organized into four different types based on a specific depth
first traversal of the graph: tree-edges, forward-edges, cross-edges
and back-edges (related to cycles), while trees have only one type
of edges: tree-edges [20]. Depth-first traversal numbers are used to
determine the type of an edge for that specific traversal Such num-
bers are assigned to a node in the order in which they are visited in
a specific traversal; for example, post-order and pre-order numbers
are assigned to the nodes in post-order and pre-order traversals, re-
spectively. (For more details, the reader is referred to [20]). The
various types of edges in a graph are defined below using the no-
tion of traversal numbers.

DEFINITION 1.1. Let τ be the depth-first tree (DFT) of a di-
rected graph G(V, E). Let x, y ∈ V, and e(x, y) ∈ E. Let ox and
qx refer to post-order number and pre-order number of node x, re-
spectively. With respect to the DFT τ , e(x, y) is a (1) tree-edge, iff
ox>oy , and qx<qy; (2) forward-edge, iff there is a path from x to
y consisting of more than one tree-edges, ox>oy , and qx<qy; (3)
cross-edge, iff ox>oy , and qx>qy; (4) back-edge, iff ox<oy , and
qx>qy .

An example of depth-first tree, types of edges are given in Fig-
ure 1 with the post- and pre-order numbers for each node being
given in the table in the figure. An authenticity-preserving and
confidentiality-preserving scheme for graph data must not convey
the knowledge of whether a given edge is a forward-edge (edge
e(g3, g6)), a cross-edge (edge e(g5, g6)) or a back-edge (edge e(g6, g2)),
unless the user is authorized to access a corresponding tree-edge(s)
or the associated cycle, respectively. The information leakages due
to the knowledge about the type of the edge are listed in Table 1.
Such leakages are described in detail in the context of health infor-
mation in Section 2. Whether an edge is a back or a cross-edge can
be determined using both post-order and pre-order numbers [20].
Therefore, the structural signature scheme for trees [21] cannot
solve the problem for graphs.

The problem that the paper addresses is as follows: The trusted
owner Alice of a data item organized as a connected directed graph
G wants to digitally sign G once so that it can be queried or accessed
many times. A user Bob should be able to verify the authenticity
of the content and structure of a connected subgraph Gδ (of G)
that Bob is authorized to access. Any extraneous information, i.e.
information about a node or a structural relation (edge) which is in
G but not in Gδ should not be revealed to Bob.

In this paper, we develop two such provably leakage-free authen-
tication schemes, one for DAGs and another for directed graphs

Table 1: Information leakages via edge-types.
Type of e(x, y) Associated information leakages
Forward-edge (i) in-degree of y ≥ 2.

(ii) at least one more edge e′ incident on y.
(iii) e′ is a tree-edge.
(iv) at least one more node w, such that
x. . . w. . . y is a simple path.
(v) source graph is larger than received graph.

Cross-edge (i), (ii), (v).
Back-edge (a) at least one simple path from y to x.

(b) at least one cycle in the graph,
(c) one cycle is between x and y; (d) (v).

with cycles. In each of these schemes, the signature of a graph
(refers to a DAG or a directed graph with cycles), called “structural
signature of a graph”, is based on the structure of the graph as de-
fined by graph traversals and aggregate signatures based on bilinear
maps [6]. For DAGs that contain tree-, forward- and cross-edges,
we define the notion of forward-structural signature (α-structural
signature) or just forward signature, which is provably binding and
hiding. For directed graphs with cycles, in order to handle back-
edges, we introduce the notion of back-structural signature (β-structural
signature), which is defined for all the nodes that are origins of
back-edges and/or reachable from back-edges. Intuitively, such a
technique splits a graph into a forward-DAG containing only tree-
edges and cross-edges, and a number of backward-DAGs contain-
ing the back-edges, the nodes that are reachable from back-edges
over simple paths2 and the edges in such simple paths. The β-
structural signatures and the α-structural signatures are used to-
gether in our scheme for directed graphs with cycles.

In addition to formally defining the techniques, we prove that
they protect against violations of content and structural authentic-
ity, and information leakages. While providing such strong secu-
rity guarantees, our schemes are also efficient. For DAGs, it in-
curs linear cost (O(n), n is the number of nodes in the DAG) for
computation, storage and distribution of verification objects for ar-
bitrary DAGs. For graphs with cycles, the cost is O(n ∗ d), where
d is the maximum number of back-edges that are incident on any
node in the graph. Our scheme is efficient as supported by perfor-
mance results for DAGs as large as two million nodes. Moreover,
our performance analyis shows that the time to sign not only DAGs
but also graphs with cycles is linear with respect to the number of
nodes, even for very large DAGs and graphs.

Outline of the paper. Section 2 introduces a running example
showing how and what sensitive information can be leaked during
authentication of graphs. The security model is presented in Sec-
tion 3. Section 4 gives a brief overview of aggregate signatures, and
summarizes the "structural signatures for trees". The signatures for
DAGs and graphs with cycles are presented in Sections 5 and 6, re-
spectively. Security-related lemmas for the proposed schemes are
stated in the subsequent section, following which, in Section 8, the
performance results are discussed. Related work is discussed in
Section 9. Section 10 concludes the paper.

2. RUNNING EXAMPLE
Our example is in the area of XML data management. XML

is widely used to represent data both in tree and graph forms; the
“IDREF” attribute or a user-defined attribute is used to refer to an-
other element (node) in the XML document, which leads to a non-
2A simple path among two nodes is one in which each node in the
path appears only once [8].
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Figure 2: A health-record graph; tree-edges in bold.

tree edge (either a back-edge, cross-edge, or a forward-edge). The
data object in Figure 2 is a graph-based representation of XML-
based health-care record of a patient, which typically contains sen-
sitive information. The hospital database, which can be accessed
remotely, stores all such patient health records.

Consider the following scenario. An insurance manager han-
dling the insurance claim specifically towards the treatment of the
disease KidneyStone has access to subgraph Gδ1. As a result of
querying the database, the manager receives Gδ1 and a set of au-
thenticity verification items. This portion includes the nodes g1,
g3, g11, g12, g14, g15, g16 and g18. One of the cross-edges received
is (e(g11, g12)). By knowing that e(g11, g12) is a cross-edge, the
manager also learns that there is a tree-edge (to which the man-
ager has no access) to the node representing PostRecoveryProb-
lems, which implies that the patient has also suffered from another
disease.

By knowledge of the schema, the insurance manager determines
that an edge to such a node must be from a Disease node, which
is a child of the CriticalDiseases node. Thus the manager infers
that the patient is definitely suffering from some other critical dis-
ease. If the hospital specializes in some specific critical disease(s),
which is mostly the case in reality, the manager can further infer
which (possible) disease the patient is suffering from. Moreover,
the manager can definitely infer that such a disease was cured (and
thus diagnosed) before the KidneyStone disease; this is because the
node of PostRecoveryProblems already exists. Each of these in-
ferences leads to disclosure of information that is sensitive for the
patient. Leakages inferred from the knowledge that e(g11, g12) is a
cross-edge are listed in Table 3.

We now consider another scenario, which also leads to leakage
of some sensitive information by the knowledge that an edge is a
back-edge. A pharmacist has access to Gδ2 from the record in Fig-
ure 2. She has access to Gδ2, because she provides this medication
(specified by node g14) to the patient. The pharmacist receives Gδ2

and the corresponding verification items from the remote database
to verify authenticity. If she somehow learns that the e(g14, g9) is
a back-edge from the received information, she would learn that
there is a path from g9 to g14 in the health-record. The schema of
HealthRecord specifies that a symptom node is related to a critical
disease from which a patient suffers from, that is there is an edge
from the symptom node to a disease node. The disease node further
has an edge to the Medication node. The only path that can exist

Table 2: Health-record: XML Elements
Element Semantics
HealthRecord Root of the XML document
Symptoms Lists the symptoms of a patient
CriticalDiseases Critical diseases the patient

suffers/suffered from.
Symptom Specifies a symptom. Attributes.

type refers to the type a symptom.
idref refers to the related disease.

