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ABSTRACT
This paper develops toolsets for eliminating algorithm-based dis-
closure from existing privacy-preserving data publishing algorithms.
We first show that the space of algorithm-based disclosure is larger
than previously believed and thus more prevalent and dangerous.
Then, we formally define Algorithm-Safe Publishing (ASP) to model
the threats from algorithm-based disclosure. To eliminate algorithm-
based disclosure from existing data publishing algorithms, we pro-
pose two generic tools for revising their design: worst-case eligi-
bility test and stratified pick-up. We demonstrate the effectiveness
of our tools by using them to transform two popular existing `-
diversity algorithms, Mondrian 1 and Hilb, to SP-Mondrian and SP-
Hilb which are algorithm-safe. We conduct extensive experiments
to demonstrate the effectiveness of SP-Mondrian and SP-Hilb in
terms of data utility and efficiency.

1. INTRODUCTION

1.1 Privacy-Preserving Data Publishing
Many organizations, such as hospitals, require publishing mi-

crodata with personal information, such as medical records, for fa-
cilitating research and serving public interests. Nonetheless, such
publication may incur privacy concerns for the individual owners of
tuples being published (e.g., patients). To address this challenge,
privacy-preserving data publishing (i.e., PPDP) was proposed to
generate the published table in a way that enables analytical tasks
(e.g., aggregate query answering, data mining) over the published
data, while protecting the privacy of individual data owners.

In general, a microdata table (denoted by T) can contain three
types of attributes: 1) personal identifiable attributes (e.g., SSN),
each of which is an explicitly unique identifier of an individual, 2)
quasi-identifier (QI) attributes (e.g., Age, Sex, Country), which are
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not explicit identifiers but, when combined together, can be empir-
ically unique for each individual, and 3) sensitive attributes (SA)
(e.g., Disease), each of which contains a sensitive value (set) that
must be protected. In privacy-preserving data publishing, personal
identifiable attributes are usually removed prior to publishing. QI
and/or SA attributes are perturbed to achieve a pre-defined privacy
model while maximizing the utility of published data.

Samarati and Sweeney [32] first proposed a privacy model, k-
anonymity, for PPDP. It requires each tuple in the published ta-
ble (denoted by T∗) to have at least k − 1 other tuples with the
same QI attribute values . To protect individual SA information,
Machanavajjhala et al [26] introduced another privacy model, `-
diversity, which further requires each group of QI-indistinguishable
tuples (i.e., QI-group) to have diverse SA values. Variations of the
`-diversity model include (α, k)-anonymity [35], t-closeness [20],
(k, e)-anonymity [42], m-invariance [38], etc. To satisfy these
privacy models, numerous PPDP algorithms have been proposed
[9, 16–18, 36, 42].

1.2 Algorithm-Based Disclosure
It was traditionally believed that, to determine whether a privacy

model is properly satisfied, one only needs to look at the published
table, i.e., the output of a data publishing algorithm, but does not
need to investigate the algorithm itself. Algorithm-based disclosure
contradicts this traditional belief as it refers to the privacy disclo-
sure caused by the design of a data publishing algorithm. Intu-
itively, when an adversary learns the details of an algorithm, s/he
may utilize this knowledge to reverse-engineer the published table
to compromise additional private information. We shall discuss the
details in Section 2.

Wong et al. [34] demonstrated the first known case of algorithm-
based disclosure by showing that the minimality principle used by
many existing algorithms, i.e., to perturb QI with the minimum de-
gree possible for satisfying the privacy model, may lead to the dis-
closure of private SA information when the adversaries have the
original QI as external knowledge. An example of this disclosure
will be explained in Section 2. To counteract this attack, Wong
et al. proposed a new privacy model called m-confidentiality [34],
which guarantees that even an adversary with knowledge of QI can-
not have confidence of more than 1/m on the SA value of an in-
dividual tuple. [41] also studied this attack and proposed a new
privacy model called p-safety.

Algorithm-based disclosure poses a significant threat to the pri-
vacy of published data, because the data publishing algorithm is
usually considered public and may be learned by an adversary. One
might argue that, given the large number of public algorithms that
are available for PPDP, it is difficult for an adversary to precisely
identify which algorithm has been used and thereby to launch the
algorithm-based attack. This is a typical “security through obscu-
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rity” argument which counts on the secrecy of an algorithm to en-
sure the security of its output. However, such arguments have been
repeatedly argued against and aborted in the literature of security
and cryptography. As the Kerckhoff’s principle [13] in cryptogra-
phy states, “The cipher method must not be required to be secret,
and it must be able to fall into the hands of the enemy without
inconvenience.” Similarly, we argue that, to design an effective al-
gorithm for privacy-preserving data publishing, one must eliminate
algorithm-based disclosure.

To address algorithm-based disclosure, the existing work defined
new privacy models such as m-confidentiality [34] and p-safety
[41] which by definition require safety against algorithm disclo-
sure. In addition, some recently proposed privacy models such as
differential privacy [7] are also by definition immune from algorithm-
based disclosure. While defining these new privacy models and de-
veloping their corresponding new algorithms provides a clean solu-
tion for eliminating algorithm-based disclosure, limiting the inves-
tigation of algorithm-based disclosure to this realm has a number
of problems.

First, the state-of-the-art PPDP calls for a proper understanding
of the scope of algorithm-based disclosure for the existing data pub-
lishing algorithms. Currently, unless a data publishing algorithm is
designed for an inherently algorithm-disclosure-safe privacy model
such as differential privacy, it is unclear how to determine whether
the algorithm is vulnerable to algorithm-based disclosure. Mean-
while, there are considerable ongoing efforts [15, 25] on develop-
ing data publishing algorithms for popular privacy models such as
`-diversity which do not provide such definition-inherent guaran-
tee against algorithm-based disclosure. To enable the safe deploy-
ment of these algorithms in practice, it is important to understand
whether and how algorithm-based disclosure may occur for a given
data publishing algorithm.

Furthermore, the wide prevalence of data publishing algorithms
call for a generic method that can revise the design of a given
existing algorithm for eliminating algorithm-based disclosure. In
the literature, for popular privacy models such as `-diversity, there
have been not only a myriad of algorithms for publishing tabular
data, but also numerous others that publish application-specific data
such as location [24], social network [23], and transaction informa-
tion [40]. Instead of recreating algorithms for all these applications,
We argue that a more cost-effective way is to develop a generic
method that eliminates algorithm-based disclosure from the exist-
ing algorithms.

1.3 Outlines of Our Results
In this paper, we attack the problem of algorithm-based disclo-

sure from a novel algorithmic angle. In particular, we first illustrate
the challenge of identifying algorithm-based disclosure by demon-
strating that the space of such disclosure is substantially larger than
previously recognized. Then, we provide an exploratory tool for
testing whether a given data publishing algorithm may lead to algorithm-
based disclosure. Finally, we develop two methods, worst-case el-
igibility test and stratified pick-up, to revise the design of exist-
ing data publishing algorithms such that algorithm-based disclo-
sure can be eliminated while a high level of utility is retained for
the published table.

Our detailed results can be stated as follows:
First, we find that the space of algorithm-based disclosure

is much broader than previously discovered. While the previ-
ous work identifies algorithm-based disclosure when an adversary
holds external knowledge about the QI attributes, we find that other
forms of external knowledge, such as the distribution of SA values
and/or certain negative association rules [21] can also give rise to
algorithm-based disclosure. Our further investigation even elim-

inates the dependency of algorithm-based disclosure on external
knowledge, that is, we find algorithm-based disclosure can hap-
pen at the occasion when the adversary holds no external knowl-
edge about the published data. To this end, we find that MASK
[34], originally proposed to eliminate the previously discovered
algorithm-based disclosure, actually suffers from another type of
algorithm-based disclosure we discover in the paper.

