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ABSTRACT
Relational databases are periodically vacuumed to remove tuples
that have expired. During the discovery phase of litigation, plain-
tiffs ask defendants for access to information related to their case.
The requested information is then subject to a litigation hold, which
means that the information cannot be deleted. Vacuuming exposes
a database to a new threat – adversaries can try to thwart database
auditing mechanism by masquerading an illegal tuple deletion as
a vacuuming operation, and delete an unexpired tuple, or a tuple
under a litigation hold.

In this paper, we provide a generic framework for auditing vac-
uuming, augment existing database integrity audit mechanisms to
support vacuuming, formalize the notion of a litigation hold, and
identify key issues in the context of database systems for long-term,
high-integrity records retention. Then, we propose several schemes
for efficiently implementing trustworthy litigation holds. Finally,
we evaluate the efficiency and tradeoffs of the different schemes
using a series of experiments.

1. INTRODUCTION
Litigation is an inevitable part of doing business. At any given

time, large companies are involved in an average of 147 lawsuits
[3]. During a lawsuit, the plaintiff and defense often try to unearth
potentially damaging information relating to the opposite party. In
the days of paper-based recordkeeping, it was prohibitively costly,
in terms of time and money, for litigants to go through millions of
pages of paper documents belonging to the opposing party in the
case. But today, 92–99% of all business records and data are cre-
ated, processed, and stored as electronic records [16], and search-
ing through large volumes of data has become very easy and cheap.
Therefore, lawyers have become more likely to request a litigation
hold on the opposing party’s records. At the same time, electronic
records can also be modified or deleted easily, and a company fac-
ing a lawsuit has high incentives to find and remove any material
that may be adverse to it in the lawsuit.

In 2006, the Federal Rules of Civil Procedure (FRCP) [6] were
amended to set the standard for such electronic data discovery. The
amendments also specify the legal responsibility of the litigants,
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and set punishment for destroying information related to the litiga-
tion. Litigants in civil cases are entitled to request documents and
data relevant to the case from the opponents [16]. All electronically
stored data is subject to subpoenas. The FRCP and other prece-
dents from several legal cases do allow some exceptions to the law,
but only under certain circumstances. For example, information
subject to lawyer-client confidentiality rules cannot be subject to a
litigation hold. However, in most cases, failure to protect records
related to the case from deletion under a data retention policy is
considered to be an act of bad faith. Such actions, therefore, can
cause the judge and the jury to make adverse inference, i.e., to as-
sume that the destroyed records would have reflected badly upon
the organization, and find a verdict against the company at fault.

An example of the importance of litigation holds can be found
from the following real-life civil lawsuit. Zubulake v. UBS War-
burg is a landmark case that defined the importance of litigation
holds and the consequences of non-compliance [1]. Laura Zubu-
lake filed a gender discrimination lawsuit against UBS. The judge
instructed UBS to retain all data, documents, and email related to
the case, until the case was over. However, later it emerged that
UBS deleted important email and other data despite the hold order.
This failure to preserve the data subject to the hold order cost UBS
the case. It resulted in severe monetary sanctions against UBS,
which ultimately had to pay $29.3 million in fines. The ruling of
the case also expedited the reformation of the FRCP, and introduc-
tion of rules related to litigation holds on electronic records.

A litigation hold can be explicitly set by a judge, explicitly re-
quested during the discovery phase by the opposing counsel, or be
implicit – a company is supposed to automatically place a hold on
the relevant records when it anticipates a lawsuit. Therefore, com-
panies have strong incentives to be able to prove that they have
placed litigation holds appropriately. Both the plaintiff and the de-
fense may want a proof that the records placed under the litigation
hold were not removed from the database or other repository where
they reside during the time the litigation hold was in effect. For ex-
ample, the plaintiff might want a proof or assurance that the records
it receives during the discovery phase are indeed the records that
were in the system when the hold was placed. The defense may
also have its own incentives – it may want to show that when it was
notified of the lawsuit, it duly placed a litigation hold, and did its
part in preserving the records. As many corporate civil lawsuits in-
volve millions of dollars, there is a strong financial incentive for a
malicious insider to subvert the litigation hold mechanism. There-
fore, we need a scheme for provably secure litigation holds.

In this paper, we focus on the specific problem of implement-
ing trustworthy litigation holds in relational databases designed for
high-integrity long-term retention [14] – a retention database for
short. These retention database systems use a transaction-time database
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to store all versions of tuples. Normal SQL queries are translated
to a temporal query by the transaction-time layer. So, regular user
applications and queries can run without any changes. In such a
database, modifying an existing tuple causes a new version of the
tuple to be inserted. SQL deletes result in insertion of a special
deletion record, but older versions are retained. Each organization
maintains a set of retention policies, as mandated by law and/or cor-
porate strategy. Each database tuple has a specific retention period,
defined by a retention policy. After the retention period ends, the
tuple is shredded from the database. The shredding is performed by
a periodic process which vacuums all the tuples that have expired
after the last shredding event.

In such a database, existence of a litigation hold on a tuple will
prevent it from being vacuumed even if it has expired. An adver-
sary can attempt to remove tuples under a litigation hold in two
ways: first, she can try to remove a tuple under a hold before it
has expired. For example, the adversary can bypass the DBMS and
remove the tuple from the DB files by editing it in a binary editor.
However, researchers have developed trustworthy auditing schemes
to detect any such attempts by an adversary to tamper with the cur-
rent database content [14]. The other option is to remove expired
tuples still under a hold, by subverting the vacuuming process. In
this paper, we address this particular threat of making vacuuming
trustworthy for retention databases.

Contributions. The contributions of this paper are as follows:

1. We formalize the notion of litigation holds in databases for
long-term high-integrity records retention, and define the threat
model.

2. We present four schemes for implementing litigation holds.
These schemes address the challenges of fast placement, re-
moval, and auditing, as well as having a small footprint.

3. We provide an refinement to vacuum-aware audit scheme the
Log-consistent Database Architecture (LDA), to make it ef-
ficient.

4. We present a generic scheme for verifying vacuuming events
for compliance with expiration and litigation hold policies.

5. Through experiments with TPC-C data, we demonstrate the
speed and space tradeoffs of the four schemes and show which
scheme should be chosen in a variety of common situations.

The rest of the paper is organized as follows: in Section 2, we
present background information related to DBMS architectures for
long-term high-integrity records retention. We provide a threat
model for database vacuuming and litigation holds in Section 3,
and present the semantics for setting and removing litigation holds
in Section 4. Next, we describe four schemes for implementing liti-
gation holds in Section 5. We provide a generic model for vacuum-
ing in Section 6. We discuss and evaluate performance in Section 7.
Finally, we conclude in Section 9.

2. BACKGROUND

2.1 Litigation holds under US civil law
In the United States, the Federal Rules of Civil Procedure (amended

in 2006) [6] defined the nature and scope of a litigation hold. Ac-
cording to rule 34(a) of FRCP, all electronically stored informa-
tion (ESI) is subject to discovery by the litigating parties. A plain-
tiff is required to preserve and retain such information. The advi-
sory committee on rules noted that, “When a party is under a duty
to preserve information because of pending or reasonably antic-
ipated litigation, intervention in the routine operation of an infor-
mation system is one aspect of what is often called a litigation hold.

Among the factors that bear on a party’s good faith in the routine
operation of an information system are the steps the party took to
comply with a court order in the case or party agreement requir-
ing preservation of specific electronically stored information” [6].
FRCP also defines the scenarios when a party becomes obligated
to preserve information: “A preservation obligation may arise from
many sources, including common law, statutes, regulations, or a
court order in the case” [6].

FRCP Rule 37(f) prevents an organization from deleting expired
tuples via regular cleanup mechanisms, which implies that ordinary
data retention and shredding policies should not be applied to the
data under a litigation hold.

