
Anchoring Millions of Distinct Reads
on the Human Genome

within Seconds

Tien Huynh† Michail Vlachos? Isidore Rigoutsos†

† IBM T.J. Watson
Research Center

? IBM Zürich
Research Laboratory

ABSTRACT
With the advent of next-generation DNA sequencing machines, there
is an increasing need for the development of computational tools that
can anchor accurately and expediently the millions of generated short
DNA sequences (or reads) onto the genomes of target organisms. In
this work, we describe ‘Q-Pick’, a new and efficient method for solv-
ing this problem. Q-Pick allows the rapid identification and anchor-
ing of such reads with possible wildcards in large genomic databases,
while guaranteeing completeness of results and efficiency of opera-
tion. Q-Pick requires very spartan memory and computational re-
sources, and is trivially amenable to SIMD implementation; it can
also be easily extended to handle longer reads, e.g. 75-mers or longer.
Our experiments indicate that Q-Pick can anchor millions of distinct
short reads against both strands of a mammalian genome in seconds,
using a single-core computer processor.

1. INTRODUCTION
Next generation high-throughput DNA sequencing devices are caus-

ing a rapid transformation in the field of genome research by provid-
ing expedited and low-cost sequencing. While in the previous decade
the efforts of the bioinformatics community targeted primarily the se-
quencing of the genetic material of organisms, with such tasks now
completed, the focus has shifted to discovering commonalities and
connections between newly sequenced molecules with respect to ex-
isting ‘reference’ genomes. For example, the mapping of the frag-
ments from DNA sequences of cancerous cells on the human genome,
can help isolate previously unknown cancer-initiating mutations.

Several genetic research companies, such as Illumina, Life Tech-
nologies, 454 Life Sciences and others, already offer new generation
DNA sequencers. The sequencers when presented with a DNA (or
RNA) sample, can produce millions of short DNA fragments from
the given sample, also known as ‘reads’. The reads have short length,
typically in the range between 20-40 nucleotides (nts); more recently,
newer versions of the sequencing machines have begun generating
longer reads (75 nts, or longer). With projected eventual outputs in
the tens to hundreds of millions of reads from a given sample, the
challenge now is the design of efficient tools that can quickly dis-
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cover potential matches and anchor the reads on a reference genome.
The mapping of short sequence fragments on a genome has many

applications including:

• Identification of the DNA sequence of a novel strain (natural
or engineered), of a novel organism, or more importantly of a
disease genome and matched normals [14, 25, 24].

• Transcriptome analysis of protein-coding and non-protein cod-
ing regions; this is known as RNA-seq [31, 3] and has been
used extensively to determine which regions of a given organ-
ism’s genome give rise to transcripts.

• De novo assembly of an organism’s genome [6, 34].

• DNA methylation studies (following appropriate preprocessing
of the sample) [5, 21, 13]

Additional applications where short-word indexing and search can
be of great importance include design of siRNA’s (short interfering
RNA’s) [7, 28, 33], junk DNA analysis [26], microarray probe design
[9, 32, 19, 20, 29] and PCR primer design [8]. For a review of the
various methods and applications, the reader is referred to [30] and
references therein.

Traditional sequence mapping tools (such as BLAST or BLAT
[11]) are unsuitable for mapping a massive amount of short-reads;
since they were designed for matching longer sequences, and using
default settings, they will miss (potentially many) short matches. Ad-
ditionally, their running time is prohibitively long when presented
with the large set of query sequences considered in the application
at hand. Indicatively, a recent study [18] comparing various DNA
matching techniques reports that for an experiment comparing ap-
proximately 10 million query sequences against a 5Mb human genome
region, BLAST required more than 40 hours and BLAT approxi-
mately 6 hours, both matching 85% of the query sequences.

In comparison,newer approaches developed for aligning short-reads
required from 2 to 8 minutes for the same experiments, and matched
more than 90% of the given queries. Among the most prevalent
approaches for short sequence matching are Eland [4], SOAP [18],
fetchGWI [10], SHRiMP [27], Bowtie[12], Maq [15, 17], BWA [16]
(see also [1, 2] for discussions and comparisons between various
techniques). These approaches fall broadly into three categories: a)
Methods that apply variants of the Smith-Waterman algorithm and
hence are very slow for any practical purpose, due to the dynamic
programming portion, b) approaches which perform exact Hamming
matching through some index-based transformation, and c) hybrid
approaches that trade accuracy for speed.

Our experiments, which are reported at the end of this paper, in-
dicate that many of the short-word indexing approaches, may miss
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a number of potential matches in an effort to create a fast indexing
scheme.The approach that we present in this work alleviates various
shortcomings of previous efforts into a methodology that is bothfast
andcomplete. Our technique code-namedQ-Pick (which stands for
Quick-Pick), exhibits the following desirable characteristics:

1. it is external memory based and requires a minimal memory
footprint. In our experiments, many competitive approaches
surpassed the limits of the available memory for large data in-
stances; however this was never observed for our methodology.

2. it does not require a large computer cluster or multi-core CPU
to operate efficiently. Outstanding performance can be achieved
even on a single-core/single-processor computer. Additionally,
due to the program design its operations are easily amenable to
massive parallelization.