Second, we propose an exploratory tool for checking whether
a given data publishing algorithm is vulnerable to algorithm-
based disclosure. In order to do so, we first introduce Algorithm-
Safe data Publishing (ASP), a model that formally defines algorithm-
based disclosure as the difference between two random worlds: a
naive one where every possible mapping between an original ta-
ble and the published table is equally likely unless such a mapping
violates an adversary’s external knowledge, and a smart one where
the mapping must also follow the data publishing algorithm. An al-
gorithm satisfies ASP iff it always maintains equivalence between
these two worlds.

We derive two necessary conditions of ASP which are then used
to identify the vulnerability of several existing data publishing algo-
rithms. We also derive a sufficient condition for ASP which is used
to prove the immunity of several other algorithms to algorithm-
based disclosure. We refer to this sufficient condition as the sim-
ulatable publishing design paradigm. Intuitively, simulatable pub-
lishing requires the published QI to be conditionally independent
of the original SA given the original QI and the published SA as
prior knowledge. In other words, no unpublished QI-SA correla-
tion information is used for generating the published table. The
combination of these necessary and sufficient conditions forms an
exploratory tool for checking whether a given data publishing al-
gorithm is vulnerable to algorithm-based disclosure.

Finally, we develop two tools, worst-case eligibility test and
stratified pick-up, for revising the design of existing algorithms
to follow the simulatable publishing paradigm. The first tool is
designed to amend the most common violation of ASP found in ex-
isting algorithms - the QI-grouping strategy - and make it adhere to
the simulatable publishing paradigm. To demonstrate its effective-
ness, we apply worst-case eligibility test to revise two well-known
data publishing algorithms, Mondrian [17] and Hilb [9] `-diversity
algorithms, and prove that the revised algorithms satisfy ASP. The
second tool is designed to improve the utility of published data
without violating the simulatable publishing paradigm. In particu-
lar, it uses an anatomy-like [36] technique to minimize the number
of tuples in each published QI-group. To demonstrate its effective-
ness, we apply stratified pick-up on top of the first-tool output of
Mondrian and Hilb to produce SP-Mondrian and SP-Hilb, respec-
tively, and find that they provide almost equal or even better utility
than the original Mondrian and Hilb algorithms, respectively.

We validate the theoretical results and evaluate the effective-
ness of our algorithms by a comprehensive set of experiments on
the real-world dataset. To demonstrate the effectiveness of our
simulatable publishing paradigm, we evaluate the utility of SP-
Mondrian and SP-Hilb and compare them against various exist-
ing `-diversity algorithms. Experimental results show that while
eliminating algorithm-based disclosure, our algorithms remain ef-
ficient and achieve almost equal (SP-Hilb) or significantly better
(SP-Mondrian) data utility than the existing algorithms.

The rest of the paper is organized as follows. Section 2 shows
motivating examples for algorithm-based disclosure. Section 3 in-
troduces background and notations used in the paper. Section 4 for-
mally defines ASP. Section 5 derives two necessary conditions and
one sufficient condition for ASP, and verifies the vulnerability of
existing algorithms. Section 6 gives two generic tools, and adapts
two existing algorithms via these tools to eliminate algorithm-based
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Table 1: An example of algorithm-based disclosure in `-diversity algorithm

(a) microdata
row# Sex Disease
1 F gastritis
2 F heart disease
3 F cancer
4 F diabetes
5 M AIDS
6 M AIDS

(b) 2-diversity table
Sex Disease
F gastritis
F heart disease
* cancer
* diabetes
* AIDS
* AIDS

(c) external knowledge
Name Sex
Amy F
Eva F

Grace F
Helen F
Jack M
Tom M

(d) (1M,1AIDS)
Sex Disease
F gastritis
F heart disease
F cancer
F AIDS
∗ diabetes
∗ AIDS

(e) (3M,2AIDS)
Sex Disease
F gastritis
F heart disease
* cancer
* AIDS
M diabetes
M AIDS

(f) (2M,0AIDS)
Sex Disease
F gastritis
F heart disease
F AIDS
F AIDS
M cancer
M diabetes

(g) (2M,1AIDS)
Sex Disease
F gastritis
F heart disease
F cancer
F AIDS
M diabetes
M AIDS

Table 2: An example of algorithm-based disclosure in MASK algorithm

(a) microdata
row # Age Sex Country Disease
1 46 F Mexico cancer
2 49 F Mexico heart disease
3 32 F Mexico heart disease
4 35 F Mexico AIDS
5 24 F Japan AIDS
6 38 F Japan AIDS
7 25 M Japan AIDS
8 (Tom) 37 M Japan AIDS

(b) k-anonymity table (k = 4)
Age Sex Country Disease

[32− 49] F Mexico cancer
[32− 49] F Mexico heart disease
[32− 49] F Mexico heart disease
[32− 49] F Mexico AIDS
[24− 38] * Japan AIDS
[24− 38] * Japan AIDS
[24− 38] * Japan AIDS
[24− 38] * Japan AIDS

(c) m-confidentiality (m = 2)
Age Sex Country Disease

[32− 49] F Mexico cancer
[32− 49] F Mexico heart disease
[32− 49] F Mexico heart disease
[32− 49] F Mexico AIDS
[24− 38] * Japan cancer
[24− 38] * Japan cancer
[24− 38] * Japan heart disease
[24− 38] * Japan AIDS

disclosure. We conduct experiments in Section 7, review the related
works in Section 8, and conclude in Section 9.

2. MOTIVATING EXAMPLES
This section describes two motivating examples of algorithm-

based disclosure. We consider two adversaries: “naive” Nash and
“smart” Sam throughout the paper. Both of them hold the same
external knowledge and observe the same published table. The only
difference is that “naive” Nash does not know the data publishing
algorithm, whereas “smart” Sam does. Both Nash and Sam want
to compromise whether their friend Tom, a 37-year-old male from
Japan, has AIDS or not.

For the ease of discussion, we follow the same SA settings as
[29, 34]: infectious disease {AIDS} is sensitive, while noninfec-
tious diseases {cancer, diabetes, gastritis, heart disease} are non-
sensitive.

2.1 Example 1: Disclosure of `-diversity Algo-
rithms Based on QI Generalization

Consider a generalization algorithm (e.g., [26]) that achieves `-
diversity. Table 1a depicts a microdata table with one QI attribute
Sex and one SA Disease. Table 1b is 2-diversity version of Table 1a,
such that the proportion of any sensitive SA value in one QI-group
is at most 1

`
= 1

2
.

First, let us review the case discussed in [34], where both “naive”
Nash and “smart” Sam know original QI (Table 1c) as external
knowledge. What Nash can do is to join Table 1c with the published
Table 1b to infer that Tom belongs to the “*”-group. Thus, from
Nash’s view, the probability of Tom having AIDS is 1

2
, which does

not violate 2-diversity. We now consider “smart” Sam who knows
that the generalization algorithm will not generalize any group un-
less it violates 2-diversity. Based on this, Sam can infer that no
generalization would have been conducted if the 2 males had 0 or
1 AIDS. Therefore, both males, including Tom, must have AIDS.
Hence, by leveraging the algorithm-based knowledge, “smart” Sam
acquires a different view from “naive” Nash, and Sam’s view vio-
lates 2-diversity. This is an example of algorithm-based disclosure.

Now, we show the limitation of [34] by demonstrating that algorithm-
based disclosure may occur without involving any external knowl-

edge. Note that when “naive” Nash holds no external knowledge,
his view of Tom’s SA is the same as what the published table dis-
closes, which does not violate 2-diversity.

Consider the view of “smart” Sam. He can reason as follows: 1)
the number of males in the table should be less than 4 but greater
than 0, because otherwise no generalization would be needed; 2) if
there were only 1 male, Table 1b would not be published because
the algorithm would prefer an alternative FFFF** (i.e., Table 1d) to
attain better data utility; 3) if there were 3 males, Table 1b would
again not be published because of another alternative FF**MM
(i.e., Table 1e) with better utility. Apparently, there is only one
option left, that is, 2 males in the table. If none or only one of them
had AIDS, no generalization would be needed (i.e., Table 1f and
1g). Thus, both males, including Tom, must have AIDS. Thereby,
the knowledge of algorithm renders “smart” Sam’s view in viola-
tion of 2-diversity. As we can see, algorithm-based disclosure can
exist without external knowledge.

