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ABSTRACT
Entity search, a significant departure from page-based re-
trieval, finds data, i.e., entities, embedded in documents
directly and holistically across the whole collection. This
paper aims at distilling and abstracting the essential compu-
tation requirements of entity search. From the dual views of
reasoning–entity as input and entity as output, we propose
a dual-inversion framework, with two indexing and parti-
tion schemes, towards efficient and scalable query process-
ing. We systematically evaluate our framework using a pro-
totype over a 3TB real Web corpus with 150M pages and
over 20 entity types extracted. Our experiments in two con-
crete application settings show our techniques of on average,
2 to 4 orders of magnitude speed-up, over the keyword-based
baseline, with reasonable space overhead.

1. INTRODUCTION
The immense scale and widespread of the Web has ren-

dered it as our ultimate repository and enriched it with all
kinds of data. With the diversity and abundance of “things”
on the Web, we are often looking for various information ob-
jects, much beyond the conventional page view of the Web as
a corpus of HTML pages, or documents. The Web is now a
collection of data objects, where pages are simply their “con-
tainers.” The page view has inherently confined our search
to reach our targets “indirectly” through the containers, and
to look at each container “individually.”

With the pressing needs to exploit the rich data, we have
witnessed several recent trends towards finding fine gran-
ularity information directly and across many pages holisti-
cally. This paper attempts to distill these emerging search
requirements, abstract the function of underlying search,
and develop efficient computation for its query processing.
Such requirements arise in several areas:

Web-based Question Answering (WQA) Question an-
swering has moved much towards Web-based: Many recent
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efforts (e.g., [3, 15, 27]) exploited the diversity of the Web
to find answers for ad-hoc questions, and leverage the abun-
dance to find answers by simple statistical measures (in-
stead of complex language analysis). As requirements, to
answer a question (e.g., “where is the Louvre Museum lo-
cated?”), WQA needs to find information of certain type (a
location) near some keywords (“louvre museum”), and exam-
ine as many evidences (say, counting mentions) to determine
the final answers.

Web-based Information Extraction (WIE) Informa-
tion extraction, with the aim to identify information sys-
tematically, has also naturally turned to Web-based, for
harvesting the numerous “facts” online—e.g., to find all the
〈museum, location〉 pairs (say, 〈Louvre, Paris〉). Similar to
WQA, Web-based IE exploits the abundance for its extrac-
tion: correct tuples will appear in certain patterns more
often than others, as testified by the effectiveness of several
recent WIE efforts (e.g., [11, 4, 18]). As requirements, WIE
thus needs to match text with contextual patterns (e.g., or-
der and proximity of terms) and aggregate matching across
many pages.

Type-Annotated Search (TAS). As the Web hosts all
sorts of data, as motivated earlier, several efforts (e.g., [8,
4, 9]) proposed to target search at specific type of informa-
tion, such as person names near “invent” and “television.”
As requirements, such TAS, with varying degrees of sophis-
tication, generally needs to match some proximity patterns
between keywords and typed terms and to combine individ-
ual matchings into an overall ranking.

We believe these emerging trends all consistently call for,
as their requirements agree, a non-traditional form of search—
which we refer to as entity search [9]. Such search targets
at various typed unit of information, or entities, unlike con-
ventional search finding only pages. In this paper, we use
#-prefixed terms to refer to entities of a certain type, e.g.,
#location or #person. Observing from WQA, WIE, and TAS,
we note the unanimous requirements following the change of
targets from pages to typed entities:

• Context matching: Unlike documents which are searched
by keywords in its content, we now match the target type
(say #location) by keywords (e.g., “louvre museum”) that
appear in its surrounding context, in certain desired pat-
terns (e.g., within 10 words apart and in order).

• Global aggregation: Unlike documents which appear only
once, we match an entity (say, #location = Paris) for as
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many times as it appears in numerous pages, which re-
quires us to globally aggregate overall scores.

While the requirements for entity search have emerged, we
have not tackled the computational challenges for efficiently
processing such queries. Recent works have focused on effec-
tive scoring models mostly (e.g., [8, 9]). For query process-
ing, a widely adopted form (as in many WQA works [3, 15,
27]) is to “build upon” page search—to first find matching
pages by keywords, and then scan each page for matching en-
tities. This “baseline” (Sec. 3), much like sequential scan, is
hard to scale, and thus it may work only by limiting to top-k
pages— which will impair ranking effectiveness (Sec. 2).

As the main theme of this paper, for efficient and scal-
able entity search, we must index entities as first-class citi-
zen, and we identify the “dual-inversion” principle for such
indexing. We recognize the concept of inversion from the
widely-used inverted lists. To index entities, we thus paral-
lel the standard keyword-to-document inversion in dual per-
spectives: From the input view, we see entity as keyword,
from which we develop “document-inverted” index. From
the output view, we see entity as document, from which we
derive “entity-inverted” index. The dual-inversions can co-
exist, and form the core of our solution.

For parallel query processing upon such indexes, we see
the challenge in the interplay of join and aggregate: By view-
ing entity indexes as relations, we capture entity search as,
in nature, an aggregate-after-join query—a particular type
of groupby-join query that is hard to parallelize. Intuitively,
the needs for context matching lead to complex join between
relations, while global aggregation leads to group by and ag-
gregate. We design data partition and query processing for
the dual-inversion framework.

Finally, we evaluate our methods over a real Web crawl
of 150 million pages (3 TB), with a diverse set of 21 en-
tity types. To be realistic, we designed two concrete appli-
cation scenarios (“Yellowpage” and “CSAcademia”), which
together have 176 queries in four benchmark sets. Our ex-
periments reveal that both types of inversions can dramat-
ically speed up entity search—with “entity-inverted” at 2-4
orders of magnitude difference and “document-inverted” at
1-3 orders. The space overhead of indexing is quite accept-
able: “document-inverted” tends to slightly increase index
size from standard keyword indexing, while “entity-inverted”
implies reasonable space overhead (and sometimes can even
result in smaller size based on different domains). Overall,
this paper makes the following contributions:

• We distill and abstract the essential computation require-
ments for entity search.

• We systematically derive and propose novel dual-inversion
indexing and partition schemes for efficient and scalable
query processing.

• We verify our design over a realistic, large-scale Web cor-
pus with concrete applications.

2. ABSTRACTION & CHALLENGES
Towards designing a framework for entity search, we start

with characterizing its functions and challenges.

Functional Abstraction. An entity search system pro-
vides search over a set of supported entity types {E1, . . .,
En}, which we informally consider as the schema. E.g., our

Figure 1: Result: “database systems #prof”.

CSAcademia application in Sec. 6 has schema (#university,
#professor, . . .). Each type Ei is a set of entity instances
that are pre-extracted from the corpus (e.g., “201-7575” ∈
#phone). As the requirements indicate (Sec. 1), we abstract
entity search as follows:

Entity Search (ES) Problem: Give a document collection D,

for a query α(k1, . . ., km, E) with keywords ki (e.g.,“database
systems”) and entity type E (e.g., #professor), ES will find
entity instances e ∈ E and rank them by score(e) which
matches context pattern α and aggregates all matching oc-
currences across D.