Disease Information about a specific
critical disease; Attributes: idref
refers to PostRecoveryProblems.

Treatment Type of treatment administered on the
patient. Attributes: name specifies the
treatment. idref refers to the symptom
that a medication may affect.

Doctor Name of the doctor who
administered the treatment.

PostRecovery- Post-recovery problems that
Problems a patient goes through. The node

is created only once for the first
recovery. For any later disease and
recoveries from it, this node
is referred to from that Disease node.

Problem A post-recovery problem. Attribute:
type specifies the type of the problem.

PatientID Identifier of the patient.
Attributes: id and name

ContactDetails Contact details of the patient.

from g9 to g14 is through a disease node. It is thus apparent that
the patient suffers from a critical disease related to the symptom
UrinationPain. The symptom name further leads to the possible
name of the disease. If the hospital specializes in a limited num-
ber of critical diseases, the pharmacist can determine the name of
the disease. The treatment type may easily lead to determine the
seriousness of the illness. Table 4.

3. SECURITY MODEL
Data Model. A weakly3 connected directed graph G(V, E) is a data
object, where V and E are the sets of vertices and edges in G. A
node x represents an atomic unit of the data referred to as Cx. The
fact that x precedes one of its siblings y in a DAG is denoted by
x ≺ y. A subgraph G′(V ′, E′) that is shared with a user as a re-
sult of a query on the graph G(V, E) is a weakly connected graph;
G′(V ′, E′) ⊆ G(V, E).

Distribution Model. We assume an untrusted third-party distribu-
tion model. The trusted owner Alice (A) of a data object organized
as a graph G signs it. After signing G, A may delegate the job
of publishing G or processing queries over G to third-party dis-
tributors (D), each of whom does not have signature authority and
maybe untrusted. A set of verification items or authentication units
(IV s) for a subgraph G′ denoted by VO(G′) is sent to the user
alongwith G′.

Threat: Data tampering attack. An attacker tampers the content,
the structural order and/or the type of structural relation (edge) be-
tween two or more nodes of a graph.

Threat: Inference attack. A user, who has access to the subgraph

3A directed graph that is not disconnected is a weakly connected
directed graph [8].
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Table 3: Leakage via cross-edge e(g11, g12), subgraph: Gδ1.
Distinct leakages Related sensitive

information leaked
In-degree of g12 ≥ 2 The patient has suffered

from at least one
more disease.

There is at least (1) This disease is a
one more path critical disease.
from the node (2) The patient has already
CriticalDiseases to g12 recovered from this disease.
The graph is larger than Gδ1 (1) The patient has been

treated by another doctor.
(2) She has been associated
with this hospital earlier.
(3) HealthRecord contains
more disease-related data.

Table 4: Leakage via back-edge e(g14, g9), subgraph: Gδ2.
Distinct leakages Related sensitive

information leaked
(a) There is at least (1) Symptom UrinationPain
one cycle in the graph; has led to a disease.
(b) so there is at least This disease is being
one path from g9 to g14 treated with medication.

(2) Since the treatment is
medication, with high
probability, this disease
is not in a serious stage.

The graph is larger than Gδ2 HealthRecord contains
more disease-related data.

G′ of a graph G, attempts to infer sensitive information from the
signature and IV s sent to it with G′.

Security Definitions. We assume a probabilistic polynomial adver-
sary [19] throughout the paper. A user B can authenticate the sub-
graph G′(V ′, E′) that it receives. Authenticity of a graph is defined
in Definition 3.1. Leakage-free requirements entail that the user
cannot infer any information that is extraneous (Definition 3.2) to
G′. Definition 3.3 gives the formal definition of leakage-free au-
thentication.

DEFINITION 3.1 (AUTHENTICATION OF GRAPHS). A graph
G′(V ′, E′) is authenticated as a subgraph of G(V, E) if and only
if (1) no node or edge has been dropped or added to G′(V ′, E′) in
an unauthorized manner, and (2) none of the following entities in
the graph has been modified: (i) the content Cx of any node x ∈
V ′, (ii) any edge e(x, y) ∈ E′, and (iii) (For DAGs) any structural
order x ≺ y, x, y ∈ V ′.

DEFINITION 3.2 (EXTRANEOUS INFORMATION). Extraneous
information in a graph G(V, E) with respect to its subgraph G′(V ′, E′)
comprises of the nodes and edges that are in G but not in G′.

DEFINITION 3.3 (LEAKAGE-FREE SIGNING OF GRAPHS). Let
G′(V ′, E′) be a subgraph of graph G(V, E). The content of each
node x Cx ∈ {0, 1}∗. A leakage-free signature scheme (S) for
graphs is defined as follows:

1. A key generation algorithm Gen takes as input a security pa-
rameter 1k and outputs a pair of keys (pk, sk), where pk
and sk are called as public keys and private keys respec-
tively. We assume for convention that each of these keys have
length k, and k can be determined from pk and sk.

2. The signing algorithm Sign takes as input a private key sk
and a graph G(V, E), where the content Cx of each node
x, ∈ V is such that Cx ∈ {0, 1}∗. It outputs a set of signa-
ture items (or integrity verifiers) VO(G(V, E)), computed as
VO(G(V, E))← Signsk(G(V, E)).

3. The deterministic verification algorithm Vrfy takes as input
a public key pk, a graph G′(V ′, E′), and a set of signature
items VO(G′(V ′, E′)). It outputs a bit b, with b = 1 mean-
ing valid and b = 0 meaning invalid. We write this as
b ← Vrfypk(VO(G′(V ′, E′)), G′(V ′, E′)). It is required
that for every k, every (pk, sk) output by Gen(1k), every
graph G(V, E), and every subgraph G′(V ′, E′) ⊆ G(V, E),
it holds that Vrfypk(VO(G′(V ′, E′)), G′(V ′, E′)) = 1.

4. It is required that for a probabilistic polynomial distinguisher
B who receives G′(V ′, E′) and the associated VO(G′(V ′, E′)),
the success probability of inferring that there exists at least
a node y ∈ (V − V ′), or there exists at least an edge e ∈ (E
− E′), is negligible4.

4. BACKGROUND
In this section, we give an overview of the structural signatures

for trees as a background. Table 4 summarizes the common acronyms
and notations used in the paper.

4.1 Summary of Structural Signatures
The structural signature scheme proposed by Kundu and Bertino [21]

is used for the integrity assurance (a weaker security notion than au-
thentication) of trees without leakage. The scheme is based on the
observation that - “post-order and pre-order sequences of the ver-
tices of a tree uniquely represent the tree”. Since traversal numbers
are not secure, a cryptographically secure notion of traversal num-
bers is used for structural positions of nodes. Such secure counter-
parts of traversal numbers are called as randomized traversal num-
bers. RPON (RRON) is randomized post-order number (resp., ran-
domized pre-order number) and PON (RON) is post-order number
(resp., pre-order number).

The properties of traversal numbers with respect to tree-edges,
forward-edges, cross-edges, and back-edges is stated by the Defi-
nition 1.1. It shows that it is not possible to use the structural signa-
ture scheme for trees for authentication of graphs, as such scheme
would leak information about the type of edges.

4.2 Aggregate Signatures and Bilinear Maps
Let G1 = 〈P〉 be an additively-written group of prime order p,

and let G2 be a multiplicatively written group of the same prime
order p. A mapping e : G1 × G1 → G2 is a bilinear map if (i)
e(aX, bY ) = e(X, Y )ab for all X, Y ∈ G1 and a, b ∈ Z∗p; and
(ii) G2 = 〈e(P, P)〉. The mapping e is efficiently computable, but
given only P, aP, and X (but not a) it is computationally infeasible
to compute aX (i.e., the Computational Diffie-Hellman problem is
difficult in G1). This difficulty is what enables the signature and
aggregate signature schemes based on bilinear pairings.