According to Rule 26(f) of FRCP, opposing parties must orga-
nize a discovery conference to decide a plan for discovery. Based
on the plan, information must be disclosed within the next 30 days
(or any schedule set by court) per Rule 26(a)(1)(D).

2.2 Databases for long-term, high-integrity
records retention

Government regulations have mandated the protection of integrity
of business and medical records. In the United States, Federal and
state regulations such as the Sarbanes-Oxley Act [21], Gramm-
Leach-Bliley Act [7], and Securities and Exchange Commission
rule 17a-4 require businesses to retain all routine records for spe-
cific multi-year retention periods. Non-compliance with these reg-
ulations can bring large fines as well as prison sentences for the
company’s officers. As a result, compliance-related software sys-
tems have proliferated in industry, as businesses seek turnkey solu-
tions to compliance.

While most existing efforts have focused on non-structured data
such as email and files, most business records are stored in struc-
tured form in relational databases. Mitra et al. presented the de-
sign of an architecture for databases for long-term, high-integrity
records retention [14]. Their threat model translates the business-
level threats targeted by Sarbanes-Oxley and SEC rule 17a-4 into
IT-level threats. Their threat model assumes that users commit
database records correctly, but after some time, regret their own ac-
tions, and wish to modify or delete records that are in the database.
Users may also regret that certain information was not inserted into
the database, such as a large purchase order that would have im-
proved the bottom line during the previous financial reporting pe-
riod. In this case, a user may try to insert backdated information
into the database. The adversaries in their threat model are insiders
who may have superuser privileges and who have incentives to un-
detectably modify or delete database tuples, or retroactively insert
them. Mitra et al. provided a scheme where an auditor can detect
any tampering attempt. This depends on the use of write-once read-
many (WORM) storage devices, which are the standard file servers
used in US public companies to satisfy retention requirements for
email and other unstructured business documents.

Databases must be periodically vacuumed in order to shred ex-
pired records [18]. The vacuuming process looks at the retention
policies, and using them it chooses which tuples need to be shred-
ded from the database. A shredding action vacuums the tuple, i.e.,
removes it from the database as well as from the database index or
any other location where the tuple may be mentioned or referenced.

In Mitra et al.’s Log-consistent Database Architecture (LDA)
[14], a transaction-time database is used. Insertions of new tu-
ple versions as well as vacuuming of expired tuples are recorded
immutably in a special compliance log kept in a write-once-read-
many or WORM storage device. Using a special cryptographic
hash function, auditors perform an audit of the database by first
computing a hash over the tuples currently in the database, and
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Figure 1: Threat model parameters, and different events

comparing this to the hash of the union of tuples in the compliance
log and the tuples present in the database at the time of the last au-
dit. If the two hash sums are the same, then the database passes its
audit and the auditor puts a signed snapshot of the current database
state on the WORM storage server, for use at the next audit.

In LDA, a scheme for trustworthy shredding of records from
databases for high-integrity records retention was presented. In this
scheme, a periodic vacuuming process vacuums expired tuples. It
runs as an ordinary transaction, except that it bypasses that trans-
action time layer. The vacuuming process log all the vacuumed
tuples into the compliance log. During the next audit, the auditor
checks an expiry relation (containing expiration times for various
relations), and verifies whether the tuples recorded in this log had
indeed expired at the time of the vacuuming event. The database
audit process also takes into account that the shredded tuples are no
longer in the current state of the database, and therefore the audit
process is modified accordingly. However, LDA does not support
litigation holds, and the vacuum-aware audit scheme as described
in [14] is very inefficient as it requires the auditor to recompute
the hash of the previous database snapshot (as opposed to using the
stored hash from the last audit).

3. MODEL
The nature and scope of litigation holds on relational data de-

pends on assumptions made about the system, operational, and ad-
versarial models. In this section, we discuss these models. We start
by looking into the system model.

3.1 System and operational model
Litigation involves events that have already taken place. Thus

the records subject to litigation holds are also historical in nature,
and will be subject to the usual records retention requirements of
the business. We assume that the DBMS used for this purpose is
a records retention database as defined in Section 1 (i.e., running
on top of a transaction-time database). Each relation has an reten-
tion period, and therefore each tuple has an expiration time, after
which it can be vacuumed from the database. We assume that the
vacuuming process is not trustworthy, and can be subverted by the
adversary. We also assume that the organization maintains write-
once-read-many or WORM storage servers.

Such WORM servers are already widely deployed, and export
a narrow file system interface. While most WORM servers use
magnetic disks to store data, a firmware enforces the write-once se-
mantics. Once a file has been closed, the WORM guarantees that it
will be immutable for the rest of its retention period (as set by the

administrator). The WORM servers sold by vendors today provide
strong immutability guarantees – even administrators cannot over-
write a file stored on a WORM storage server, shorten its retention
period, or delete an unexpired file once it has been committed to
the server. (The WORM manuals actually instruct administrators
to be careful in configuring the system, as any mistakes will render
the WORM unusable.) We also trust that the WORM server uses a
trustworthy and tamper-proof clock. Vendors already provide such
functionality (e.g., the Snaplock compliance clock from NetApp).

During a civil lawsuit, opposing counsel intends to get access to
the database records related to the case. Once the records are iden-
tified in the e-discovery phase, they are placed under a litigation
hold, indicating that these records are not to be removed from the
database, even if they expire. After e-discovery, the defense usu-
ally has up to 30 days to produce the held content for the disclosure
phase. The records under the hold can also be subpoenaed any time
during the litigation.

3.2 Adversarial model
We assume a strong insider adversary with superuser privileges

in the system. Malory, the adversary, can impersonate any other lo-
cal user, can delete, move, or create content on the magnetic storage
used for ordinary database files. Therefore, he can tamper with the
database by removing the tuples he does not want to retain. How-
ever, an auditor will be able to detect such tampering (e.g. using
an existing audit scheme such as LDA [14]), and this will lead to
adverse inference. Instead, we focus on the threat where Malory
subverts the litigation hold itself.

We trust that existing files on the WORM storage servers can-
not be subverted by Malory. This trust assumption is reasonable
because WORM storage servers are designed to withstand exactly
such attacks even by superusers. We also trust that when auditors
run a query, she gets a correct answer. This is also reasonable,
because if Malory modifies the DBMS engine, he will easily be
caught by the auditor if she checks the hash of the code to detect
any tampering with the DBMS software. Also, during an audit, the
auditor can run her own software on the database directly, rather
than relying on software supplied by Malory.

3.3 Threats
We address threats to the tuples that are under a litigation hold.

As a superuser, or with help from a bribed superuser, Malory can of
course remove such tuples. However, our goal is to ensure that any
such attack will be detected by an auditor during the next audit.
Going through the DB interface to remove such tuples will leave
enough evidence that will show up in a future audit. We focus
in particular on the trustworthiness of vacuuming, i.e., we want to
ensure that if during vacuuming, Malory attempts to remove tuples
that have expired but are still under a hold, it will be detected by
the auditor.

Another threat may be that, when the litigation hold is placed
during the e-discovery phase, Malory can try to prevent some or
all tuples from falling under the hold. For example, Malory can
present a partial view of the database to whoever is placing the
hold. To protect against this, any litigation hold scheme must either
require that the hold be placed by a trusted auditor, or else provide
a way to verify that the hold was placed correctly.

Malory can try to tweak the DBMS server clock to set it in fu-
ture during vacuuming. This can cause the vacuumer to incorrectly
vacuum tuples that are yet to expire.

Finally, Malory can attempt to subvert the vacuuming process
and the auditor by tampering with the retention period information,
and other associated organizational policies. For example, suppose
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that the retention period for a business record is 5 years. However,
Malory may want to change it to 1 year only, before the next vacu-
uming. This will cause all 1 year-or-older tuples in this relation to
appear as expired, causing them to be vacuumed.