To illustrate, from our prototype (Sec. 6), Fig. 1 shows
the screenshot for query Qdb “database systems #professor”
(with default α as“order, 20-word window”written as ow20),
for the first 5 results and supporting pages (where each an-
swer appears). Notice, typically top results are supported
by more than 1 page, as the ranking relies on aggregation.
Fig. 1 shows one support page for each result just for con-
ciseness.

We observe that, functionally, entity search (ES) is a gen-
eralization of page search (PS) in several ways:

• Entity as first class citizen: Unlike PS assuming page as
the entity, ES can support any recognizable entity.

• Set as output: Unlike PS targeting at only a few top rel-
evant results, an ES query can generally require a set of
answers; e.g., the above example (Fig. 1) can return tens
or hundreds of relevant professors.

• Holistic aggregate: Unlike PS assuming each page as“unique,”
ES must generally handle entities occurring multiple times.
Finding and returning such supporting evidences is cru-
cial for applications, such as WQA, to actually determine
the correct answers.

Computational Requirements. The objective of ES, as
just abstracted, is to rank entity e (as instance of the target
type E) by a scoring function score(e). The choice of scor-
ing function will directly impact the quality (or “relevance”)
of the ranked results. However, as this paper focuses on
the computation framework, we will identify the key com-
ponents of such ranking functions (Sec. 3 will give example
scoring functions). Our previous work [9] addresses the qual-
ity of search results.
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As the requirements of ES, as Sec. 1 identifies, a reason-
able scoring function should capture both context matching
and global aggregation. Consider scoring an entity e. For
our discussion, let o〈doc, pos〉 denote an occurrence of e in
some page doc at word position pos (recall that an entity
instance can occur many times in corpus D). Similarly, we
use κj〈doc, pos〉 as an occurrence of keyword kj .

1. Context matching: The first step in scoring is to match
the occurrences of ki and e to the desired context pattern α.
We assume a local matching function Lα. Given occurrences
κi for keywords ki and o for entity e, Lα will assess how well
the positions match α by some similarity function sim(·), if
the occurrences are in the same page.

Lα(κ1, . . . , κm, o) =

{
0, if κi.doc and o.doc differ;

sim(α, κ1.pos, . . . , o.pos), else.
(1)

2. Global aggregation: The second step is to aggregate all
the occurrences across pages. Here some function G aggre-
gates the local scores globally into the total score, across all
occurrences o in D.

Thus, to summarize, the essential computation to calcu-
late the score, score(e), is generally of the form:

score(e) = G(κ1,...,κm,o)∈d,d∈D[Lα(κ1, . . . , κm, o)], (2)

Challenges. Document search has often relied on a small
number of high quality documents for pruning, and therefore
avoiding the need to scan full inverted lists (e.g., [16]) for
high efficiency. Such pruning techniques, however, are not
directly applicable to entity search, with the mandate on
processing comprehensive corpus due to the following two
major reasons:

First, since entity search relies on global aggregation, com-
prehensive corpus is needed to generate stable aggregative
statistics. Second, many entity queries are naturally look-
ing for set output of comprehensive results over the entire
corpus (e.g., “#professor in DB” as in Qdb or “#city in Cali-
fornia”). Figure 2(a) and 2(b) show the accuracy (measuring
top 5 results) of 5 typical queries of finding the phone num-
ber of companies (represented by the y axis), by varying
the number and percentage of top documents (returned by
issuing keyword queries against a document search engine)
used respectively (represented by the x axis). Evidently, dif-
ferent queries converge to accuracy 100% at very different
points, indicating that it is nontrivial to determine which
“top k” value to stop for different queries. Moreover, queries
generally require a significant portion (over 40%) of all the
relevant documents for stable results.

00 . 20 . 40 . 60 . 8 11 . 2
T o p2 0 T o p5 0 T o p1 0 0 T o p2 0 0 T o p4 0 0 T o p8 0 0 T o p1 6 0 0 T o p3 2 0 0 T o p6 4 0 0 E x x o n M o b i lW a l M a r tG e n e r a l M o t o r sC h e v r o nF o r d M o t o r

(a) Absolute Page Count

00 . 20 . 40 . 60 . 8 11 . 2 E x x o n M o b i lW a l M a r tG e n e r a l M o t o r sC h e v r o nF o r d M o t o r
(b) Page Percentage Count

Figure 2: Top K Comparison for Point Queries

Given these two points, this work assumes processing query
over the entirety of the corpus, without considering pruning.

We believe studying approximate query answering by per-
forming intelligent dynamic pruning is itself an interesting
research problem. However, such study is beyond the scope
of this work.

Overall, we thus recognize two essential challenges in build-
ing an efficient framework, which goes much beyond tradi-
tional document search:

Complex Join: As we see from the problem abstraction of
entity search, each query involves at least one entity. Unlike
keywords, entities, comprised of many entity instances, tend
to appear frequently across the entire corpus. Figure 3(a)
shows the comparison of keyword frequency (i.e., the num-
ber of times a keyword appears in corpus) with entity fre-
quency (i.e., the number of times an entity type, say #phone,
appears in corpus), with x axis in log scale representing
keywords/entities under comparison, and y axis represent-
ing their respective frequencies. As seen from the figure,
entities clearly appear much more frequently (by orders of
magnitude) than most of the keywords, with frequency com-
parable to the top 20 most frequent keywords. Therefore,
it is computationally expensive to load/check those many
occurrences of entities for pattern matching. In addition, as
discussed in the characteristics of entity search, it has to rely
on in-document contextual pattern matching. Such compu-
tation is also more expensive, compared to the traditional
simple document intersection checking in document search.

05 0 0 0 0 01 0 0 0 0 0 01 5 0 0 0 0 02 0 0 0 0 0 02 5 0 0 0 0 03 0 0 0 0 0 03 5 0 0 0 0 04 0 0 0 0 0 04 5 0 0 0 0 05 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 E n t i t yK e y w o r d
(a) Frequency Comparison

05 0 0 0 0 01 0 0 0 0 0 01 5 0 0 0 0 02 0 0 0 0 0 02 5 0 0 0 0 03 0 0 0 0 0 03 5 0 0 0 0 04 0 0 0 0 0 0
y e a r l o c a t i o n c i t y s t a t e c o m p a n y O r i g i n a lW i t h k 1W i t h k 2W i t h k 3

(b) Selectivity of Keywords

Figure 3: Keyword and Entity

On the other hand, we also see potential opportunities to
reduce computation. With respect to a specific query, only a
small fraction of the entity occurrences are actually related
to the query, due to the selectivity of keywords. Figure 3(b)
shows the frequency of entity alone, as compare to the fre-
quency of entity when combined with keywords. 5 random
entity types together with 3 random keywords are used in
the experiment. As we can see, given a keyword, most of
the entity instance occurrences are irrelevant. This observa-
tion opens up room for expediting processing, which we will
exploit further in our solution.

