
Adaptive Join Processing in Pipelined Plans

Kwanchai Eurviriyanukul, Norman W. Paton, Alvaro A.A. Fernandes, Steven J. Lynden
School of Computer Science, University of Manchester

Oxford Road,Manchester M13 9PL, UK
(eurvirik,norm,alvaro,slynden)@cs.man.ac.uk

ABSTRACT
In adaptive query processing, the way in which a query is
evaluated is changed in the light of feedback obtained from
the environment during query evaluation. Such feedback
may, for example, establish that misleading selectivity esti-
mates were used when the query was compiled, leading to
the optimizer choosing an inappropriate join order or un-
suitable join algorithms. This paper describes how joins can
be reordered, and the join algorithms used replaced, while
they are being evaluated in pipelined plans. Where joins
are reordered and/or replaced during their evaluation, the
approach avoids duplicating work that has already been car-
ried out, by resuming from where the previous plan left off.
The approach has been evaluated empirically, and shown to
be effective for improving query performance in the light of
misleading selectivity estimates.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing

General Terms
Algorithms, Experimentation, Performance

1. INTRODUCTION
Adaptive query processing [2, 9] changes aspects of query

evaluation while a query is executing, to take account of
information about the query or its environment gathered
from runtime monitoring. For example, predicate selectiv-
ity estimates may be revised to reflect correlations between
columns that were not considered by the cost model of the
optimizer.

Several proposals have been made that support join re-
ordering during query evaluation. For example, [14, 17, 2]
describe how an optimizer can be invoked at query runtime
to identify a new plan in the light of information on progress
to date. However, these approaches are coarse grained in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

the sense that they either reuse complete join results or
restart join evaluation from scratch, discarding results pro-
duced using an earlier plan. As a result, they are not well
suited for use in pipelined plans in which many operators are
likely to be being evaluated simultaneously. Where pipelined
query processing has been addressed, proposals have either
required post-processing in the form of stitch-up plans [13]
or have been limited to a single join algorithm [16]. As
an alternative to plan reordering, Eddies [1] change the or-
der in which tuples are routed through joins continuously
during query evaluation. As such, they can be extremely
fine grained, but obtain this flexibility by materializing (e.g.
[18]) rather more intermediate data than may be required
by other strategies.

This paper describes an approach to join reordering for
use with pipelined plans in which previous work is reused,
no post-processing is required, no state is maintained solely
to support adaptation, and many different join operators are
supported. The contributions of this paper are as follows:
(i) algorithms that compute the work remaining to be done
by a pipelined plan containing select, project and join opera-
tors; (ii) a characterization as to how frequently the circum-
stances arise in which the algorithms can be used safely; (iii)
a description of the implementation of the algorithms and
the approach used to monitor progress at runtime; and (iv)
an experimental evaluation demonstrating a range of cir-
cumstances in which significant performance improvements
have been obtained.

The remainder of the paper is structured as follows. Sec-
tion 2 provides the technical context for the later results, in
particular indicating how the work that remains to be done
by a partially evaluated query can be described algebraically.
Section 3 describes the adaptive technique and the states in
which it can be applied. Section 4 considers how frequently
query plans may be expected to be in a state that enables
them to be adapted. Section 5 describes how the approach
has been implemented in practice, and Section 6 presents
the results of an experimental evaluation. Section 7 relates
the results to other work, and Section 8 concludes.

2. DESCRIBING PARTIALLY EVALUATED
QUERIES

2.1 Plans, Operators and Operator States
A query plan P can be represented by a tree consisting

of a set of operator nodes and a set of edges representing
data that flows from child nodes to parent nodes. Given a
node N , P N denotes the sub-plan of P rooted at N . Given

183



a query plan P , [[P ]] denotes the result of evaluating P .
In this paper, a distinction is drawn between logical and

physical algebras. In essence, a logical algebra contains op-
erators that perform an operation on tables (such as select,
project or join), and a physical algebra may annotate these
operators to indicate which specific implementation of an
operator is to be used (thereby, for example, distinguishing
between a hash join and a merge join).

Throughout the paper, an equality join condition and bag
semantics are assumed, and R and S denote the left and
right operands of a join, respectively. Four representative
join algorithms are considered:

Hash Join (
H
./): All R-tuples are read and stored in a hash

table, indexed on the join attribute(s). Then, each S-tuple
is read in turn and used to probe the hash table to identify
matching R-tuples.

Index Nested-Loop Join (
IN
./ ): Each R-tuple is read in

turn and its join attribute(s) are then used to search an in-
dex on S and to identify the tuples that match.

Symmetric Hash Join (
SH
./ ): Each tuple from either R or

S is read in turn and is both stored in the hash table for R

(or S, respectively) and used to to probe the hash table for
S (or R, respectively). Any matching tuples are returned.

Merge Join (
M
./): Given inputs R and S sorted on join at-

tribute(s) J , let v be the next smallest J-value occurring in
both R and S. Tuples from R and S are read into corre-
sponding caches until the last such tuples read have a J-
value that is different from v. At this stage, leaving out
the last tuples read in each cache, the tuples in the two
caches are joined using a nested loop. Then, the caches are
cleared of all but the last tuples read, and the process re-
peats. Where the last tuples read have different J-values,
tuples are read, from either R or S as needed, until the
corresponding J-values coincide.

In this paper, pipelined evaluation is described in terms
of the iterator model [12], although the principal notions
are independent of the specific implementation. The itera-
tor model has three principal functions: Open, Next and
Close: Open prepares the operator for result production;
Next produces one result at a time, and Close performs
cleaning up. A state-transition diagram can be used to cap-
ture the evaluation trace of operators implemented using the
iterator model. These states are labelled as I, O, O′, N, N′, C
and C′ in Figure 1.

In this paper, the primary emphasis is on adapting query
plans in the states N′, as other states are either in-progress
states or else are only reached before or after the operator as
a whole has been evaluated. In state N′, a call to the Next

function has been evaluated and its result returned. If the
operator has not returned all its results, the Next function
will be called again, and the operator returns to state N. On
the other hand, if the operator has returned all its results,
the Close function is called and the operator moves to state
C and then C′.

However, in addition to N′ states, we also support adap-
tation during the O state of hash join. This is because hash
join blocks in state O while the hash table is populated. As
a result, adapting only in the N′ state in plans that con-
tain hash join significantly reduces opportunities for timely
intervention.

2.2 Partially Evaluated Queries
Expressions in logical or physical algebras, such as (R ./

S), describe query plans, but provide no way of describing
the runtime properties of the plan, such as the data produced
by an operator at a point in its evaluation. To describe not
only the plan, but also its evaluation status, some additional
notation is introduced. Given a sub-plan P N , let I be a child
node of N, and [[I ]] the bag that results from evaluating I .

• I+ is the portion of [[I ]] that has been returned by
previous calls to the Next() function of I . Therefore,
I+ ⊆ [[I ]].

• I− is the portion of [[I ]] that has yet to be returned
by subsequent calls to the Next() function of I . As a
result, [[I ]] = (I+ ∪ I−).

• last(I) is the singleton set containing the last tuple
added into I+.