In this paper, we use the aggregate signature scheme by Boneh
at al. [6]. In such scheme, the signer’s secret key is sk ∈ Z∗

p ,
Q = skP ∈ G1 is public, and the signature for a message m is
skM with M = H(Q, m) ∈ G1, where H is a cryptographic one-
way hash function; for convenience, we henceforth omit mention of

4A function ε(k) is negligible in cryptography if for every poly-
nomial p(.), there exists an N such that for all integers k > N it
holds that ε(k) < 1

p(k)
([19]:Definition 3.4).
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Table 5: Acronyms and Notations.
Notation/Acro. Meaning
PON, ox Post-Order Number, PON of x.
RPON, px Randomized PON, RPON of x.
RON, qx Pre-Order Number, RON of x.
RRON, rx Randomized RON, RRON of x.
G(V, E) A weakly connected directed graph with

set of vertices V and set of edges E.
Gδ(Vδ , Eδ) A weakly connected subgraph with

set of vertices Vδ and set of edges Eδ .
e(x, y) A directed edge from node x to y.
Cx Content of x.
H Cryptographically secure hash function.

H:{0, 1}∗ → {0, 1}k

α Related to forward, the direction of
forward-, cross- and tree-edges.

β Related to backward, the direction
of back-edges. Used in the context of
β-nodes and β-reachable nodes.

f , χ, τ Related to forward- cross- and tree-edges.
qχ
x , rχ

x χ-RON of x, χ-RRON of x.
oβ:u→v

x , pβ:u→v
x , β-PON, β-RPON, β-RON, β-RRON, resp.

qβ:u→v
x , rβ:u→v

x of x with respect to a not-β-covered
back-edge e(u, v).

θτ
x , θχ

x Structural position of τ -node or χ-node x.
θβ:u→v
x ,Ψβ:u→v

x Structural position/signature resp.,
of a β-node or β-reachable node x,
with respect to a not-β-covered
back-edge e(u, v).

Ψα
x Forward structural signature of x.

(same as α-signature of x).
Ψα
G Structural signature of DAG G.

Also referred to as α-signature of G.
ΨG Structural signature of graph G.
∪← Union of the sets referred to by the left

and right operands followed by the
assignment of the result to the left op.

the M = H(Q, m) and simply say “message M”. In the aggregate
signatures, given the public P and Q, and given k message-signature
pairs Mi, Ψi = skMi, 1 ≤ i ≤ k, the signature is verified
by checking that the following equality holds: e(Q,

Pk

i=1 Mi) =

e(P,
Pk

i=1 Ψi).

5. DAGS
In this section, we develop structural signatures for DAGs that

makes use of bilinear maps. We chose bilinear maps primarily be-
cause to the best of our knowledge, there is no other mechanism
that is as secure as the aggregate signatures based on bilinear maps.
One possible option is the scheme for batch verification of RSA
signatures [15, 16, 2], which is however not known to be secure
(Section 9).

Consider a user, who is authorized to access one or more cross-
edges incident upon a node x, but not the associated tree-edge(s).
For example with reference to Figure 2, the user has access only to
e(g11, g12), which is a cross-edge. One way to share a forward or
cross-edge with the user, without leaking it to the user the type of
the edge (such as the fact that “e(g11, g12) is a cross-edge”) is to
convey to the user that it is a tree-edge. By concealing the original
type of an edge (such as forward or cross-edge) and conveying to
the user that any edge it receives is of type tree-edge, unless the
user also receives the associated tree-edge(s), we can prevent leak-
ages associated with cross-edges. Note that the structural signature

makes use of the notion of traversal numbers, and that post-order
and pre-order numbers allows one to detect whether an edge is a
cross-edge or not (Definition 1.1). Moreover, such numbers cannot
be used to differentiate a forward-edge from a tree-edge.

We thus need to define a different notion of traversal numbers so
that a cross-edge would be verified by Bob as a tree-edge. In that
context, we refer to the end-point of cross-edge(s) as a χ-node. By
Definition 1.1, it is the pre-order number (and not the post-order
number) of a χ-node that violates the behavior of pre-order num-
bers that is exhibited in case of tree-edges. We first define a vari-
ant of the pre-order numbers denoted by χ-pre-order numbers (in
short, χ-RONs) (Definition 5.2) specifically for χ-nodes. Using a
randomized notion of such variants of pre-order numbers, denoted
by χ-randomized pre-order numbers (in short, χ-RRONs), we de-
fine a structural position of a χ-node that satisfies the constraints
of a tree-edge in terms of traversal numbers (Definition 1.1). Such
a notion of structural position is then used to compute the aggre-
gate signature for the DAG. Since the definitions of χ-RONs and
χ-RRONs are specific to cross-edges and χ-nodes only, tree-edges
are always conveyed as they are.

Given that the tree-edges, forward-edges, and cross-edges have
the same direction, we refer to the signatures for DAGs as forward-
signatures (denoted by α-signatures). A node that is not a χ-node
(in a DAG or in a graph) such as g3 in Figure 2, is referred to as a
tree-node (in short, τ -node).

DEFINITION 5.1 (χ-NODE). A node x in a connected directed
acyclic graph G(V, E) is a χ-node, iff there exists an edge e(w, x)
in G such that e(w, x) is a cross-edge.

DEFINITION 5.2 (χ-RONS). Let x be a χ-node in a connected
directed acyclic graph G(V, E). Let e(w, x) and e(x, y) be two
edges in G. The χ-pre-order numbers of x and w denoted by qχ

x and
qχ

w are defined such that they satisfy the following conditions:(1) qχ
x

> qτ
x; (2) if w is a χ-node, qχ

x > qχ
w, else qχ

x > qτ
w; (3) qχ

x < qτ
y ;

(4) qχ
u < qχ

x < qχ
v , where u, x, and v are siblings and u ≺ x ≺ v.

Since a DAG can be topologically-ordered, the properties of a χ-
pre-order number can be satisfied. For a χ-node x, its χ-randomized
pre-order number (χ-RRON) is the randomized version of qχ

x and
is denoted by rχ

x . It is defined in the same way RPON is defined
for PON and RRON for RON. Randomized traversal numbers can
be easily computed by either of the three techniques mentioned
in [21].

In our running example (Figure 2), g10 and g12 are χ-nodes;
rχ

g10 and rχ
g12 are the χ-RRONs of g10 and g12. The notions of

τ -structural and χ-structural position (τ -position and χ-position in
short, respectively) of a τ -node and a χ-node, respectively are de-
fined by the following definitions.

DEFINITION 5.3 (τ -STRUCTURAL POSITION). Let x be a node
in a connected DAG G(V, E). Its τ -structural position, denoted by
θτ

x , is defined as the pair of its RPON pτ
x and RRON rτ

x , that is, θτ
x

= (pτ
x, rτ

x).

DEFINITION 5.4 (χ-STRUCTURAL POSITION). Let x be a χ-
node in a connected DAG G(V, E). Its χ-structural position, de-
noted by θχ

x , is defined as the pair of its RPON pτ
x and χ-RRON rχ

x ,
that is, θχ

x = (pτ
x, rχ

x ).

In our running example (Figure 2), the τ -structural position of node
g3 is θτ

x = (pτ
g3 , rτ

g3 ); for χ-node g10, its χ-structural position is θχ
x

= (pτ
g10 , rχ

g10 ).

613



1. Execute a depth-first traversal of G(V, E).
2. For each node x ∈ V, compute its post-order number oτ

x and pre-order
number qτ

x .
3. If e(w, x) ∈ E is such that (oτ

w > oτ
x) and (qτ

w > qτ
x), then mark

e(w, x) as a χ-edge and x as a χ-node.
4. For each χ-node, compute its χ-RON qχ

.

5. For all nodes in V, transform the traversal numbers into randomized
traversal numbers, that preserve the order.

6. For a χ-node x, θχ
x ← (pτ

x, rχ
x ).