3.4 Threat model parameters
We illustrate the threat model in terms of the following events,

as shown in Figure 1. tcommit is the time when Alice commits a
tuple to the database. The tuple expires at time texp. At time thold,
Judge Judy places a litigation hold on the tuple. Note here that texp
must be after thold (i.e., texp > thold, because otherwise the tuple
has already expired and will not fall under the hold by law, as long
as it has been shredded. At time tinsp, Bob, the opposing counsel,
asks Alice for a copy of all the records that fell under the litigation
hold. At this point, Alice has to present all such tuples. Bob also
wants a proof that these are indeed the tuples that fell under the
hold. Here, tinsp can be before or after texpt. If tinsp < texp, then
the tuple has not yet expired, and therefore, an audit of the database
will prove that this tuple has not been removed. If tinsp > texp,
then the tuple has expired by the inspection point, but due to the
litigation hold, Alice is required to retain it. Therefore, Alice has
to prove that she has retained the tuple even though it has expired.

4. LITIGATION HOLDS IN RELATIONAL
DATABASES

While the notion of litigation hold is well known in law, its ap-
plication to relational data is comparatively new. In this section,
we formally define a litigation hold in the context of relational
databases.

4.1 Litigation holds
We model a litigation hold in the case of a database based on the

requirements specified in FRCP:

For a database D, we define a litigation hold (LH) as follows:

LH = 〈q(t1,t2), ts, te, D〉,

where q(t1,t2) is a temporal query over D (in the time interval
t1− t2), and ts and te are the litigation hold start and end times re-
spectively. Here, t1 and t2 represent the two extreme endpoints of
the time epoch the query q(t1,t2) examines. For example, if q(t1,t2)
asks for all patients who had a cancer diagnosis in 1994–1996 and
had a diagnosis of diabetes within the four years immediately pre-
ceding their cancer diagnosis, then t1 = 1990 and t2 = 1996. By
definition of litigation holds, the times t1 and t2 must be prior to
ts, i.e., the time when the litigation hold starts. So, we have the
following constraints here: t1 ≤ t2 ≤ ts < now, and ts < te.

Under FRCP, the result of running the temporal query q should
remain invariant between ts and te. We define V iew(q(t1,t2), thq)
as the view of the database using the query q(t1,t2) on the database
D at time thq . We define TH(q(t1,t2), thq) as the set of tuples
which contribute to the different columns of V iew(q(t1,t2), thq).

FRCP requires that the data under the hold must remain in the
database during the duration of the hold. We can interpret this in
two ways. We define weak litigation hold compliance as follows:
during the time interval [ts, te], V iew(q(t1,t2), thq) remains con-
stant whenever ts ≤ thq ≤ te. In other words, for any time thq
between ts and te, V iew(q(t1,t2), thq) = V iew(q(t1,t2), ts).

We say that a database has strong litigation hold compliance if
TH(q(t1,t2), thq) is the same whenever ts ≤ thq ≤ te. In other
words, for any time thq between ts and te, TH(q(t1,t2), thq) =
TH(q(t1,t2), ts).

The difference between strong and weak litigation hold compli-
ance is that in weak compliance, we only require the materialized
view at hold setup time to be protected, allowing expiration of non-
related columns of the tuples that contribute to the view. In strong
compliance, we require entire tuples to be retained.

4.2 Issues
As the law does not precisely define the semantics of a litigation

hold, several issues have to be considered. Here, we focus on the
following issues related to litigation holds, in the context of rela-
tional databases.

Which tuples should we hold? Essentially, a litigation hold query
result is a view whose columns may have come from different tu-
ples. Should we assume that all attributes of the tuples that con-
tributed to the query results are subject to the litigation hold? Or,
are only the contributing columns under the hold? Note that Rule
26(f)(3) stipulates that “documents must be produced in their orig-
inal form”, so if a tuple contributes to a query, we cannot shred
its non-contributing attributes (i.e., change those attribute values
to null values), as that might be considered a modification of the
data by the opposing lawyers. On the other hand, if the lawyers
only want to see the contents of the view, then non-contributing at-
tributes of the underlying tuples can be removed without affecting
the view.

What is the granularity of expiration? When a tuple has several
attributes, do all of them expire at the same time? For example, a
tuple may have financial information, such as total sales value in
dollars, which the company may have to keep for a certain time as
mandated by law. But suppose the same tuple also has the attributes
“name” and “address”. Do these attributes have the same expira-
tion time as the sales value? The granularity of expiration has not
been clearly defined anywhere. LDA [14] used the model where
the lowest unit of specifying an expiration time was a tuple.

What operations to permit on held data? The next issue is
whether we should allow ordinary user queries on data subject to
a litigation hold. For tuples that have not yet expired, this is not
an issue, as they are still in the database and would have appeared
in a query even in the absence of a litigation hold. But for data
that has expired, but is kept in the database only because of the lit-
igation hold, the question remains – should this data appear in the
answer to ordinary user queries on the database? Since the data has
expired, it will not appear in the answers to non-temporal queries
in any case. In some cases, it is not desirable that the expired data
not appear in temporal query results either. In such cases, we may
require the translation of a temporal SQL query by the transaction-
time layer to include a new condition – namely to look into only
unexpired data.

Do litigation holds expose companies to more problems? Fi-
nally, depending upon the specific mechanism of marking the tuple
under a litigation hold, there is a possibility that future litigation
may impose a hold on the previously held information. For exam-
ple, suppose that Acme Inc. was sued by Trouble Inc. and therefore
stored information about the related litigation holds in its storage.
Later, DoubleTrouble Inc. sues Acme, and wants access to that
stored litigation hold data of the previous case. Under current law,
such hold requests are perfectly legitimate, as FRCP allows “all”
electronically stored information to be discovered by litigating par-
ties. Ideally, the information stored in response to a litigation hold
would not expose the company to further litigation.

624



Next, we look at the semantics of setting a litigation hold.

4.3 Setting litigation holds
We propose that when a litigation hold is to be set during a dis-

covery conference per FRCP Rule 26(f), the litigating parties define
the set of holds, by specifying the temporal queries to be used and
the duration of the hold. Then, the resulting set of LH specifica-
tions is given to a trusted third-party auditor.

The auditor is given access to the database. There can be a spe-
cific auditor role which the auditor can assume. We assume that a
litigation hold query executes correctly, and returns correct query
results. To ensure that this is true, the auditor can run the query
in his or her own software and hardware environment. For less
stringent guarantees, the auditor can simply perform an audit of the
DBMS (using LDA’s [14] audit scheme) right before submitting the
litigation hold query.

Here, we describe an SQL-style language syntax for setting liti-
gation holds.

SET HOLD name AS q FROM ts TO te

Here name is a freeform label that identifies the hold, and q is
the hold query. The DBMS should only allow this command for
setting a hold, if it is given by a principal acting in the auditor role.
This command causes the hold LH to be applied to the database
D, and suspends the expiration times as specified in the retention
policies for the affected data.

4.4 Renewing litigation holds
Litigation holds should be renewed from time to time if nec-

essary. For example, it is not often known how long a particular
civil litigation will last. A case may continue longer than originally
thought, necessitating the renewal of the hold.

In our model, a hold LH can be renewed by an auditor using the
following syntax:

EXTEND HOLD name UNTIL te

This extends the end time of the litigation hold LH to te.

4.5 Removing litigation holds
Removal of litigation holds can occur in several ways. A litiga-

tion hold can expire because the end time te has passed. Or, the
case may be over before te, so the company may want to remove
the hold. Expired litigation holds could be removed automatically
by a periodic process, but that introduces a new vulnerability – Mal-
ory can try to convince that process into removing valid, unexpired
holds. So, we require that litigation holds must be removed explic-
itly by a principal acting in the auditor role.