2.3 Quiescent States
Section 2.2 introduced a notation for describing the state

of the inputs to an operator during operator evaluation.
However, the relationship between the input read by an op-
erator and the output produced by an operator may be dif-
ferent at different points in its evaluation, i.e., at different
occurrences of N′. To see this, consider that during the eval-

uation of a hash join R
H
./S, the operator is in state N′, and

the inputs read by the algorithm are R+ and S+. If we
assume that the left operand is used to populate the hash
table, then R+ = [[R]] (because the hash table must be fully
populated before any results can be produced). The tuples
produced so far by the algorithm may not simply be those
denoted by R+ ./ S+, because the last tuple read from S
may join with many tuples in R. As such, the tuples pro-
duced by the operator will only be R+ ./ S+ if last(S+) has
been joined with every matching tuple in R.

A quiescent state for an operator is one in which the result
produced by the operator can be precisely defined in terms
of the inputs to the operator at that point in the execution.

The following are characterizations of the quiescent states
for the example join operators in N′ states:
Hash Join: The last S-tuple read has been joined with all
matching R-tuples in the hash table.
Index Nested-Loop Join: The last R-tuple read has been
joined with all matching S-tuples that were retrieved by a
lookup on an index on S.
Symmetric Hash Join: The last tuple read from either R

or S has been joined with all matching tuples in the hash
table for S or R, respectively.
Merge Join: All tuples prior to the last R-tuple (resp.
S-tuple) read have been joined with all matching S-tuples
(resp. R-tuples) and the join attribute value(s) of the last
R-tuple (resp. S-tuple) read is different from that of the last
R-tuple (resp. S-tuple) joined.

In practice, the test for quiescence in N′ states is straight-
forward to implement, normally involving a simple test on
the state of the operator. Indeed, the other operators con-
sidered in this paper, namely select (σ), project (π), union
(∪), and scan, are always quiescent in N′. We have extended
the operator interface with an isQuiescent function, which
determines from the internal state of the operator whether
or not it is quiescent in N′.

184



Figure 1: The state-transition diagram of an iterator.

In addition to N′ states, we also support adaptation dur-

ing hash table population for
H
./, and as a result must also

identify quiescent states when operators are in I, O and O′

states. Quiescence is normally trivial to characterize in these
states; as no result has yet been produced, the remaining
work to be done is all the work there was to do in the first

place. However, as
H
./ populates its hash table in Open, to

avoid repeating evaluation of part of its left input, we need
a more precise characterization that takes account of its in-
ternal state, which is discussed more fully in Section 2.4.

2.4 Describing Partial Results
When an operator is in a quiescent state, it is possible

to define its result algebraically in terms of the data it has
consumed. As a consequence, it is also possible to define
algebraically the portion of the result that remains to be
produced, as described for specific contexts below.

2.4.1 Partial Results in N′ States
This subsection defines intermediate and remaining oper-

ator results in N′ states. The precise description of such re-
sults enables the work that remains to be done by a pipelined
plan to be defined precisely when all the operators in the
plan are in quiescent N′ states, as described in Section 3.

Table 1 describes both the intermediate results produced
by the different operators at quiescent states and the corre-
sponding portion of the result that has yet to be returned.
As an example, for hash join with operands R and S, at a
quiescent N′ state, every tuple that has been read into the
hash table (i.e., R+ = [[R]]) has been joined with every tuple
that has been read from the other operand (i.e., S+). To
complete the evaluation, every tuple in R+ = [[R]] needs to
be joined with the tuples that have yet to be read from S

(i.e., S−). A similar justification lies behind the other en-
tries in Table 1. The validity of the entries in the table has
been proved [10].

When join operators in quiescent N′ states are to be re-
ordered, the rightmost column in Table 1 describes the por-
tion of a join that remains to be evaluated by the new plan.

2.4.2 Partial Results in I, O and O′ States
This subsection defines intermediate and remaining re-

sults for operators in I, O and O′ states. The precise de-
scription of such results enables the work that remains to be
done by a pipelined plan to be defined precisely when one of
the operators is a hash join that is populating its hash table
in Open, as described in Section 3.

Table 2 describes both the intermediate results produced
by the different operators at quiescent states and the corre-
sponding portion of the result that has yet to be returned.
Most of the entries are trivial, as results are not returned

Table 1: The intermediate result and the remainder
of operators in a quiescent N′

Operator Intermediate Remainder
Result

σR σR+ σR−

πR πR+ πR−

scan(R) scan(R+) scan(R−)
R ∪ S R+ ∪ S+ R− ∪ S−

R
H
./S R+./S+ R+./S−

R
IN
./ S R+./S R−./S

R
SH
./ S R+./S+ (R+./S−) ∪ (R−./S+)∪

(R−./S−)

R
M
./S (R+ − last(R+))./ (last(R+) ∪ R−)./

(S+ − last(S+)) (last(S+ ∪ S−))

Table 2: The intermediate result and the remainder
of operators in I, O and O′.

Operator State Intermediate Remainder
Result

σR I, O, O′ ∅ σR

πR I, O, O′ ∅ πR

scan(R) I, O, O′ ∅ scan(R)
R ∪ S I, O, O′ ∅ R ∪ S

R
H
./S I ∅ R ./ S

R
H
./S O ∅ (R+ ∪ R−) ./ S

R
H
./S O′ ∅ R+ ./ S

R
IN
./ S I, O, O′ ∅ R ./ S

R
SH
./ S I, O, O′ ∅ R ./ S

R
M
./S I, O, O′ ∅ R ./ S

by Open. However, in R
H
./S the definitions for O and O′

reflect the fact that R is evaluated and the hash table pop-
ulated by Open. Hash join is only considered quiescent in
O if last((+R)) has been inserted into the hash table.

3. COMPUTING THE REMAINING WORK
This section describes the adaptive strategy that supports

join reordering and operator replacement for a plan P . The
overall approach to adapting a query plan is as follows: (1)

185



proc GetRemainingN′(PhysicalPlan P ) → LogicalPlan
case P of

scan(R): return scan(R−)
σPred(R): return σPred(GetRemainingN′(R));
πCols(R): return πCols(GetRemainingN′(R));
R ∪ S:
return GetRemainingN′(R)) ∪ GetRemainingN′(S);

R
H
./S:

return scan(P.GetHashTable()) ./ GetRemainingN′(S);

R
IN
./ S:

return GetRemainingN′(R) ./ PhysicalToLogical(S);

R
SH
./ S:

j1 = scan(P.GetLeftHashTable()) ./ GetRemainingN′(S));
j2 = GetRemainingN′(R) ./ scan(P.GetRightHashTable());
j3 = GetRemainingN′(R) ./ GetRemainingN′(S));
return j1 ∪ j2 ∪ j3;

R
M
./S:

lhs = scan(R.GetLast()) ∪ GetRemainingN′(R);
rhs = scan(S.GetLast()) ∪ GetRemainingN′(S);
return lhs ./ rhs

end case

Figure 2: Compute the work that remains to be
done by a plan P

proc PhysicalToLogical(PhysicalPlan P ) → LogicalPlan
case P of

scan(R): return scan(R)
σPred(R): return σPred(PhysicalToLogical(R));
πCols(R): return πCols(PhysicalToLogical(R));
R ∪ S:
return PhysicalToLogical(R) ∪ PhysicalToLogical(S);

R
H
./S or R

IN
./ S or R

M
./S or R

SH
./ S:

return PhysicalToLogical(R) ./ PhysicalToLogical(S);
end case

Figure 3: Convert a physical algebraic expression
into logical algebra

monitor the progress of the currently executing physical plan
P to revise selectivity estimates that were used to choose P ;
(2) compute the work that remains to be done by P , in the
form of a logical plan P ′ expressed using the notation in-
troduced in Section 2; (3) submit P ′ to a query optimizer
to select an effective physical plan (call it P ′ too) given the
statistics collected in Step (1); and (4) reuse state from P

in P ′ as required; for example, this could be cached opera-
tor state or the current position in an evaluation, and then
evaluate P ′. This section focuses on Step (2) above. Steps
(1), (3) and (4) are considered further in Section 5.