7. For each x that is not a χ-node, assign (pτ
x, rτ

x) to x as its structural
position θτ

x .
8. For each node x in V, compute its authentication unit ξx:

(a) If x is a cross-node, θx← θχ
x ; Else θx← θτ

x .

(b) ξx←H(θx‖Cx).

9. Choose a secure random ω; Let ωG ←H(ω).
10. Compute the signature of the DAG as in equation 1.

Figure 3: Algorithm to sign a DAG.

5.1 Signing a DAG
The signature of a DAG is the salted aggregate signature of all

the nodes in the DAG. The salt used is a random ω, which can be
treated to be associated with a dummy node. The algorithm to sign
a DAG is described in Figure 5.1.

DEFINITION 5.5 (AUTHENTICATION UNIT OF A NODE). Let
x be a node in a connected DAG G(V, E). LetH denote a one-way
cryptographic hash function. The authentication unit ξx of x is de-
fined as follows: ξx = H(θx‖Cx), where: if x is a χ-node, θx is
equal to θχ

x , else it is equal to θτ
x .

DEFINITION 5.6 (SIGNATURE OF A DAG). Let ω be a cryp-
tographically secure random. Let H denote a one-way crypto-
graphic hash function. Let sk be the private key and P be defined
as in an aggregate signature framework (Section 4.2). Let ωG be
defined asH(ω). The structural signature of a graph G(V, E), de-
noted by ΨG(V,E), is defined as follows:

ΨG(V,E) ← e(P, sk(ωG +
X
x ∈ V

ξx)). (1)

5.2 Distribution
Let G′(V ′, E′) be an arbitrary weakly connected subgraph of

the weakly connected DAG G(V, E). D sends the following O(1)
number of authentication items toB: (1) G′(V ′, E′), and (2) the set
of verification units VO(G′(V ′, E′)) consisting of the signature of
the DAG ΨG , and authentication unit of the subgraph ξG′ , which is
computed as follows: ξG′ ← ωG +

P
y∈(V−V ′) ξy.

5.3 Authentication
A user B receives (1) a subgraph G′′(V ′′, E′′), (2) the signature

of the DAG ΨG , and (3) the authentication unit ξ of the subgraph
from the distributor D. The verification process goes as follows.

Verification of Contents. B evaluates Eq. 2 and then Eq. 3.

Ω←
X

y∈V ′′

H(θy ‖ Cy). (2)

e(Q, Ω + ξ)
?
= ΨG . (3)

Verification of Structural Relations

1. Execute a depth-first traversal of G′. Let the structural posi-
tion of each node x be θx = (px, rx).

2. Let x be an immediate ancestor of z; if (px≤ pz) or (rx≥
rz), then this relationship between x and z is incorrect.

3. For ordered-DAGs, let y be the right sibling of z; if (pz ≥
py) or (rz ≥ ry), then the left-right order among the siblings
y and z is incorrect.

Example: Suppose that the back-edge e(g14, g9) did not exist
in our running example (Figure 2), thus turning this graph into a
DAG. In such a DAG, the cross-edges are e(g11, g12), e(g8, g10),
and e(g3, g10). Consider the cross-edge e(g11, g12) and the cross-
node g12. The α-structural signatures for this DAG are computed
such that rχ

g12 is larger than rχ
g11 and pτ

g12 is smaller than pτ
g11,

which conveys that e(g11, g12) is a tree-edge and conceals the fact
that it is a cross-edge.

6. GRAPHS WITH CYCLES
In this section, we build on the solution for DAGs and present

the general solution for graphs with cycles that handles all the four
types of edges.

A back-edge (such as e(g14, g9) in the graph in Figure 2) should
be presented to the user as a tree-edge unless the user has access
to an cycle associated with the back-edge also. Following Defini-
tion 1.1, both the post-order and pre-order numbers of a node (e.g.,
g14), which is the origin of a back-edge (denoted by β-nodes), vio-
late the behavior of the respective numbers that is exhibited in case
of tree-edges. In order to handle back-edges, we define a notion of
β-post-order number (β-PON) and β-pre-order number (β-RON)
for each node that either is a β-node or is reachable from a β-node
over a simple path. Nodes that are reachable from a β-node x over
a simple path over a β-edge e(x, w), also need to be considered for
the following reason. The authentication unit of such nodes must be
such that when they are presented to an authenticity prover along-
with the related back-edge e(x, w), they should not leak the fact
that e(x, w) is a back-edge; rather they should be consistent with
the information presented to the prover that e(x, w) is a tree-edge.
Examples of β-reachable nodes from the β-node g14 in Figure 2
are g9, g11, g12, g15 and g16.

We define the notion of β-nodes like the notion of χ-nodes. β-
nodes are nodes that are origins of back-edges (Definition 6.1). We
then define the notion of β-reachable nodes (Definition 6.2). In or-
der to define such signatures, we define a variant of PON and RON
for such nodes (Definition 6.4). Such variants satisfy the property
of tree-edges in terms of traversal numbers.

DEFINITION 6.1 (β-NODE). A node x in a graph G(V, E) is
a β-node, iff there exists an edge e(x, w) in G such that e(x, w) is
a back-edge.

DEFINITION 6.2 (β-REACHABLE). Let node x be a β-node
in a graph G(V, E) and let e(x, w) be a back-edge. A node y is
said to be β-reachable from x (over e(x, w)) in G iff either y is w
or there exists a simple path sp(x, y) from x to y in G such that
sp(x, y) = x→w. . .→y.

Unlike the case of cross-edges (Section 5), in the case of back-
edges, a β-node or a β-reachable node has the following position(s)
and authentication unit(s): (1) β-structural; and (2) χ-structural, if
it is a χ-node, τ -structural, otherwise. A β-node, or a node that is
β-reachable, may have multiple β-structural positions (β-positions
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Figure 4: Illustration of not-β-covered edges.

in short) and authentication units. A given node may be reach-
able from multiple back-edges over a simple-path. We only need
to consider a minimal set of such edges, which are not covered
by other back-edges in a simple-path. Such back-edges are called
not-β-covered (Definition 6.3). The number of such positions and
authentication units for a node is the same as the number of not-β-
covered back-edges (Definition 6.3) from which it is reachable over
a simple path. However, a user receives one position per node. For
example, if a user is not permitted to access a cycle, but the related
back-edge, β-structural position and signature are sent to the user.
However, if the user has access to a cycle, conveying the informa-
tion that one of the edges in the cycle is a back-edge does not leak
any information. In what follows, x→y denotes the edge e(x, y)
and y. . .→z denotes the simple path sp(y, z) from y to z.

In a graph, a node maybe β-reachable from many back-edges.
The question is do we need to consider only one of them or “some”
of them in order to minimize the number of β-positions. Consider
the graph in Figure 4 with a as the root of the depth-first tree; edges
e(a, b) and e(a, c) are the tree-edges. Edges e(b, a) and e(c, a) are
back-edges. Both b and c are β-nodes. a is β-reachable from both
b and c. The question is would there be one or two β-positions for
a. If a user has access to all nodes and only the back-edges, then
how would both of them be proven as tree-edges. To this end, let
us first define β-covered and not-β-covered edges.

DEFINITION 6.3 (β-COVERED, NOT-β-COVERED). A back-edge
e(u, v) is said to be “β-covered” by another back-edge e(x, y) in
graph G(V, E) iff there is a simple path sp(x, v) in G such that
sp(x, v) = x→y. . .→ u → v. A back-edge e(u, v) is said to be
“not-β-covered” iff there exists no such back-edge e(x, y) in G.

β-structural positions are assigned to nodes as follows: for each
node x that is β-reachable from a not-β-covered back-edge e(u, v),
a β-position is assigned to x for each such e(u, v). In order to
define the constituents of a β-position, we define β-PONs and β-
RONs next.