We define the following syntax:

DROP HOLD name

This causes the litigation hold LH on D to be removed. If the tu-
ples affected under the hold are still in the database, the vacuuming
process would now be allowed to vacuum them.

5. ARCHITECTURE
In this section, we define several schemes for supporting litiga-

tion holds. The goals of the design of the schemes are as follows:

• Space overhead: A hold should have a small footprint, and
support overlapping holds with minimal space overhead.
• Placement time: The hold placement time should be small.

• Vacuuming: Vacuuming should not be adversely impacted
by litigation holds.
• Querying: Querying for held data should be fast and effi-

cient.
• DB Kernel: The holds should not require changes to the

database kernel.

Through these schemes, we want to ensure that tampering with
litigation holds will be difficult. Some of our schemes will prevent
any tampering of the holds, while other schemes will not prevent
the adversary from tampering with the hold, but will ensure that
any such tampering will always be detected by an auditor during
the next audit.

We model a litigation hold scheme in terms of the following: a
hold definition step (used to set up a hold), a hold query method
(used during vacuuming or audits to query for held tuples), a hold
audit process (used to verify compliance with litigation holds), a
hold renewal process, and a hold removal process. We assume that
during an audit, the auditor can obtain the list of vacuumed tuples
in a trustworthy manner by consulting log files on WORM. We
elaborate on the auditing framework in Section 6.

5.1 Finding tuples that contribute to a view
To set a hold, we need to figure out which tuples contribute to

a hold. Holds are defined by lawyers in natural language, and that
descriptions of what to hold are most naturally expressed in terms
of business objects. Such a hold can be defined as a query on the
underlying relations. Placing a hold may require us to figure out
which tuples actually contribute to the query results.

To determine which tuples contribute, we build upon the work
by Cui et al. in [8]. Cui et al. showed that contributing tuples
for a Select-Project-Join (SPJ) view can be determined through a
single relational query over base relations. This lineage derivation
scheme involves splitting the original query into queries for base
relations. With some refinements, the same technique was extended
to aggregation views as well.

As an example of Cui et al.’s scheme [8], suppose that we have
the base relations ITEM(item_id, item_name, item_quantity), WARE-
HOUSE(store_id, warehouse_name, zipcode), and INVOICE( store_id,
item_id, quantity, price, date). And we have the following view:

CREATE VIEW info61820 AS
SELECT warehouse_name, item_name, quantity
FROM WAREHOUSE, ITEM, INVOICE
WHERE INVOICE.store_id = WAREHOUSE.store_id AND IN-
VOICE.item_id = ITEM.item_id AND WAREHOUSE.zipcode=“61820”

Suppose that in the materialized view for this, we have the row
〈“Lowes”,“Box”, 25〉. To determine the actual tuples that con-
tribute to this row, we can apply Cui et al.’s split operator to split
the original query used in the view, and convert it into queries to
the base relations, as shown below:

SELECT * FROM WAREHOUSE WHERE zipcode=“61820”
AND warehouse_name=“Lowes”
SELECT * FROM ITEM WHERE item_name = “Box”
SELECT * FROM INVOICE WHERE quantity=25

Note that FRCP does not define whether it is enough to enforce
the hold on the materialized view, or whether we have to keep the
original tuples. So, in the remainder of this paper, we provide
schemes for both of theseoptions (i.e., store materialized view, or
store contributing tuples).
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5.2 Four schemes for litigation holds
Here we propose four schemes for litigation holds. Once a query

or a set of queries is chosen, Audrey, a trusted auditor, is given
the query to run on the database of the defendant. After running
the litigation hold query, Audrey adds a temporal SQL clause to
the query, indicating that it was run on the database at a particular
time. Then she signs the litigation hold query and stores it into the
WORM. The litigation hold problem is to ensure that during the
lifetime of the hold, the answer to the hold query remains the same,
or the tuples contributing to it remain the same, even if the tuples
expire and the vacuumer runs.

Broadly, we can divide the schemes into two categories: in the
first group of schemes, the tuples constituting the query result, or a
projection of those tuples are stored in a file on the WORM server,
with the file’s expiration time equal to the hold end time. The actual
tuples can then be vacuumed from the database when they expire.
The second group of schemes does not copy the tuples to WORM;
instead they require the vacuuming process to check for holds be-
fore removing an expired tuple.

Next, we discuss the details of each of the schemes. For each
scheme, we describe the hold setup process, vacuuming scheme,
hold extension process, and the audit process. We also discuss the
advantages and disadvantages of each scheme.

5.3 Scheme 1(a): Storing all query results
The simplest scheme involves storing the entire query result into

the WORM. Note that, the query result may consist of attributes
(i.e., columns) from many tuples.

Setup. The auditor stores the litigation hold query result in a file in
the WORM. The auditor also computes a cryptographic hash of the
query result, signs the hash, and stores it in the WORM. The expi-
ration time of the file containing the query results and the hashes is
set to the expiration time of the hold.

Vacuum. No change to the vacuum process is needed. When any
tuple in the database contributing to the hold query result expires, it
can be vacuumed from the database as part of the regular shredding
process.

Audit. At the disclosure phase, the defendant simply presents the
file containing the hold query result and the signed hash of the re-
sult to the plaintiff or the judge. The defendant cannot modify the
query result without detection as it is signed by the auditor. Audit-
ing such a litigation hold query is also very simple – the auditor ver-
ifies the signature on the hash of the query result stored on WORM.

Extension. To extend a hold, the expiration date of the file con-
taining the query result needs to be extended to the new end date.
Today’s WORM servers provide an operation for this purpose.

Removal. When a hold is set, the file containing the hold query
results is given an expiration time based on the hold duration. So
when the hold ends, the file of results will also reach its expira-
tion time. Then it can simply be removed from the WORM by the
WORM administrator (since the file has expired, the WORM per-
mits its deletion).

Advantages. Under this scheme, no change to database shred-
ding/vacuuming is needed. The vacuumer can remove all expired
tuples from the database. The vacuumer does not need to consider
the holds. Audits also do not need to change; audit schemes such
as LDA audit can proceed without considering the existence of lit-
igation holds.

Disadvantages. There is a potential of a large overhead in terms
of space. There might be several litigation holds issued from the
same or different lawsuits. These litigation hold query answers
may have substantial overlap. In that case, there may be several
hold result files with a lot of common data that need to be stored on
WORM. Also, searching, sorting, and querying the tuples will be-
come difficult (to do that, the results would have to be exported to a
database). It is also not very clear whether this will satisfy the legal
requirement of keeping data "in original form", per FRCP. Finally,
the view itself can be subject to a later litigation hold. As we are
specifically marking the data related to the case and storing them
on WORM, future lawsuits have the option to place a hold on the
WORM data.

Analysis. The space overhead of this scheme depends on the size
of the litigation hold query result. The execution time overhead for
hold placement is the time required to write the query result to the
WORM device, therefore it is also dependent on the query result
size. The execution overhead for vacuuming is zero. The litigation
hold audit overhead is simply the time to verify the signature on the
stored query result, therefore it is also dependent on the size of the
query result.

5.4 Scheme 1(b): Storing all tuples contribut-
ing to query results

In the next scheme, we require storing all the tuples in that con-
tribute to the query result, in a file stored on the WORM.

Setup. The auditor runs the litigation hold query, and then applies
Cui et al.’s algorithm to decompose the query into queries on base
relations. Thus, the auditor finds the list of contributing tuples. The
auditor stores all of these tuples in a file in the WORM. The auditor
also computes a cryptographic hash of these tuples, signs the hash,
and stores it in the WORM. The expiration time of the file contain-
ing the query results and the hashes is set to the expiration time of
the hold. Whether we hold all the contributing tuples, or only the
contributing columns of those tuples is a separate and interesting
question, as we discussed in Section 4.2.