3.1 Remaining Work in Quiescent N′ States
This subsection describes an algorithm that computes the

work remaining to be done by a plan P , building on the
characterization of the work that remains to be carried out
by a plan in Table 1. The assumption is made that every
join node in P is in a quiescent state. Where every node is
quiescent, the result of every operator in P can be defined
algebraically in terms of its inputs.

Throughout this paper, the physical algebra contains the

operators σ, π, ∪,
IN
./ ,

H
./,

SH
./ ,

M
./ and scan, and the logical

algebra contains the operators σ, π, ∪, ./ and scan. In ad-
dition to accessing database tables, scan operators are able
to provide access to collections that represent state cached
by operators. The emphasis is on non-blocking operators
because of our focus on pipelined plans, although we show
how the approach can be applied to blocking operators by
supporting adaptation during the construction of the hash
table in hash join.

GetRemainingN′ in Figure 2 takes as input the physical
algebra of plan P representing the query that is being evalu-
ated, and returns a logical relational algebra expression that
describes the result that remains to be computed by P .

For
M
./, GetRemainingN′ uses GetLast to produce, for

each of the join’s operands, a scan operator that provides

access to the last tuple read from the operand. For
H
./ or

SH
./ ,

GetRemainingN′ uses the GetHashTable,
GetLeftHashTable and GetRightHashTable operations
to produce a scan operator for each hash table constructed

by the join. The scan operators produced by
H
./ and

SH
./

provide indexed access to the tuples cached in a hash table,
where the index attributes are those used to build the hash
table in order to evaluate the join predicate. The interface
provided here is the same as the scan operator for access-
ing indexed persistent collections, which is used as the right

operand of
IN
./ .

GetRemainingN′ traverses the query plan rooted at P ,
and for each operator visited identifies the work that remains
to be done, from Table 1. Notice that where the expression
in the Remainder column contains an operand of the form
I+ for some I , this data is cached by the operator, so there
is no need to recompute its value.

Where a subplan has to be evaluated in its entirety, as

is the case for the right hand operand of
IN
./ , the procedure

PhysicalToLogical from Figure 3 is called to convert the
physical algebra expression into a corresponding logical al-
gebraic expression.

For example, for the query:

(((A
IN
./B)

IN
./C)

IN
./D),

GetRemainingN′ returns:
(((A− ./ B) ./ C) ./ D).
The index nested loop joins don’t maintain intermediate

state, and the value that remains to be computed is that
obtained by joining the data that has yet to be read from
A, namely A−, with the data in B, C and D (see the entry

for
IN
./ in Table 1).

There are circumstances in which, although GetRemainingN′

correctly characterizes the work that remains to be done,
computing those results may be problematic. For example,

if R
IN
./S is the original plan, the work remaining to be done

is R−./S. By the commutativity of join, this is equivalent to

S./R−. However, in practice, if the R− was to be used as the

right operand of an
IN
./ , index lookups would access the com-

plete table, and not only the portion R−. As a result, tuples
from R+ could contribute to the result of the join more than
once, thereby leading to duplicates. Thus when processing
expressions generated by GetRemainingN′, the optimizer

186



proc GetRemainingO(PhysicalPlan P , Operator h)
→ LogicalPlan

if P.GetRoot() ∈ Predecessors(h)
case P of

scan(R): return scan(R)
σPred(R): return σPred(GetRemainingO(R, h));
πCols(R): return πCols(GetRemainingO(R, h));
R ∪ S:
return GetRemainingO(R, h) ∪ GetRemainingO(S, h);

R
H
./S:

// Hash join is in O′ and thus has a populated hash table
return

scan(P.GetHashTable()) ./ GetRemainingO(S, h);

R
IN
./ S or R

M
./S or R

SH
./ S:

return GetRemainingO(R, h) ./ GetRemainingO(S, h);
end case

else if P.GetRoot() = h then

// Hash join is in O and thus has partly populated hash table
R = h.GetLeft();
S = h.GetRight();
return (P.GetHashTable() ∪ GetRemainingN′(R)) ./

GetRemainingO(S, h)
else // P.GetRoot() ∈ Successors(h)
case P of

scan(R): return scan(R)
σPred(R): return σPred(GetRemainingO(R, h));
πCols(R): return πCols(GetRemainingO(R, h));
R ∪ S:
return GetRemainingO(R, h) ∪ GetRemainingO(S, h);

R
H
./S or R

IN
./ S or R

M
./S or R

SH
./ S:

return GetRemainingO(R, h) ./ GetRemainingO(S, h);
end case

end if

Figure 4: Compute the work that remains to be
done by a plan P containing the hash join operator
h in state O.

must not construct plans in which the right operand of
IN
./

is of the form T− for any table T . Note that there are al-
ternative approaches (e.g. [16]) that allow the computation
of duplicates that are subsequently removed, or that assume
the presence of ordered row identifiers that are easily filtered,
but such approaches are not considered further here.

3.2 Remaining Work when Hash Join is Eval-
uating Open

This subsection provides an algorithm that computes the
work remaining to be done by a plan P , in which the Open

operation of a hash join operator is being evaluated, and thus
in the process of populating its hash table. As we assume
that it is not possible to ask an operator which state of
execution in Figure 1 it is in, we need to be able to infer this
from the location of the operator in the plan.

Without loss of generality, we assume that all Open op-
erations call Open on their children before carrying out any
operator specific behaviors, and that binary operators call
Open on their left child before calling Open on their right

child. In the case of
H
./, for example, this means that both

children are opened (recursively down to the leaves) before
the hash table starts to be populated. Under this assump-
tion, it follows that whenever there is algorithm-specific be-
havior in the implementation of Open, this behavior occurs

at a place in a sequence that is determined by the occurrence
of that operator in a postorder traversal of the operator tree
representing the query plan.

Consider P N , any subplan of a plan P rooted on an op-
erator N . Given N , let the following two sets of operators
in P be defined:

1. Predecessors(N) contains the operators that are vis-
ited before N in the postorder traversal of P that un-
folds from a call to the Open operation of the root
node of P .

2. Successors(N) contains the operators that are visited
after N in the postorder traversal of P that unfolds
from a call to the Open operation of the root node of
P .

The predecessors and successors of N can be used to infer
the states of other operators in the plan as follows. Given
the state of an operator, the work that remains to be done
by the operator can be read from Table 2.

Let N be in O and p ∈ Predecessors(N). Then, if p

is not a left-hand descendent of a
H
./ in Predecessors(N)

then p is in O′. If p is a left-hand descendent of a
H
./ in

Predecessors(N), then p will have been fully evaluated by

the Open of the
H
./, and the result of the subplan of which

it is part will have been cached in the hash table of the
H
./.

Such a result is represented by the R+ in the Remainder

column of
H
./ in state O′ in Table 2. Among the operators

considered in this paper, only
H
./ can cause a child to move to

a state subsequent to O′ in Figure 1 as a result of executing
algorithm-specific behavior in its Open operation.