Global Aggregation: As we discussed in the characteris-
tics in Sec. 1, entity search has to rely on holistic aggregation
over comprehensive corpus to tap the rich redundancy of the
Web. This is an online processing layer that is non-existent
in traditional document search. Being able to support ag-
gregating information over large-scale corpus in an online
fashion is another essential computation requirement for en-
tity search. How can we parallelize such online large-scale
aggregation for scaling up?

The challenge of this work is thus to deal with the essen-
tial computation requirements of entity search, towards an
efficient and scalable framework to support entity search.

3. BASELINE & RUNNING EXAMPLE
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Figure 4: A running example: YellowPage.

To set the stage of discussion, let’s use Fig. 4 as a running
example throughout the paper, which we call the YellowPage

scenario, as it provides search for contact information (e.g.,
#phone, #email). As a toy dataset, the corpus D has 100
documents D = {d1, . . . , d100}; we show three documents
d6, d9, d97 as examples. We will assume a simple query
for finding the phone number of Amazon service Q1 in the
following form:

Q1: ow20 (amazon service #phone)

During offline processing, we recognize the position of key-
words (e.g., keyword“amazon”appears at position 17 of doc-
ument d6) in the corpus (via tokenization). Entities are also
extracted offline, with their entity instances identified and
positions recognized. E.g., we extract phone number 800-
201-7575 as phone instance p8 at position 19 of document
d6 as shown in Fig. 4. Notice, there may be additional prop-
erties related with the extracted entity occurrences, e.g., the
extraction confidence. We exclude such information in this
paper for the ease of discussion.

For our concrete discussion, let’s assume a simplistic scor-
ing function, BinarySum, in our running example.

Example 1: [Scoring Function: BinarySum] Let’s define
scoring scheme BinarySum, which instantiates Eq. 2 by:

Lα(e) = 1, if e matches α; 0 otherwise.

G = Sum

These definitions lead to a rather simplistic scheme, which
scores entity instance e by simply counting the total number
of times it occurs in a way matching the α-pattern. While
BinarySum may not be effective in ranking, it is sufficient as
a concrete example for discussing the essential computation.

To execute the general form of Eq. 2, as an entity-centric
system is currently lacking, many related works (e.g., [2, 3,
14, 15, 27]) have relied on keyword-based search engines to
zoom into a subset of documents and then apply local match-
ing by scanning documents and global analysis. Considering
example Q1, the baseline goes as follows:

1. Look up by keywords (e.g., “amazon service” for Q1) in
a keyword-based search engine for retrieving documents
matching these keywords. From the running example
in Fig. 4, documents d6, d9 and d97 will be returned as
matching documents.

2. Scan each matching document to execute local matching
Lα to match candidate entities. Notice, as keywords and
entities are all identified offline, only pattern matching

(by pattern α) needs to be performed. In the example for
instance, p8 will be matched from document d6 with local
matching score of 1 by BinarySum.

3. Perform aggregation to assemble the produced matchings.
In the example, p8 will have an aggregate score of 2 from
d6 and d97 using BinarySum.

In order to handle large-scale dataset, it is common prac-
tice to partition the corpus into sub-corpses, and distribute
the sub-corpses. Over the baseline, step 1&2 can be pro-
cessed over the partitioned sub-corpse in parallel, while step
3 aggregates the results generated from the sub-corpses.

Our discussion will assume a parallel setting of “p + 1”
nodes with two processing layers, with p nodes assigned for
storing indexes and local processing, and 1 node assigned
for global processing. We choose this “p+1” setting to focus
on indexing, partition, and parallel processing over the p

local nodes. The global processing layer, which can also be
parallelized using multiple nodes, is simplified to one node.

The keyword-based baseline, while not meeting the re-
quirement of entity search as it needs to perform expensive
document scan, and rely on central aggregation, has been
popularly used for QA tasks over the Web–The lack of effi-
ciency and scalability, and the popularity nonetheless, indi-
cate a clear demand for a true entity search system.

4. SOLUTIONS: DUAL-INVERSION INDEX
We now develop the solutions for supporting entity search.

Our key issue, as just motivated is—How to design an index
to facilitate query processing? In this section, we will reason
the design to derive two types of indexes that work well
together—which we call the “dual-inversion” index.

To begin with, we recognize that, for text retrieval, the key
principle of indexing is inversion– an efficient data structure
for mapping from query input values to output objects. In a
standard text search scenario, users give keywords as input
values and expect documents as output objects; i.e., we are
searching in a database of documents by keywords. Thus,
the standard inversion that powers up today’s text retrieval
is mapping from keywords, as input values, to document as
candidates for output objects. Since text databases are not
optimized for real-time updates, an index does not need to
be “dynamic,” (unlike database indexes such as B-tree) and
thus the most efficient data structure is simply a sequential
list of such mappings, called inverted list—one list for each
keyword—where each posting is one document ID and the
positions in the document where k occurs. Such lists can be
efficiently loaded from disk into memory by sequential read,
or compressed and cached in memory [29].

We can express this standard inversion—mapping a key-
word k to a document collection D—as the following (one
to many) mapping from k to those documents in D whose
content contains k, as follows:

D(k) : k → {〈doc, pos〉| doc.content[pos] = k; d ∈ D}. (3)

We will develop our indexing based on the principle of
inversion. Thus, our question becomes, what inversions shall
we develop to support entity search? Why?

4.1 Document-Inverted Index
The first proposal naturally parallels keyword inversion

D(k): Just like keywords for document search, entity type
serves as input for entity search.
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Figure 5: Document-Inverted Index Example

Indexing: Document Inverted. In the functional form,
entity search takes as input both keywords and entity types:
Given an entity-search query α(k1, . . ., km, E), since the
entity type E is part of the input, just like keywords ki, can
we build a mapping for E in the same way as ki—because
they are both input? We consider as the first inversion D(E)
which, given entity type E, maps to the documents where
entity of type E occurs. As the target of inversion is docu-
ments, we refer to this scheme as document-inverted index,
or D-Inverted index for short.

To realize this analogous concept, however, there is a
slight complication: Unlike keywords which are literal, E is
an“abstract” type– which can have different instance values.
Thus the mapping should record, in addition to document d

and position p, the specific entity instance entity of type E,
for each occurrence.

D(E) : E → {〈doc, pos, entity〉| d.content[pos] = entity;

entity ∈ E; d ∈ D}. (4)

Fig. 5 shows the layout of the inverted lists D(a), D(s) and
D(#p) for keywords “amazon”, “service”, and entity type
“#phone” respectively.

For further development for query processing, we can con-
ceptualize each inverted list as a relation: As Exp. 3 and 4
show, each list is simply a set of postings of the same structure—
or “tuples”—and thus D(k) is a relation with schema 〈doc,
pos〉 and D(E) a relation with schema 〈doc, pos, entity〉.
Note that the relational view is conceptual, allowing us to
understand the operations, and we do not necessarily use a
DBMS to store and process the lists.