3. it permits the rapid identification of matches and anchoring of
corresponding reads, with millions of distinct short sequences
being matched in seconds or minutes. Notably, Q-Pick isflexi-
ble in that it supports both exact and wildcard matches.

4. it guarantees completeness of the reported results, i.e. no can-
didate matches are missed;all locations where a read can be
anchored, given the user specific settings, are reported. In the
experimental section we demonstrate the extend to which com-
peting approaches miss numerousbona fidehits, with some
techniques missing as many as50% of the matching genomic
locations.

In the upcoming sections we provide more technical details about
the inner-workings of our solution. Finally, in the experimental sec-
tion we include a thorough comparison ofQ-Pick against many of
the prevalent short-read mapping algorithms.

2. DESCRIPTION OF Q-PICK

2.1 Overview
Q-Pick is a new and highly optimized approach to performing

very efficient matching of massive collections of potentially distinct
sequence fragments (DNA or RNA) containing wildcards against very
large genomic sequence databases. Based on our experiments and
surveying the relevant bibliography, our method offers a uniquely
competitive solution for matching short as well as longer reads.Q-Pick
’s exceptional performance is achieved through the following techni-
cal contributions:

• Data compressionthrough bit packetization. By exploiting
the short DNA alphabet (4 letters), several sequence symbols
can be compacted into a single computer word. Exploitation
of 64-bit computer architectures can enhance even further the
data packetization ratio.

• Fast, bitwise comparisonbetween chunks of DNA sequences
is possible by exploiting effectively the bit packetization. Mul-
tiple DNA symbols can be compared simultaneously using fast
bitwise comparisons. The code is highly optimized to work
with bit data representations, lending to the use of high through-
put bitwise operators (left and right SHIFT, bitwise AND, OR,
etc.).

• Simplicity of implementation through efficient joins of hash
tables. Even though there exist advanced data structures, for
search and storage, offering promising asymptotic bounds, e.g.
suffix-trees, in practice the complexity of their implementation
typically penalizes their performance thus limiting their real-
world usefulness. Recently proposed suffix-trees approaches,

such as Trellis [23], still still require large amounts of indexing
space and cannot be used.Q-Pick is designed primarily with
easiness of implementation in mind, allowing our contribution
to be easily replicated.

• Data pruning is achieved through highly effective hashtable
joins. Instead of sequentially scanning the whole genomic database
for matches, the data are preprocessed and sequences sharing
the same hash key (sequence prefix) are stored into the same
hash bucket (clustered). A similar procedure is followed for
the query patterns. Therefore, the search is essentially accom-
plished as ahash jointhat concentrates only on sequences that
fall into hash buckets with the same key. This feature reduces
significantly the runtime, by eliminating unnecessary compar-
isons, guiding very efficiently the search process. Finally, it is
important to stress that the hashtable construction (an off-line
step for the reference genome) is generally easily amenable to
parallelization, if further performance improvement is deemed
necessary.

Our dual hashtable index structure is partially inspired by thespa-
tial hash join work which appeared in the database literature [22].
There, when joining two spatial datasets a spatial (R-tree) index is
created on one of the datasets and the second one is only probed on
the corresponding R-tree ‘hyper-rectangles’ that each point belongs
to. Similarly, in our case, a static index is created off-line on the ref-
erence ‘human’ genome sequence (e.g. human, mouse, etc.) onto
which the short sequence fragments will be anchored. A second in-
dex is created ‘on-the-fly’ given the aggregation of the short-reads.
Finally, the equivalent hash buckets from the two indices (static and
dynamic) are compared and the matching positions are reported. Ad-
ditional optimizations that exploit the nature of the application, such
as the short DNA alphabet, have been incorporated in our setting,
leading to an exceptional search performance.

Figure 1 summarizes the various steps followed byQ-Pick . The
left side illustrates the process for creating the static genome index
and the right side depicts the creation of the dynamic index based
on the different set of DNA fragments returned from the sequencing
process. In the following sections we will analyze in more detail
the creation of both indices, the binary encoding of sequences on the
index and the search process.

2.2 Data Representation and Bit Packetization
Our DNA search/matching process involves two sources of ge-

nomic sequences:

• A target, or reference, databasewhich contains the complete
genomic sequence (complete, or partially assembled contigs)
of the organism of interest, onto which we would like to per-
form search.

• A query databasewhich consists of a possibly very large col-
lection of short reads that are assumed for generality to be of
variable length and to contain wildcards at specific positions;
these sequences or reads would be typically generated by any
of the high-throughput sequencers (e.g. 454/Roche’s FLX sys-
tem, ABI’s Solid system, Illumina’s Genome Analyzer, etc.).
Those positions within the read where the quality of the se-
quencing, as estimated by the provider’s quality analysis soft-
ware, has fallen below a predetermined threshold are replaced
by a wildcard prior to the mapping/anchoring step. Our task
is to discover in a fast, exhaustive and efficient manner the in-
stances of the generated short sequences on the genomic target
database.

The “reference" or “target" database will generally consist of
multiple chromosomes, each being one long strand of DNA. Note that
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Figure 1. Overview of the Q-Pick approach

we are interested in anchoring the generated reads on both the for-
ward and reverse strands of each chromosome: instead of encoding
separately the two strands of each chromosome, we opt to reduce the
indexing-space requirements by appropriately processing the query
database (only single strand) and incorporating additional bookkeep-
ing (this is explained in detail below).