Again, let N be in O, but now let s ∈ Successors(N). If
s is not an ancestor of N then s is in I. Alternatively, if
s is an ancestor of N then s is in O, and, because of our
assumption that any operator-specific behavior takes place
after calls to Open on children nodes, no operator-specific
behavior will have been carried out by s.

Given that N is known to be in state O, we have now
identified how to determine the state of every operator in
P , and thus can identify the work remaining from Table 2.

GetRemainingO in Figure 4 takes as input a plan P rep-
resenting the query that is being evaluated and a hash join

h = R
H
./S in state O, where h is quiescent in N′ – this is im-

portant because the plan that computes the remaining work
depends on R−. Note that, if so, last(R) has been inserted
into the hash table of h. P is expressed in a physical rela-
tional algebra expression, and GetRemainingN′ returns a
logical relational algebra expression that describes the result
that remains to be computed by P .

As an example, for the physical plan:

(((A
H
./B)

IN
./C)

IN
./D),

where h is A
H
./B, GetRemainingO′ returns:

((((A+ ∪ A−) ./ B) ./ C) ./ D),
where A+ is cached in the hash table. The hash join has

yet to return any data, so the work that remains to be done
includes the evaluation of the remainder of A and all the
joins.

187



Operator Max Probability
(o) |QuiescentN′|o Estimate

R
H
./S |S| 1

|R|∗selectivity(R./S)

R
IN
./S |R| 1

|S|∗selectivity(R./S)

R
SH
./ S max(|R|, |S|) max(|R|,|S|)

|R|∗|S|∗selectivity(R./S)

R
M
./S max(|R|, |S|) max(|R|,|S|)

|R|∗|S|∗selectivity(R./S)

Table 3: The probability of that a join operator is
quiescent when it returns a result tuple.

4. OPPORTUNITIES FOR ADAPTATION
A precondition on the application of GetRemainingN′

from Section 3 is that all the operators in a subplan to which
it is applied are quiescent. Thus, in order to establish the
practicality of the approach, one must establish that join
operators, and in particular compositions of join operators
in a subquery, are quiescent simultaneously often enough in
practical circumstances. The probability that an operator
o is quiescent in state N′ (i.e. when a tuple has just been
returned) can be calculated as follows:

ProbOperatorQuiescence(o) =
|QuiescentN′|o

|N′|o
(1)

where |QuiescentN′|o is the number of quiescent N′ states
of o, and |N′|o is the number of N′ states if o, where QuiescentN′

o

⊆ N′

o.
Let R and S be the inputs of a join and |R|, |S| their

respective cardinalities. The maximum number of quiescent
states that each join algorithm can be in during its evalu-

ation is stated in Table 3. To take an example, R
H
./S is in

a quiescent state whenever the last S-tuple read has been
matched with every R-tuple. Thus the maximum number of
quiescent states is the number of S-tuples. The number of
quiescent states is less than this whenever there are tuples
in S that don’t match any tuples in R.

The numbers of tuples in a join result can be computed
using the following equation, where the selectivity of a join is
the fraction of the tuples in the cross product that appears in
the result. The value of the join selectivity can be estimated
in a range of different ways (e.g. see [11]).

|N′| = |R| ∗ |S| ∗ selectivity(R./S) (2)

Substitution of the maximum number of quiescent states
in Table 3 and the right-hand side of Equation (2) into the
right-hand side of Equation (1) gives an estimate of the prob-
ability that each join algorithm is quiescent when it returns
a tuple, as shown in the rightmost column of Table 3.

For a query plan P , the probability of the plan being
quiescent is the probability that all the operators in the plan
are quiescent at the same time when a tuple is produced,
which is the product of their individual probabilities:

ProbP lanQuiescence(P ) =
∏
o∈P

ProbOperatorQuiescence(o)

Relation Cardinality

OWNER (O) 500,001
CAR (C) 715,142

DEMOGRAPHICS (D) 500,001
ACCIDENTS (A) 2,145,438

TIME (T) 25,523
LOCATION (L) 269

Table 4: Tables from the DMV data set.

As noted in Section 3, all of σ, π, ∪ and scan are quiescent
whenever a tuple is returned

The probability model has been applied to queries over
a Department of Motor Vehicles (DMV) database and data
generator obtained from IBM Almaden. The cardinalities of
the tables used are stated in Table 4. Table 5 indicates how
frequently quiescent states occur in several example queries
involving hash joins for the database in Table 4. The Number
of Quiescent States column indicates the numbers of times
when all operators are quiescent at the same time. The
Actual Prob(ability) column states the probability that all
the operators in the query are quiescent when the query
produces a result, on the basis of experimental runs of the
queries. The Estimated Prob(ability) column is calculated
based on the formula in Table 3, where the join selectivity
values used were obtained experimentally (and as a result,
are essentially correct).

The results in Table 5 show that quiescent states are quite
common for most of the queries, and thus that there is un-
likely to be lengthy delay between opportunities for adap-
tation. The probability estimates, which are known to be
upper bounds, were also shown to be reasonably accurate
for representative examples (as explored further in Section
6). These estimates could be improved, for example by tak-
ing foreign key information into account; we do not consider
this further here, as the purpose of this section has not been
to provide highly accurate predictions, but rather: (i) to
identify the factors that determine how frequently all the
operators in a subquery can be expected to be in quiescent
states simultaneously; and (ii) to give an indication as to
how frequently co-occurrence of quiescent states is in prac-
tice. The overall lesson is that the frequency with which a
complete subquery is quiescent can be estimated with rea-
sonable reliability from widely available statistics; in prac-
tice, this frequency is usually sufficiently large to allow the
adaptive strategy to be widely used.

5. IMPLEMENTATION

5.1 Architecture
The principal components and their relationships are il-

lustrated in Figure 5. In the figure, standard static query
processing is depicted to the left, where the query is first
compiled and optimized, with the optimizer selecting plans
on the basis of statistics from the catalog. The architecture
has been implemented in Java, using the XXL [7] libraries
to access secondary storage, and a greedy algorithm to order
joins based on predicted intermediate result sizes [11]. The
resulting logical plan is then traversed by a heuristic physical
join selection algorithm that uses a cost model to determine
which of the physical operators should be used to evaluate
each of the joins. When a query is initially optimized, all

188



Query Number Number of Actual Estimated
of Quiescent Prob. Prob.
Results States

O
H
./C 715,142 715,142 1.000 1.000

O
IN
./ C 715,142 426,992 0.597 0.699

O
M
./C 715,142 426,991 0.597 1.000

O
SH
./ C 715,142 715,115 1.000 1.000

(O
H
./C)

H
./A 2,145,438 2,145,438 1.000 1.000

(O
IN
./ C)

IN
./ A 2,145,438 426,992 0.199 0.233

(O
M
./C)

IN
./ A 2,145,438 426,991 0.199 0.333

(O
SH
./ C)

SH
./ A 2,145,438 2,145,411 1.000 1.000

Table 5: Frequency of quiescent states.

User

Query

Compiler

Optimizer

Logical 
Algebra

Evaluator

Physical 
Algebra

  DB

Statistics

Coordinator

Optimizer

GetRemainingN’

Monitoring
Data

Logical 
Algebra

Statistics

Combine 
Plans

Physical 
Algebra

Physical  
Algebra

Results

 Catalog

Physical  
Algebra

GetRemainingO

Logical 
AlgebraPhysical 

Algebra

Figure 5: Architecture of adaptive query processor.

available selectivity estimates are for atomic predicates, and
the cost model assumes that predicates are independent (i.e.
there are no correlations between values of attributes in the
database).