Computation Analysis. With this document-based in-
version in place, we now capture the computation for query
processing. Given the document-inverted lists D(ki) and
D(E), how do we process them to answer the query α(k1,
. . ., km, E)? We are starting from the D-Inverted lists as
base relations D(k1), . . . , D(km) and D(E).

Specifically, we can now use relational operations to de-
scribe the essential operations. Starting from the base re-
lations, our objective is to score every entity instance e by
Eq. 2 and sort all the instances by their scores. First, to
find all the qualifying entity occurrences, we perform join
between the relations D(k1), . . . , D(km) and D(E). We call
such join context join as it evaluates a context pattern α

over the occurrences of k1, . . ., km, and some entity occur-
rence of E. It checks whether the occurrences match the
pattern α and scores how well a matching is by the local
scoring function Lα—thus, strictly speaking, it is a ”fuzzy”
join that returns scores. Second, we need a groupby operator
G to group entity occurrences according to their instances,
i.e., D(E).entity , and use global aggregation function G to
calculate the final score for each instance. Finally, a sort op-
erator Sscore sorts the entity instances. We show the overall
computation in Exp. 5.

Sscore[(D(E).entity)GG(1Lα
[D(k1), . . . , D(km), D(E)])] (5)

Written in SQL, in this view, entity search is to execute
the following query QES1.

SELECT D(E).entity, G(mscore) AS score
FROM D(k1), . . . , D(km), D(E)
WHERE Lα(D(k1).doc, D(k1).pos, . . .,

D(km).doc, D(km).pos, D(E).doc, D(E).pos) AS mscore

GROUP BY D(E).entity

ORDER BY score (QES1)

The query is an instance of aggregate-join query, which
has the following general form in SQL:

SELECT R1.G1, . . ., Rn.Gn, Agg(R1.A1, . . ., Rn.An)
FROM R1, . . ., Rn

WHERE Join(R1.J1, . . ., Rn.Jn)
GROUP BY R1.G1, . . ., Rn.Gn

HAVING/ORDER BY ...

Such aggregate-join queries connect tuples from base re-
lations and organize them into groups for aggregation, i.e.,
with the following two parts:

• Join: It joins relations R1, . . ., Rn, through an expres-
sion, denoted Join, of join conditions (which include se-
lections), upon join attributes J1, . . ., Jn. Each Ji can be
an attribute or multiple attributes of Ri.

• Group-By: It then groups the joined tuples over group-
by attributes G1, . . ., Gn, and then aggregates each group
with some function Agg over aggregate attributes A1, . . .,
An.

Such aggregate-join queries impose particular issues in
parallel query processing—which arise in our specific situa-
tion. To explain and contrast the issues, let’s use the follow-
ing query Qbank over a typical“bank”scenario. Consider two
relations Customers(cid, name, address) and Accounts(accountno,
cid, branch, balance). Query Qbank finds those customers
having more than $50000 as total balance across all their
accounts.

SELECT C.name, Sum(A.balance) as TotalBal
FROM Customers C, Accounts A
WHERE C.cid = A.cid
GROUP BY C.cid
HAVING TotalBal > 50000 (Qbank)

As the query form involve both join and aggregate, can we
push group-by and aggregate to be performed before join?
While such transformation is desired, to reduce the expen-
sive join cost, and possible in some cases, it is not feasible
in our scenario. For instance, consider Qbank; suppose Ac-
counts has 10000 tuples but only 100 distinct cid values.
We can perform Group-By on Accounts first to result in
100 cid-groups, and perform Having over the groups. This
transformation will reduce the number of Accounts tuples
to join with Customers from 10000 to only the less-than-100
cid-groups after grouping and filtering. Unfortunately, this
transformation is not possible for entity search. Consider
QES1. Observe that the global scoring function G requires
mscore as computed by the local scoring function Lα for
every tuple combination from D(k1), . . . , D(km), D(E)—by
comparing their doc and pos to match pattern α. That is,
the overall aggregate function G◦Lα (composition of G and
Lα) needs aggregate attributes from all the relations, unlike
Qbank only needs balance from Accounts. Thus, for Qbank,
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Group-By (and aggregate) must happen after join, or we do
not have all the aggregate attributes. While we explain in-
tuitively, a full analysis of the feasibility of transformations
is discussed in [28].

Data Partition: Document Space. To process entity
search queries, now that we need to process aggregate after
join, how to partition the relations for parallel query pro-
cessing? To scale up entity search over a large corpus, we
must partition data somehow over the p worker nodes. Our
particular form of aggregate-join query is tricky for paral-
lelization, because the join and group-by are over a different
set of attributes—i.e., in terms of the general form, Ji 6= Gi.
To contrast, for Qbank, since both the join and aggregate are
over attribute cid, we can simply partition Customers and
Accounts by the same cid ranges, and each worker node can
execute both join and aggregate.

Unfortunately, when join and group-by are over different
attributes, as in our situation, no schemes can fully partition
the corpus for both join and aggregate without significant
replication of communication. Naturally, we can partition
on either join or aggregate attributes, as observed in [22,
23]. We next discuss these choices:

As the first choice, we may partition relations by their
group-by attributes, which turned out to be infeasible for
entity search. Referred to as APM [22], this aggregation
partition method will partition each relation Ri by Gi. If
Ri does not appear as part of Group-By (i.e., Gi = ∅), then
the entire Ri needs to be broadcast to all the nodes at run
time (or otherwise every Ri needs to be replicated to every
node). For entity search, as offline data partitioning, we
partition D(E) by D(E).entity into sub-relations, D1(E),
. . ., Dp(E), for the p local worker nodes; i.e., records of the
same entity instance will distribute to the same node. At
runtime processing, for query α(k1, . . ., km, E):

1. Broadcast D(k1), . . ., D(km) to every local node.

2. Each local node z will join Dz(E) with D(k1), . . ., D(km),
group-by entity , aggregate for each group, and send the
results to the global node.

(Dz(E).entity)GG(1Lα [D(k1), . . . , D(km), Dz(E)]) (6)

3. The global node unions and sorts all the p result sets, to
produce the overall ranking of the entity instances.

Clearly, this scheme is infeasible, with the run time cost
to broadcast the inverted lists of the queried keywords to
worker nodes (Step 1). Or, we may simply replicate every
keyword lists, i.e., D(k) for every possible k to each node.
Given the numerous keywords possible in any corpus, repli-
cation is again prohibitive. Thus, aggregate-based partition
will not work.

As the other choice, thus, we will partition by the join at-
tributes. Referred to as JPM (join partition method) in [22],
this method will partition each relation Ri by Ji. For entity
search QES1, we are matching pattern α by the context-
join 1Lα

over the keyword and entity relations on their doc

and pos attributes. To determine the partition, we must
examine— What are the conditions that these tuples from
each relation are “joinable”—i.e., Lα(D(k1).doc, D(k1).pos,
. . ., D(km).doc, D(km).pos, D(E).doc, D(E).pos) > 0? Since
we are matching entities and keywords from each document,
any joinable occurrences must be at least from the same doc-
ument. More formally, by the definition of Lα as Eq. 1 gives,

the context join between D(k1), . . ., D(km), D(E) must re-
quire that

D(k1).doc = · · · = D(km).doc = D(E).doc.