The “query" database itself is generated from the multiple se-
quences to be anchored. Next, and due to the different sequence ex-
traction and encoding schemes that have to be deployed in each case,
we provide separate descriptions on how to represent and encode se-
quences from these two databases,

2.2.1 Encoding the “target" database
We begin by describing the pre-processing, data representation and

encoding of the reference genome into a binary format. This will
allow its compact representation and also effectively determine the
mapping functions of the constructed hashtable index.

Let’s assume for the moment thatLread represents the length of a
read and that the maximum length of all reads to be matched and an-
chored on the genome isLmax. GivenLmax, all N-grams with this
size are extracted from the target database (e.g. human genome). This
can be achieved simply by positioning a sliding window of length
Lmax, extracting the appropriate subsequence, sliding the window
one position to the right and repeating this step. It is important to
stress that all possible subsequences of lengthLmax are extracted,
and thus one can guarantee that no potential matching subsequences
will be missed. The process is repeated in turn for each of the dif-
ferent chromosomes in the genome of interest (e.g. 24 in the case
of the human genome). Recall, that only the forward strand of each

chromosome is processed during this encoding stage.

...

...ACGTTTTTGGGAAATTAAAAA...

ACGTTTTTGG

CGTTTTTGGG

GTTTTTGGGA

Figure 2. N-gram extraction from the reference genome

Subsequently, each of the extracted N-gramsg is broken into two
logical parts: thehead and thetail with lengthsLh and Lt, re-
spectively. The head will serve as the indexing key into the formed
hashtable (i.e. it will "point" to the appropriate bucket) whereas the
tail corresponds to the remaining nucleotides of the N-gram, and rep-
resents the content that will be stored in the hashtable bucket pointed
to by the head. In our implementation, we useLh = 14 nucleotides
as the key; given that the DNA comprises four bases (A,C,G,T), the
hashtable can have a maximum of414 = 268, 435, 456 buckets. An
additional binary table, called “Marker Table", with414 positions will
also be employed, indicating the empty and non-empty bins of the
hashtable. This table will be used later on when performing search of
the hashtable.

Each nucleotideg(i) of the head will be mapped into two binary
digits using a functionφ as follows:
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φ(g(i)) =




00 if g(i) = A

01 if g(i) = C

10 if g(i) = G

11 if g(i) = T

Therefore, for an extracted N-gramg, if
⋃

is a string concatenation
function, then the mapping functionf to the appropriate hashtable
position is defined as:

f(g) = φ(g(1))
⋃
φ(g(2))

⋃
. . .

⋃
φ(g(Lk))

For example, as shown in Figure 3 for the pattern:

ACGTACGTACGTACGTACGACACGTAC

its head would be:

ACGTACGTACGTAC

and will be encoded as 0x01b1b1b1 in hexadecimal, which corre-
sponds to bucket number28, 422, 577 in the hashtable and indicates
that the tail of the extracted N-gram, i.e.GTACGACACGTAC, will be
stored in that bucket of the hashtable. Clearly,Lt satisfies the follow-
ing condition:Lh + Lt ≤ Lmax.

A 00

C 01

G 10

T 11

sequence: ACGTACGTACGTACGTACGACACGTAC

key: ACGTACGTACGTAC

binary:  0001101100011011000110110001

hex:  1B1B1B1

decimal:  28,422,577

head tail

position

28,422,577 tail

Figure 3. Encoding and binarization of the head of the ex-
tracted N-grams (hashtable key)

We point out that the distinction between head and tail of the N-
gram serves a dual purpose:

1. It serves as a way of extracting a key for the hashtable, and

2. It results in a reduction of the dataset size, since the head does
not need to be explicitly stored. Therefore, for all sequences
that share the same head, only their corresponding tail portions
need to be recorded in the corresponding bucket that is pointed
to by the head portion of the N-gram.

For the tail, which is the portion that will actually be stored in each
bucket, we employ a different encoding scheme in order to make it
amenable to fast bitwise operations. Now, we replace each symbol of
the tail by a 4-bit vector: the i-th bit (i=1,2,3,4) will be 1 if the symbol
at hand corresponds to the i-th letter of the 4-letter alphabet, and 0
otherwise. We note also that if the tail of the extracted N-gram does
not fill the fixed maximum tail length (i.e. ifLt < Lmax − Lh) then
the remaining positions are padded with wildcards, which will allow
them to be matched with any nucleotide. For the scope of this paper,

wildcards are denoted withdots; wildcards need their own binary
representationdots. All these considerations, result in the following
bit-vector encoding functionψ of the tail nucleotides:

ψ(g(i)) =




0001 if g(i) = A

0010 if g(i) = C

0100 if g(i) = G

1000 if g(i) = T

0000 if g(i) = . (wildcard)

In our experiments we assumed a maximum lengthLmax = 30 the
query reads, and thus for the N-grams that are extracted from the
target database. Consequently, the length of the tailLt = Lmax −
Lh = 30−14 = 16 nucleotides which can be easily packed into a 64-
bit long integer. Therefore, later when comparing query sequences
with the already indexed ones, we can deploy fast bitwise operations
of 64-bit architectures1.

