
Probabilistic Ranking over Relations

Lijun Chang , Jeffrey Xu Yu, Lu Qin
The Chinese University of Hong Kong

Hong Kong, China
{ljchang,yu,lqin}@se.cuhk.edu.hk

Xuemin Lin
The University of New South Wales

Sydney, Australia
lxue@cse.unsw.edu.au

ABSTRACT
Probabilistic top-k ranking queries have been extensively studied
due to the fact that data obtained can be uncertain in many real ap-
plications. A probabilistic top-k ranking query ranks objects by the
interplay of score and probability, with an implicit assumption that
both scores based on which objects are ranked and probabilities of
the existence of the objects are stored in the same relation. We
observe that in general scores and probabilities are highly possible
to be stored in different relations, for example, in column-oriented
DBMSs and in data warehouses. In this paper we study probabilis-
tic top-k ranking queries when scores and probabilities are stored in
different relations. We focus on reducing the join cost in probabilis-
tic top-k ranking. We investigate two probabilistic score functions,
discuss the upper/lower bounds in random access and sequential
access, and provide insights on the advantages and disadvantages
of random/sequential access in terms of upper/lower bounds. We
also propose random, sequential, and hybrid algorithms to conduct
probabilistic top-k ranking. We conducted extensive performance
studies using real and synthetic datasets, and report our findings in
this paper.

1. INTRODUCTION
Uncertain data management is an important issue in sensor net-

work, data cleaning, data integration, and market decision making,
due to the fact that a large amount of information obtained is either
incomplete or uncertain. Several uncertain data models are pro-
posed [2, 12, 4], and probabilistic ranking queries are studied [34,
16, 11, 7, 23, 24] which are based on the interplay of score to be
ranked and probability to be observed.

Probabilistic ranking queries are first studied by Soliman et al.
under the possible worlds semantics [34], and the efficiency of
probabilistic ranking queries are further studied in [37, 16] by uti-
lizing independent and mutually exclusive relationships among tu-
ples under an x-Relation model. Cormode et al. also propose to
rank uncertain data based on their expected rank values [11], called
expected rank semantic. Li et al. study ranking distributed uncer-
tain data based on the expected rank semantic [23]. The exist-
ing approaches assume that both scores based on which objects are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

ranked and probabilities of the existence of the objects are stored
in the same relation.

However, we observe that, in general, scores and probabilities
are highly possible to be stored in different relations, e.g. in column-
store database [1, 20, 8, 17, 21, 4], data integration [29], and data
warehouse [9]. In a column-store database, unlike the tuple-based
approach taken in conventional relational DBMSs, information is
stored in column relations. For example, one column relation stores
object identifier and object scores, and another column relation
stores object identifier and object existence probability. It is re-
ported that column-oriented DBMSs can perform much better than
conventional relational DBMSs in many real applications such as
business intelligence applications [1]. Column storage has been
successfully used for many years in OLAP (Online Analytical Pro-
cessing) [36], and is also adapted to perform OLTP (Online Trans-
actional Processing) recently [28]. As another example, in a data
warehouse, data are stored in a fact table and a collection of dimen-
sion tables using a star schema. The object identifiers and the prob-
ability of the existence of the objects may be stored in the fact table
or a dimensional table, whereas the scores based on which users
want to rank objects may be stored in another dimension table. In
such an environment, it needs to join different relations into one
relation to have both score and probability together, and to apply
one of the existing approaches to probabilistically rank the objects,
which can be costly.

Consider a data warehouse that stores textual information, e.g.
reviews, shape, price, weight, about products extracted from online
shops and forums. The fact table stores the probability of each fact
(e.g. review) to be true, and the shape, price and weight informa-
tion will be stored in other dimensional tables. In order to analyze
such kinds of uncertain information, users may want to rank the
facts based on a user-specified score function by combining shape,
price, weight, and text information. These scoring attributes and
the probability attribute are stored in different tables. Also the users
may want to specify selection constraints on the facts that should
be ranked, e.g. specify the areas where the products are sold, the
countries where the products are made, the time interval the facts
are extracted. Users are interested in different portions of the whole
data, and also in different ranking criteria. In such cases, it is diffi-
cult to materialize data for all possible queries.

In this paper, we study top-k probabilistic ranking queries with
joins when scores and probabilities are stored in different relations.
To the best of our knowledge, this is the first work in probabilistic
ranking under possible worlds semantic that take join issues into
consideration. Our work is different from the existing work on rank
joins which deal with deterministic data [19, 32]. The main differ-
ence is that, for deterministic data, the score of an object can be
computed by itself, whereas, for probabilistic data, the probabilis-

477

tic score of an object cannot be computed by itself, and needs to be
computedbased on scores and probabilities of other objects.