The pseudocode for the top level of the query processor is
provided in Figure 6. Given a Query and a Threshold that
indicates the minimum number of results between adapta-
tions, RunQuery returns the bag of tuples that consitute
the result of the query. In essence, the query is first com-
piled and optimized, subsequent to which the main program
loops, fetching tuples from the result. Every Threshold tu-
ples adaptation is considered, and an alternative plan is gen-
erated for comparison with the existing plan if the reopti-
mization heuristic is satisfied and the plan is quiescent. The
Threshold is set to 100 in most of the experiments; this value
needs to be low enough to allow timely adaptation, but high
enough to prevent the overhead for considering reoptimiza-
tion at a reasonable level, as explored further in Section 6.

As evaluation takes place, monitoring data on selectivities

proc RunQuery(String Query, Int Threshold) → Bag
Int Count = 0;
Bool Adapting = false;
Bag Result = {};

PhysicalPlan P = Optimize(Compile(Query));
P.Open();
while (P.HasNext())
if (++Count ≥ Threshold)
if CheckReoptHeuristic()
if P.IsQuiescent()

Count = 0;
PhysicalPlan P’ = Optimize(GetRemainingN′(P));
if (P’.GetCost() < P.GetCost())

P = CombinePlans(P’,P);
end if

end if
end if

end if
Result.Add(P.Next());

end while
P.Close();
return Result;

Figure 6: Top level program, including invocation of
adaptations.

is collected; both selectivity estimates for atomic and com-
plex conditions may be revised at query runtime, thereby
allowing selectivity estimation to take into account correla-
tions between predicates used in the query. These selectivity
estimates are used both for reoptimization and in the reop-
timization heuristic, which considers reoptimization only if
the cost or the cardinality estimated for the currently execut-
ing plan using dynamically obtained statistics has changed
by at least 20% compared with the cost or cardinality for
the same plan when it was selected, an approach similar to
that adopted in [14]. A sensitivity analysis was carried out
that showed that overall performance was affected little by
significant changes to the threshold. We also evaluated a
heuristic based on changes to the estimated cost of the plan,
but this approach had higher overheads and generally gave
rise to the same decisions as its less expensive counterpart.

The same optimization strategy is used for initial opti-
mization and reoptimization, although the original optimizer
has been changed slightly to support queries referring to
partial results. The best plan proposed by the optimizer is
compared with the predicted cost of the existing plan using
the updated statistics, and evaluation continues using the
plan with the lowest predicted cost.

When the new plan is chosen for evaluation, all occur-
rences of table names of the form R+ or R− need to be
made to refer to the specific objects that represent them in
the original plan. Hence, CombinePlans traverses the ex-
isting (P ) and new (P ′) plans, updating the new plan to
include references to the objects in the existing plan from
which remaining results or cached intermediate state can be
obtained. In essence, whenever P ′ contains an operator of
the form scan(R−), the Java object representing the scan

in P ′ will be the same instance as was used for scanning
R in existing plan P . Furthermore, whenever P ′ contains
an operator of the form scan(R+), R+ will be implemented

189



Operator Selectivity
(Op)

σR
|resp(op)|

|resp(R)|

R
H
./S

|resp(op)|

|R|∗|resp(S)|

R
IN
./S

|resp(op)|

|resp(R)|∗|S|

R
SH
./ S

|resp(op)|

(|resp(R)|∗|S|+|resp(S)|∗|R|)/2

R
M
./S

|resp(op)|

(|resp(R)|∗|S|+|resp(S)|∗|R|)/2

Table 6: Estimating operator selectivity

over the data structure that materialises R+ in P . By this
means, the new plan P ′ obtains both progress information
(encapsulated within the objects implementing the scan op-
erators) and intermediate result state from existing plan P .

The algorithm in Figure 6 indicates how adaptation is
considered at the outer level of query evaluation, thereby
supporting adaptation in N′ states following the approach
described in Section 3.1. Similar code is implemented within
the Open operation of hash join, to support adaptation in
its O state, following the approach described in Section 3.2.

5.2 Dynamic Selectivity Estimation
During query evaluation, the selectivities of the predicates

on σ and ./ operators are computed directly based on counts
of the numbers of tuples that satisfy them. The selectivities
are computed as described in Table 6, in which |C| repre-
sents the number of items in the collection C, and resp(Q)
represents the collection of values produced by the query or
subquery Q during the period p. We assume access to cardi-
nalities of base tables, and thus by propagation, cardinality
estimates for inputs to other operators. In practice, we are
principally interested in changes to selectivities relative to
those that informed the last optimization of the query, and
thus p is the period since the last (re)optimization. The se-
lectivity estimates will be most representative of the overall
selectivity of the predicate where the order in which tuples
are processed by operators essentially selects random tuples
from the underlying tables; the reliability of such estimates
is an active research area in its own right, and is not dis-
cussed further here [4].

The selectivity of a predicate is the proportion of the tu-
ples that satisfy the predicate, and as such can be computed
by dividing the number of tuples in a collection that satisfy
the predicate by the total number of tuples in the collec-
tion. Thus the selectivity of a predicate over a period p is
obtained by dividing the number of tuples produced during
p by a value representing the portion of the total input pro-
cessed during p. For the operator op = σR, this is straight-
forward, as both the number of tuples produced during p

(i.e. |resp(op)|) and the number of tuples from the input
considered during P (i.e. |resp(R)|) can both be measured
directly using simple counts.

For a join operator op = R ./ S, however, although the
number of tuples produced during p (i.e. |resp(op)|) can be
counted directly, the portion of the input considered needs
to be estimated, and is specific to the operator used. In
essence, the selectivity of a predicate on a join operator op

is the ratio of the size of the result of the join to the size of

the Cartesian product, i.e. |res(op)|
|R|∗|S|

.

As such, we need a way of estimating the portion of |R| ∗
|S| considered during a period p based on values that can
be measured directly (e.g. |resp(R)| and |resp(S)|). To
take hash join as an example, during any period p in which
the join produces results, |resp(R)| = 0, so we estimate the
portion of the Cartesian product considered during p as |R|∗
|resp(S)|, i.e., every tuple read from S is joined with the
whole of R, and thus the portion of the Cartesian product
that has been explored during period p is that involving all
of R and resp(S).

For symmetric hash join and merge join, during any pe-
riod p, both operands are simultaneously consumed by the
operators. Every tuple read from R (resp. S) is joined with
every matching tuple from the other operand read so far.
The portion of the Cartesian product considered during p

can be estimated as (|resp(R)| ∗ |S|+ |resp(S)| ∗ |R|)/2. It is
divided by 2 to reflect the fact that the output of these join
operators produced so far during the period p is estimated
to have been contributed by the Cartesian products of the
portion of two inputs processed so far. A similar argument

can be applied to derive the R
IN
./S entry in Table 6. The re-

liability of selectivity estimates has been an active research
area since [5], and is not discussed further here.