It is important to point out Q-Pick can be easily modified to handle
the kinds of reads produced by the newer platforms, whose average
length exceeds the value ofLmax = 30 that we have assumed for this
implementation. To handle this case, straightforward modifications
will be required during the encoding of both the target and query
databases:in order to avoid interrupting the flow of the presentation,
we discuss these modifications in the end.

sequence: ACGTACGTACGTACGTACGACACGTACC

head

GTACGACACGTAC...

position of whole n-gram

1

tail

tail padded 

to proper length

Figure 4. Contents of the hashtable buckets (tail of the N-
gram)

Example:Suppose that the target database consists of the sequence:

ATAGACTAAAAAAAAAAAAAAATT

SinceLmax = 30, all 30-grams that contain at leastLh + 1 = 15
characters and are no longer than 30 characters are extracted. As we
discussed, N-grams that are shorter than thanLmax characters will be
padded with dots (i.e. wildcards) up to the lengthLmax. In the below,
we will denote the head (resp. tail) part of the extracted subsequences
using lower (resp. upper) case letters. For simplicity of presentation
we do not depict the binary representation of the sequence but only
its symbolic one. Finally, on the record containing the tail part of the
N-gram, the shown trailing number pinpoints the location of that N-
gram in the given sequence. For the example sequence shown above,
the N-grams that will be extracted are:

atagactaaaaaaaAAAAAAAATT...... 1
tagactaaaaaaaaAAAAAAATT....... 2
agactaaaaaaaaaAAAAAATT........ 3
gactaaaaaaaaaaAAAAATT......... 4
actaaaaaaaaaaaAAAATT.......... 5
ctaaaaaaaaaaaaAAATT........... 6
taaaaaaaaaaaaaAATT............ 7
aaaaaaaaaaaaaaATT............. 8
aaaaaaaaaaaaaaTT.............. 9
aaaaaaaaaaaaatT............... 10

1Obviously, for longer extracted N-grams, the process remains iden-
tical with the exception that fewer sequences can be compared at
once.
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All the N-grams that share the same key (i.e. the firstLh = 14
characters)will be clustered into the same hashtable bucket. The
resulting hashtable entries will contain the trail subsequence and also
its original position on the chromosome. The hashtable would look
like (the string within the square brackets correspond to the index of
the hashtable bucket):

[aaaaaaaaaaaaaa]<ATT............., 8>, <TT.............., 9>
[aaaaaaaaaaaaat]<T..............., 10>
[actaaaaaaaaaaa]<AAAATT.........., 5>
[agactaaaaaaaaa]<AAAAAATT........, 3>
[atagactaaaaaaa]<AAAAAAAATT......, 1>
[ctaaaaaaaaaaaa]<AAATT..........., 6>
[gactaaaaaaaaaa]<AAAAATT........., 4>
[taaaaaaaaaaaaa]<AATT............, 7>
[tagactaaaaaaaa]<AAAAAAATT......., 2>

1 for each chromosome C of the genome
2 {
3 for position=1:length(chromosome C)
4 {
5 // extract N-gram of length L
6 // at current position
7 g = extract(C, position, L);
8 H = Head(g); // extract head
9 T = Tail(g); // extract tail
10
11 key = binarizeHead(H); // head encoding
12 content = binarizeTail(T); // tail encoding
13
14 // place in proper hash bucket
15 pointer = Hash_TargetDB<key>;
16 append(pointer) -> {c: content, p:position}
17
18 // indicate that bucket has content
19 Marker_Table<key> = 1;
20 }
21
22 // record each bucket to a separate
23 // file on disk
24 for each non_empty(Marker_Table)
25 write_to_disk(Hash_TargetDB<key>);
26}

Figure 5. Algorithm for creation of the database on the refer-
ence genome

An overview of the algorithm for the creation of the reference
database is given in Figure 5. It is important to stress here that only
non-empty hashtable buckets need to be recorded and stored on the
disk. Moreover, the process of transcribing the hash buckets on the
disk can be done in an efficient and memory-friendly way by exploit-
ing the performance benefits ofbatch writeson the disk. A memory
buffer is kept for each hashtable bucket and the corresponding por-
tion of the bucket is directed to the disk not constantly, but only when
the memory buffer size of the bucket is filled. The efficiency of such
a construct has also been noticed in the construction ofseeded trees
when performing external memory joins [22].

Next, we describe how the set query sequences are encoded and
stored on a different query hashtable.

2.2.2 Encoding the query database
The query database will typically comprise millions of distinct se-

quences, which will be generated by the sequencing platform. We
now formally describe the creation of the query sequences’ hashtable.

Similarly to the creation of the target database, each query se-
quence is logically divided into a head and a tail part, using two (2)
and four (4) bits for the encoding, respectively, identically to what
was done for the reference genome. However, there are two differ-
ences between the target database and the query database:

• the typical query sequences may contain one or more wildcards
(“don’t care") symbols. This is unlike the case of the N-grams
that we extracted from the target database and which contain

wildcards only at the terminating positions where they serve as
padding elements.

• query sequences can have variable length, compared to the
fixed length N-grams that are extracted from the genomic database.

Wildcards are treated differently depending on whether they exist
in the head or the tail of a sequence in the query database; this is
because the head is used as the key of the hashtable mapping function.