The main contributions of this work are summarized below. We
study top-k probabilistic ranking queries when scores and proba-
bilities are stored in different relations. We investigate two proba-
bilistic score functions, namely, expected rank value [11] and prob-
ability of highest ranking [7]. We give upper/lower bounds of such
probabilistic score functions in random access and sequential ac-
cess, and discuss the advantages/disadvantages of random and se-
quential accesses. We propose new I/O efficient algorithms to find
top-k objects with probabilistic ranking functions, using random
access, sequential access, and the combination of random and se-
quential access by taking the advantages from both random/sequential
access. We conduct extensive performance studies, and confirm the
effectiveness of our approaches.

The remainder of the paper is organized as follows. In Section 2,
we review the x-Relation model of uncertain data and probabilistic
ranking queries over x-Relation. Section 3 gives out our problem
statement. In Section 4, we discuss bounding schema for two top-k
probabilistic ranking queries. In Section 5, we propose algorithms
to find the top-k answers with respect to the probabilistic ranking
function, with random and/or sequential accesses. Experimental
studies are reported in Section 6 followed by discussions on related
work in Section 7. Finally, Section 8 concludes the paper.

2. PROBABILISTIC RANKING QUERIES
We adopt the x-Relation model [2] to model the uncertain data.

An x-RelationX contains a set of independent x-tuples, i.e.X =
{τ1, τ2, · · · }. By independent, it means that the existence of an x-
tuple is independent from the other x-tuples. An x-tuple,τ j , con-
sists of a set of mutually exclusive tuples (also called alternatives
in [16]), and represents a discrete probability distribution of the
possible tuples (alternatives) it may take in a randomly instanti-
ated data. In brief, an alternative of an x-tuple, denoted asoi , has a
score, denoted asscore(oi), and a probability, denoted asp(oi). The
probability represents the tuple existence probability over possible
instances. By mutually exclusive, it implies that an x-tuple can take
at most one alternative in a possible instance.

The x-Relation,X, represents a probability distribution over a
set of possible instances{I1, I2, · · · }. A possible instance,I i , main-
tains zero or one alternative for every x-tuple. The probability of
an instance,I i , is the probability that the x-tuples take none/one
alternative in that instance,

Pr(I i) =
∏

o∈Ii

p(o)×
∏

τ<Ii

(1− Pr(τ)) (1)

whereτ < I i means x-tupleτ takes no alternative inI i and Pr(τ) =
∑

o∈τ p(o). The set of possible instances with positive probability is
called possible worlds of the x-RelationX, denoted aspwd(X).

Below, we discuss ranking based on tuples instead of x-tuples
because an x-tuple can take at most one alternative tuple. As-
sume there is an x-tuple,τ, that has three alternative tuplesτ =
{o1,o3,o4}. Let p(o1) = 0.3, p(o3) = 0.4, andp(o4) = 0.1. It
suggests that the x-tupleτ may take eithero1 with probability 0.3,
or o3 with probability 0.4, oro4 with probability 0.1, or none with
probability 1− 0.3− 0.4− 0.1= 0.2.

Definition 2.1: (Rank in a possible instanceI [11]) In a possible
instanceI , the rank of a tupleoi ∈ I , rankI (oi), is the number of
tuples whose score is larger thanoi .

rankI (oi) =

{

|{oj ∈ I | score(oj) > score(oi)}|, if oi ∈ I ;
|I |, otherwise.

OID score prob
o1 100 0.3
o2 95 0.15
o3 90 0.4
o4 85 0.1
o5 80 0.45
o6 75 0.2
o7 70 0.2

Table 1: An Example Relation (S P)

rank tuple RE

1 o3 1.02
2 o1 1.05
3 o5 1.17
4 o2 1.4475
5 o6 1.56
6 o7 1.6
7 o4 1.615

(a) Rank withRE

rank tuple PHR

1 o1 0.3
2 o3 0.238
3 o5 0.144585
4 o2 0.105
5 o4 0.0375
6 o6 0.035343
7 o7 0.0282744

(b) Rank withPHR

Table 2: Two Rankings

Note that the top tuple has rank 0. �

Definition 2.2: (Expected rank value [11]) The expected rank
value of a tupleoi is defined as follows.

RE(oi) =
∑

I∈pwd(X)

Pr(I) · rankI (oi)

It considers the rank of a tuple as a random variable, and ranks a
tuple based on the expected value of the random variable. �

Definition 2.3: (Probability of highest ranking [7]) The probabil-
ity for a tupleoi to be ranked at the first place is defined as follows.