2.2 Example 2: Disclosure of MASK Algorithm
Based on SA Perturbation

MASK [34] is intended for eliminating algorithm-based disclo-
sure by achieving m-confidentiality. m-confidentiality is essen-
tially the same as `-diversity (let ` = m), except thatm-confidentiality
tries to protect privacy when an adversary has the original QI as ex-
ternal knowledge.

Consider a microdata table in Table 2a. Tables 2b and 2c depict
an example of using MASK to achieve 2-confidentiality. MASK
first applies k-anonymization (k ≥ m) to the microdata table (e.g.,
4-anonymity in Table 2b). Then, for each group violating `-diversity
(e.g., the “Japan” group), MASK randomly perturbs the sensitive
SA values (e.g., AIDS) to non-sensitive values (e.g., cancer, heart
disease), until the proportion of sensitive SA values is decreased to
p, where p is the proportion of sensitive SA values from a randomly
selected `-diversity group (e.g., p = 1

4
in the “Mexico” group).

We now show the existence of algorithm-based disclosure in Ta-
ble 2c when an adversary knows a negative association rule from
common-sense, say, “Japanese have an extremely low incidence of
heart disease [26,34]”. Consider the view of “naive” Nash. He can
conclude from Table 2c that Tom is in the “Japan” group, and heart
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disease must be a perturbed value because the heart disease rate in
that group (i.e., 25%) conflicts with the negative association rule.
But without knowing the MASK algorithm, “naive” Nash can only
randomly guess the original value of heart disease to be AIDS or
cancer. Thus, the probability of Tom having AIDS in his view is:
50%× 1

2
+ 50%× 1

4
= 3

8
. This does not violate 2-confidentiality.

Now consider the view of “smart” Sam, who is clear that MASK
would not perturb any SA values in the “Japan” group unless the
group violates 2-confidentiality after k-anonymization (i.e., Table 2b).
Thus, Sam concludes that the “Japan” group should have at least
3 AIDS (out of 4 tuples). As such, in “smart” Sam’s view, the
probability of Tom having AIDS is at least 3

4
, which violates 2-

confidentiality. Again, knowing the algorithm empowers “smart”
Sam to gain a different view from “naive” Nash, where Sam’s view
violates m-confidentiality.

Consider another algorithm-based disclosure situation in MASK
if an adversary has access to some original SA distribution. This
is common in reality because data publishers may report statistics
for public use. For example, in order to ease the fear of increasing
cancer incidence in the community, a local hospital may announce
that “only 1 out of 8 hospitalized patients has cancer”.

Now consider what “naive” Nash can compromise from the pub-
lished Table 2c. He can confirm that MASK should have perturbed
2 SA values to cancer. However, he cannot further tell which 2 out
of the 3 cancer are the perturbed values, and whether AIDS or heart
disease is the original value. As such, the probability of Tom hav-
ing AIDS in the view of “naive” Nash is 33.3%× 3

8
+33.3%× 3

8
+

33.3%× 1
2

= 5
12

. Likewise, this does not violate 2-confidentiality.
Whereas, “smart” Sam, who knows the MASK algorithm, can

infer that the extra 2 cancer must be from the “Japan” group, and
AIDS is their original value. The reason is: otherwise, MASK
would not conduct any perturbation because both groups in the ta-
ble after k-anonymization are already 2-confidentiality. Thereby,
there exists algorithm-based disclosure because the probability of
Tom having AIDS in Sam’s view is at least 3

4
, which violates 2-

confidentiality.
As we can see, MASK is still subject to algorithm-based disclo-

sure. And algorithm-based disclosure can exist along with various
types of external knowledge, or even without external knowledge.
We re-emphasize that this paper is aiming to limit the algorithm-
based disclosure (i.e., the view of “smart” Sam), that is, the private
information beyond what can be gained by external knowledge.

3. FORMAL FRAMEWORK

3.1 Privacy-Preserving Data Publishing
Consider T= {t1, . . . , tn}, a microdata table of n tuples. Each

ti consists of d QI attributes (Q1, Q2, . . . , Qd), denoted by Q and
one SA attribute, denoted by S. For example, Table 2a is a table
of n = 8 tuples. Each tuple has d = 3 QI attributes (i.e., Age,
Sex, Country) and 1 SA (i.e., Disease). Let ti [Q] = (ti [Q1] ,
ti [Q2] , . . . , ti [Qd]) be a conjunction value of QI attributes in tu-
ple ti; let ti [S] be the attribute value of SA; let DQ = DQ1 ×
DQ2 × . . .×DQd andDS be the finite domain ofQ and S, respec-
tively. For q ∈ DQ and s ∈ DS , we say that (q, s) ∈ T iff there
exists i ∈ [1, n] such that ti [Q] = q and ti [S] = s.

Before the data release, a data publisher normally uses a data
publishing algorithm A to perturb the microdata T. Let T∗ be the
published table of T; let Q∗ be the perturbed QI attributes in T∗;
let DQ∗ be the domain of Q∗. We require DS to be the domain of
SA attribute in either T or T∗.

The objective of privacy-preserving data publishing is to prevent
an adversary from learning the individual SA in the published table

Table 3: Q∗ and S∗ of TABLE 1b

(a) Q∗

Sex
F
∗

(b) S∗

AIDS cancer diabetes gastritis heart disease
0 0 0 1/2 1/2

1/2 1/4 1/4 0 0

Table 4: Q∗ and S∗ of TABLE 2c

(a) Q∗

Age Sex Country
[32− 49] F Mexico
[24− 38] ∗ Japan

(b) S∗

AIDS cancer heart disease
1/4 1/4 1/2
1/4 1/2 1/4

based on knowledge of QI. Thus, the correlation between QI and
SA attributes in the published T∗ is the private information to be
protected. We represent such private information by QI-SA corre-
lation S∗(·), which is a function that maps the QI attributes of an
individual tuple, q ∈ DQ, to the posterior distribution of the SA for
that tuple. Table 3 and Table 4 are examples of Q∗ and S∗(·) for
Table 1b and Table 2c, respectively.

Formally, for each (q, s) ∈ T , S∗(q) is a |DS |-dimensional vec-
tor (S∗(q) [s1],S∗(q)[s2], · · · ,S∗(q)[s|DS |]) where S∗(q)[sj ] =
Pr{s = sj |q,T∗}.

We are now ready to state the `-diversity privacy model [26] in
terms of S∗(·). In particular, we adopt a simple variation of `-
diversity [9, 34, 36] which requires that no individual SA value can
be compromised with probability over 1

`
:

DEFINITION 1. (`-diversity [26]) A published table T∗ fulfills
`-diversity iff ∀ti = (q, s) ∈ T and ∀sj ∈ DS ,

max
j∈[1,|DS |]

S∗(q)[sj ] ≤
1

`
.

3.2 Expression of External Knowledge
As shown in Section 2, algorithm-based disclosure does not man-

date the adversary’s possession of external knowledge. Nonethe-
less, it is also clear from earlier discussion that certain type of ex-
ternal knowledge may facilitate algorithm-based disclosure. Thus,
we now formulate an expression of external knowledge.

The only purpose of formalizing external knowledge is for the
ease of understanding our ASP model to be discussed later. There-
fore, we take a simple expression by conjunctive COUNT query.
Given the microdata T, consider a COUNT query CQ(T) in the
form:

SELECT COUNT(*) FROM T
WHERE (Q1 = q1) ∧ . . . ∧ (Qd = qd) ∧ (S = s)

Note that search condition (i.e., WHERE clause) does not need
to include every Qj(j ∈ [1, d]) or S in T. We describe external
knowledge Ke as arithmetic equations (or inequalities) between a
pair of COUNT query answers, or between one COUNT query an-
swer and one constant.