6. EXPERIMENTAL EVALUATION
The experiments compare the adaptive approach with static

optimization, where queries are initially optimized using ac-
curate cardinalities for all tables, but estimated selectivities
for all atomic predicates in which the selectivity of every
equality is 0.1 and of every inequality is 0.3. We used the
DMV database, which includes both data skew and corre-
lated attribute values, with the relation sizes and names as
listed in Table 4. Every query was run four times on an un-
loaded Dell Optiplex GX620 with a 3.00 GHz Intel Pentium
D, 2GB of memory, running Fedora Linux Core 5. Response
times reported are the average of the last three runs, i.e. the
queries are run warm. B+Tree indexes are constructed on
all key and foreign key columns. The inputs to merge joins
are index scan operators that traverse these indexes. The
following subsections evaluate the performance of the adap-
tations from Section 3 in N′ and O states, respectively.

6.1 Adaptation in N′ States
Experiment 1: Adapting to selectivity errors. The
aim of this experiment is to establish how effectively adapta-
tion handles errors in selectivity estimates. The performance
of the following query is compared for values of v that are
varied so that the actual selectivity ranges from 0.02 to 0.1.

Query-1:

select O.o name, A.a driver, D.d age, C.c id
from owner O, car C, demographics D, accidents A
where O.o id = C.c ownerid and O.o id = D.d ownerid

and C.c id = A.a carid and A.a id < v;

In the results, we consider two groups of joins, All Joins

consisting of {
H
./,

SH
./ ,

M
./,

IN
./} and Pipelined Joins consisting

of {
SH
./ ,

M
./,

IN
./ }. Figure 7 shows the response times for vary-

ing selectivities, where different collections of join algorithms
are made available to the adaptive infrastructure. The cap-
tions for (a) to (c), are of the form initial group – reoptimize

190



 0

 20

 40

 60

 80

 100

0.02
0.04

0.06
0.08

0.1

R
es

po
ns

e 
tim

e 
(s

)

Selectivity

Static_RT_(s)
Adaptive_RT_(s)

(a) All-All

 0

 20

 40

 60

 80

 100

0.02
0.04

0.06
0.08

0.1

R
es

po
ns

e 
tim

e 
(s

)

Selectivity

Static_RT_(s)
Adaptive_RT_(s)

(b) Pipeline-Pipeline

 0

 20

 40

 60

 80

 100

0.02
0.04

0.06
0.08

0.1

R
es

po
ns

e 
tim

e 
(s

)

Selectivity

Static_RT_(s)
Adaptive_RT_(s)

(c) Pipeline-All

Figure 7: N′ States: Exp. 1: Response times for Query-1 for different join algorithms

group, and indicate which groups of join algorithms are made
available for initial query optimization and for reoptimiza-
tion during query evaluation.

The following observations can be made: (i) In Figure
7(a), all join algorithms are made available to the optimizer
throughout. The initial plan is:

((demographics
M
./owner)

H
./car)

H
./ accidents.

As hash joins are blocking, this query only produces results
when most of the query has been evaluated, and thus evi-
dence to support optimizaton in N′ states only surfaces from
runtime monitoring as to the actual cardinality of the pred-
icate on accidents when it is too late for reoptimization to
make any difference, and thus no adaptation takes place.
The change in selectivity of the predicate has little effect
on response times, as the predicate is applied late in the
evaluation of the query.

(ii) In Figure 7(b), only Pipelined Joins are available both
for initial query planning and for reoptimization. The ini-

tial plan is ((demographics
M
./owner)

IN
./car)

IN
./accidents. As

the operators are not blocking, runtime monitoring identi-
fies the actual selectivity of the predicate on accidents early
during query evaluation, giving rise to a proposed plan for
computing the remainder of the result of the form:

(((accidents
IN
./car)

SH
./ (last(owner+) ∪ owner−))

SH
./

(last(demographics+) ∪ demographics−)).

This plan is predicted to out-perform the original for the
remaining work, so the original plan is replaced. The con-
sequence is that the selective predicate on accident is evalu-
ated much earlier, significantly reducing response times. (iii)
The Pipeline-Pipeline configuration can be seen as enabling
timely response to changes in selectivities throughout query
evaluation, but restricting the range of algorithms that are
available. Hence in Figure 7(c), only Pipelined Joins are
available for initial query planning to enable timely reopti-
mization, but all joins are available for reoptimization. With
the wider range of algorithms available, reoptimization pro-

poses the same plan as in Figure 7(b), except that
H
./ replaces

SH
./ and

IN
./ , giving rise to improved response times.

Overall, the experiment indicates that significant perfor-
mance gains can be obtained for pipelined plans, and that
a strategy in which evaluation starts using pipelined evalua-
tion to refine statistical estimates before reoptimizing in the

 0

 50

 100

 150

 200

 250

Q
uery-0

Q
uery1

Q
uery2

R
es

po
ns

e 
tim

e 
(s

)

50
100
150
200

NeverAdapt

Figure 8: N′ States: Exp. 2: Optimization overheads

 0

 50

 100

 150

 200

 250

 300

 350

 400

All-All Pipeline-Pipeline Pipeline-All

R
es

po
ns

e 
tim

e 
(s

)
Static_RT_(s)

Adaptive_RT_(s)

Figure 9: N′ States: Exp. 3: Correlated predicates

light of those statistics to use pipelined or blocking operators
can be effective.
Experiment 2: Overheads. The aim of this experiment
is to determine the overhead resulting from adaptation being
considered when no adaptation takes place.

Figure 8 shows response times for queries with two, three
and four pipelined joins, in which all non-join predicates
have a selectivity of 1, and adaptation is switched off (i.e.
the adaptive infrastructure is in place, but a new plan never
replaces the existing plan). As described in Section 5.1, a
Threshold indicates how many result tuples are produced be-
fore the system considers reoptimization. This experiment
measures response times for queries with different values for
this Threshold. Query-1 is as in Experiment 1; Query-0
joins owner, car and demographics; Query-2 joins the tables
in Query-0 to accidents and time. Figure 8 indicates that
the overheads associated with adaptivity are quite low, even
where reoptimization is considered frequently (e.g. the over-
head for Query-1 is 3.9% when reoptimization is considered

191



every 100 tuples). As the queries have predicates with se-
lectivity of 1, the cost of producing a single result tuple is
low, so the graph shows higher overheads than are generally
encountered in practice. Overheads are addressed further in
the discussion of Experiment 4.
Experiment 3: Adapting to selectivity errors result-
ing from correlations. The aim of this experiment is to
establish how effectively adaptation is able to address errors
in selectivity estimates that result from correlations between
attribute values. The following example query is used:

Query-3:
select O.o id, C.c id, D.d age, A.a timeid, T.t id
from owner O, car C, accidents A, demographics D, time T
where O.o id = C.c ownerid and O.o id = D.d ownerid

and C.c id = A.a carid and A.a timeid = T.t id
and A.a seatbelton = ’y’ and A.a driver = ’unharmed’;

Figure 9 shows response times for Query-3 run using the
same groups of join operators as in Experiment 1. The fol-
lowing observations can be made: (i) As in Experiment 1, no
reoptimization takes place in the All-All strategy. (ii) Both
Pipeline-Pipeline and Pipeline-All show substantial gains from
reoptimization, which arise from reoptimization computing
a higher selectivity (0.38) for the predicate A.a seatbelton
= ’y’ and A.a driver = ’unharmed’ than was predicted by
the optimizer (0.01) considering the equalities to be inde-
pendent, when in fact they are correlated. This change
leads to accident being placed later in query evaluation.
In both Pipeline-Pipeline and Pipeline-All, the initial plan

is (((accidents
IN
./ time)

IN
./car)

IN
./owner)

IN
./demographics. In

the Pipeline-All case, the plan produced to evaluate the re-

maining work is: ((((demographics
M
./owner)

H
./car)

H
./accidents−)

H
./time) (iii) The best overall response time is for the adap-

tive version of Pipeline-All, which at 38.88s is about 9.7%
faster than the 42.68s of the static All-All.
Experiment 4: Performance with multiple queries.
This experiment compares the performance of multiple queries
generated by a program that produces 4-way joins1 between
randomly selected tables, with varying numbers of non-join
predicates. Predicates on numerical attributes are inequal-
ities with randomly selected literals from the range of the
attribute, and predicates on strings are equalities with arbi-
trary literals from the extent of the attribute.