• Case 1: One or more wildcards exist in any of theLh positions
of the head of the query. In this case each wildcard isexpanded
into the relevant A,C,G,T symbols, in order to form all appro-
priate hashtable keys. For example, if the head of queryq is
.TTTTTTTTTTTT. then the expansion will generate a total of
4 × 4 = 16 potential head sequences and the corresponding
hashtable bucket indices where the tails of all the patterns that
share the same head.TTTTTTTTTTTT. are to be found. There-
fore, the same tail of queryq will be hashed onto a total of 16
positions of the query hashtable index. An illustration of the
expanded sequences is shown in Figure 6

• Case 2: One or more wildcards exist in any of theLt positions
of the tail of a query. In this case, each such wildcard will be
encoded using the bit vector0000 (recall that 4 bits are utilized
to encode each of the nucleotides and the wildcard). The reason
for the encoding will be become apparent shortly, when we
explain the matching function utilized to join the query and
reference database hashtables. This encoding for the wildcard,
as will be shown later on, can exploit bitwise operations for
fast sequence comparison.

head tail

.TTTTTTTTTTTT. AAAGGGTTTAACCTTT

head expansion

 ATTTTTTTTTTTTA  

 ATTTTTTTTTTTTC 

 ATTTTTTTTTTTTG 

 ATTTTTTTTTTTTT

 CTTTTTTTTTTTTA  

 CTTTTTTTTTTTTC 

 CTTTTTTTTTTTTG 

 CTTTTTTTTTTTTT

 GTTTTTTTTTTTTA  

 GTTTTTTTTTTTTC 

 GTTTTTTTTTTTTG 

 GTTTTTTTTTTTTT

 TTTTTTTTTTTTTA 

 TTTTTTTTTTTTTC 

 TTTTTTTTTTTTTG 

 TTTTTTTTTTTTTT

query sequence

mapping to 

hashtable buckets

Figure 6. Query Database: Expansion of the wildcards on the
head of a query sequence.

Finally, since query patterns may be of variable length, and simi-
larly to the trailing N-grams of the target genome, query tails that are
shorter than theLmax − Lh = 30 − 14 = 16, will be padded with
wildcards (i.e. zeros).

Example: The 16-letter tail the 30-nucleotide-long query

ACGTACGTACGTACGTACG.AC..ACGTAC

isGTACG.AC..ACGTAC and will be encoded as the hexadecimal num-
ber0x4812401200124812. If the tail of the pattern wereGTACG.AC..AC,
which is only 12-nucleotides long, it would have been padded-up
with four ‘.’ at the end, and encoded as0x4812401200120000.

2.2.3 Indexing of the Query Database for handling
Forward and Reverse strands of Target Genome

Recall that the target DNA consists of two strands; the forward and
the reverse, both of which need to be searched for instances of a query
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sequence. In lieu of explicitly encoding the reverse strand in the tar-
get database hashtable, which would effectively double the size of
indexed data, we chose to simply expand the query set by generating
and encoding the reverse complement of each query. This leads to a
reduction of overall storage requirements because the query database
will typically be smaller in size. Therefore, instead of searching the
forward and reverse strands of a given chromosome for instances of
a query, we search only the forward strand for instances of a query
or of a queryŠs reverse complement. This design strategy results in a
much more compact representation, and, by extension, contributes to
the realized speed gains.

This mapping is performed as follows; if̂s denotes the reverse
complement of symbols, with s ∈ {A,C,G, T}, then the reverse
complementary sequence of an N-gramg can be written as:

ĝ = ĝn ∪ ĝn−1 ∪ . . . ∪ ĝ1,whereg = g1 ∪ g2 ∪ . . . ∪ gn

The general concept is shown in figure 7.

GGGTTTAACCTTT

AAAGGGTTCCCTTTT

GGGTTTAAA

....

target (reference) genome

index single strand

query database

AAAGGTTAAACCC

AAAAGGGAACCCTTT

TTTAAACCC

...

form reverse 

complimentary 

sequences

index both
compare

Figure 7. Accommodating the reverse strand of the DNA
through expansion of the (smaller) query set.

Example: Suppose that we are presented with the following 4 query
sequences:

1: ACAAAAAAAAAAAATT
2: AC.AAAAAAAAAAAAA
3: TTTTTTTTTAGTCTAG
4: TTTTTTTTTAGTCTAT

This initial set of 4 queries will be expanded into the following 8
sequences:

1: acaaaaaaaaaaaaTT
2: aattttttttttttGT
3: ac.aaaaaaaaaaaAA
4: ttttttttttttt.GT
5: tttttttttagtctAGG
6: cctagactaaaaaaAAA
7: tttttttttagtctAT
8: atagactaaaaaaaAA

For example, the first sequence (ACAAAAAAAAAAAATT) will gen-
erate also the reverse complimentary sequenceAATTTTTTTTTTTTGT.
In each case, the lower case letters indicate the portion of the query
that corresponds to the head and will be used as the key. The tail is
shown using capital letters. As described above, each of the wild-
cards contained in the head portion will be dereferenced into each of
the 4 possible DNA symbols in turn. In the above example, we have
2 such query sequences (]3 and ]4) each containing a single wild-
card; thus, query]3 will be replaced by 4 new strings as will query
]4, resulting in a grand total of8 − 2 + 4 + 4 = 14 strings.