Consider Table 2a as the microdata. An example of external
knowledge about Tom, who is a 37-year-old male from Japan, is
“Tom does not have cancer”. We can express such Ke as CQ(T) =
0 where CQ(T) = SELECT COUNT(*) FROM T WHERE Age =
37 ∧ Sex = M ∧ Country = Japan ∧Disease = cancer.

Another simple example of Ke is “Japanese have an extremely
low incidence of heart disease”, which can be described by CQ(T)/|T|
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< 0.052 where CQ(T) = SELECT COUNT(*) FROM T WHERE
Country = Japan ∧Disease = heart disease.

4. ALGORITHM-SAFE DATA PUBLISHING
This section formalizes algorithm-based disclosure by introduc-

ing a new model called Algorithm-Safe data Publishing (ASP). A
data publishing algorithm is vulnerable to algorithm-based disclo-
sure when it violates ASP. We will first define two key concepts
relating to ASP: a naive random world which models the view with-
out knowledge of the algorithm, and a smart random world which
models the view with such knowledge of the algorithm. Then,
we will define ASP based on the equivalence between these two
worlds.

4.1 Naive vs. Smart Random World
Recall that DQ and DS are the domains of QI and SA, respec-

tively. Let Ω be a finite set of all possible values in the microdata
that can be calculated from DQ × DS . When an adversary with
external knowledge Ke observes a published table T∗, his/her view
on the microdata table T can be modeled as a (posterior) probabil-
ity distribution over Ω, that is, a mapping from any T

′
⊆ Ω to a

real value Pr(T = T
′
|T∗,Ke) ∈ [0, 1], such that

∑
T
′⊆Ω Pr(T =

T
′
|T∗,Ke) = 1.
Return to consider the different views from “naive” Nash and

“smart” Sam, as illustrated in Section 2. Given a published table
T∗, for each T

′
⊆ Ω, Nash can check whether T∗ can possibly

be perturbed from T ′ by certain data publishing algorithm A, that
is, to check whether T

′
is “consistent” with the published T∗ and

satisfies the integrity conditions imposed by his external knowledge
Ke. LetDQ

′ be the domain of QI attributes in T
′
. We say that T

′
is

“consistent” with T∗ iffDQ
′ ⊆ DQ∗ . We denote such “consistent”

relationship by a partial order T
′
≺ T∗.

Without learning the data publishing algorithm A, “naive” Nash
cannot distinguish any T

′
⊆ Ω. According to the standard random

world assumption [26,27], Nash has to assign the same probability
to all tables that pass the above consistency check. Thus, we define
the view of Nash as a naive random worldNW(·) as follows:

DEFINITION 2. (naive random world) A naive random world
NW(·) is a probability distribution, ∀T

′
⊆ Ω,

NW(T
′
) =

{
1/c, if T

′
≺ T∗ and T

′
satisfies Ke.

0, otherwise

where c = |{T
′
|T
′
≺ T∗ ∧ T

′
satisfies Ke}|.

Consider the previous example of Table 1 in a simple way: AIDS
is the sensitive SA value (shadow color), other SA values (blank
color) are indistinguishable. Suppose adversaries have external
knowledge Ke in forms of “Amy and Grace are unlikely to have
AIDS” and “at least 1 male has AIDS”. Table 5a shows an example
of the naive random world NW(·). In the view of “naive” Nash,
there are totally 6 T

′
as a result of linking AIDS to the original QI

attributes, such that Ke is satisfied. Nash can not distinguish any T
′

because NW(T
′
) = 1

6
holds true for every single T

′
in the naive

random world. As we see, the probability distribution on these 6

T
′

constitutes the naive random world.
Next, consider the view of “smart” Sam who is clear about the

details of the data publishing algorithm A. Thus, other than consis-
tency check, Sam can further distinguish T

′
⊆ Ω by running the

2The value of 0.05 can be adjusted according to actual needs for
reflecting the effect of “extremely low incidence”.

Table 5: An example of naive & smart random world

(a) naive random world
Name QI
Amy F
Eva F
Grace F
Helen F
Jack M
Tom M

SA

A

A

SA

A

A

SA

A
A

SA

A

A

SA

A
A

(b) smart random world
Name QI SA
Amy F
Eva F
Grace F
Helen F
Jack M A
Tom M A

algorithm A on each T
′

to check whether A can perturb the table
T
′

to T∗. Now we define the view of Sam as a smart random world
SW(·) as follows:

DEFINITION 3. (smart random world) A smart random world
SW(·) is a probability distribution, ∀T

′
⊆ Ω,

SW(T
′
) =

{
Pr{T = T

′
| A}, if T

′
≺ T∗ and T

′
satisfies Ke.

0, otherwise

For the ease of illustration, we assume “smart” Sam to have a
uniform prior in the above example. However, such assumption
would by no means restrict the generality of our definition, which
allows other distributions as well. What “smart” Sam can do is to
run the 2-diversity algorithm in iterations, by accepting each T

′
in

5a as input. Table 5b shows the only legitimate T
′

that can be gen-
eralized to T∗, because the other 5 T

′
already achieve 2-diversity

and it is unnecessary to further generalize them. Therefore, “smart”
Sam can conclude that SW(T

′
) = 1 holds for that legitimate T

′
,

whereas SW(T
′
) = 0 for others. Note that such probability dis-

tribution constitutes the smart random world.

4.2 Definition of ASP
Now we can see that due to the existence of algorithm-based

disclosure, even if given the same external knowledge Ke and pub-
lished table T∗, the amount of disclosure in naive random world
NW(·) and smart random world SW(·) can still be unequal. Hence,
we say that there is no algorithm-based disclosure iff the two worlds
are always equivalent conditioning on the same external knowledge
and published table. Without loss of generality, we now define ASP.

DEFINITION 4. (algorithm-safe data publishing) A published
table T∗ fulfills algorithm-safe data publishing iff ∀ti = (q, s) ∈ T
and ∀sj ∈ DS , there is:

Pr{ti[S] = sj |ti[Q] = q,NW} = Pr{ti[S] = sj |ti[Q] = q,SW}

5. CHECKING ALGORITHM-BASED DIS-
CLOSURE

This section presents two necessary conditions and one sufficient
condition of ASP, which in combination serve as an exploratory
tool to evaluate the vulnerability of a data publishing algorithm to
algorithm-based disclosure. Meanwhile, we use the tool to identify
the vulnerabilities of many data publishing algorithms.

5.1 Necessary Condition 1: Q∗-Independence
Recall from the definition of ASP that an algorithm satisfies ASP

only if the naive and smart random worlds are equivalent given the
same external knowledge. If there exists external knowledge that
breaks such equivalence, then the algorithm becomes vulnerable
to algorithm-based disclosure. Our first necessary condition, Q∗-
Independence, targets specific external knowledge of original QI,
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and requires no QI-SA correlation beyond S∗ to be used in the per-
turbation (e.g., generalization) of QI. Otherwise, algorithm-based
disclosure may occur.

THEOREM 5.1. (Q∗-Independence) If a published table T∗ sat-
isfies ASP, then the published QI attributes Q∗ must be condition-
ally independent with the original SA, given a combination of the
original QI attributes Q and the published QI-SA correlation S∗.
In other words, generating Q∗ from Q is conditional independent
of the original SA given the published S∗.

Due to the page limitation, we omit formal proof of all theorems
in the rest of our paper. An intuitive explanation can be stated as
follows. Due to the definition of mutual information [5], if the map-
ping from Q to Q∗ uses certain QI-SA correlation information that
is not ultimately published, then such unpublished QI-SA correla-
tion information can also be derived based on the mapping from Q
to Q∗, which can be readily observed by an adversary through the
external knowledge of Q. Hence, Q∗-Independence requires the
perturbation of QI to be determined solely upon Q and S∗.