DEFINITION 6.4 (β-PONS, β-RONS). Let e(x, w) and e(y, z)
be back-edges in graph G(V, E). Let e(x, w) be not-β-covered
and e(y, z) be β-covered by e(x, w). The β-post-order (β-pre-
order) numbers of x, w, y and z with respect to e(x, w), denoted
by oβ:x→w

x , oβ:x→w
w , oβ:x→w

y , and oβ:x→w
z , respectively (qβ:x→w

x ,
qβ:x→w

w , qβ:x→w
y , and qβ:x→w

z , respectively) satisfy the following
conditions:
(1) oβ:x→w

x =oτ
x;qβ:x→w

x = qχ
x , if x is a χ-node, qβ:x→w

x = qτ
x; else

(2) oβ:x→w
w < oβ:x→w

x ; qβ:x→w
w > qβ:x→w

x ;
(3) oβ:x→w

z < oβ:x→w
y < oβ:x→w

w ; qβ:x→w
z > qβ:x→w

y > qβ:x→w
w .

For a β-node x, the randomized versions of its β-post-order
number with respect to e(x, w) oβ:x→w

x and β-pre-order number
qβ:x→w

x are denoted by pβ:x→w
x and rβ:x→w

x , respectively and are
defined in the same manner as RPON is defined for PON and RRON
for RON. In order to define α-signatures for non-acyclic graphs, the
χ-pre-order-numbers for χ-nodes are defined below with an addi-
tional constraint related to back-edges, but without changing their
properties as defined in Definition 5.2.

DEFINITION 6.5 (χ-RONS). Let x be a χ-node in a connected
directed graph G(V, E). Let e(w, x) and e(x, y) be edges in G
“such that neither of them is a back-edge”5. The χ-pre-order num-
ber of x and w denoted by qχ

x and qχ
w, respectively, satisfy the fol-

lowing conditions:(1) qχ
x > qτ

x; (2) if w is a χ-node, qχ
x > qχ

w, else
qχ

x > qτ
w; and (3) qχ

x < qτ
y .

DEFINITION 6.6 (β-STRUCTURAL POSITION). Let x be a node,
which is β-reachable from y over the not-β-covered back-edge e(y, z)
in a graph G(V, E). The β-structural position of x with respect to
e(y, z) denoted by θβ:y→z

x , is defined as the pair of its β-RPON
pβ:y→z

x and β-RRON rβ:y→z
x , that is, θβ:e(y,z)

x = (pβ:y→z
x , rβ:y→z

x ).
Similarly, the β-structural position of y with respect to e(y, z) de-
noted by θβ:y→z

y = (pβ:y→z
y , rβ:y→z

y ).

If a node is a β-node, it is also a τ -node or a χ-node. However
if a node is a χ-node it is not a τ -node and vice versa. The au-
thentication units associated with β-nodes, β-reachable nodes and
back-edges are called backward signatures (β-authentication unit
in short). Each node has a α-authentication unit. Moreover, if a
node x is β-reachable from a not-β-covered back-edge e(y, z) in
G, it has a β-authentication unit Ψβ:y→z

x .

DEFINITION 6.7 (β-AUTHENTICATION UNIT OF A NODE).
Let x be a node and e(y, z) be a not-β-covered edge in a weakly
connected directed graph G(V, E) such that x is β-reachable from
y over e(y, z). The β-structural authentication unit of x, denoted
by ξβ:y→z

x , is defined as ξβ:y→z
x =H(θβ:y→z

x ‖Cx). The β-structural
signature of the β-node y, denoted by ξβ:y→z

y , is defined as ξβ:y→z
y

=H(θβ:y→z
y ‖Cy).

DEFINITION 6.8 (SIGNATURE OF A GRAPH). Let ω be a cryp-
tographically secure random. Let H denote a one-way crypto-
graphic hash function. Let sk be the private key and P be defined
as in an aggregate signature framework (Section 4.2). Let ωG be
defined as H(ω). Let Sx be the set of not-β-covered edges from
each of which x is β-reachable. The structural signature of a graph
G(V, E), denoted by ΨG(V,E), is defined as follows:

ΨG(V,E) ← e(P, sk(ωG +
X
x∈V

ξα
x +

X
x∈V

X
e(y,z)∈Sx

ξβ:y→z
x )). (4)

6.1 Signing a Graph
The steps that the trusted owner Alice uses to sign and share a

graph G(V, E) with Bob are presented in Figure 6.1. How the set of
not-β-covered back-edges are determined is stated by Lemma 6.9.

LEMMA 6.9. In a graph G, the β-node u that has the lowest oτ
u

among all β-nodes is such that a back-edge e(u, v) in G is not-β-
covered by any other back-edge.

PROOF. Let w be a node and e(w, x) be a back-edge in G such that
e(u, v) is β-covered by e(w, x). In such a case, by the property of post-
order numbers, the depth-first traversal would assign a post-order number
oτ

w to w such that oτ
w < oτ

u, which is a contradiction.

6.2 Distribution
In this section, we show how to provide an optimal distribution

technique that sends only O(1) authentication units to the user. D
sends the following items to B: G′(V ′, E′), the signature of the
graph ΨG , and an authentication unit of the subgraph ξG′ , which
is computed as in the algorithm given in Figure 6.2. The set of
verification units VO(G′(V ′, E′)) = {ΨG , ξG′}.
5Difference from Definition 5.2 is “such that neither of them is a
back-edge”.
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1. Forward pass on graph G(V, E).

(a) Execute a depth-first manner traversal on G(V, E).
(b) For each node x ∈ V, compute oτ

x and qτ
x .

(c) If e(w, x) ∈ E, and

i. If ((oτ
w > oτ

x) and (qτ
w > qτ

x), then mark e(w, x) as a cross-
edge and x as a χ-node.

ii. If (oτ
w < oτ

x) and (qτ
w > qτ

x), then mark e(w, x) as a back-
edge and w as a β-node.

(d) For each χ-node, compute its qχ
.

2. Backward pass on graph G(V, E).

(a) Let V β be the set of all back-nodes in G.
(b) Let y ∈ V β such that oτ

y < oτ
u, ∀ u ∈ (V β − {y})

(c) For each back-edge e(y, z) from y, execute a depth-first traversal
of the graph from z.

(d) For each node w that is β-reachable from y over e(y, z),

i. If w is not visited earlier from y, compute oβ:y→z
w and

qβ:y→z
w .

ii. Else compute oβ:y→z
w and qβ:y→z

w , such that oβ:y→z
w is less

than and qβ:y→z
w is larger than the respective values com-

puted in the previous visit.
iii. if w is a back-node, V β ← V β − {w}.

(e) Goto step (a) until V β is empty.

3. For each node x ∈ V, transform the traversal numbers into randomized
traversal numbers, so that they preserve the order.

4. For each node x∈ V that is a χ-node, assign (pτ
x, rχ

x ) to x as its structural
position θχ

x .
5. For each node x ∈ V that is not a χ-node, assign (pτ

x, rτ
x) to x as its

structural position θτ
x .

6. For each node x∈ V, and for each not-β-covered back-edge e(y, z) such
that x is β-reachable from y over e(y, z),
θβ:y→z
x ← (pβ:y→z

x , rβ:y→z
x ).

7. For each node y ∈ V such that e(y, z) is a not-β-covered back-edge,
θβ:y→z
y ← (pβ:y→z

y , rβ:y→z
y ).

8. For each node x ∈ V:

(a) If x is a χ-node, θx← θχ
x else θx← θτ

x .
(b) Compute the α-signature ξα

x ←H(θx‖Cx).
(c) If x is β-reachable from a not-β-covered back-edge e(y, z), com-

pute the β-signature ξβ:y→z
x ←H(θβ:y→z

x ‖Cx).
(d) If x is such that e(x, w) is a not-β-covered back-edge, compute

the β-signature ξβ:x→w
x ←H(θβ:x→w

x ‖Cx).

9. Choose a secure random ω; Let ωG ←H(ω).
10. Compute the signature of the graph G(V, E) as in Eq. 4.

Figure 5: Algorithm to sign a graph.