The complete process for encoding the query sequences is captured
in Figure 8.

1 for each sequence S
2 {
3 for position=1:length(S)
4 {
5 // generate reverse complement sequences
6 {candidate sequences} = reverseComplement(S);
7
8 for each candidate sequence s
9 {
10 H = Head(s); // extract head
11 T = Tail(s); // extract tail
12
13 {keys} = expand_wildcards(H);
14 {keys} = binarizeHead({keys});
15 content = binarizeTail(T);
16
17 for each key
18 {
19 // place in proper hash bucket
20 pointer = Hash_QueryDB<key>;
21 append(pointer) -> {c: content};
22 }
23 }
24}

Figure 8. Algorithm for creation of the query database

2.3 Search Process
After the hashtables of each chromosome of the target database and

the hashtable of the query set have been created, the search process
is initiated as a hashtable join of the buckets with the same key.

First off, the “Marker" table of the target hashtable which indi-
cates the non-empty buckets in the reference database is loaded in
memory. The process proceeds by scanning through the buckets of
the query hashtable and examining the corresponding position on the
Marker Table (see Figure 9). If the Marker table indicates that there
are entries in the corresponding bucket on the genome hashtable, then
that bucket is retrieved and its elements (tails of the extracted N-
grams) are compared with the bucket of the same key from the query
hashtable (tails of the query sequences).

chromosome 1

chromosome 2

hashtable

...

query hashtable

A. Compare 

corresponding 

non-empty

buckets

B. Repeat process

for remaining chromosomes

chromosome n

marker 

table (0/1)

1

1

1
1

1

1

1
1

indicates if bucket 

has entries

Figure 9. Search process through hash-join

The comparison between the sequences contained in the two buck-
ets can be achieved in a very fast manner utilizing bitwise operations.
If we denote the tail of one of the many target genome N-grams by
target_tailand the tail portion of a query sequence byquery_tail, then
a match between the two is successful iff:

(< query_tail >& < target_tail >) ==< query_tail >

where& is the bitwise AND operator. We recall from Section
2.2.2 that wildcards are encoded as as0000. Therefore, the above
matching function will hold true also in the presence of wildcard
symbols. Moreover, thanks to the right padding with wildcards, the
two operands are guaranteed to have the same length so the operation
will always be well-formed.
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Finally, the the comparison between same-key buckets of the query
andtarget hashtables is repeated for the hashtables of each chromo-
some in turn. The whole search algorithm is given graphically on
Figure 9 and pseudocode is provided in Figure 10.

1 load the MARKER array of the target hashtable
2 for each bucket B1 in the query hashtable
3 {
4 fetch the query bucket <key> from B1
5 if (MARKER[<key>] == 1)
6 {
7 load B2 bucket with same <key> as B1
8 for each <query_tail> in B1
9 {
10 for each <tail> in B2
11 if (<query_tail> & <tail>) == <query_tail>
12 print <match, location>
13 }
14 }
15}

Figure 10. Join of query and target database hashtables

The search process through the join of the two hashtables is very
effective, because the majority of the buckets in the target database
hashtable contain only a handful of entries. Figure 11 shows on a
log-log plot a histogram of the bucket sizes for the first human chro-
mosome. We note that98.5% of the buckets contain less than 10
entries, indicating that our choice of key and key length, properly
separates the different subsequences. Similar results are observed for
the remaining chromosomes, as well.
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Figure 11. Log-log plot of histogram indicating the sizes of
the different hash bins. We observe that the majority of the
bins contain very few elements (typically 1), which suggests
that only few comparisons need to be made between the cor-
responding database and query bins.

2.4 Visualizing the results
After the search process is complete, the matching positions and

the corresponding sequences are stored on the disk. Given that the
matching positions are listed using a chromosome identifier and global
coordinates within the chromosome, the matches can be trivially rewrit-
ten using, e.g. the BED format (seehttp://genome.ucsc.
edu/FAQ/FAQformat) and uploaded on the UCSC Genome Browser.

We have also instrumented an interactive visualization interface to
facilitate a somewhat different kind of exploration of the matching
positions, through drill-up/drill-down capabilities, as shown in Fig-
ure 12. A histogram of the matching positions with respect to the
reference genome length is displayed at the initial screen, while the
matches of the queries along with the respective positions are indi-
cated at the bottom of the window. The user can select the bin of
interest (range of positions in the genome) and drill down in order to
‘zoom in’ on a specific range of query matches. Additionally, the user
has the ability to adjust the width of the histogram bins, effectively
changing the resolution of the view.

The histogram based view of the matches is efficient and effective.
At a later incarnation of our GUI, we plan to incorporate annotations
corresponding to the regions of the genome where a read has been
anchored, a functionality that will certainly strengthen and augment
any subsequent analysis.