Examples of existing data publishing algorithms in violation of
Theorem 5.1 include most `-diversity algorithms (and its variant)
(e.g., [9, 10, 19, 20, 26, 35, 37, 42]) whose grouping strategy aims
to produce each group with “similar” QI. We explain the reason as
follows. To maximize the utility of published data, these algorithms
greedily group QI-similar tuples into the smallest possible groups
until a group violates the SA diversity requirement. This objective
by itself demands the usage of unpublished QI-SA correlation be-
cause, clinging to the published information, it may not always be
possible to determine whether pursuing a further grouping will vio-
late the privacy model. By Theorem 5.1, Q∗-Independence is thus
violated. Hence, all these algorithms are vulnerable to algorithm-
based disclosure.

5.2 Necessary Condition 2: S∗-Independence
Our second necessary condition, S∗-Independence, targets an-

other type of external knowledge, the negative association rules
(e.g. “Tom is unlikely to have cancer”). In analogy toQ∗-independence,
S∗-independence states no QI-SA correlation beyond S∗ should be
used in the perturbation (e.g., generalization) of SA.

Before presenting the theorem, let us first introduce a few no-
tations for formalizing S∗-Independence. Consider a tuple ti =
(q, s) ∈ T. Let t∗i = (q∗, s∗) ∈ T∗ be the released value of ti. Let
DS be the domain of S. We describe a negative association rule
about ti as a set of “impossible” SA values V− ⊆ DS , such that s∗

cannot take any value in V−. Let V+ = DS −V− be the difference
between DS and V−. Recall from Section 3 that S∗(q) returns a
probability distribution of all possible SA values from T∗ for ti, let
S∗(q)[V+] be S∗(q) projected on the domain of V+.

Continue with the example “Tom is unlikely to have cancer”.
Referring to Table 4, we have V− = {cancer} and S∗(q)[V+] =
{S∗(q)[AIDS],S∗(q)[heart disease]} = { 1

4
, 1

4
}.

THEOREM 5.2. (S∗-Independence) Given a combination of QI
attributes Q, “impossible” SA value set V− and S∗(q)[V+], if a
published table satisfies ASP, then for any tuple ti = (q, s) ∈ T,
S∗(q) must be conditionally independent of the original SA.

The proof is built on the following observation. Consider the
“impossible” SA value set V−. Due to the definition of mutual in-
formation, if whether an “impossible” SA value will be included in
S∗ depends on certain unpublished QI-SA correlation information,
then such unpublished information can also be derived by observ-
ing whether an impossible SA value occurs in S∗, i.e., whether
S∗(q)[V−] is empty. Note that S∗(q)[V−] can be learned by any

adversary with external knowledge of V−. Thus, S∗-Independence
requires the perturbation of SA to be determined solely upon Q,
V− and S∗[V+].

For example, MASK [34] is vulnerable to algorithm-based dis-
closure due to violation of Theorem 5.2. Recall that MASK first
checks whether a group violates `-diversity, and will only perturb
SA of groups that violate it. Again, this demands the usage of
unpublished QI-SA correlation during SA perturbation because it
may not always be possible to determine whether a group violates
`-diversity only based on published information. By Theorem 5.2,
S∗-Independence is violated.

5.3 Sufficient Condition: Simulatable Publish-
ing

DEFINITION 5. (Simulatable Publishing) A data publishing
algorithm is simulatable publishing iff it satisfies both of the fol-
lowing two conditions:

• Q∗ is solely determined by Q and S∗, and

• ∀ti ∈ T, i ∈ [1,m], its perturbed tuple t∗i ∈ T∗ satisfies
t∗i [S] = ti[S].

In the definition, the first condition states that no unpublished QI-
SA correlation should be used in generating Q∗, while the second
condition requires that the published SA values remain authentic.
With the two conditions, anyone who has access to the published
table and the original Q can simulate 3 the data publishing process
without consulting any additional (unpublished) QI-SA correlation.
Intuitively, this also guarantees that no unpublished QI-SA corre-
lation can be inferred from the published table. Formally, we have
the following theorem.

THEOREM 5.3. If a data publishing algorithm is simulatable
publishing, then all tables published by the algorithm fulfill ASP.

Anatomy [36] is a typical example of simulatable publishing. The
reasons are: 1) Anatomy uses only SA values to decide the group-
ing, and 2) it does not perturb SA at all. In other words, Anatomy
neither perturbs SA values nor uses any QI-SA correlation beyond
what will be eventually published. Therefore, this suffices to guar-
antee that Anatomy is immune from algorithm-based disclosure.

Although as shown in Theorem 5.3, simulatable publishing is
a sufficient condition for ASP, it is not a necessary one. To see
this, consider a simple publishing algorithm that changes SA to
empty. The published table always satisfies ASP because no QI-SA
correlation is disclosed. Nonetheless, it violates the second con-
dition of simulatable publishing because the published SA values
are changed (i.e., truncated) during the perturbation process (i.e.,
t∗i [S] 6= ti[S]).

6. OUR GENERIC TOOLS TO ELIMINATE
ALGORITHM-BASED DISCLOSURE

This section introduces two generic tools by following our simu-
latable publishing paradigm: 1) worst-case eligibility test to amend
the most common violation of ASP (i.e., QI-grouping strategy) in
existing algorithms in terms of Theorem 5.1, and 2) stratified pick-
up to improve utility. A study on the amendment regarding The-
orem 5.2 will be our future work. To demonstrate our two tools,
3Note that such a simulation is not a duplication of the data
publishing process. When the data publishing algorithm is non-
deterministic, one can simulate the randomized part by using the
same random number generator, but does not have to generate the
same random number.
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(a) original Mondrian
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(b) Mondrian with worst-case el-
igibility test
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p1

p2

p3    Group 1
p4    Group 2
p5
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p10    

p11    

p12

(d) Hilb with worst-
case eligibility test

Figure 1: A running example when ` = 2

we reuse the design of two popular `-diversity algorithms: Mon-
drian [17] and Hilb [9], and then adapt them into SP-Mondrian and
SP-Hilb which satisfy simulatable publishing.

For the ease of understanding, we use a simple dataset (in Fig-
ure 1a) to be our running example in this section. The simple
dataset is a table T of 12 tuples with two QI attributes x and y.
Figure 1a shows point representations of all the 12 tuples in an x-y
plane, where there are 5 different patterns to denote 5 different SA
value, respectively.

6.1 Worst-case Eligibility Test
The main idea of worst-case eligibility test is to enable a data

publishing algorithm to generate a partition only if a worst (i.e.,
most skewed) case of QI-SA correlation is able to achieve the pre-
defined privacy model such as `-diversity. The worst-case eligibil-
ity test guarantees that no information beyond unpublished QI-SA
correlation information will be used. To see how it works, we now
show how to integrate the tool of worst-case eligibility test into two
existing `-diversity algorithms: Mondrian and Hilb.

6.1.1 In the Case of Mondrian
We first elaborate the details of Mondrian `-diversity, and then

show how to adapt it by integrating worst-case eligibility test.
The original Mondrian `-diversity algorithm works in a recursive

fashion as follows. It starts with choosing the split attribute with
the largest range of values [17], or based on certain utility measure
[18]. Then Mondrian repetitively partitions G (initially to be T)
into two groups G1 and G2, where G1 and G2 include the points
of G divided by the median coordinate on the split attribute. Let
| · | be the number of points in the set and smax(·) be the number of
most frequent SA value in the set. If either |G1| < `× smax(G1)
or |G2| < `× smax(G2) holds, such partitioning has to fall back.

Refer to our example in Figure 1a. Mondrian `-diversity first
chooses the split attribute x and partitions the 12 tuples by the me-
dian coordinate (x = 4) into two groupsG1 = {p1, p2, p3, p4, p5, p8}
and G2 = {p6, p7, p9, p10, p11, p12} because |G1| = 6 ≥ ` ×
smax(G1) = 2 × 3 = 6 and |G2| = 6 ≥ ` × smax(G2) =
2 × 3 = 6. For the same reason, G1 is further partitioned into
Group1 and Group3 as shown in Figure 1a. Nevertheless, no
matter which median coordinate in G2 is chosen (i.e., y = 3 or
x = 8), any further partitioning in G2 has to fall back because
given y = 3 as the median coordinate, for example, both gener-
ated group g1 = {p6, p7, p9} and g2 = {p10, p11, p12} result in
|g1| = 3 < `× smax(g1) = 4 and |g2| = 3 < `× smax(g2) = 4.
Likewise, fall-back would happen when the other median coordi-
nate x = 8 is chosen.