6.3 Authentication
A user B receives (1) a subgraph G′′(V ′′, E′′), (2) the signature

of the graph ΨG , and (3) the authentication unit of the subgraph -
ξ from the distributor D. The user verifies the authenticity of the
contents as well as the structural position of the nodes in G′′ by
using the aggregate signature ΨG′(V ′,E′). The process for verifica-
tion of contents is same as the process described in Section 5.3. B
evaluates Equation 2, and then Equation 3.

Verification for Structural Relations
1. Execute a depth-first traversal of G′′. Let the structural posi-

tion of each node x be denoted by θx = (px, rx).

1. ϑ←∅.
2. Let Γ be a set: Γ← {〈x, θx, ξx〉|∀x∈V, θx is a structural position of

x, and ξx refers to the authentication unit of x associated with θx}.
3. If no edge in G′ is a back-edge in G, For each node x in G′,

(a) If x is a cross-node, θx← θχ
x . Else θx← θτ

x .

(b) ϑ
∪← {〈x, θx, ξα

x 〉}.

Else proceed to the next step.
4. For each e(x, y) in G′ that is a not-β-covered back-edge in G,

(a) For each node z in G′ such that z is either x or is β-reachable
from x over e(x, y) in G′,
ϑ
∪← {〈z, θβ:x→y

z , ξβ:x→y
z 〉}. Flag z as visited.

Flag e(x, y) as visited.

5. Let Eβ
0← {e(x, y)|e(x, y) is in G′ and is not visited, e(x, y) is a

back-edge in G and is not-β-covered in G′}.

6. For each e(x, y) ∈ Eβ
0 ,

(a) Let be the back-edge e(u, v) in G but not in G′ such that e(x, y)
is β-covered by e(u, v) in G.

(b) For each node z such that z is in G′, z is not visited, z is either
x or β-reachable from x over e(x, y) in G′,
ϑ
∪← {〈z, θβ:u→v

z , ξβ:u→v
z 〉}. Flag z as visited.

7. For each node w that is not visited and has a simple path w. . .→ x in
G′, If w is β-reachable from u over e(u, v), and e(u, v) is in G, but
not in G′, ϑ

∪← {〈w, θβ:u→v
w , ξβ:u→v

w 〉}. Flag w as visited.
8. For each node w in G′ that is not visited,

If w is a χ-node, ϑ
∪← {〈w, θχ

w, ξα
w〉}. Else ϑ

∪← {〈w, θτ
w, ξα

w〉}.
9. Compute ξG′(V ′,E′) as the aggregate signature of the nodes in V ′:

ξG′ =
P

〈x,θx,ξx〉 ∈Γ−ϑ ξx.

Figure 6: Algorithm to distribute a subgraph.

2. For edge e(x, z), if (px< pz) and (rx> rz), then if x is
not a β-node in G′′, then e(x, z) is not a back-edge (there
is no cycle in G′′ involving x and z), so the parent-child
relationship between x and z is incorrect.

3. Else if (px≤ pz) or (rx≥ rz), then parent-child relationship
between x and z is incorrect.

Using the depth-first traversal carried out during authentication
of structural relations, it is easy to determine if x is a β-node or
e(x, z) is a β-edge in G′′(V ′′, E′′) (Definition 1.1). We just need
to initialize a pair of new pre-order and post-order numbers of each
node to −1. These numbers are different than the ones that have
been received as signature items. For each edge e(x, z), if the post-
order number of z is already computed (so that its value is some
number greater than −1), then e(x, z) is not a back-edge, which
implies that x is not a β-node. There is no ordering among sib-
lings (of a DFT) in a non-acyclic graph (cannot be topologically-
ordered).

7. SECURITY ANALYSIS
This section states the lemmas about the security of the proposed

schemes in terms of authenticity and non-leakage properties. First
of all, the proposed scheme supports non-repudiation primarily
because the aggregate signature scheme supports non-repudiation.
Moreover, the proposed schemes for DAGs and graphs with cycles
are “existentially unforgeable under adaptive chosen-message at-
tack”. In what follows, we provide proof sketches for the security
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of the proposed schemes.

LEMMA 7.1 (AUTHENTICATION (DAGS)). Given that H is
a cryptographic hash function and that aggregate signatures are
secure, any authenticity violation of a graph can be detected by
using the structural signature scheme for DAGs.

PROOF SKETCH. Let ξG′(V ′,E′) and ΨG′(V ′,E′) be the authentica-
tion units received by aB, who receives the G′(V ′, E′), subgraph of G(V, E).
Suppose that the authenticity verification scheme in Section 5.3 authenti-
cates a graph, G′′(V ′′, E′′) different from Gδ , to G, using ξG′(V ′,E′) and
ΨG′(V ′,E′). By Definitions of χ-RONs, τ -PONs and τ -RONs, the rela-
tionship between the nodes in G′′ must be identical to that of G′(Section 5.3),
otherwise the randomized traversal numbers are not secure, which is a con-
tradiction. Contents of G′′ would be authenticated iff Eq. 3 is satisfied for
G′′, which implies thatH incurred a collision, and the aggregate signature
scheme and H are not secure, which is a contradiction, under the random
oracle hypothesis [19] and hardness of computational Diffie-Hellman prob-
lem [6]. Thus the lemma is proven.

LEMMA 7.2 (NON-LEAKAGE (DAGS)). Given that H is a
cryptographic hash function and that aggregate signatures are se-
cure, the structural signature of a DAG do not lead to any leakage
of any extraneous information.

PROOF SKETCH. A user receiving a sub-DAG G′(V ′, E′) of DAG G
should not be able to infer any extraneous information of G from (1) the
signature ΨG , (2) set of verification units VO(G′), and (3) the τ - and χ-
structural positions of the nodes in G′. Due to the properties of Bilinear
maps and aggregate signatures, (1) and (2) do not leak any information
(i.e., the probability of leakage is negligible) [6]. We now would prove that
(3) does not leak. (Forward-edges:) The τ -structural positions of nodes in a
forward-edge are identical to the rules of tree-edge (Definition 1.1); there-
fore an edge e(x, y) that is a forward-edge in G but not a forward-edge in
G′ would be verified by the user as a tree-edge. (Cross-edges:) By Def-
initions 5.2 and 5.4, a χ-node x has a structural position such that rχ

x is
larger than the rτ

w for each w that has a cross-edge incident on x. By Def-
inition 1.1, the user would only know that e(w, x) is a tree-edge and thus
cannot learn whether it is a cross-edge (Definition 1.1). Thus the lemma
is proved. If the signature of the DAG and the authentication unit of the
subgraph leak extraneous information, thenH incurred a collision, and the
aggregate signature scheme andH are not secure, which is a contradiction,
under the random oracle hypothesis [19] and hardness of computational
Diffie-Hellman problem [6]. Thus the lemma is proven.

LEMMA 7.3 (AUTHENTICATION (GRAPHS WITH CYCLES)).
Given that H is a cryptographic hash function and that aggregate
signatures are secure, any authenticity violation of a graph can be
detected by using the structural signature scheme for connected di-
rected graphs.

PROOF SKETCH. Let G(V, E) be a directed connected graph and x be
a node in it.

Content authenticity: Any compromise of the content Cx or the struc-
tural position (either τ , χ, or β) of a node x in G would invalidate the
structural authentication unit ξx, which is a hash of a message that con-
tains Cx and structural position of x as defined by Definitions 5.4, and 6.6,
unless the hash function H encounters a collision, which contradicts our
assumption and the random oracle hypothesis. Moreover, if a node/edge
is added to or dropped from the received subgraph G′(V ′, E′), it would
invalidate the received authentication unit of the subgraph ξG′(V ′,E′). If
ξG′(V ′,E′) does not get invalidated, then under the random oracle hypoth-
esis, the H-function is not secure or the aggregate signature scheme is not
secure, which is a contradiction.