Vacuum. Like scheme 1(a), no change to vacuum process is
needed. When any contributing tuple expires, it can be vacuumed
from the database as part of the regular shredding process.

Audit. The audit of the litigation holds in this scheme is the same
as scheme 1(a). Similarly, database integrity audits (e.g., LDA-
style) are not affected,

Extension. Extending a view is done in the same manner as
scheme 1(a).

Removal. This is the same as the removal scheme of 1(a).

Advantages. The advantages are the same as scheme 1(a). We
have one additional advantage here: since the contributing tuples
are stored rather than just the query result, this scheme fulfills the
legal requirement of storing data "in original form", as required by
FRCP.
Disadvantages. Like scheme 1(a), we face the same overheads
due to overlapping holds. Since we are storing the contributing
tuples in their entirety, we incur more space overhead than scheme
1(a). The space overhead ranges from, at a minimum, the same as
for 1(a), up to something much larger. The worst case would be
the case of aggregate queries. For example, if the query is to find
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the SUM of an attribute of 100,000 tuples, then for scheme 1(a),
we will only need to store a single value, the sum. But for scheme
1(b) (as well as the following two schemes), all 100,000 tuples will
have to be held.

There is also a chance of inadvertently disclosing sensitive in-
formation as the tuples are all stored on the WORM. For example,
suppose that the original litigation hold query was just about all
invoices from a particular store. Also, suppose that one of the con-
tributing tuples is from the Customer relation. In this case, we store
the tuple from the Customer relation in its entirety. So, all columns
of the tuple from the Customer relations will be stored on WORM,
and be potentially exposed to the other party, even though the lit-
igation hold query only required keeping the customer name, and
not the customer’s other information. Thus, there is a possibility
that this scheme might inadvertently disclose sensitive data to the
other party in litigation. The additional fields of the Customer re-
lation will also be subject to future litigation holds, even after the
original tuples expire.

Analysis. The space overhead of this scheme depends on the size
of the litigation hold query result, and ultimately, the number of
the tuples contributing to the query results. The execution time
overhead for hold placement is the time required to write the con-
tributing tuples to the WORM device, therefore it is also dependent
on the size of the hold query result and the contributing tuples.
Like the previous scheme, the execution overhead for vacuuming is
zero. Time overhead to extend a hold is the same as scheme 1(a).
The litigation hold audit overhead is simply the time to verify the
signature on the stored tuples, therefore it is also dependent on the
size of the contributing tuples. Finally, the removal overhead is es-
sentially the time needed to delete the expired file of tuples from
the WORM, and therefore very small.

5.5 Scheme 2: Hold counter
In this scheme, we introduce a new relation named the hold

counter relation. The schema of this relation is as follows: 〈 tuple_ID,
hold_ID 〉. The relation can be stored in the same database, or can
be put on a separate transaction-time database containing only this
relation. The tuple ID field contains the tuple ID of the held tuple.
The mapping between litigation hold IDs and the corresponding
litigation hold queries should be maintained on an append-only file
on the WORM.

Setup. The scheme works as follows: when there are no previ-
ous litigation holds. the hold counter relation is empty. Whenever
a new litigation hold is being set, the auditor computes the set of
contributing tuples (using the same scheme as in 1(b)), and then for
each such tuple, inserts a row into the hold counter relation. The
new row contains the tuple ID of the contributing tuple, and the ID
of the new hold.

Vacuum. Whenever the vacuuming process is presented with a
candidate for vacuuming, it should query the hold counter table to
check if any row exists with the same tuple ID. If the query result
is empty, then the tuple is not under a hold, and can be safely vacu-
umed. If the query result is non-empty, then the tuple is under one
or more holds, and therefore the vacuumer should skip it.

Audit. For each vacuumed tuple, the auditor issues a temporal
query to the hold counter table (i.e., a query to be evaluated at the
time of vacuuming). If the query result shows that the tuple was
under one or more litigation holds at the time of vacuuming, then it
shows that the tuple should not have been vacuumed, i.e., the vac-

uuming violates the litigation hold.

Extension. Extending a hold in this scheme requires no action,
since the hold counters are removed explicitly (see next).

Removal. When a hold expires, the auditor needs to issue a query
to remove all tuples from the hold counter relation that match the
hold ID of the expired hold.

Advantages. There is no need to store the (potentially large)
query result or tuples on WORM. Even in case of multiple liti-
gation holds, we need to store only a small amount of data (i.e., 1
row containing the tuple ID and the hold ID) for each hold a tu-
ple is subject to, in the hold counter table. Querying such a hold
counter table is also fast if the table is small or there is an index on
the tuple ID. Finally, the space overhead is independent of the size
of the query result, or the sizes of the contributing tuples.

Disadvantages. Since this scheme considers contributing tuples,
we face the same problem as Scheme 1(b) for aggregation queries,
where the query result is small, but the list of contributing tuples is
large. The vacuumer and the auditor need to be aware of the holds,
so both of these processes need to consult the hold counter table
when vacuuming, or checking vacuuming operations. Also, since
the hold counter table will be placed on regular database storage, it
may be subject to tampering by the adversary. However, we show
next that any such tampering can be detected, and the hold counter
scheme is trustworthy.

Analysis. The space overhead for this scheme is related to the
average number of holds on each tuple in the original database.
If the average number of holds on each tuple is nh, then the space
overhead is O(N ·nh), where N is the total number of tuples in the
database. The vacuuming overhead for a given tuple is small, and
is constant, as all the vacuuming process needs to do is to query the
hold counter table with the tuple ID of the tuple to be vacuumed.

We argue next that the hold counter scheme is trustworthy, even
though it is kept in regular database storage. We can use an LDA-
style audit [14] to check if the hold counter table has been tampered
with. The LDA audit described in [14] stores a special compliance
log on WORM. Even though the adversary can tamper with the
database content, she cannot tamper with the compliance log stored
on WORM (because of the immutability properties of WORM de-
vices). Therefore, an auditor can detect the presence of tampering.

So, the first task the auditor needs to do during an audit of vac-
uumed tuples is to perform an LDA audit on the hold counter re-
lation. If the relation has not been tampered with, then the auditor
can use it to verify the vacuuming. Note that the vacuumer does not
need to perform such an audit. We assume that the vacuumer will
be run periodically by the DBMS administrator, and therefore, we
do not trust that it will behave honestly. The hold counter scheme
will not prevent a malicious vacuuming process (run by an adver-
sary) from vacuuming tuples still under a litigation hold. Rather,
what we guarantee is that such activity will be detected during the
next audit. Such detection of tampering will also result in adverse
inference against the organization in the litigation.

5.6 Scheme 3: Bloom filters
In this scheme, we utilize Bloom filters – an efficient probabilis-

tic data structure which can be used to check membership in con-
stant time [4]. Bloom filters do not have any false negatives, but
may have a small amount of false positives. The key idea is to
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create one Bloom filter per hold, and use them to check for mem-
berships during vacuuming and audits.

Setup. Like schemes 1(b) and 2, the auditor first finds the list of
contributing tuples. Then, the auditor creates a Bloom filter for the
contributing tuples. The Bloom filter is signed by the auditor and
both the filter and the signature are stored on WORM in a file. The
expiration time of the file containing the Bloom filter is equal to the
hold expiration time.

For a given number of tuples and a fixed false positive probabil-
ity, the two parameters in building a Bloom filter are the number
of hash functions, and the size of the Bloom filter. Based on this,
we can compute the size of the Bloom filter. For example, for 4
hash functions and 2.5*10−5 false positive probability, we need 32
bits per inserted tuple. This will cause a false positive only for 1 in
25,000 tuples. We can also choose to have a fixed size for all of our
Bloom filters, in which case the false positive probability will vary.
We can save space by using compressed Bloom filters as described
in [15].