The problem of Mondrian `-diversity, however, is that it uses un-

published QI-SA correlation information to determine a partition-
ing to fall back. As illustrated in previous example, smax(g1) = 2
and smax(g2) = 2 are the QI-SA correlations which Mondrian
uses to decide a fall-back of the partitioning from G2 into g1 and
g2. As we see in Figure 1a, G2 is published as Group2 without
partitioning. Nevertheless, such information smax(g1) = 2 and
smax(g2) = 2 cannot be inferred out from the published Group2.
Therefore, Mondrian `-diversity violates the first condition of sim-
ulatable publishing (i.e., Definition 5), though it satisfies the second
condition because no SA would be perturbed in the process.

To fix the problem, we adapt Mondrian by integrating worst-case
eligibility test, that is, to reject a partitioning from G into G1 and
G2 only if either |G1| < ` × smax(G) or |G2| < ` × smax(G)
holds. Such strategy assures that each group G1 (and G2) is gen-
erated in such a “stringent” way that G1 (and G2) always achieves
`-diversity even in the worst case, i.e., when all smax(G) tuples
with the most frequent SA value are partitioned into G1 (and G2).
The reason is, for each G1, we have:

smax(G1)

|G1|
≤ smax(G)

|G1|
≤ smax(G)

` · smax(G)
=

1

`
. (1)

For the same reason, smax(G2)
|G2|

≤ 1
`

holds as well.
To illustrate it, let us consider Figure 1b. After the first par-

titioning, both groups G1 = {p1, p2, p3, p4, p5, p8} and G2 =
{p6, p7, p9, p10, p11, p12} use the worst-case eligibility test, namely
` × smax(G1) = 6 and ` × smax(G2) = 6, to decide to re-
ject any further partitioning. Thus, G1 and G2 are published as
Group1 and Group2 in Figure 1b. Unlike the original Mondrian,
the required QI-SA correlations in the worst-case eligibility test can
be inferred out from the groups subsequently (no matter whether
the partitioning is rejected or not). For example, we can deduce
the above-mentioned QI-SA correlations smax(G1) and smax(G2)
from counting the SA values in the generatedGroup1 andGroup2.
As we can see, the first condition of simulatable publishing is sat-
isfied. The second condition of simulatable publishing is automat-
ically satisfied because the Mondrian `-diversity algorithm orig-
inally do not perturb SA. Hence, both conditions of simulatable
publishing are satisfied.

6.1.2 In the Case of Hilb
We next discuss how to adapt the state-of-the-art `-diversity al-

gorithm Hilb to be simulatable publishing. The original Hilb `-
diversity works as follows. First, it transforms by Hilbert-curve the
multi-dimensional QI space of a microdata table T to a 1-D space
QT , sorts all tuples in T based on their QT values in ascending or-
der, and bucketizes all the ordered tuples based on their SA values.
Figure 1c shows a simple example of Hilb `-diversity. All the 12
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tuples are bucketized into 5 buckets (because there are 5 different
SA values) and ordered ascendingly from p1 to p12 based on their
QT values (suppose p1 → p12 is the ascending order).

Second, Hilb repetitively generates a group G1 by picking up
|G1| (initially to be `) tuples from distinct |G1| buckets with lowest
QT in G (initially to be T), and suspends such partitioning when
|G| − |G1| < ` × smax(G\G1) holds. The previous partitioning
resumes via incrementing |G1| by one each time until |G1| > m
where m is the number of buckets. If |G1| > m holds, Hilb starts
the fall-back procedure by restoring |G1| to `, turns to pick up |G1|
tuples from distinct |G1| buckets with the largest number of tuples,
and produces the groupG1 if |G|−|G1| ≥ `×smax(G\G1) holds.
If this condition does not hold, the fall-back procedure continues
via incrementing |G1| by one each time until a groupG1 satisfying
the condition is able to be generated.

Refer to Figure 1c. Hilb starts with picking up G1 = {p1, p3}
from 2 distinct buckets with lowest QT in G = T and generates
Group1 fromG1 because |G|−|G1| = 10 ≥ `×smax(G\G1) =
2 × 3 = 6 holds. In the same fashion, Hilb produces Group2
and Group3. After that, fall-back has to happen in partitioning
G = {p7, p8, p9, p10, p11, p12} because there exists no partition
G1 of |G1| (< m = 5) tuples with lowest QT such that |G| −
|G1| ≥ ` × smax(G\G1) holds. For example, consider G1 =
{p7, p8, p9}where |G|−|G1| = 3 < `×smax(G\G1) = 2×2 =
4 holds. Thus, the fall-back procedure restores |G1| = 2, picks
up {p7, p9} from |G1| distinct buckets with the largest number of
tuples in G, and terminates with generating G1 = {p7, p9} to be
Group4. Afterwards, Group5 and Group6 are published in the
same fashion as Group1, Group2 and Group3.

Similarly to the problem in the case of Mondrian, Hilb `-diversity
uses unpublished QI-SA correlation information to determine a par-
titioning to fall back, which violates the first condition of sim-
ulatable publishing. Return to the previous example to partition
G = {p7, p8, p9, p10, p11, p12}. Fall-back procedure has to happen
because the algorithm fails to generate a group G1 with lowest QT

given any |G1| < m = 5. Among them all, consider the case of
|G1| = 3 for example. As illustrated previously, smax(G\G1) =
2 is the only QI-SA correlation used to fail the attempt of generat-
ing G1 = {p7, p8, p9}. However, this piece of information cannot
be calculated from the ultimate published groups in Figure 1c.

Likewise, we fix the problem by integrating the worst-case eligi-
bility test into the original Hilb `-diversity algorithm. Specifically,
the worst-case eligibility test demands to reject a partition G1 out
of G only if |G| − |G1| < `× smax(G).

Consider Figure 1d for illustration, where Group1, Group2
and Group3 are generated in the same fashion as Hilb `-diversity
does in Figure 1c. However, the worst-case eligibility test requires
not to further partition G = {p7, p8, p9, p10, p11, p12}, but in-
stead publishes the entire G as Group4. The reason is that when
|G1| = ` = 2, the worst-case eligibility test in our adapted al-
gorithm rejects the partitioning because: 1) (|G| − |G1|) = 4 <
` × smax(G) = 2 × 3 = 6 holds, and 2) there is no other |G1|
such that (|G| − |G1|) ≥ `× smax(G) holds. Herein, the only QI-
SA correlation used by the worst-case eligibility test is smax(G),
which can be obtained by counting the SA values in the generated
Group4. Thereby, the first condition of simulatable publishing can
be satisfied. Similarly to the case of Mondrian, the original Hilb `-
diversity algorithm does not perturb SA, such that the second con-
dition of simulatable publishing is satisfied as well. Therefore, both
conditions of simulatable publishing are satisfied.

6.2 Stratified Pick-up
Our first tool of worst-case eligibility test alone suffices to guar-

antee simulatable publishing. Nonetheless, a drawback of it is that

this may incur large sized groups and thus reduce the utility of pub-
lished data. To work around it, we introduce our second tool: strat-
ified pick-up for improving utility.

Stratified pick-up takes as input the anonymous groups from any
simulatable publishing algorithm and tires to further partition each
of these groups iteratively based solely on the distinctness of SA
values. The design of this phase is principled on two objectives:
1) the algorithm should still satisfy simulatable publishing; and 2)
each output group size should be minimized.