Structural authenticity: The signature of a node in a graph is a forward-
signature, if it is not reachable from a back-edge. Such a signature is with
respect to the DFT obtained from a forward traversal of the graph. Any
unauthorized re-ordering between two or more nodes (violation of struc-
tural integrity) in such DFT can be detected using the randomized traversal
numbers [21]. If a node is a β-node or is reachable from a back-edge, then
such a node also belongs to the DFT obtained from a depth-first traversal
carried out from β-node(s) over back-edges. Any re-ordering would be de-
tected here as well.

Suppose x belongs to another tree G′, but claimed to belong to G. By
the arguments similar to the one in the proof of Lemma 7.1, it is not possi-
ble.

LEMMA 7.4 (NON-LEAKAGE (GRAPHS WITH CYCLES)). Given
that H is a cryptographically secure hash function and aggregate
signatures are secure, the structural signatures for connected di-
rected graphs do not lead to any leakage of any extraneous infor-
mation.

PROOF SKETCH. A user receiving a subgraph G′(V ′, E′) of graph G
should not be able to infer any extraneous information of G from (1) the
signature ΨG , (2) set of verification units VO(G′), and (3) the τ -, χ-, and
β-structural positions of the nodes in G′. Due to the properties of Bilinear
maps and aggregate signatures, (1) and (2) do not leak any information (i.e.,
the probability of leakage is negligible) [6]. We now would prove that there
is no leakage due to (3).

In order to be confidentiality-preserving, an authentication scheme must
not leak any extraneous information about (a) cross-edges, (b) forward-
edges, (c) back-edges. Following Lemmas 7.2, the authentication scheme
for connected directed graphs does not leak any information about (a) and
(b). The scheme does not leak any information via the back-edges or β-
structural positions, which is proven as follows.

Let e(x, w) be a not-β-covered back-edge in graph G(V, E) (e.g., e(g14, g9)
in Figure 2). By Definitions 6.4 and 5.4, the β-node x has a β-structural
position such that pβ:

x and rβ:
x are larger and smaller than the pβ:x→w

w and
rβ:x→w
w , respectively. By Definition 1.1, the user would only verify that

e(x, w) is a tree-edge and cannot learn whether it is a back-edge.
The following cases arise when a user is authorized to access a connected

subgraph that includes a back-edge e(x, w), which is not-β-covered in the
subgraph; the subgraph may also include: (I) Nodes reachable from w, (II)
Nodes reachable from x and (III) Nodes from which x is reachable.

Case I: Nodes reachable from w: The user is authorized to access the
back-edge e(x, w) and the edge e(w, y) (e.g., e(g9, g11) in Figure 2). By
Definition 6.2, y is β-reachable from x. Further by Definitions 6.4 and
5.4, pβ:x→w

x and rβ:x→w
x are larger and smaller than the pβ:x→w

y and
rβ:x→w
y , respectively. By Definition 1.1, the user would only verify that an

edge e(w, y) is a tree-edge and cannot learn from it whether e(x, w) is a
back-edge.

Case II: Nodes reachable from x: The user is authorized to access the
back-edge e(x, w) and the edge e(x, y) (e.g., e(g14, g18) in Figure 2).

• y is not β-reachable and x is not β-reachable: By sending τ -position
and τ -signatures for both x and y and β-position and β-signatures
for w, the edges would be verified as tree-edges. This is because,
pτ

x = pβ:x→w
x and rτ

x = rβ:x→w
x (Definition 6.4) and thus the τ -

signature for x are same as its β-signature.

• y is not β-reachable and x is β-reachable: Not possible by the defi-
nition of the notion of β-reachable.

• y is β-reachable and x is not β-reachable: By sending τ -position
and τ -signatures for y and β-position and β-signature for x and w,
both the edges e(x, w) and e(y, x) are verified by the user as tree-
edges, thus hiding the original type of e(x, w). This is because,
since x is not β-reachable, by Definition 6.4, pτ

x = pβ:x→w
x and rτ

x

= rβ:x→w
x . Thus and by the properties of post-order and pre-order

numbers, since e(y, x) is a tree-edge in G, pτ
y > pβ:x→w

x and rτ
y <

rβ:x→w
x .

• y is β-reachable and x is β-reachable: By sending β-positions and
β-signatures for both y, x and w, the edges would be verified as
tree-edges. This is because, by Definition 6.4, pβ:x→w

y > pβ:x→w
x

> pβ:x→w
w and rβ:x→w

y < rβ:x→w
x < rβ:x→w

w .

Case III: Nodes from which x is reachable: The user is authorized to
access the back-edge e(x, w) and the edge e(y, x) (e.g., e(g11, g14) in
Figure 2). Four cases arise:

• y is not β-reachable and x is not β-reachable: Proof is identical to
this condition in Case-II.

• y is not β-reachable and x is β-reachable: By sending τ -positions
and τ -signatures for y and β-positions and β-signatures for x and
w, the edges would be verified as tree-edges. This is because, for an
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x that is β-reachable and a β-node, pβ:x→w
x < pτ

x and rβ:x→w
x >

rτ
x . Since e(y, x) is an edge in the graph, pτ

x < pτ
y and rτ

x > rτ
y .

• y is β-reachable and x is not β-reachable: Proof is identical to this
condition in Case-II.

• y is β-reachable and x is β-reachable: Proof is identical to this
condition in Case-II.

The above arguments can be easily extended to multiple not-β-covered
back-edges in the graph. Consideration of one not-β-covered back-edge
takes care of all other back-edges that are it covers. So the argument also
extends to multiple β-covered and not-β-covered back-edges.

Suppose that a user Bob has access to G′, a subgraph in G. Bob receives
the structural signature of G, the node signatures of G′ and their structural
positions. Any leakage would be a direct leakage through these information
or an inference from them.

Direct leakage: Clearly (as per Definitions 5.6, 5.5, 6.8 and 6.7, and the
protocols specified in Sections 5.2 and 6.2) Bob does not need the authen-
tication unit as it is of any node u that is in G but not in G′. He therefore
does not need to know any of the structural relationships and structural or-
dering that exist in G, but not in G′. Therefore none of (3), (4), (5) and (6)
is directly leaked to Bob; he does not learn any extra information from the
integrity verification process.

Indirect leakage through the signature of the graph and authentication
unit for G′: Under the Random Oracle Hypothesis and the hard-ness of
Computational Diffie-Hellman problem, the structural signature of the tree
reveals neither (3) the signature of u, nor (4) the existence of u. Similarly,
the structural signature of a node leaks neither (3) nor (4). Therefore (5) -
the structural relations (edges or paths) and (6) - the structural order among
nodes in G′ and u are also not revealed by the signatures.

In addition, the structural positions of the nodes in G′ do not reveal any
information [21]: because the probability of inference (and leakage) about
(2) - the existence of node u between two immediate siblings from such
randoms is negligible6 ( 1

2k ) [19], where k is the security criteria - the num-
ber of bits as the output of hash functionH. Therefore structural positions
of nodes cannot be used to determine the structural signature of u. Since
(3) and (4) cannot be inferred from the RPON’s and RRON’s, (5) and (6)
also cannot be inferred from the structural position of a node.

8. COMPLEXITY AND PERFORMANCE RE-
SULTS

In the following sections, we analyze the complexity and perfor-
mance of the proposed schemes.

8.1 Complexity
Signature Generation Complexity. The pre-order and post-order

numbers can be generated by a single traversal of the graph G(V, E).
The traversal complexity is thus O(|V| + |E|). In the signing
scheme of graphs (Section 6.1), a graph is traversed once forward, a
number of times backward, and once for computing the signatures
in the end. The number of backward traversals is the number of
not-β-covered back-edges d, which is in [0, |V | − 1] (0 in case of
DAGs and (|V | − 1) in case of complete graphs). In case of sign-
ing DAGs, the scheme requires only two traversals (no backward
traversal is required here). Therefore, the complexity for signing a
DAG is O(|V| + |E|). In case of graphs with cycles, the scheme
requires d number of backward traversals, where d is the number
of not-β-covered back-edges.