Bloom filters can also be merged by taking a bitwise OR of the
filters. This increases the false positive rates. What the auditor can
do here is to store the individual Bloom filters per hold, as well as
maintain a global filter. This will help optimize vacuuming.

Vacuum. During vacuuming, the vacuuming process checks the
unexpired Bloom filters to see if a given tuple falls under any liti-
gation holds. An expired tuple may have been originally inserted
into the database after some Bloom filters (and the corresponding
holds) had been placed. So, for each expired tuple, we only check
the Bloom filters (i.e. holds) created after the commit time for the
transaction corresponding to that tuple – we ignore all holds placed
before the commit timestamp of that tuple. For matching against
multiple Bloom filters (all having the same number of hash func-
tions), we only need to hash the tuple key once per hash function,
and then match it together with all the unexpired Bloom filters. To
make this faster, we can also match against the union of similar
sized Bloom filters (or the global Bloom filter, which is the union
of all existing unexpired Bloom filters). If there is no hit in the
global Bloom filter, then the tuple is not subject to a hold. If there
is a hit, then the vacuumer can check the tuple against the individ-
ual per-hold Bloom filters to check if the tuple falls under any of
them.

Audit. The auditor examines the vacuumed tuples, and checks
whether each was a member of any Bloom filter stored in the WORM
and still active at the time of the shredding. To root out false posi-
tives, the auditor can do other checks after getting a hit in a stored
Bloom filter with a given tuple. This might involve checking the
litigation hold query specification, and then seeing if this tuple will
be included in the query result. Depending upon the nature of the
query, this may be very complex. Therefore, it is best to use large
Bloom filters to reduce the error rate to very low. For each 4.8 bits
per tuple added to a Bloom filter, we can reduce the error rate by a
factor of 10.

Extension. To extend a hold, the expiration time of the file con-
taining the Bloom filter corresponding to the hold needs to be ex-
tended to the new hold end time. Like scheme 1(b), depending on
the WORM mechanism, this can be done by extending the file’s
expiration time.

Removal. When the litigation hold ends, the file on WORM con-
taining the Bloom filter should expire (since its expiration time is

equal to the hold end time). Then the expired hold can be deleted
by the WORM administrator. All global filters must be recomputed
at that point.

Advantages. Space overhead of a Bloom filter is much lower than
many other schemes. For 1% error rate, we need only 9.6 bits per
tuple, regardless of the size of the tuple. Membership tests also
takes a constant time (dependent on k – the number of bits in the
bloom filter). Also, WORM stores only the Bloom filter, not the
actual tuples, so accidental disclosure of sensitive information is
prevented. If opportunistic opponent lawyers subpoena Bloom fil-
ters to examine the contents, a Bloom filter by itself will reveal little
about the data because of the one way nature of the hash functions.

Disadvantages. In this scheme, we need to check each tuple
against the existing Bloom filters. Since companies face many law-
suits at a time, there may be many Bloom filters existing at any
time. So, the cost to check against each Bloom filter adds up. As
shown above, we can optimize this by maintaining a global Bloom
filter, and only in case of a hit on the global filter, we can check the
individual per-hold Bloom filters. The global filter must be recom-
puted each time a hold is dropped.

The other big disadvantage is the presence of false positives.
While we can design filters to have a very low false positive proba-
bility, with a large number of tuples in the database, we are bound
to have false positives. What we need to do in case of false posi-
tives depends on the nature of the data and the organizational pol-
icy. One can choose to keep the tuple – this means the tuple was
retained past its expiration even though it was not under a hold. De-
tailed checks to determine whether this tuple actually belonged to
the hold (corresponding to the Bloom filter where the tuple found a
match) will only slow down the vacuuming operation. On the other
hand, many privacy laws require mandatory deletion or shredding
of tuples beyond its lifetime, so in such cases retaining a false pos-
itive tuple may be illegal. In such situations, another scheme must
be used.

Analysis. Hold placement time is the time to create a Bloom filter.
This is dependent on the number of tuples under the hold. The
vacuuming process involves a check for each expired tuple in each
Bloom filter. For each tuple, we incur the cost of hashing the tuple
key using the k hash functions. Using the various optimizations in
the hash process, we can reduce this time. Auditing also involves
a Bloom filter membership check. Removal of a hold is simply
the time needed to expire a file from the WORM and recompute
any global filters. This scheme cannot be used when laws mandate
shredding of expired tuples, due to the scheme false positives.

5.7 Discussion
The four schemes described above have different pros and cons

associated with them. Here we compare the schemes in different
scenarios:

Size of query result. When the query result is small, but is com-
puted from a large number of tuples, storing the result only using
scheme 1(a) would incur the lowest space overhead. For example,
in the scenario where we have an aggregation query (e.g., sum of
all orders), then storing the result will involve storing only a single
value. Storing all tuples used to compute the sum will cause a huge
overhead if the scope of the query is large. Storing a Bloom filter
will cost slightly less, but we still will require a lot of space.

If the size of the query result is very large, then the hold counter
approach or Bloom filter approach becomes cheaper than the first

628



two approaches. For example, if the result involves 100,000 tuples,
then we store only 400,000 bytes for the Bloom filter (using 32 bits
per tuple). But for the first two approaches, we have to store the
entire 100,000 tuples or a projection of them, which imposes a lot
of space overhead.

Audit and vacuum overheads. The first two approaches of stor-
ing results or tuples cost zero overhead in vacuuming. Tuples that
expire can be shredded during the vacuuming process. For both the
hold counter and Bloom filter approaches, we incur the additional
cost of checking the hold counter or Bloom filter when examining
expired tuples. The cost may be smaller in case of a hold counter
as we only need to query the hold counter relation once, no matter
how many holds there are, whereas in a Bloom filter, we have to
check against all existing Bloom filters.

Querying held data. Since in the hold counter scheme and the
Bloom filter scheme, the tuples stay in the database, it is easy to
run different types of queries on them. However, in the first two
schemes (store hold query results, and store contributing tuples),
we need an additional step of exporting the result or the contribut-
ing tuples to a new database.

Overlapping holds. If there are overlapping litigation holds, then
the first two schemes of storing contributing tuples or results will
incur large overheads. In case of Bloom filters, we also would need
to store multiple Bloom filters (unless we merge them using a bit-
wise OR at the cost of larger error probability). But in such a case,
the hold counter approach works the best, as we incur only a small
additional cost per new hold on each tuple.

We can of course use a hybrid approach, adapting the scheme
based on the nature of the query. The initialization phase is com-
mon for all four schemes. So, we can design a hybrid scheme that
uses the common initialization phase, and then based on the nature
of the query, chooses one of the four schemes. This increases the
workload of the vacuumer, as it has to check both the hold counter
relation and any Bloom filters to determine if a tuple belongs to any
holds (the first two schemes do not impact the vacuumer). If the
number of holds is large, with multiple overlaps, the hold counter
scheme may perform better than a Bloom filter, because the new
Bloom filter will mean one additional filter to check for any ex-
pired tuple.

6. TRUSTWORTHY VACUUMING
In this section, we present a generic framework for auditing the

vacuuming operation in a database. We start with the formal def-
inition of vacuuming, and then explain the auditable vacuuming
problem.