PHR(oi) =
∑

I∈pwd(X)
oi∈I

rankI (oi)=0

Pr(I)

It ranks tuple,oi , based on the summation of the probability of the
possible instances whereoi appears and is ranked at the first place
(rank 0). �

As can be seen from the above, for ranking tuplesoi , the score
(score(oi)) and probability (p(oi)) play different roles in the proba-
bilistic ranking. Thescore(oi) is used to define the relative rank of
tuples in a possible instance, whereasp(oi) is used to measure the
probability in all possible instances. In the following, we discuss
probabilistic ranking based on a probabilistic score function that
combines bothscore(oi) andp(oi), denoted aspscore(oi). BothRE

andPHR are such probabilistic score functions.
Based on the probabilistic score functionRE, a Top-k Expected

Rank Value (Top-kERV) query returns top-k tuples with lowestRE

values. Based on the probabilistic score functionPHR, a Top-k
Probable Highest Ranking (Top-kPHR) query returns top-k tuples
with highestPHR values.

Table 1 shows a relation with 7 tuples{o1,o2, · · · ,o7}. A tuple
oi is associated with a score (score(oi)) and a probability (p(oi)).
For example, tupleo3 has a score value,score(o3) = 90, and a
probability p(o3) = 0.4. Assume an x-RelationX has 7 x-tuples
{τ1, τ2, · · · , τ7}, and each x-tupleτi has only one alternative tupleoi

in Table 1. The ranking based onRE andPHR are shown in Table 2.

478

OID score

o1 100
o2 95
o3 90
o4 85
o5 80
o6 75
o7 70

(a) RelationS

OID prob

o5 0.45
o3 0.4
o1 0.3
o6 0.2
o7 0.2
o2 0.15
o4 0.1

(b) RelationP

Table 3: Two Relations (S and P)

3. PROBLEM STATEMENT
All the existing work assume that there is an x-RelationX which

contains both score and probability. However, in real applications,
the scores and the probabilities may be stored in different relations.
As an example, the same information stored in relationS P (Ta-
ble 1) may be stored in two separated relations,S andP, as shown
in Table 3 whereS P= S Z P.

A naive approach to compute a probabilistic ranking query, when
score and probability are not stored in the same relation, is to join
the relations followed by applying an existing approach to com-
pute the probabilistic ranking query in the relation. But this naive
approach will incur both high computational cost and I/O cost, be-
cause it needs to join the whole relations.

Problem Statement: In this paper, we study how to compute a
probabilistic ranking query (Top-kERV or Top-kPHR) by reducing
the total I/O cost, when score and probability are not stored in the
same relation. We aim at computing the top-k tuples by accessing
tuples as least as possible.

In the following, we discuss our approaches using the two re-
lations, S and P, as shown in Table 3. We consider two access
methods, namely, random access and sequential access.

• For the random access, it assumes that the relationS is sorted
in descending order based on the scores. It sequentially ac-
cesses the tuples in relationS one-by-one. When it accesses
a tupleoi in relation S in an iteration, it obtains the score
value (score(oi)) from the same tuple in relationS, and ob-
tains the probability of the tupleoi , p(oi), in relationP using
a selection with the sameOID oi , which results in a ran-
dom access of relationP.

• For the sequential access, it assumes that both relationS and
relationP are sorted in descending order based on the scores
and probabilities, respectively. It sequentially accesses the
tuples in relationS and relationP following the descending
order of score and probability, respectively. In every itera-
tion, it accesses an additional tuple from relationS and an
additional tuple from relationP, respectively. For example,
as shown in Table 3, in the first iteration, it accesses the tuple
identified byo1 from S and the tuple identified byo5 from P;
in the second iteration, it accesses the tuple identified byo2

from S and the tuple identified byo3 from P.

In summary, we consider that the relationS is accessed sequen-
tially in descending score order, which is the access method used in
all the existing algorithms when both scores and probabilities are
stored in the same relation [34, 37, 16, 11]. The two access meth-
ods, namely random/sequential accesses, are about how to access
relationP.

The key issue is how many tuples it needs to access in order to
compute Top-kERV/Top-kPHR using random access and sequen-
tial access. We show that we do not need to compute the exact

pscore values (RE values andPHR values) with the assistance of
upper bounds and lower bounds forpscore values. We can com-
pute Top-kERV/Top-kPHR by its relative orders.