2.5 Extending Q-Pick to handle long reads
There are several, rather straightforward ways in which we can

extend Q-Pick so that it can handle longer reads. One such way
is described here. Let us assume that the query set now comprises
variable-length reads whose maximum lengthLmax is greater than
30, e.g.Lmax = 75. The following simple modification will suf-
fice for the purpose and is dictated by our goal of keepingQ-Pick
’s memory and storage requirements to a minimum. If we were to
continue storing the tail of an N-gram in each bucket of the target
genome’s hashtable, memory (and storage) requirements would in-
crease proportionally withN ; for large values ofLmax the storage
requirements would be substantial. Instead, in the hashtable bucket
that is pointed to by the N-gram’s head, we enter only the N-gram’s
position in the genome (but not the sequence of the N-gram’s tail).
The encoding of the query database remains the same as before with
each entry requiring exactly4×(Lmax−Lh) bits. During the search
stage, and prior to the comparison step, the tails of all entries of a
given hashtable bucket for the target genome will need to be retrieved
through an additional dereferencing step: this is a fast operation and
incurs a negligible cost compared to the great savings in storage and
memory requirements and the ability to handle much longer reads in
the query set.

3. EXPERIMENTS
In this section, we elaborate on the performance capabilities of

Q-Pick through a battery of carefully designed experiments. We
conduct extensive scale-up experiments with millions ofdistinctquery
sequences. As our target databases we utilize the Mouse (NCBIM37.492)
and the Human (NCBI36.423) genomes.

3.1 Comparison with other techniques
We provide comparisons with other prevalent short-word match-

ing techniques that are currently available. The gamut of methods
that we compared withQ-Pick was limited by our ability to port
them to a SuSE Linux Enterprise Server: we only used those applica-
tions that could be ported with only moderate effort and could be run
2ftp://ftp.ensembl.org/pub/release-49/fasta/mus_
musculus/dna/
3ftp://ftp.ensembl.org/pub/release-42/homo_sapiens_
42_36d/data/fasta/dna/
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Figure 12. Visualization interface for Q-Pick

Q-Pick fetchGWI SOAP Eland BWA Bowtie
Hits 10, 611, 858 10, 611, 856 10, 573, 528 5, 597, 799 10, 611, 858 10, 611, 858
Misses 0 2 38, 330 5, 014, 059 0 0
Time 79 sec 186 sec 4728 sec 555 sec 149 sec 331 sec

Table 1. Comparison between various short-word matching approaches

to completion without crashing. The CPU powering the server was
a 64bit PowerPC, running at 1.4Ghz; clearly, running Q-Pick on ma-
chines with faster CPUs will incur further improvements over what
we report below.

The list of similar tools that we used for our comparisons includes:

• Eland [4] is a short-read mapping tool that is provided by Illu-
mina as accompaniment to their sequencing platforms.

• SOAP (Short Oligonucleotide Analysis Package) [18], is an
open-source tool, that has attracted a lot of attention in the
bioinformatics community due to its expedient runtime and
high specificity of matches.

• FetchGWI [10] was specifically designed for short sequence
mapping within genomes in a rapid manner. It is also one of
the few approaches that makes claims about completeness of
matching (i.e. that all matching positions will be found and
reported).

• Finally, Bowtie [12] andBWA [16] are slightly different than
the other techniques in that they derive their speed by working
with a genome that has been represented using the Burrows-
Wheeler transform.

The results of our comparison are shown in Table 1. For this par-
ticular experiment the query database comprised 1 milliondistinct
22-mers, that were searched against both strands of the mouse chro-
mosome 1 (a total of 197M x 2 nucleotides).
From this first experiment we can draw several conclusions. First,
Q-Pick can bebetween2−60 times fasterthan existing approaches,
at the same guaranteeing the exhaustive reporting of all anchoring

points for the given query set.Q-Pick , Bowtie andBWA were the
only approaches that reported all matches: the remaining method-
ologies missed numerousbona fideanchroring positions for the em-
ployed query set.

It is important to stress here that the reported times represent the
end-to-end time for performing all the necessary preprocessing of
the query set, searching anchoring, and finally the reporting of the
results. While,Q-Pick andfetchGWI, Bowtie andBWA report
all hit locations,SOAP andEland report counts for the hits of a
given read but the location of the 1st hit only. In fact, the actual search
time ofQ-Pick is a mere 19 seconds: the remaining 60 seconds are
consumed by the writing to the disk of the ~10 Million matching
positions and corresponding genomic sequences to disk.

There is a particularly important point to be made here that relates
to comparing performance measures. Indeed, “reporting" a given
number of hits requires that they be written to the output device and
the time required to do this is proportional to the size of the gener-
ated output. Consequently, a method that simply reports counts of
hits instead of the actual hits themselves is at a performance advan-
tage compared to a method such asQ-Pick that reports all hits in the
form of from/to coordinates and the matching genome string. What
this means in practical terms is, that the true speedup thatQ-Pick
achieves when compared toSOAP or Eland is substantially better
than what is indicated by the entries of Table 1.

In the following section we provide a more thorough comparison
with fetchGWI: of the available techniques, the latter is the closest
methodologically toQ-Pick (use of indexing, hash-joins, etc.).

3.2 Comparison with fetchGWI
First, we examine the scale-up performance of the algorithms un-

der increasing query set cardinalities. Figure 13 reports the timing
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experiment when posing query sets of variable cardinalities against
humanchromosome 1. The query set sizes range from 1 million to
10 million short sequences.Q-Pick outperformsfetchGWI by an
order of magnitude in runtime. For example, for the 10 million query
setQ-Pick requires just 86 seconds, whilefetchGWI executes for
more than 23 minutes, on the same platform.
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Figure 13. Runtime comparison between Q-Pick and
fetchGWI. Q-Pick provides an order of magnitude improve-
ment in response time. Q-Pick returns the matching positions
of 10 million queries in just 86 seconds compared to 23 min-
utes required by fetchGWI.