The scatter plots in Figure 10 show the relative perfor-
mance of the static and adaptive cases for 30 randomly-
selected queries for Pipeline-Pipeline, Pipeline-All and All-
All. The following observations can be made: (i) No adapta-
tion took place with the All-All configuration but the aver-
age overhead is small, at 1.9%. (ii) Adaptation shows signifi-
cant benefits overall; in Pipeline-Pipeline the average perfor-
mance improvement with adaptation switched on is 39.3%
and in Pipeline-All is 66.1%. (iii) The benefit in some cases
is great – in Pipeline-Pipeline, 2 of the 30 queries (Q5 and
Q13) take less than 20% of the time of their static counter-
parts, and in Pipeline-All it is 10 out of 30. (iv) In Pipeline-
Pipeline and Pipeline-All, adaptation took place for 27 and
28 of the 30 queries, respectively. (v) The average slowdown
where adaptation did not take place (i.e. the overhead) in
Pipeline-Pipeline was 0.3% and in Pipeline-All was 0.9%; as

1Results, not shown here, for different numbers of joins sup-
port the conclusions presented here using 4-way joins.

expected, these are much the same. (vi) For the 30 queries
in the experiment, in the Pipeline-All case, the maximum,
minimum and average number of reoptimization calls were,
resp., 13, 1 and 7.86. (vii) For the 30 queries in the experi-
ment, in the Pipeline-All case, the maximum, minimum and
average number of adaptations were, resp., 1, 0 and 0.93.
(viii) For the 30 queries in the experiment, the maximum,
minimum and average number of result tuples per quiescent
state were, resp., 6.8, 1.0 and 2.3 (where these values ignore
Q16 and Q18, which proved to extreme outliers with ratios
in the order of a thousand tuples per quiescent state).

6.2 Adaptation in O States
Experiment 5: Adapting to selectivity errors result-
ing from correlations. The aim of this experiment is to
establish how effectively adaptation in O is able to address
errors in selectivity estimates that result from correlations
between attribute values. The experiment uses Query-3.

Figure 11 shows response times that compare the static
plan with adaptive query evaluation, where adaptation in
N′ states is always enabled, and adaptation in O is either
enabled or not. The following observations can be made: (i)
The All-All configuration benefits (by 13.2%) from inclusion
of adaptation in O, as the early detection of the correlation
between the predicates on accident results in the initial plan:

(((accidents
H
./time)

H
./car)

H
./owner)

H
./demographics

being replaced by:

((((demographics
H
./owner)

H
./car)

H
./

(accidents+ ∪ accidents−))
H
./time)

where accidents+ tuples are obtained by scanning the par-
tially constructed hash table produced by the initial eval-

uation of (accidents
H
./time). (ii) In the Pipeline-All con-

figuration, as the initial plan uses only pipelined operators,
adaptation takes place in an N′ state, giving rise to an appro-
priate plan, and thus there is no adaptation in the O states
of the resulting hash joins. The Pipeline-Pipeline configura-
tion is included only for completeness.
Experiment 6: Performance with multiple queries.
This experiment compares the performance of multiple queries
generated by a program that produces 4-way joins between
randomly selected tables, with varying numbers of non-join
predicates.

The scatter plot in Figure 12 compares the performance
of static and adaptive queries for the All-All configuration,
where adaptation is enabled in both N′ and O states. The
following observations can be made: (i) Adaptation in O
states shows some benefits overall; 11 of the 30 queries
adapted; they all adapted only once, in each case in O.
The average benefit obtained for the 11 adapted queries is
12.77%. (ii) The average overhead for the 19 queries that did
not adapt is 1.9%, giving an average benefit for all 30 queries
(including adapted and non-adapted queries) of 3.9%.

Overall, the benefits from adaptation in O are less marked
than for N′ for several reasons: (i) In pipelined plans, moni-
toring information becomes available from the evaluation of
operators from throughout the plan before the first adapta-
tion, thus enabling early reoptimization to benefit from wide
ranging updates to statistics, which in turn means that the

192



 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60

A
d

a
p

ti
v
e
 R

e
s
p

o
n

s
e
 t

im
e
 (

s
)

Static Response time (s)

(a) All-All

 0

 50

 100

 150

 200

 250

 0  50  100  150  200  250

A
d

a
p

ti
v
e
 R

e
s
p

o
n

s
e
 t

im
e
 (

s
)

Static Response time (s)

(b) Pipeline-Pipeline

 0

 50

 100

 150

 200

 250

 0  50  100  150  200  250

A
d

a
p

ti
v
e
 R

e
s
p

o
n

s
e
 t

im
e
 (

s
)

Static Response time (s)

(c) Pipeline-All

Figure 10: N′ States: Exp. 4: Randomly generated 4-way join queries.

 0

 50

 100

 150

 200

 250

 300

 350

 400

All-All Pipeline-Pipeline Pipeline-All

R
es

po
ns

e 
tim

e 
(s

)

Static_RT_(s)
Adaptive_RT_(s)

Adaptive_RT_In_O_(s)

Figure 11: O States: Exp. 5: Correlated predicates

 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60

A
d

a
p

ti
v
e
 R

e
s
p

o
n

s
e
 t

im
e
 (

s
)

Static Response time (s)

Figure 12: O States: Exp.6: Randomly generated
All-All queries

reoptimized plan is more likely to be significantly different
from the original plan than where few of the statistics have
been updated, as in non-pipelined plans. (ii) In All-All con-
figurations, the main memory hash join is almost always the
algorithm of choice, and thus adaptations tend to reorder
but not replace join operators, which means, for example,
that IO costs are not changed by adaptations, thus restrict-
ing the potential overall benefits.

7. RELATED WORK
Approaches to adaptive query processing can be classified

as: plan preserving, in which adaptation takes place con-
tinuously throughout evaluation over an essentially stable
representation of a query; and plan changing, in which eval-
uation is halted, and some form of planning activity gives
rise to a revised plan, with which evaluation is resumed.
For adaptations that relate to joins, the plan preserving ap-
proach characterizes proposals such as Eddies [1]. In Eddies,

the order in which data is routed through operators is deter-
mined dynamically on the basis of the costs and selectivities
of the operations, and as a result join orders are adapted
at query runtime. However, such flexible routing of data
through joins generally involves materializing partially pro-
cessed tuples in hash tables (e.g. [8]), whereas the proposal
in this paper allows the query optimizer to choose from a
wide range of join strategies, with minimal state manage-
ment in support of adaptation.