Thus, with the principle of join-based partition, we will
partition the D-Inverted relations by the document space—
i.e., to distribute the tuples of D(k) and D(E) by the doc-
ument IDs they are from, or their doc attributes. We will
apply this partitioning to every base relation: D(k)〈doc,
pos〉 and D(E)〈doc, pos, entity〉, for all keywords k and for
all entity types E supported by the system. For each rela-
tion, we will distribute the postings with the same doc to
the same local nodes—As discussed above, these are post-
ings that are “joinable.” Specifically, first, we partition the
“document space” D into p disjoint subsets—one for each lo-
cal node—i.e., D1, . . ., Dp, such that D1∪ . . .∪Dp = D and
Di∩Dj = ∅. With respect to the p document sub-spaces, we
then distribute each D-Inverted index to the p local nodes,
as follows:

D
z(k) = {x|x ∈ D(k), x.doc ∈ D

z}

D
z(E) = {x|x ∈ D(E), x.doc ∈ D

z}

Each local node will host the corresponding sublist for
each keyword, and entity. For instance, the document-inverted
index of entity #phone in Fig. 5 will be split into p sublists,
and the i-th sublist will be located on the i-th local node.
For the YellowPage scenario, assuming we have 10 local pro-
cessing units, we can partition the dataset containing 100
document into 10 subset, each containing 10 documents as
shown in Fig. 6. This implies the inverted index will be par-
titioned into sublists. For instance, D(a) in Fig. 5 will be
partitioned into 10 sublists, D1(a), ..., D10(a) respectively.
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Figure 6: Partition by Document Space

Parallel Query Processing. The local processing module,
having all the information of a subset of the documents,
will be able to compute all the context joins and output
all the matching entity occurrences. Exp. 7 formulates this
procedure, where the matching entity occurrences are put
into Lz and will be sent over to the global processing module
for further processing. This step implements the context join
operation in Exp. 5 in parallel across local nodes.

Local Node z: : ∀z ∈ [1..p]

L
z〈entity, mscore〉 = πentity,mscore 1Lα as mscore

[Dz(k1), . . . , D
z(km), Dz(E)] (7)
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The local matching algorithm D-Local in Fig. 7 loads the
document-inverted index for the specified keywords, and en-
tity into memory (step 2). As the lists are sorted based on
document id, merge-join can be performed over the lists to
instantiate any possible matchings (step 3-10). If a matching
entity occurrence is found, we will use local scoring function
L to compute the score, and output (step 5-8).

Algorithm D-Local:

Local Processing with D-inverted Index, for Node z.

• Input: Query α(k1, . . . , km, E).

• Output: Lz〈entity , mscore〉.

1: Lz = ∅
2: load lists Dz(k1), . . . , D

z(km), Dz(E)
3: for merge-join over the loaded lists do

4: if Dz(k1).doc = . . . = Dz(E).doc then

5: if Dz(k1).pos, . . . , Dz(E).pos match α then

6: mscore = Lα (Dz(k1).pos, . . . , Dz(E).pos)
7: add (Dz(E).entity, mscore) to Lz

8: end if

9: end if

10: end for

11: return Lz

Figure 7: Algorithm D-Local.

To answer query Q1, we will execute the query on each of
the local nodes as shown in Fig. 6. Local node 1 will pro-
duce two matchings for phone instance p8 matched in docu-
ment d6 and p86 matched in document d9 by joining sublists
D1(a), D1(s) and D1(#p). Local node 10 will produce one
matching for phone instance p8 matched in document d97.

With the entity occurrences and local scores produced,
we are ready to perform holistic aggregation over them. The
global processing module takes care of both aggregation and
sorting over all the matching entity occurrences in L1, . . . , Lp

collected from all the local nodes, as shown in Exp. 8:

Global Node: :

Sscore[(entity)GG(mscore) as score(L1 ∪ · · · ∪ L
p)] (8)

The global aggregation algorithm D-Global in Fig. 8 goes
through all the input matched entity occurrences, and aggre-
gates all the scores of a specific instance together. As shown
in Fig. 6, the global processing layer receives the matching
occurrences from the local nodes, and performs aggregation
and ranking. For instance, the local scores for p8 are aggre-
gated into the final score of 2, resulting the ranking of p8 at
the first place.

4.2 Entity-Inverted Indexing
Our second proposal parallels keyword inversion in an“op-

posite” way. While our first inversion, D-Inverted indexing,
views entity type E as input and maps it to documents, we
now consider entities as output— the target of search.

Indexing: Entity Inverted In the functional form, entity
search finds entity instances as output from keywords as
input: Given query α(k1, . . ., km, E), we are looking for
entities e of type E, such that keywords ki appear in the
context of e in a way that matches pattern α. E.g., in our
example, we are given “amazon service” to search for entity
#phone that are mentioned with these keywords around it
(in that sequential pattern).

Algorithm D-Global:

Global Processing with D-inverted Index.

• Input: Lz〈entity , mscore〉, ∀z ∈ [1..p].

• Output: ranked list of 〈entity , score〉.

1: Result = ∅
2: for each 〈entity , mscore〉 in L1, . . ., Lp do

3: if entity not in Result then

4: add entity to Result

5: end if

6: update Result[entity ].score with mscore by G

7: end for

8: sort Result by score; return Result

Figure 8: Algorithm D-Global.

With this view, we again seek to parallel the traditional in-
version. We observe that traditional document search builds
upon keyword inversion D(k), as Exp. 3 shows, which maps
each keyword k as query input to documents in D as output.
For entity search, we shall map each keyword k to entities
∈ E, denoted E(k). As the inversion targets to entities, we
call E(k) an entity-inverted index, or E-Inverted index for
short.

To realize this analogous concept, however, we again face
some interesting complications— While a document only oc-
curs once (or we do not capture duplicates in document
search), each entity can occur multiple times in the text
corpus at different documents or different positions. Thus,
while building E-Inverted index, as the target of mapping,
we must specify to the level of a specific occurrence, rather
than just an entity instance. To specify an occurrence, de-
noted o, we will specify the document and position where
an entity occurs—thus the tuple o〈doc, epos, entity〉. With
this notation, we build an E-Inverted index for each keyword
k by mapping k to the context of some entity occurrence o

where k appears. Each “posting” record will be of the form
〈o〈doc, epos, entity〉, pos〉, which means k appears, with
position pos in the context of entity occurrence o〈doc, epos,
entity〉.