An interesting discovery of this first experiment surfaces when
we compare the cardinality of matching positions for the query sets.
Figure 14 shows the number of discovered results for the two ap-
proaches. Note thatfetchGWI misses approximately2% − 3% of
the matching positions. This result is counter to the completeness
claim of the originalfetchGWI publication. However, we suspect
that this is very likely the result of an implementation bug in the cur-
rent release offetchGWI.
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Figure 14. Number of matches found by Q-Pick and
fetchGWI. The current implementation of fetchGWI fails to
find all the matching positions of the query set; on the tested
queries it missed approximately 2 − 3% of the answer set.

The following experiments elaborate and examine performance is-
sues of our framework against different parameters of the search prob-
lem.

3.3 Varying the number of wildcard positions
Q-Pick supports both exact word match and matches with wild-

card positions. As the number of wildcard positions increases, so
does the search time, since there is an additional increase in the hashtable
generation time for a given query set; recall that each wildcard (dot)
in the key has to be expanded to the potential A,C,G and T symbols in
the query sequence, leading to an increase in the number of matching
positions on the reference genome. Moreover, the size of the output
set will generally increase with more wildcards impacting the time
needed to write things to the output device (see above).
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Figure 15. Runtime vs Wildcard Cardinality: Search on Chro-
mosome 1 for one Million queries using Q-Pick . Total search
time is reported with respect to cardinality of wildcard positions.

The results for this experiment are shown in Figure 15 for different
number of wildcards (zero to six positions). Matches for one million
distinct query sequences from themousegenome are sought in the
forward strand of chromosome 1 of thehumangenome. As expected,
there is an exponential increase in the runtime, with the majority of
the time being consumed by the query hashtable generation, while
the search over the corresponding bins of the query and the database
tables remains approximately constant.

For fewer than 4 wildcard positions the search time is less than
1 minute given 1 million distinct queries. Notice, that these num-
bers still indicate the great improvement in performance that can be
achieved byQ-Pick , since 4 wildcards on queries with approximate
length of 20, represent uncertainty over20% of the total number of
positions in the query.

3.4 Scale-up experiment: Full Genome Search
In our final experiment, we seeks instances of short, variable-length

queries in the entire human genome, looking for matching positions
on both forward and reverse strands. Here we demonstrate that our
technique can process millions of distinct queries against the human
genome and retrieve results in just minutes on a single processor.

Figure 17 shows the pre-processing that is required for the target
genome hashtable generation. Building the hashtable for all 24 chro-
mosomes of the human genome requires a little more than 7 hours.
Note that this is a one-time, offline cost. The memory requirements
for creating the hashtable for human chromosome 1 (the longest chro-
mosome) are 2.1GB, therefore a computer with 3GB of RAM is suf-
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ficient for executing full genome search. The lengths of the all human
chromosomesused in this experiment are summarized in Figure 16.
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Figure 16. Lengths (in nucleotides) of the human chromo-
somes utilized in our experiments.

The query hashtables are generated from the query set and have to
be regenerated every time, for a low runtime cost of ~10 seconds for
1 million query sequences; for 10 million query sequences the time
needed to build the table rises to ~50 seconds. The mix of queries was
created by extracting subsequences between 17 and 30 letters from
the mouse genome and randomly replacing 1-3 positions by wild-
cards. Indicatively, to generate the hashtable for 1 million queries
and their reverse complement sequences with 2 wildcards requires
1.6GB of RAM. We measure the time of two subtasks:

1. The time spent on generating the query database hashtable

2. The search time (or join) of the hashtable bins of the queries
with the corresponding database bins (genome).

These runtime costs are reported in Figure 18. One can observe
that for 10 distinct million queries the response time is less than 300
sec. This is a very important result, since it allows for a very fast
turnaround time, between query set generation from various sources
and discovery of their positions on the genome within minutes.

Finally, we also stress that these results correspond to experiments
performed on a single processor. Since a separate hashtable is created
for each chromosome, the search process ofQ-Pick can be trivially
parallelized, by distributing portions of different chromosome hashta-
bles to different host systems, while inducing minimal communica-
tion costs. In the future, we plan to evaluate the benefits of offering
a parallelized version of the algorithm. However, we should stress
that one of the main attractions of our methodology is its exceptional
performance even on a single processor.

4. CONCLUSIONS
In this work we presentedQ-Pick , a new methodology for an-

choring sequence fragments on a genome and reporting all their matches.
Q-Pick is considerably faster than the other currently available schemes,
while at the same guaranteeing (unlike some of the other methods)
the reporting of all the locations where the queries at hand can be an-
chored. Our experiments on the human genome indicate thatQ-Pick
can beup to 60 timesfaster than state-of-the-art short sequence match-
ing techniques. Our methodology achieves its exceptional perfor-
mance through a host of features, such as data packetization, sim-
plicity of implementation, fast hashtable joins and intelligent data
pruning.
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