For adaptations that relate to joins, the plan changing
approach characterizes proposals such as Tukwila [13], POP
[17] and Rio [2]. Plans may be changed either by switching
between statically determined alternatives (e.g. [6]) or by
reinvoking the optimizer at runtime to create a new plan. In
Dynamic Re-Optimization [14] and POP [17], like the pro-
posal in this paper, the optimizer constructs revised plans
that reflect runtime selectivities. The replacement plans can
reuse materialized intermediate results from operators that
have run to completion, but the results of any partially com-
puted subqueries are discarded. As such, the unit of reuse is
considerably coarser than in the proposal from this paper,
and unsuitable for use with pipelined evaluation. In addi-
tion, unlike in this paper, each reoptimization step could
lead to a plan that repeats work carried out by any of the
previous plans, to the extent that in POP a threshold is set
to ensure that reoptimization terminates. Rio [2] proposes
several enhancements to POP, including a switch operator
that enables certain decisions on the plan used to be de-
ferred until query runtime without discarding intermediate
results. However, switchable plans must have similar struc-
tures, so the range of runtime changes supported without
discarding results is narrower than in this paper. The ap-
proach in this paper also imposes some restrictions on the
plans produced after reoptimization. For example, the new
plan completes partially evaluated scans and makes use of
intermediate data structures from the original plan. These
restrictions reduce the options available to the optimizer,
but enable fine grained reoptimization without redoing work.

Tukwila [13] shares several aspects with the work in this
paper; in particular, it works with pipelined plans, and sup-
ports reuse of previously computed results. In Tukwila,
adaptation suspends a partially evaluated plan p0, and cre-
ates a new plan p1 that carries out work required to answer
the original query. However, derivation of p1 builds on the
logical algebraic representation of p0, and thus cannot char-
acterize the work that remains to be done as precisely as Ta-
ble 1, which builds on the physical algebra. A consequence

193



is that there is a need for a stitch-up phase that constructs
the result of the query from values computed by p0 and p1.
The stitch-up phase in turn requires access to intermediate
results computed within p0 and p1, and thus Tukwila must
cache intermediate results, which it does by reusing the hash
tables of symmetric hash joins. Thus Tukwila depends on
state associated with symmetric hash join algorithms, and
thereby supports fewer join algorithms than our approach.

The proposal in Tukwila has several aspects in common
with plan migration in continuous stream queries [19, 15], in
that both migrate plans in a way that exploits intermediate
state in symmetric hash joins, and both have stitch-up activ-
ities to ensure that all data that should be joined is or that
no duplicates are produceds. In the stream setting, how-
ever, functionality is required to account for timestamps,
for example, by draining the existing plan of tuples while
redirecting later tuples as the new plan. A significant dif-
ference in approach between [19] and the proposal in this
paper is that we describe plan progress at the level of a
physical algebra, which, combined with the notion of quies-
cent states, provides a straightforward account that can be
applied to multiple join algorithms. By contrast, [19] is cast
at the level of the internal state used by the operator, in the
context of a specific join operator.

The closest piece of related work, however, is [16], which
describes an adaptive reordering of pipelined indexed nested
loop joins. In common with this paper, states are identified
in which adaptation can safely take place, selectivities are
revised incrementally during evaluation, and joins are re-
ordered when a new order is predicted to have a lower cost
in the light of the updated selectivities. Thus [16] essentially
provides a subset of the capability described in this paper.
The key extension in this paper is the provision of support
for multiple join algorithms, both in source and target plans,
and the side-effect that adaptations may not only change the
join order but also the physical join operators used.

We note that precise characterization of the work done
and to be done by a query is also important for starting
and stopping long running queries (e.g. [3]), and techniques
described in Section 2 may also be relevant to checkpoint
creation and query resumption.

8. CONCLUSIONS
We have presented an approach to adaptive join reopti-

mization for pipelined plans that: (i) accommodates multi-
ple well established join algorithms; (ii) supports fine grained
reuse of intermediate results; (iii) characterizes the progress
of a plan and the work that remains to be done algebraically;
and (iv) requires no auxiliary data structures to support
adaptation. In combining these features, the approach gen-
eralises previous results. The key insight that underpins
the work is that the progress of a plan, and the work that
remains to be done, can be described precisely using a phys-
ical algebra. This abstraction both supports the writing of
straightforward algorithms to support plan migration and
interfaces naturally with existing optimizers. The experi-
mental results have demonstrated significant benefits for the
approach in pipelined query processing.

9. REFERENCES
[1] R. Avnur and J. Hellerstein. Eddies: Continuously

Adaptive Query Processing. In ACM SIGMOD, pages
261–272, 2000.

[2] S. Babu, P. Bizarro, and D. DeWitt. Proactive
Re-Optimization. In Proc. ACM SIGMOD, pages
107–118, 2005.

[3] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang.
On suspending and resuming dataflows. In ICDE,
pages 1289–1291, 2007.

[4] S. Chaudhuri, R. Kaushik, and R. Ramamurthy.
When can we trust progress estimators for sql queries?
In SIGMOD Conference, pages 575–586, 2005.

[5] R. L. Cole and G. Graefe. Optimization of dynamic
query evaluation plans. In SIGMOD Conference, pages
150–160, 1994.

[6] R. L. Cole and G. Graefe. Optimization of dynamic
query evaluation plans. In Proc. SIGMOD, pages
150–160, 1994.

[7] J. V. den Bercken, B. Blohsfeld, J. Dittrich, J.ämer,
T. Schäfer, M. Schneider, and B. Seeger. Xxl - a
library approach to supporting efficient
implementations of advanced database queries. In
Proc. VLDB, pages 39–48, 2001.

[8] A. Deshpande and J. M. Hellerstein. Lifting the
burden of history from adaptive query processing. In
Proc. VLDB, pages 948–959, 2004.

[9] A. Deshpande, Z. G. Ives, and V. Raman. Adaptive
query processing. Foundations and Trends in
Databases, 1(1):1–140, 2007.

[10] K. Eurviriyanukul, A. A. Fernandes, and N. W.
Paton. A Foundation for the Replacement of Pipelined
Physical Join Operators in Adaptive Query
Processing. In Proc. EDBT Workshops, pages
589–600. Springer-Verlag, 2006.

[11] H. Garcia-Molina, J. Widom, and J. Ullman. Database
System Implementation. Prentice-Hall, Inc., 1999.

[12] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Comput. Surv., 25(2):73–170, 1993.

[13] Z. Ives, A. Halevy, and D. Weld. Adapting to Source
Properties in Data Integration Queries. In Proc.
SIGMOD, pages 395–406, 2004.

[14] N. Kabra and D. J. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans.
In Proc. SIGMOD, pages 106–117, 1998.

[15] J. Krämer, Y. Yang, M. Cammert, B. Seeger, and
D. Papadias. Dynamic plan migration for
snapshot-equivalent continuous queries in data stream
systems. In EDBT Workshops, pages 497–516.
Springer, 2006.

[16] Q. Li, M. Shao, V. Markl, K. Beyer, L. Colby, and
G. Lohman. Adaptively Reordering Joins during
Query Execution. In Proc. ICDE, pages 26–35, 2007.

[17] V. Markl, V. Raman, D. Simmen, G. Lohman, and
H. Pirahesh. Robust query processing through
progressive optimization. In Proc. ACM SIGMOD,
pages 659–670, 2004.

[18] V. Raman, A. Deshpande, and J. M. Hellerstein.
Using State Modules for Adaptive Query Processing.
In Proc. ICDE, pages 353–364, 2003.

[19] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman.
Dynamic plan migration for continuous queries over
data streams. In SIGMOD Conference, pages 431–442,
2004.

194