E(k) : k → {〈o〈doc, epos, entity〉, pos〉|

o.context[pos] = k; entity ∈ E}. (9)

As the second issue, we also must define what context
means—i.e., how far from an entity occurrence shall we
consider as within its context? We note that, for our first
document-based inversion, the content of a document is well
defined. Here, to define the“context”of an entity occurrence
o, we are essentially considering the question—How far apart
between k and o do we consider them as no longer “seman-
tically associated”? Clearly, larger the distance is, the less
likely they are associated, and most entity-oriented search
efforts (e.g., [8, 9]) leverage this insight in ranking. Thus, in
our indexing, we can choose some maximal window distance
to consider as context. In our implementation, we use 200-
word window as the context—i.e., the context of an entity
occurrence extends between 100 words to its left and 100 to
its right. Fig. 9 shows the layout of the entity-inverted index
using our example.

Thus, with entity-inverted indexing, as we store the map-
ping of keywords to entities, we have as base relations the
entity-inverted lists E(k) with schema 〈doc, epos, entity ,
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Figure 9: Entity-Inverted Index Example

pos〉.

Computation Analysis.
Starting from these base relations, in contrast to Exp. 5,

we can express the computation of entity search for α(k1,
. . ., km, E) as:

Sscore[(D(k1).entity)GG(1Lα
[E(k1), . . . , E(km)])] (10)

Written in SQL, in this view, entity search is to execute
the following query QES2.

SELECT E(k1).entity, G(mscore) AS score

FROM E(k1), . . . , E(km)
WHERE Lα(E(k1).doc, E(k1).epos, E(k1).entity, E(k1).pos, . . .,

E(km).doc, E(km).epos, E(km).entity, E(km).pos)
AS mscore

GROUP BY E(k1).entity

ORDER BY score (QES2)

We have QES2, again, as an instance of aggregate-join
query. First, like QES1, the query must also handle ag-
gregate after join— The overall aggregate function G ◦ Lα

needs aggregate attributes from all the relations to get pos

attributes for matching α. Second, however, unlike QES1,
this query based on entity-inversion relations has the same
attributes—the entity attributes of each relation—for both
aggregate and join.

With this key difference, the entity-inversion view allows
us to simultaneously parallelize both join and aggregate,
since now join and aggregate attributes are consistent.

Data Partition: Entity Space.
To partition along the entity groups, we make sure the

same instances of E will be allocated at the same local node,
which means we must divide E into disjoint subsets. Specif-
ically, we partition E to p nodes, i.e., E = ∪(E1, . . ., Ep)
and Ei ∩ Ej = ∅. With respect to the p entity sub-spaces,
we can distribute each E-Inverted index to the p local nodes,
as follows:

E
z(k) = {x = 〈o, pos〉|x ∈ E(k), o.entity ∈ E

z}

Again in our example setting, using the same 10 local pro-
cessing units, we could partition dataset as shown in Fig. 10
such that local node 1 is responsible for phone entity in-
stances p1, . . . , p10. Take the list E(a) in Fig. 9 as an exam-
ple. This list will be split into two nonempty sublists. Local
node 1 will hold sublist E1(a) with entries d6 : [23, p8, 17]
and d97 : [50, p8, 45] and local node 9 will hold sublist E9(a)
with entry d9 : [45, p86, 34].

Parallel Query Processing. Upon the entity space par-
tition scheme, the local processing module can perform the
joining operation, as well as the aggregation operation. In
other words, Exp. 10 can be fully realized at each local node
(except for the final ranking part):
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Figure 10: Partition by Entity Space

Local Node z: : ∀z ∈ [1..p]

L
z〈entity, score〉 =

πentity,score (Ez(k1).entity)GG(mscore) as score

(1Lα as mscore [Ez(k1), . . . , E
z(km)]) (11)

Algorithm E-Local:

Local Processing with E-inverted Index, for Node z.

• Input: Query α(k1, . . . , km, E).

• Output: Lz〈entity , score〉.

1: Lz = ∅
2: load lists Ez(k1), . . . , E

z(km)
3: for merge-join over the loaded lists do

4: if Ez(k1).o = . . . = Ez(km).o then

5: let o be the entity occurrence in common
6: if Ez(k1).pos, . . . , Ez(km).pos, o.epos match α then

7: mscore = Lα (Ez(k1).pos, . . . , Ez(km).pos, o.epos)
8: if o.entity not in Lz then

9: add o.entity to Lz; initialize score to 0
10: end if

11: update entity ’s score with mscore by G

12: end if

13: end if

14: end for

15: return Lz

Figure 11: Algorithm E-Local.

We illustrate the local matching&aggregation algorithm
in Algorithm E-Local in Fig. 11. It loads the entity-inverted
index for the specified keywords with regard to the input
entity (step 2). As the lists are sorted based on document
id, merge-join can be performed over the lists to instantiate
any possible matchings (step 3-14). If a matching entity
occurrence is found, we will use local scoring function L to
compute the score (step 6-7). This score will be immediately
aggregated with the produced occurrences (step 8-11).

To answer the same query, the query will be issued on each
local node as shown in Fig. 10. As the entity-inverted index
is still ordered by document id, the same sort-merge join
algorithm can be applied. In this setting, the two matchings
of phone instance p8 will both be produced from local node 1
by joining sublists E1(a) and E1(s). Unlike in the document
partition based approach, these matching can already be
grouped and aggregated on the local nodes. In this example,
the final query score of phone instance p8 is calculated on
node 1 and that of p86 is calculated on node 9.

Given that the local processing module produces aggre-
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Algorithm E-Global:

Global Processing with E-inverted Index.

• Input: Lz〈entity , score〉, ∀z ∈ [1..p].

• Output: ranked list of 〈entity , score〉.

1: Result = L1 ∪ · · ·Lp

2: sort Result by score

3: return Result

Figure 12: Algorithm E-Global.

gated results, the global processing module only has to take
care of the ranking step in Exp. 10 of all the aggregated re-
sults from L1, . . . , Lp, a very light-weight task as shown in
Exp. 12 and algorithm E-Global in Fig. 12:

Global Node: : Sscore[L
1 ∪ · · · ∪ L

p] (12)

4.3 Together: Dual-Inversion Index
We summarize the pros and cons of D-Inverted and E-

Inverted proposals in terms of the computation requirements
we listed in Sec. 2, pattern join, aggregation, as well as the
space requirement, in the following table:

Baseline D-Inverted E-Inverted
Pattern Join slow fast faster
Aggregation central central distributive
Space standard minimal overhead large

Pattern Matching: Baseline is slow as it performs pat-
tern matching by scanning documents returned from key-
word search. D-Inverted and E-Inverted schemes are fast in
utilizing indexes for efficient pattern matching. However, the
E-Inverted scheme is more efficient, as it deals with much
shorter index lists, whereas the D-Inverted scheme has to
load and read long D-Inverted lists for entities.

Aggregation: E-Inverted scheme allows the aggregation to
be fully distributed in parallel to local nodes. The base-
line and the document-inverted index schemes, on the other
hand, have to rely on a central layer for aggregation.

Space: The space overhead for the D-Inverted scheme is
rather minimal, as it only creates one D-Inverted list per
entity. The entity-inverted index scheme could often incur
more significant space cost, as we combine entity with every
keyword.