The number of authentication items that need to be computed,
and stored is (|V|∗(2 + 2d)) as explained below by assuming that
the sizes of the secure random number and the cryptographic hash
are identical. In the worst case (when the graph is a complete
graph), each node is a β-node; so each node has one forward and
d backward positions. Each structural position involves two secure
random numbers. Therefore, the storage complexity of structural
signatures is O(|V|*d).
6In cryptography, a technique that leads to only negligible leakage
is provably non-leaking [19].

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  10000  20000  30000  40000  50000  60000

T
im

e 
fo

r 
(c

ro
ss

/tr
ee

)-
st

ru
ct

ur
al

 p
os

iti
on

s 
(S

ec
)

Number of cross-edges

Ordered DAG: 2 Million Nodes
Ordered DAG: 1 Million Nodes
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structural positions Vs. the number of cross-edges in each
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Distribution Complexity. Let the signed subgraph that needs to
be shared with a user be G′(V ′, E′). In the worst case (G′(V ′, E′)
is a complete graph), the distributor has to send (2 ∗ |V ′|) number
of signature items as follows. Each node in such a subgraph is a
β-node; thus the β-structural position (two authentication items) of
each node is sent to the user. Therefore the distribution complexity
of structural signatures is O(|V ′|).

Integrity Verification Complexity. The procedure for the verifi-
cation of content integrity incurs a cost linear in terms of the size
of the subgraph G′(V ′, E′) received, that is, O(|V ′| + |E′|). It
accounts for one hashing for each node. The cost of verification
of structural integrity is also linear in terms of the size of the sub-
graph received, that is, O(|V ′|+ |E′|) as the cost of comparison of
randomized traversal numbers is constant.

8.2 Performance Results
We implemented the two schemes in Java 1.6 and JCA 6.0 (Java

Cryptography Architecture) APIs. The experiments were carried
out on a desktop with the following specification: 64-bit Linux
(Ubuntu 8.10) on Intel Core 2 Duo CPU with 4GB RAM. For sign-
ing using aggregate signatures and bilinear maps, we used the C
implementation of bilinear maps7. Further, we used Java Native
Interface (JNI) to integrate this C implementation with our Java
implementation.

The performance is measured as: time to compute the χ-, τ -
structural positions and β-structural positions (for graphs) versus
the number of cross-edges, back-edges in the DAG and the graphs.
The other performance metric that we have evaluated the schemes
against is time taken for signing and verification.

Time to Compute Structural Positions: The process of computing
appropriate structural positions of each node in either a DAG or a

7http://crypto.stanford.edu/pbc
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graph is part of the one-time process of signing. Figure 7 shows that
the time for computation of χ- and τ -structural positions for DAGs
is very efficient (linear). For DAGs of size about 2 million nodes,
it takes only 14 seconds. Figure 8 shows that the time to compute
all the structural positions for all the nodes in a graph with respect
to the number of back-edges in the graph is also highly efficient -
for more than 0.5 million back-edges, it takes 6.5 seconds.

Time to Sign: As evident from the plot in Figure 9, the time
taken to sign graphs of size as many as one million nodes using
aggregate signatures is linear with respect to the number of nodes,
which corroborates our complexity analysis. It is evident that the
performance is better for graphs with cycles than what we expected
in the complexity analysis (Section 8.1). Note that aggregate signa-
tures based on bilinear mapping and elliptic curves are inherently
expensive.

Time to Verify: From Figure 10, it is evident that the time taken to
verify the contents and authentication units of such graphs against
the received signature and verification units is linear with respect
to the number of nodes in the graph.

9. RELATED WORK
To the best of our knowledge, this is the first solution to the

problem of “authentication of graphs without leaking”. Two works
closest to the proposed solution are as follows. The first one is by
Kundu and Bertino [21], in which, the problem of integrity assur-
ance of trees without leaking is addressed by use of “structural sig-
natures”; however, it can not be trivially applied to graphs, which
are much more complex structures than trees and graphs with cy-
cles cannot be topologically sorted.

The second work is by Martel et al. [25], who proposed an au-
thentication technique for data structures - directed acyclic graphs
referred to as “Search DAGs” in third party distribution frame-
works. However their technique uses Merkle hash technique [26],
which leaks information during authentication [7, 21]. Moreover

the “Search DAGs” technique only covers DAGs, not the general
directed graphs. Querying, management [10] and mining [11] of
graph-structured data as well as privacy-preserving graph publish-
ing and mining techniques [23, 34] have recently emerged as im-
portant topics in both academia and industry. Confidentiality and
authenticity are important requirements in secure data management
and publishing [4, 5].

The authentication scheme for completeness of query results pro-
posed by Pang et al [28] leaks even in the simple case of “greater
than” predicates. In their scheme, if a3, a4, and a5 satisfy a the
“greater than” predicate among elements a1, a2, . . . , a10, then the
user uses extra information about a2 and of a6 in order to authenti-
cate the results; such extra information lead to the leakage about the
existence and structural position of these two elements in the data
object, which as we have seen earlier could be sensitive information
or could lead to inference of sensitive information. Goodrich and
Tamassia [12] have used skip lists and one-way accumulators for
authentication of dictionaries. Goodrich et al [14, 13] proposed a
framework for authenticated graph searching and query processing.
Some of the other notable authentication schemes in the literature
are by Li et al [22], Mouratidis et al [27], Pang and Mouratidis [29],
and by Pang and Tan [30]. Even though each of these techniques
provides authenticity, yet it leaks (primarily because, they rely on
Merkle hash technique, which inherently leaks). Moreover, none of
these works (including [28]) address the problem of authentication
of graphs.

Batch verification of RSA signatures [3, 15] can be thought to
support secure signature aggregation. However, such a scheme is
insecure (Hwang et al [17] first showed the forgery attack that can
be carried out on it) and it cannot be used to carry out secure signa-
ture aggregation. Later in another paper [16] Hwang et al proposed
a new scheme overcoming the weakness of Harn’s scheme. How-
ever, Bao et al [2] have shown that even this scheme is not secure.
The scheme proposed in [2] has also not been proven to be secure.
Given that there are so many assumptions essential to build a strong
RSA scheme and so many attacks are possible on RSA [31], and the
fact that batch verification of RSA signatures have not yet shown to
be secure, an authentication scheme using RSA signatures would
not be secure. Rather the aggregate signatures by Boneh et al [6]
based on bilinear maps, which is proven to be secure, is what should
be used for signature aggregation and/or authentication purposes.

10. CONCLUSIONS AND FUTURE WORK
The problem of how to verify authenticity of data without leak-

age is an important problem in secure data publishing [7, 1, 21].
Since authentication is a much stronger security requirement, in-
tegrity assurance schemes such as the one proposed in [21] cannot
be directly used to address this problem. In this paper, we proposed
two schemes in order to address this problem - one for DAGs and
another for graphs with cycles so that such data can be published
and distributed while assuring both authenticity and confidential-
ity. The proposed schemes are based on structure of graphs and
aggregate signatures.

Our schemes prevent leakage of information while facilitating
authentication of content as well as the structure of graphs. The se-
curity of such schemes are based on the security of cryptographic
hash functions (random oracles) and aggregate signatures (Com-
putational Diffie-Hellman problem). Our schemes minimize the
number of of authentication units that a user must receive in order
to be able to carry out authenticity verification - a constant number
(O(1)). In terms of complexity, the schemes for DAGs and graphs
with cycles incur O(n) and O(n∗d), respectively, for time and stor-
age (n is the number of nodes in the graph). Performance of our
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schemes on large DAGs and on graphs as large as 0.5-million back-
edges nodes show that our scheme is efficient. Further, experimen-
tal results show that our technique for graphs with cycles performs
linearly - better in actual runtime than the theoretical complexity
analysis.

The proposed scheme has a number of applications such as in
graph databases of biological and healthcare data, XML graphs,
and in authentication and completeness verification of query re-
sults. In future, we plan to apply our scheme to some of these
areas.
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