4. BOUNDING RANKING FUNCTIONS
A probabilistic ranking query ranks a tuple,oi , with a score func-

tion pscore(oi). It is worth noting that the probabilistic score func-
tion pscore(oi) is completely different from those score functions
that can be evaluated by the tuple in question and is independent
from other tuples. In other words, the probabilistic score func-
tion pscore(oi) needs to be evaluated depending on thescore(oi)
and p(oi) for the tupleoi itself as well asscore(oj) and p(oj) for
the other tuplesoj . It becomes very important to identify charac-
teristics of the probabilistic score functionpscore, especially the
monotonicity, upper bounds, and lower bounds.

In this section, first, for simplicity, we focus on independent
case such that in an x-RelationX, every x-tuple has only one tu-
ple (alternative). Then we will discuss mutually exclusive case.
We assume that all the scores are of different values, it is straight-
forward to extend to tie scores. We use the notation in a way
that the tuples,o1, · · · ,on, are in descending score order such that
score(oi) > score(oj) if i < j.

4.1 Ranking FunctionRE

Assume the tupleso1, · · · ,on are in descending score order, and
they are totally independent. The expected size of possible in-
stances isE[|I |] =

∑

p(oj) for all oj in relation P, and the prob-
abilistic score functionRE(oi) can be simplified as follows.

RE(oi)
=

∑

I∈pwd(X)

Pr(I) · rankI (oi)

=
∑

oi∈I

Pr(I) · rankI (oi) +
∑

oi<I

Pr(I) · |I |

= p(oi) ·
i−1
∑

j=1

p(oj) + (1− p(oi)) ·
∑

j,i

p(oj)

= p(oi) ·
i−1
∑

j=1

p(oj) + (1− p(oi)) · (E[|I |] − p(oi))

= E[|I |] − p(oi) · (E[|I |] −
i−1
∑

j=1

p(oj) − p(oi) + 1)

(2)

The details and correctness of Eq. (2) are given in [11]. Eq. (2)
suggests that we cannot simply computeRE(oi) even if we have al-
ready known itsscore(oi) andp(oi), because it requests us to know
p(oj) for those tuples thatscore(oj) > score(oi). In order to find
the top-k tuples without accessing all tuples, we need to bound the
RE value for each seen or unseen tuple. Before discussing bounds,
we first prove the monotonicity ofRE below.

Lemma 4.1: The RE function, on which the Top-kERV query is
based, is a monotone function, i.e. for any two tuples oi and oj , if
score(oi) ≥ score(oj) and p(oi) ≥ p(oj), then RE(oi) ≤ RE(oj) and
oi ranks higher than oj . �

Proof Sketch: We simplify p(ol) aspl in the following proof. Con-
siderRE(oi) − RE(oj). We have

RE(oi) − RE(o j)

= pi

i−1
∑

l=1

pl + (1− pi)(E[|I |] − pi) − p j

j−1
∑

l=1

pl − (1− p j)(E[|I |] − p j)

= (pi − p j)
i−1
∑

l=1

pl − p j

j−1
∑

l=i

pl − E[|I |](pi − p j) + (pi − p j)(pi + p j − 1)

= (pi − p j)(
i
∑

l=1

pl − E[|I |] + p j − 1)− p j

j−1
∑

l=i

pl

≤ 0

479

Set S P Type Bounds for E[|I |] − RE Bounds for PHR

H+s X X lower p(oi) · (E[|I |] −
∑

j≤i
o j∈H

+
s

p(oj) −
∑

j≤i
o j∈H

−
s

p̄+ 1) p(oi) ·
∏

j≤i
o j∈H

+
s

(1− p(o j)) ·
∏

j≤i
o j∈H

−
s

(1− p̄)

H+s X X upper p(oi) · (E[|I |] −
∑

j≤i
o j∈H

+
s

p(oj) + 1) p(oi) ·
∏

j≤i
o j∈H

+
s

(1− p(o j))

H−s X × upper p̄ · (E[|I |] −
∑

j≤i
o j∈H

+
s

p(oj) + 1) p̄ ·
∏

j≤i
o j∈H

+
s

(1− p(o j))

H¬s × X upper p(oi) · (E[|I |] −
∑

o j∈H
+
s

p(oj) − p(oi) + 1) p(oi) ·
∏

o j∈H
+
s

(1− p(o j))
U × × upper p̄ · (E[|I |] −

∑

o j∈H
+
s

p(oj) + 1) p̄ ·
∏

o j∈H
+
s

(1− p(o j))

Table 4: E[|I |] − RE and PHR bounds for tuple oi (independent)

where the last inequality holds because
∑i

l=1 pl + pj ≤ E[|I |] and
pi ≥ pj . Therefore,RE(oi) ≤ RE(oj) andoi ranks higher thanoj . �

We can boundRE(oi), under the random access and sequential
access of relationP respectively, where relationS is accessed se-
quentially in descending score order. We denote the upper and
lower bounds asRup

E andRlow
E . It is reasonable to assume thatE[|I |]

is available in advance, becauseE[|I |] =
∑

p(oj) for all oj in rela-
tion P.