As the two schemes are highly complementary to each
other, we ask: can the two types of index coexist to reach
a nice balance point? Fortunately, the two types of indexes
can indeed coexist, as each contains complete information
with respect to the entity. This offers us the opportunity
to create entity-inverted index for a selected set of entity
types, while the rest of the entity types can be supported
by document-inverted index. Generally, entity-inverted in-
dex should be created for entities that are queried more of-
ten and take less space, whereas document-inverted index
should be created for the rest of entities which are queried
less frequently and require more space. We name such a
framework, with the coexistence of the two types of indexes,
the dual-inversion index framework.

5. RELATED WORK
We are now witnessing an emerging research trend on us-

ing entities and relationships to facilitate various search and
mining tasks [7, 8, 25, 13, 12, 4, 5, 6, 20, 27, 9, 30].

Our work is most related with the works on indexing un-
structured documents. Cho [10] builds a multigram index
over a corpus to support fast regular expression matching.
A multigram index is essentially building a posting list for
selective multigrams. It can help to narrow down the match-
ing scope. It is not optimized for phrase or proximity queries
and still require full scan of candidate documents. Nextword
index [26] is a structure designed to speed up phrase queries
and to enable some amount of phrase browsing. It does
not consider more flexible proximity based queries and does
not consider types other than keywords. Indexing keyword
pairs to speed up document search is studied in [17]. Our
motivation to speed up entity search is different from their
goal and therefore the frameworks also differ. Our index de-
sign considers entities beyond keywords, where we introduce
the unique entity space partition scheme. BE [4] develops
a search engine based on linguistic phrase patterns and uti-
lizes a special “neighborhood index” for efficient processing.
Although BE considers indexing types such as noun phrases
other than keywords, its index is limited to phrase queries
only. Chakrabarti et al. [8] introduce a class of text proxim-
ity queries and study scoring function and index structure
optimization for such queries. Their study on index design
is more on reducing the redundancy and the index is used
for performing local proximity analysis without considering
global aggregation and multi-node parallelization. Compar-
ing with our own work [30] on supporting content querying
with the design of content query language (CQL), this work
focuses on the principles and foundation for the index de-
sign for facilitating efficient entity search. Moreover, this
work also studies distributive computation with paralleliza-
tion schemes.

There are many existing optimization techniques in IR,
such as caching ([19, 17]), pruning ([21, 16]), etc., to im-
prove the efficiency of document search. Such techniques
are either orthogonal to our problem, e.g., caching, or can
not be directly applied in our setting which requires pro-
cessing over comprehensive corpus as we discussed in Sec. 2,
e.g., pruning. It is the unique computation requirements of
entity search, which distinguish it from document search,
that motivate us to develop novel solutions.

Since our entity search query can be viewed as“aggregate-
join query” from the DB perspective, our work is also nat-
urally related with DB literature on handling such queries
([28, 22, 24]). Such techniques are mainly designed for a
small number of relations under DB setting. Our work in-
novates upon these works in a rather different setting: an IR
setting of inverted indexes where there are almost uncount-
able number of keywords.

6. EXPERIMENTS
To empirically evaluate our dual-inversion approaches for

entity search, for its efficiency over a large scale corpus and
diverse types of entities, in a range of realistic benchmark
scenarios, we built a distributed prototype on a real Web
corpus of a 3TB general Web crawl (collected in January
2008) with 150 million pages. Like the “p+1” setting de-
scribed in Sec. 3, we ran the system on a cluster of 15 local
worker nodes (p=15) and one global node, totally 16 ma-
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chines, each with a dual AMD Athlon 64 X2 3600+ CPU, 1
GB memory and 1TB of disk.

On this large corpus, we annotated a wide range of various
entity types—21 entities total—in order to understand dif-
ferent application scenarios. We used the GATE system [1]
for entity annotation. As Table 1 lists, we selected our en-
tities covering the three major extraction methods: using
dictionaries, rules, and classifiers (machine learning).

Method Supported Entities

dictionary- 14 entities: Country, City, State,
based Province, Region, Sea, Company,

Title, Drug, Month, University,
ResearchArea, Professor, Religion

rule-based 4 entities: Email, Phone, Zipcode, Year
classifier-based 3 entities: Person, Location, Organization

Table 1: Supported entity types: 21 entities.

For our comparison, we implemented all the three ap-
proaches discussed: the keyword-based Baseline (Sec. 3)
and the dual-inversion: D-Inverted and E-Inverted index
(Sec. 4). As Table 2 summarizes, all the three methods,
including Baseline, had the entities pre-extracted offline. As
indexes, the Baseline used standard keyword inverted lists
D(k), and D-Inverted added D(E) in addition, while E-
Inverted used only keyword-to-entity inversion E(k). (We
will compare the space requirements later.) All the meth-
ods are parallelized across the same (p+1)-node cluster, by
partitioning the index data as we discussed.

Method Extraction Indexes Built

Baseline offline D(k), ∀ keyword k

D-Inverted offline D(k), ∀ keyword k;
D(E), ∀ entity E

E-Inverted offline E(k), ∀ keyword k

Table 2: Indexes built for each method.

Experiment Setup. To extensively and realistically study
the performance, we configured two concrete applications.
We evaluated 4 benchmark sets, for totally 176 queries of
varying parameters. Each query has the form α(k1, . . ., km,
E), as Sec. 2 defines, for keywords ki and entity type E. We
use “ow20” for pattern α— ordered 20-word window— for
all queries. As scoring function, we use the “EntityRank”
model [9], which is of the common form of G ◦ Lα as Sec. 2
defines. We stress that the actual function affects “only”
ranking preciseness. For our focus of efficiency, all functions
with the join-then-aggregate (Lα then G) abstraction are
computationally similar.

Application 1 (Yellowpage) for finding yellowpage-like
information, with entities (#email, #phone, #state, #location,
#zipcode).

• Benchmark 1A Phone Number Search: 30 queries of
the form “company name #phone”, e.g., “general motors
#phone”, which finds the phone number related to General
Motors. We generated 30 queries using top 30 company
names in 2006 Fortune 500.

• Benchmark 1B Location Search: 20 queries of the form
“city #location”, e.g., “springfield #location”, which finds lo-
cations related with Springfield. We generated 20 queries
using Illinois city names.

Application 2 (CSAcademia) for information of the com-
puter science academia, with entities (#university, #professor,
#research, #email, #phone).

• Benchmark 2A Email Search: 88 queries of the form “re-
searcher #email”, e.g., ‘Anastassia Ailamaki #email”, which
finds emails related to the researcher. We generated 88
queries using PC members of SIGMOD 2007.

• Benchmark 2B Professor Search: 38 queries of the form
“area #professor”, e.g., “database systems #professor”, which
finds professors related to the area. We generated 38 queries
using CS areas like data mining, compiler, etc..