6.1 Definitions
Vacuuming in a transaction-time database corresponds to the sys-

tematic removal of expired database content and its supporting struc-
tures. In a transaction-time database, there are no deletions of tu-
ples during regular transactions. Vacuuming is the only legal oper-
ation that can remove old versions of tuples. We can generalize the
vacuuming process as a policy compliance problem as follows:

DEFINITION 1. Vacuuming is a process V acuum(D, I), which
takes a database D and I (information about expiration times of
the tuples or the base relations, and existing litigation holds) as in-
put, and produces a new database D′ as output, where tuples in D′

are a subset of the tuples in D, and D′ is produced by shredding

expired tuples from D while adhering to the expiration and litiga-
tion hold constraints.

A vacuuming event V (tvac) is a session of vacuuming initiated
at time tvac by the vacuuming process (vacuumer). A trustwor-
thy vacuuming scheme is one where any vacuuming action can be
verified for expiration and litigation hold policy compliance by an
auditor at a later time.

6.2 A Framework for Auditing Vacuuming
Here, we propose a scheme to audit vacuuming events. Our

scheme depends on a trustworthy method of finding the transac-
tion times. To illustrate our scheme, we use the Log-consistent
Database Architecture (LDA) as described by Mitra et. al. [14].
However, the scheme is generic enough so that any trustworthy
scheme for finding the transaction times will be useful here. Recall
that, in LDA, a special compliance log (where all tuple insertions
and vacuuming are recorded) is stored in the WORM.

To initiate a vacuuming audit, the auditor first needs to perform
an integrity audit (e.g., as done in LDA). A vacuuming event is
valid if it did not vacuum any unexpired tuples, and it did not re-
move any expired tuples that are under one or more litigation holds.
Therefore, the auditor needs a trustworthy method of knowing the
expiration times of the tuples, and the set of litigation holds. The
former can be found from the retention policies for the base rela-
tions for the tuples. For example, certain business records must
be kept for 7 years according to SOX, so the expiration time for
such tuples is set accordingly. This information about the expira-
tion times for different relations can be stored on a file on WORM.

The main challenge in auditing a vacuuming event is to ensure
that the vacuuming did not violate the existing expiration and liti-
gation holds at the time of vacuuming. To audit this, the first task
is to determine the time tvac of the vacuuming event. We do not
trust the vacuumer, so any statements made by the vacuumer about
the vacuuming event time cannot be trusted. In LDA, the auditor
can determine tvac in a trustworthy manner by looking at the com-
pliance log. The commit time of the transaction that vacuumed a
tuple gives us the time tvac for that tuple. In case of segmented
compliance logs, the auditor can needs to identify the compliance
log file segment containing for the tuple. The timestamp of the log
file segment is the vacuuming event time tvac for the tuple. Note
that, there is a margin of error here, equal to twice the regret interval
parameter of LDA.

We do however require that the vacuumer notes the start times
for vacuuming operations in an append-only file on WORM. At
the start of an audit, the auditor checks this file containing the start
times for vacuuming operations since the last audit, and looks up
the corresponding compliance log file segments of LDA. While we
do not trust the vacuumer, the adversary gains nothing by lying
about the vacuum start times. This is because if the adversary lies
about the vacuum operation start times, then the auditor will de-
tect that when she performs an integrity audit (where she needs to
match the previous database state plus the newly inserted tuple and
sans the vacuumed tuple with the current database state). If the
claimed vacuuming operation start times and the timestamp on the
corresponding log file do not match within a margin of one regret
interval, then the auditor must consider it as a tampering attempt.
Also, if the adversary does not note a vacuuming operation start
time in the file containing the list of vacuuming operations, then
the corresponding tuples will not be included in the tuple complete-
ness check (described below). So, the adversary gains nothing by
misstating or not stating the vacuuming operation start times.
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Once the auditor figures out tvac, she then accesses the policy
repository to fetch the policies effective at that time, and the lit-
igation holds and expiration information from the vacuuming in-
formation repository. The policy repository contains a set of files
containing the set of policies for a given time period. The last write
times of these policy files indicate which policies were in effect
during a given vacuuming event. To check policy compliance at
time tvac, the auditor locates the policy file corresponding to that
time, and reads the policies. The policy files should be signed by
the auditor. If the policies rarely change, then the policies can be
built into the vacuumer.

The auditor then accesses the vacuuming information repository
and reads the supporting information. For example, the expiration
times of different relations, and the litigation holds in effect, and
other related information.

We present the algorithm for auditing vacuuming events below.
Here we assume that L is the no-crash version of the compliance
log, as stored in the WORM in the LDA architecture.

Audit (L, I)
1: Let L = {L1, L2, · · · , Ln} be the LDA compliance log (con-

sisting of chronologically ordered log files L1 · · ·Ln)
2: Let I be the set of supporting vacuuming information, also

sorted chronologically
{Find the list of vacuuming events in L}

3: V ← findV acEvents(L)
{For each vacuuming event, check policy compliance}

4: for all vacEvent ∈ V do
5: tvac ← getT imeStamp(vacEvent)

{Get hold information and retention periods at time tvac}
6: Itvac ← getInfo(I, tvac)
7: for all tuple ∈ vacEvent do
8: if (hasExpired(tuple, tvac, getExpirationT ime(tuple,

Itvac))==FALSE) then
9: return AUDIT_FAIL

10: end if
{check if tuple was under a hold}

11: if (wasHeld(tuple, tvac, getHold(tuple, Itvac))==TRUE)
then

12: return AUDIT_FAIL
13: end if
14: end for
15: end for
16: return AUDIT_PASS

6.3 Efficient vacuum-aware audits
During a regular audit in LDA, the auditor checks if the final

database state is equal to the last database snapshot plus the new
tuples noted in the compliance log. In terms of the hashes, this
means that the hash of the tuples in the final database state should
be equal to the hash of the tuples in the previous database snapshot
plus the set of tuples inserted since then (as noted in the compliance
log). Slightly abusing notation we can write this tuple completeness
check of LDA as, H(Df ) = H(Do∪L), where Df is the final DB
state, Do is the previous DB snapshot, and L is the set of tuples that
were part of the committed transactions as found in the compliance
log.

However, the tuple completeness check does not hold when there
are vacuuming events. This is because the new database state does
not include tuples that have been vacuumed since the last audit. The
old database snapshot stored on WORM contained the vacuumed
tuples, so the union of the tuples in the old snapshot and the newly
inserted tuples (as found from the compliance log) do not equal the

tuples in the current database state. To take into account the effect
of vacuuming, LDA provides the following refinement: the auditor
finds the list of vacuumed tuples from the "shredded tuple" records
of the compliance log. Then the auditor finds the corresponding
pages in the previous database snapshot, and recomputes the hash
of those pages, and ultimately recomputes the hash of the previous
snapshot. Unfortunately, this refinement is inefficient, as it requires
the auditor to recompute the hash of the previous database instance,
rather than using the hash value from the previous audit (stored on
WORM).

To make this efficient, we propose to enhance the LDA auditing
scheme as follows: we redefine the vacuum-aware tuple complete-
ness check as H(Df ) = H(Do ∪ L − V ), where V is the set of
vacuumed tuples. Since we used an additive hash function in LDA,
this is difficult to compute. We can rewrite the above equation as
follows: H(Df ∪ V ) = H(Do ∪ L). In other words, the audi-
tor simply checks if the union of the tuples in the final database
state and the vacuumed tuples equal the union of tuples in the pre-
vious database snapshot, and the newly inserted tuples found in the
compliance log. By using this tweak, we can use the old database
snapshot hash stored during the last audit, rather than recomputing
it.

7. EXPERIMENTAL EVALUATION
Setup. To evaluate the schemes, we used MySQL 5.1.34. The
DBMS was hosted in a machine with a Pentium dual core 2.8 GHz
processor, 512KB L2 cache, 4GB RAM, and a 1TB hard disk. We
simulated the WORM server using a Pentium 2.8 GHz single core
processor, 512KB L2 cache, with a portion of its local disks ex-
ported as an NFS volume. All the machines ran on Linux with
kernel 2.6.11.