In particular, a simple solution to achieve these two objectives
is to apply Anatomy [36] on each generated group from the algo-
rithm with the worst-case eligibility test. Note that as discussed in
Section 5.3, Anatomy does not perturb SA values and not use any
QI-SA correlation beyond what will be eventually published. Thus,
this solution satisfies simulatable publishing. Recall our example
of Figure 1b. Stratified pick-up can be applied on the generated
Group1 and Group2, respectively. A possible output after strat-
ified pick-up on Group1 is {{p2, p3}, {p1, p4}, {p5, p8}}, which
has obviously higher utility than the publication of Group1. Like-
wise, stratified pick-up can be applied on groups such as Group4
in Figure 1d to improve the utility. Formally, we have the following
theorem on the output group size after stratified pick-up.

THEOREM 6.1. Each output group of stratified pick-up contains
`
′

tuples (`
′
∈ [`, 2`)), each of which has a distinct SA value. If the

algorithm which generates the input to stratified pick-up is simu-
latable publishing, then the algorithm with stratified pick-up is still
simulatable publishing.

Algorithm 1 Stratified Pick-up

1: DoneSet← ∅.
2: InputSet ← anonymous groups from simulatable publishing

algorithm.
3: repeat
4: G← InputSet[i] . i-th element in InputSet.
5: if ` ≤ |G|

2
then

6: {g1, . . . , gp} ← ANATOMY(G, `)
7: DoneSet← DoneSet ∪ {g1, . . . , gp}.
8: else
9: DoneSet← DoneSet ∪G.

10: end if
11: InputSet← InputSet\G.
12: until InputSet = ∅.
13: return DoneSet.

Details of stratified pick-up are shown in Algorithm 1. We test
the condition ` ≤ |G|

2
in Line 5 because if a `-diversity groupG has

size less than 2`,Gmust have |G| distinct SA values and cannot be
further partitioned. Such minimized group G can be directly added
to the output (Line 9).

The efficiency of stratified pick-up depends on Anatomy. Fol-
lowing the results from [36], the time complexity of stratified pick-
up is O(n) and the I/O cost is O(λ), where n is the total number
of tuples and λ is count of distinct SA values.

6.3 SP-Mondrian and SP-Hilb Algorithms
We are now ready to present two adapted simulatable publishing

algorithms: SP-Mondrian and SP-Hilb, by integrating worst-case
eligibility test and stratified pick-up into the original Mondrian and
Hilb, respectively. Meanwhile, we will present their corresponding
versions in the bucketization publishing scheme.

Algorithm 2 details the steps of SP-Mondrian `-diversity algo-
rithm. Line 4 implements the worst-case eligibility test. In Line 5,
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MONDRIAN(G, k) denotes a function that invokes Mondrian k-
anonymity algorithm [17] on the dataset G. Moreover, we design a
version called SPBuck-Mondrian using the bucketization publish-
ing scheme. All the steps are actually the same as SP-Mondrian
except that in Line 6-Line 7, SPBuck-Mondrian keeps the original
QI values of tuples in the generated G1 and G2. Line 15 invokes
the procedure of stratified pick-up as shown in Algorithm 1.

Algorithm 2 SP-Mondrian and SPBuck-Mondrian

1: DoneSet← ∅. InputSet← {T}.
2: repeat
3: G← the largest group in InputSet.
4: if |G1| ≥ `× smax(G) && |G2| ≥ `× smax(G) then
5: {G1, G2} ← MONDRIAN(G, `× smax(G)).
6: if Type = SPBuck-Mondrian then
7: Replace generalized QI values in G1 and G2 with

their original values.
8: InputSet← {InputSet\G} ∪ {G1, G2}.
9: end if

10: else
11: InputSet← InputSet\G.
12: DoneSet← DoneSet ∪G.
13: end if
14: until InputSet = ∅.
15: DoneSet← STRATIFIED_PICK_UP(DoneSet, `).
16: return DoneSet.

THEOREM 6.2. SP-Mondrian and SPBuck-Mondrian are sim-
ulatable publishing `-diversity algorithms.

We now analyze the time complexity of Algorithm 2 as follows.
Let n = |T| be the number of tuples in the microdata table T. The
number of iterations from Line 2 to Line 14 is at most O(logn). It
is known from [17] that Line 5 takesO(nlogn) time. Furthermore,
Line 15 costs O(n) as discussed earlier. Hence, the overall time
complexity of Algorithm 2 is O(n(logn)2).

However, we have to mention that since the condition in the
worst-case eligibility test (Line 5) is more “stringent” than the orig-
inal Mondrian, SP-Mondrian (and SPBuck-Mondrian) usually ter-
minates earlier than the original version in terms of iterations (Line 2).
Therefore, SP-Mondrian(and SPBuck-Mondrian) runs much faster
than the original version in practice. We will demonstrate it later in
Section 7.2.4.

Algorithm 3 describes SP-Hilb in details. Line 1-Line 4 pro-
cesses the microdata T by Hilbert curve transformation, sorting and
bucketization as with the original Hilb `-diversity. Line 6-Line 19
describes the procedure of generating a group G1 from G. Line 7
and Line 20 implement the worst-case eligibility test and strati-
fied pick-up, respectively. Unlike the original Hilb, there are no at-
tempts of incrementing |G1| or fall-back procedure during generat-
ing a groupG1. The reason is that once |G|−|G1| < `×smax(G)
holds, there exists no other |G1| ∈ [`, |G|) such that |G| − |G1| ≥
`× smax(G) is able to hold.

Like SP-Buck Mondrian, we also provide a simulatable publish-
ing algorithm called SPBuck-Hilb in the bucketization publishing
scheme. Line 12-Line 13 shows the only difference, that is, in the
bucketization publishing scheme, the algorithm keeps the original
QI values of tuples in each generated group.

THEOREM 6.3. SP-Hilb and SPBuck-Hilb are simulatable pub-
lishing `-diversity algorithms.

The overall time complexity of Algorithm 3 isO(nlogn), where
n = |T|. The reasons are: 1) Following the analysis in [9], Line 1

Algorithm 3 SP-Hilb and SPBuck-Hilb

1: DoneSet← ∅. G← {T}.
2: Apply Hilbert curve to transform multi-dimensional QI space

of G into 1-D dimensional space QT . Sort all the tuples in G
in ascending order of QT .

3: Split sorted tuples in m buckets based on SA values.
4: frontier F ← set of first record in each bucket.
5: repeat
6: |G1| ← `.
7: if (|G| − |G1|) < `× smax(G) then
8: |G1| ← |G|.
9: end if

10: G1 ← set of |G1| tuples of F with lowest QT .
11: G← G\G1.
12: if Type = SPBuck-Hilb then
13: Keep the original QI values of tuples in G1.
14: else
15: Generalize the QI values of tuples in G1 to an identical

generalized value.
16: end if
17: Update F .
18: DoneSet← DoneSet ∪G1.
19: until G = ∅.
20: DoneSet← STRATIFIED_PICK_UP(DoneSet, `).
21: return DoneSet.

to Line 19 takes O(nlogn) time; and 2) Line 20 costs O(n) time
as discussed in Section 6.2.

7. EXPERIMENTS
In this section, we describe our experimental setup, compare the

data utility of our simulatable publishing algorithms with the exist-
ing `-diversity algorithms, and evaluate the impact of our two tools:
worst-case eligibility test and stratified pick-up.

7.1 Experimental Setup

7.1.1 Hardware
All experiments were conducted on a machine with Intel Core 2

Duo 2.6GHz CPU with 2GB RAM and Windows XP OS. All our
algorithms were implemented using C++.

7.1.2 Dataset
We conducted the experiments on the Census dataset from http:

//ipums.org with attribute Occupation as SA, which has been
extensively used as benchmarks in the literature. We followed the
procedure in [36] to sample 300, 000 tuples without replacement as
our testing bed. To test generalization techniques, we adopted the
generalization concept hierarchies used in [8] and [36].