We chose these benchmark queries not only because of
their practical usefulness but also their diversity: First, they
contain both set answers (1B, 2B) and single points (1A,
2A). Second, they differ in the selectivity of keywords. Bench-
mark 1A and 1B have keywords (e.g., “IBM”, “Chicago”,
etc.) that are far less selective than 2A and 2B (e.g., “Ail-
amaki”, “HCI”). Third, they cover entities extracted with
different methods (Table 1).

While we focus on efficiency, we note that the usefulness
of entity search is also revealing through these benchmarks.
E.g., As Sec. 2 mentioned, Fig. 1 shows the screenshot for
“database systems” #professor with supporting pages. Such
queries, with page search, would require us to comb through
numerous page results to collect answers. Entity search ex-
pands our ability to directly find fine grained information
holistically across many pages.

Performance Evaluation. We focus on search efficiency,
and evaluate each component: processing at the p local
nodes, network transfer, and processing at the global node,
with the following metrics. M1: overall local processing
time. M2 : max local processing time. M3: overall transfer
time. M4: max transfer time. M5: global processing time.
When involving local nodes, we measure both overall as the
sum of all nodes (which indicates throughput), and max as
the maximum (which indicates response time).

Fig. 13 shows the local times for 1A (queries are sorted by
overall local processing time in Baseline). Both D-Inverted
and E-Inverted incur much less overall and max local pro-
cessing time than Baseline, and E-Inverted performs faster
than the D-Inverted. As the graphs are in log scale, we
observe rather significant speedup–generally two orders of
magnitude: E-Inverted ranges around 102ms, D-Inverted
104ms, and Baseline 106ms. Furthermore, the times for
D-Inverted and E-Inverted are more uniform than the Base-
line, which has high variance in the number of documents
needed to scan after keyword lookup.

Fig. 14 shows the transfer times for 1A. Notice, the cost
for Baseline and D-Inverted are the same (thus the points
collapsed together), since they send the same partial “after-
join” results to the global node. We observe that E-Inverted
can save significantly in network transfer cost, as results
are already “after-aggregation.” The difference is, again,
significant–at about two orders of magnitude. Notice, in
the case of only outputting top-k results, E-Inverted scheme
can further save transfer cost, as at most top-k results from
each local node need to be sent for final ranking.

Fig. 15 shows the global times for 1A. E-Inverted requires
much less global processing time compared with the Baseline
and D-Inverted (which have the same global costs). The
difference is about one order of magnitude.
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(a) M1: Overall Local Processing.
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(b) M2: Max Local Processing.

Figure 13: Local Processing: Benchmark 1A.
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(a) M3: Overall Network Transfer.
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(b) M4: Max Network Transfer.

Figure 14: Network Transfer: Benchmark 1A.
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Figure 15: Global Processing (M5): Benchmark 1A.

Overall, we observe similar results for all the benchmarks,
1A, 1B, 2A, and 2B, in both applications. Table 3 summa-
rizes the median cost of all the M1 to M5 metrics. We con-
sistently observe, from Table 3, across the four benchmarks
of totally 176 queries, the significant speedup of the dual-
inversion approaches, for all the processing components M1
to M5. Both E-Inverted and D-Inverted are much faster
than the Baseline– which use keyword indexes to look up
pages for entity search.

Metric in Median Baseline D-Inverted E-Inverted

1A

M1 (s) 527.5 1.14 0.04
M2 (s) 62.8 0.119 0.003
M3 (kb) 58 58 24.4
M4 (kb) 8.2 8.2 1.95
M5 (ms) 6.41 6.41 1.55

1B

M1 (s) 6075 25.44 2.23
M2 (s) 570.5 3.26 0.44
M3 (kb) 5687 5687 127
M4 (kb) 648 648 9.5
M5 (ms) 579.43 579.43 98.24

2A

M1 (s) 46.5 1.13 0.01
M2 (s) 12 0.096 0.002
M3 (kb) 0.558 0.558 0.306
M4 (kb) 0.144 0.144 0.036
M5 (ms) 0.047 0.047 0.0003

2B

M1 (s) 61 1.14 0.002
M2 (s) 12 0.1 0.0002
M3 (kb) 0.732 0.732 0.336
M4 (kb) 0.144 0.144 0.036
M5 (ms) 0.06 0.06 0.0003

Table 3: Summary of metrics.

We conclude by comparing the time efficiency and space
overhead for our dual-inversion approaches. Table 4 sum-
marizes the average (across all the queries in each bench-
mark set) total execution times for all the three methods.
To compare the dual-inversions to Baseline, we also com-
pute the speedup for each category in the parentheses; e.g.,
for benchmark 1A (30 queries), E-Inverted has an average
speedup of 2.5E+4 or 2.5 ·104. Across the categories, we see
rather significant speedup from 1 to 4 orders of magnitude.

The speedup comes at the cost of indexing entities—recall
index configuration in Table 2. Table 4 also compares the
various index sizes of the two application settings. First,
we observe that, since D-Inverted relies on D(E) in addi-
tion to standard keywords D(k), it always requires larger
index size than Baseline–However, the addition is actually
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quite small, resulting in 1% and 0.1% size increase in Appli-
cation 1 and 2, respectively. Second, we observe that, with
its entity-primary indexing on E(k), E-Inverted can require
varying indexing sizes, depending on the actual entities in-
dexed. In Application 1, E-Inverted requires 89.7% more
space, while it actually save space in Application 2 with a
reduction of 80.7% index size. The variation comes from
varying selectivity of an entity: Some entities are very fre-
quent, such as #location in Application 1, which result in
long entity-inverted indexes. Other more “specialized” enti-
ties are much less frequent, such as #university in Application
2.

Baseline D-Inverted E-Inverted
Average 1A 245.61 0.16 (1.5E+3) 0.01 (2.5E+4)
Time 1B 1348.20 3.88 (3.4E+2) 2.21 (6.1E+2)
(sec) 2A 3.14 0.11 (2.9E+1) 0.01 (3.1E+2)

2B 2.03 0.12 (1.7E+1) 0.01 (2.0E+2)
Space App 1 1.45 1.47 (101.0%) 2.75 (189.7%)
(TB) App 2 1.45 1.46 (100.1%) 0.28 (19.3%)

Table 4: Overall: Time and space.

Overall, the experiments conclude that both types of in-
versions can significantly speed up entity search, while keep-
ing space overhead acceptable. The dual-inversions, D-Inverted
and E-Inverted, also present interesting tradeoff: D-Inverted
generally requires minimal space addition, while E-Inverted
constantly achieve higher speedup. As Sec. 4 discussed, both
types of inversion can coexist, to balance the tradeoff– E.g.,
in a system supporting both Application 1 and 2, we may
use D-Inverted for Application 1 and E-Inverted for Applica-
tion 2, resulting in small space overhead and large speedup.

7. CONCLUSIONS
In this paper, we presented the dual-inversion framework,

with two index structures document-inverted index and entity-
inverted index, their respective data partitioning schemes
and query processing. Extensive experiments show the tech-
niques can support efficient and scalable entity search.
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