Dataset. To initialize our experiments, we ran 100,000 TPC-C trans-
actions with a 512 MB DBMS cache and a 10 warehouse TPC-C
configuration. We used the STOCK relation for placement of our
holds.

Queries. We created five different holds on the STOCK relation
of TPC-C. Each of the holds except the last one are queries that
choose three attributes from the STOCK relations – the stock ID,
the warehouse ID, and the quantity. The first four holds are de-
signed using a query as follows:

SELECT s_id, sw_id, quantity
FROM STOCK

WHERE condition

Here based on the condition used, different number of rows are
returned in the result. We designed the condition so that, the first
hold, Q1, covers 1% of tuples, the second hold Q2 covers 10%
tuples, the third hold Q3 is actually a combination of 5 different
queries, each of which cover 10% of the tuples, and all of these
holds overlap (i.e., the holds cover the same tuples). The fourth
hold Q4 covers 50% of tuples, and the fifth hold Q5 also covers
50% of the tuples, but this hold differs from other holds in that the
query is an aggregation query instead of a selection query (i.e., SE-
LECT SUM(quantity) FROM STOCK WHERE condition). For
the STOCK relation obtained after running 100,000 TPC-C trans-
actions, the total number of tuples in the relation is 1,455,652.

For the hold counter scheme, we allocated 2 bytes for the hold
ID, and 4 bytes for the tuple ID, resulting in a total of 6 bytes for
each hold counter entry. For the Bloom filter scheme, we used 32
bits per tuple, and 4 hash functions, giving us an error probability
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Figure 2: Space overheads.
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Figure 3: Hold placement time.

of 2.5*10−5. For the first scheme, the view has 3 columns per row,
requiring a total of 64 bits per row.

For each case, we measure the space requirements, hold place-
ment time, vacuum overhead, and hold removal time.

Space overhead. The space requirements for the four schemes
using the four queries are shown in Figure 2 (using logarithmic
scale for space requirement on WORM). Holding all tuples costs
almost 74 times than holding just the 3 columns of the tuples. In
our setup, the Bloom filter approach requires the least amount of
space.

However, for aggregation queries, the scenario changes. For Q5,
the cost of all schemes except the first scheme of storing results is
the same as Q4. But the space requirement of the scheme of stor-
ing results only, is drastically small – equal to the resulting value
(4 bytes).

Hold placement time. The hold placement times are shown in
Figure 3. Here, the scheme for storing the view results incurs the
least amount of time. The cost of storing the tuples incurs the high-
est time overhead, as it has to store a lot of data.
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Figure 4: Hold removal time.

Vacuuming time. The vacuuming overheads for the first two
schemes (storing results and storing tuples) are zero. For the hold
counter scheme, it is the time to query the hold counter relation.
For the Bloom filter based scheme, it is the time to read the exist-
ing Bloom filters, and to check each tuple against them. We assume
that at each vacuuming session, 1% of the tuples, i.e., 14,556 tuples
expire, and would have to be checked against the hold counter re-
lation or the Bloom filters. For this part of the experiment, we also
assume that the holds Q1 (a single hold) and Q3 (5 overlapping
holds) are present. We precomputed the list of expired tuples, and
measured the time overhead in terms of the time needed to query
the hold counter table, and the time to match the tuples against the
Bloom filters. Our experiments show that for a single hold, hold
counter scheme requires about 0.04 seconds to check for 14,556
expired tuples, whereas the Bloom filter takes about 0.06 seconds
to check these tuples against the Bloom filter. But when we have
multiple holds at the same time (such as Q3), hold counters still
need the same time (0.04 seconds), while the Bloom filter takes ap-
proximately 0.45 seconds to check against the five Bloom filters. It
shows that the vacuuming overhead is lower for the hold counter
scheme when there are many holds.

Hold removal time. We measured the time to remove a hold. Fig-
ure 4 shows the hold removal times. For the hold result, hold tuple,
and Bloom filter schemes, the time to remove hold is simply the
time to delete the corresponding (expired) file from the WORM.
(Since the file’s retention period is over by then, the WORM al-
lows removal of the file). So, hold removal time for these schemes
is extremely small. But for the hold counter scheme, removal of a
hold involves sending a query to the hold counter relation to remove
the rows corresponding to the removed hold. In our setup, it took
MySQL 2.135 seconds to remove about 0.7 million entries from the
hold counter table for Q3, Q4, and Q5. While this is higher com-
pared to the other schemes, the absolute time is still reasonable.

8. RELATED WORK
The concept of litigation hold is new in the context of relational

databases. Most of the existing research focus on forensic analy-
sis of databases. However, litigation holds are special cases where
the usual database retention policies are suspended. That is, in liti-
gation holds, legitimate database operations on held should be sus-
pended. The same operation would not have caused an audit failure
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if the hold were not in place.
Borisov et al. described a scheme for placing litigation hold on

unstructured data in [5]. This scheme for documents allows only
restricted queries on the keyword index. Auditors cannot access
documents not under a litigation hold. Unfortunately, this scheme
does not apply to the fine grained structured data stored in relational
databases.

Researchers have looked into issues related to data retention poli-
cies in relational databases. Ataullah et al. addressed the related
problem of writing and enforcing tuple retention and shredding
policies, expressed as restrictions on the operations that can be per-
formed on views [2]. Their approach relies on the DBMS to en-
force the policies. Here we discuss the related and complimentary
problem of how to enforce these retention requirements when the
DBMS operator himself is a potential adversary.

Recently, researchers have developed a framework for auditing
changes to a database while respecting retention policies [11, 12].
This framework enables policy based redaction and removal of sen-
sitive information from the database and its history, and handling
the uncertainties in answering audit queries from the resulting in-
complete table and history. The litigation hold schemes described
in this paper can be used on conjunction of such schemes.

Many regulations require shredding of expired data. Often com-
panies have incentives for shredding old and expired data from a
database. Several techniques have been proposed for scrubbing a
database. For example, Stahlberg et al. discussed techniques for
removal of any trace of a deleted tuple in [20].

Regulatory compliance database architectures have been proposed
in [14]. This scheme prevents an attacker from surreptitiously mod-
ifying unexpired data items. The techniques proposed here can
augment such compliance schemes to allow placement of litigation
holds.

Snodgrass et al. discussed forensic analysis of databases in [19].
Such schemes allow detection of database modifications. However,
removal of an expired tuple is indeed a legitimate operation, only
suspended under specific condition. These forensic analysis tech-
niques need to be augmented to take into account litigation holds
using our schemes.

Various security problems related to outsourced database and file
management have been discussed by many researchers [9, 10, 13,
17, 22]. Such schemes address the special case where the data
owner is trustworthy, but the database server is not trusted. But
in the compliance storage scenario, the data owner/operator is the
primary adversary and has an incentive to tamper data.

9. SUMMARY
Litigation is an inevitable part of doing business. In this paper,

we provided the first formalization of litigation holds in the con-
text of relational databases for long-term, high-integrity retention
of ordinary business records. We analyzed the legal rules and reg-
ulations to arrive at a set of research problems related to litigation
holds. We then proposed a series of schemes for supporting liti-
gation holds in databases for records retention, with different se-
curity and performance guarantees. Our schemes guarantee that
once a litigation hold is placed, database content under the litiga-
tion hold cannot be surreptitiously removed from the database, even
by the database administrator. The schemes we defined have dif-
ferent tradeoffs, which we displayed using empirical evaluation of
different stages of the schemes.

While the law as of now does not precisely define the process
of setting litigation holds, we posit that in near future, we will get
clearer guidelines on the scope and extent of litigation holds on
database data. This paper is the first step towards a systematic anal-

ysis of the litigation hold problem, and providing scalable, efficient
solutions.
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