7.1.3 Utility Measure
We adopted the same relative error measure proposed in [36].

Consider query workload of the form:
SELECT COUNT(*) FROM Dataset
WHERE pred(Q1), . . . , pred(Qqd), pred(S)

where qd is the query dimension and pred(Qi) (resp. pred(S))
denotes the predicate of Qi (resp. S) belonging to a range of ran-
domly generated values in its domain. The cardinality of the range
is determined by a parameter called selectivity. Let Act and Est be
the query result from the microdata table T and published table T∗,
respectively. The relative error is defined as |Act−Est|/Act. For
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Figure 3: SP-Mondrian & SP-Hilb, vary qi
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Figure 6: SPBuck-Mondrian & SPBuck-Hilb, vary `
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Figure 7: SPBuck-Mondrian & SPBuck-Hilb, vary qi
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Figure 8: SPBuck-Mondrian & SPBuck-Hilb, vary qd
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Figure 9: SPBuck-Mondrian & SPBuck-Hilb, vary s
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Figure 10: Utility impact testing of each tool individually
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each set of experiments, we ran a workload of 10000 queries, and
calculated the average relative error as the utility measure.

7.2 Evaluation of SP-Mondrian and SP-Hilb
We first evaluate our simulatable algorithms: SP-Mondrian and

SP-Hilb against the original Mondrian [18] and Hilb [9]. For the
fairness of comparison, we adapt SP-Mondrian and SP-Hilb into
bucketization scheme as discussed in Section 6.3, and compare
them with the existing simulatable publishing algorithm Anatomy
[36]. We then demonstrate the effect of our two generic tools:
worst-case eligibility test and stratified pick-up individually. Fi-
nally, we test the efficiency. Note that we did not compare with
MASK [34] because the authors’ implementation http://www.
cse.ust.hk/~raywong/code/cred.zip does not address
the case when all the SA values are sensitive.

7.2.1 Utility Comparison with Mondrian and Hilb
We fix the number of QI qi = 7, query dimension qd = 3,

selectivity s = 5%. Figure 2 illustrates the utility of SP-Mondrian
and SP-Hilb when varying ` value. It shows that both SP-Hilb and
SP-Mondrian are not only able to eliminate the algorithm-based
disclosure by worst-case eligibility testing, but also able to attain
via stratified pick-up comparable or even better utility against Hilb,
and Mondrian respectively.

We now set ` = 4, and vary qi from 3 to 7. Figure 3 shows
the impact of qi on the utility. As we see, SP-Hilb provides com-
parable utility with Hilb in all the cases. Whereas, when qi ≤ 5,
SP-Mondrian achieves less accuracy than Mondrian. Nonetheless,
the accuracy difference is decreasing when qi increases. This is
because Mondrian tends to generate larger groups when there are
more QI attributes. This makes the utility improvement by stratified
pick-up in SP-Mondrian more significant.

Figure 4 examines the utility of SP-Mondrian and SP-Hilb when
query dimension qd ranges from 2 to 5, and ` = 4, qi = 7,
sel = 5%. Figure 5 investigates the effect of selectivity sel on
the utility when ` = 4, qi = 7, qd = 3. One can see in both
two figures that SP-Mondrian and SP-Hilb maintain comparable or
significantly better utility (in the case of SP-Mondrian).

7.2.2 Utility Comparison with Anatomy
We now performed the evaluation on the bucketization publish-

ing scheme, where SPBuck-Mondrian and SPBuck-Hilb were com-
pared against Anatomy [36]. Recall that since Anatomy also satis-
fies simulatable publishing, the objective of adapting SP-Mondrian
and SP-Hilb into SPBuck-Mondrian and SPBuck-Hilb is to provide
better utility by taking into account QI-locality information. Using
the same parameter settings as the previous generalization case, we
conducted experiments as shown from Figures 6 to 9. As expected,
both SPBuck-Mondrian and SPBuck-Hilb significantly outperform
Anatomy in terms of utility.

7.2.3 Effects of Worst-case Eligibility Test and Strat-
ified Pick-up

We previously integrated both tools: worst-case eligibility test
and stratified pick-up. Now, we demonstrated the effect on utility
of each tool separately. We set qi = 7, qd = 3, sel = 5%, and
tested the cases when ` = 8 and ` = 10. The reason why we chose
higher ` values is only for the ease of illustration, because SP-Hilb
achieves almost the same query accuracy as Hilb when ` ≤ 7.

To show the effect of our first tool (i.e., worst-case eligibility
test), we tested in Figure 10 two simulatable publishing algorithms,
which were adapted from Mondrian and Hilb via integrating only
the first tool (i.e., without stratified pick-up). We compared them
against the original Mondrian and Hilb. As expected, both adapted

algorithms achieves less utility than Mondrian and Hilb, respec-
tively, which is the cost of eliminating algorithm-based disclosure.

To show the effect of our second tool (i.e., stratified pick-up),
we compared algorithms integrated with both tools (i.e., worst-case
eligibility test and stratified pick-up) against the previously devel-
oped algorithms with only the first tool. As we can see from Fig-
ure 10, stratified pick-up improves the utility, leading to compara-
ble or even better utility than Hilb and Mondrian, respectively.

7.2.4 Time Performance
Figure 11 depicts the running time of Mondrian, SP-Mondrian,

SPBuck-Mondrian, Hilb, SP-Hilb, SPBuck-Hilb and Anatomy when
we set ` to 4. As expected, SP-Mondrian costs the same time as
SPBuck-Mondrian and it is the same case between SP-Hilb and
SPBuck-Hilb. SP-Mondrian/SPBuck-Mondrian runs much faster
than the original Mondrian because, as we mentioned in Section 6,
worst-case eligibility test usually leads to earlier termination than
their original algorithms. Besides, recall Section 6 that the time
complexity of SP-Hilb/SPBuck-Hilb is lower than Mondrian and
SP-Mondrian/SPBuck-Mondrian, but higher than Anatomy. There-
fore, SP-Hilb/SPBuck-Hilb is running faster than Mondrian and
SP-Mondrian/SPBuck-Mondrian, but slower than Anatomy.

8. RELATED WORK
Since the introduction of k-anonymity [32] and `-diversity [26],

various privacy models have been proposed including (α, k)-anonymity
[35], personalized privacy [37], t-closeness [20], (k, e)-anonymity
[42], (ε,m)-anonymity [19], etc. To achieve these privacy models,
researchers studied numerous data publishing algorithms [1–3, 8–
12, 14, 16–18, 28, 30, 35, 36, 39, 42].

Orthogonal to the study mentioned above, there has been a large
body of works on addressing the threats from external knowledge
held by adversaries. [4, 6, 22, 27] considered the knowledge about
an individual or relationship between individuals. [33] studied the
presence of corruption. [21] studied the negative association rule.
[29,31] studied the privacy disclosure from learning whether a cer-
tain individual is present in the database or not.

Differential privacy proposed in [7] is able to eliminate algorithm-
based disclosure by providing a new privacy model and developing
a corresponding algorithm. [41] defined another new privacy model
called p-safety to address the problem. Orthogonal to their work,
the focus of our paper as mentioned in our introduction part is to de-
velop generic tools to adapt the existing data publishing algorithms,
such that these algorithms can be immune from algorithm-based
disclosure.

[34] also studied the problem of algorithm-based disclosure by
providing a new privacy model m-confidentiality and designing a
new algorithm MASK to achieve it. However, we have shown in
Section 2.2 that the MASK algorithm in [34] is still vulnerable to
algorithm-based disclosure.

9. CONCLUSION
This paper addressed the problem of algorithm-based disclosure

in privacy-preserving data publishing. We proposed a novel pri-
vacy model ASP to define the space of algorithm-based disclosure.
Two necessary conditions and one sufficient condition of ASP were
given as a tool to determine the vulnerabilities of existing algo-
rithms. To eliminate algorithm-based disclosure, we proposed two
generic tools for revising their design, and used them to generate
two `-diversity algorithms: SP-Mondrian and SP-Hilb by adapt-
ing the existing Mondrian and Hilb algorithms, respectively. We
conducted extensive experiments to demonstrate the efficiency and
utility of our algorithms.
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