Random access on relationP: For a tupleoi , we obtain its score
score(oi) when accessing relationS in descending score order and
obtain its probabilityp(oi) using a selection to access rela-
tion P randomly at the same time. Because relationS is sorted
in descending score order, we know the probabilityp(oj) for all
tuples whose scores are larger than that of the tupleoi in question
(score(oj) > score(oi)).

For each seen tupleoj , we can compute its exactRE(oj) value
by Eq. (2). Assume thatoi is the last seen tuple after retrieving the
tupleso1, · · · ,oi−1. For the unseen tupleso, we can lower bound
RE(o) by the following equation.

RE(o) = p(o) ·
∑

score(oj)>score(o)

p(oj) + (1− p(o)) ·
∑

o j,o

p(oj)

≥ p(o) ·
i
∑

j=1

p(oj) + (1− p(o)) ·
i
∑

j=1

p(oj)

=

i
∑

j=1

p(oj)

(3)

Intuitively, it is lower bounded by the expected size of the possible
worlds generated by the tuples{o1, · · · ,oi}. Note that for the Top-
kERV query the smallerRE value the better.

Example 4.1: Consider relationS and relationP in Table 3. As-
sume the first three tuples in relationS have been retrieved. We get
all the scores foro1, o2, ando3, and also get the probability for the
three type by random accesses on relationP. The set of seen tuples
is {o1(100,0.3),o2(95,0.15), o3(90,0.4)}, where each entry repre-
sentsoi(score(oi), p(oi)). E[|I |] = 1.8. Based on Eq. (2), we have
RE(o1) = 1.05, RE(o2) = 1.4475, andRE(o3) = 1.02. The lower
bound for any unseen tupleo is Rlow

E (o) = 0.3+ 0.15+ 0.4 = 0.85.
�

It is difficult to boundRE(o) tight, if we do not know all the tuples
oj whose scores are larger (score(oj) > score(o)). In other words,
all the unseen tuples may have larger scores or none of them have
larger score.

Sequential access on relationP: In this scenario, each time we
retrieve one entry fromS andP in descending score and probabil-
ity order respectively. For each seen tuple, we may know its score
and/or probability. In other words, we may not know both score and
probability for every seen tuple. However, in the sequential access,
unlike the random access, we have one additional piece of informa-
tion, the upper bound of all the unknown probabilities, denoted as
p̄. It is the last retrieved probability from relationP.

LetHs denote the set of seen tuples that we know their scores,
and letH¬s denote the set of seen tuples that we know their prob-
abilities but do not know their scores. In other words, we know
score(oi) for those tuplesoi ∈ Hs and p(oi) only for those tu-
ples oi ∈ H¬s. Furthermore, the tuplesoi that we know both
score(oi) and p(oi) are also kept inHs. In particular, we have
Hs = H

+
s

⋃

H−s , whereH+s contains the tuples that we know both
score and probability, andH−s contains the tuples we only know
their score. In summary, we need to boundRE for the tuples inH+s ,
H−s ,H¬s, and those tuples we have not seen. For the tuples inH+s ,
we need to get both the lower bound and the upper bound, to find
the top-k tuples earlier. For the other tuples, we only need to get
its lower bound, because its upper bound can be very loose, and we
can not determine any of the other tuples to be in top-k results at
this step. If the upper boundRE of any tuples inH+s is no larger
than the lower bound of all the other tuples, then this tuple can be
determined in the top-k results. In order to boundRE, we need the
following information.

For the tuples inH+s with known score and probability, we need
both lower bound and upper bound ofRE. Consider Eq. (2). When
p(oi) is known, the formula can be simplified to the form ofRE(oi)
= c ·

∑i−1
j=1 p(oj) + c′, wherec > 0 andc′ are constants. The lower

bound and upper bound are obtained by replacing those unknown
p(oj)’s with 0 andp̄ respectively.

For those tuples inH−s with known score only, we need to com-
pute its lower bound. It is lower bounded byE[|I |] − p̄ · (E[|I |] −
∑

j<i,o j∈H
+
s

p(oj) + 1).
For those tuplesoi ∈ H¬s, we need its lower bound, which can be

obtained in a similar way as discussed above. It is lower bounded
by E[|I |] − p(oi) · (E[|I |] −

∑

o j∈H
+
s

p(oj) − p(oi) + 1). Similarly, we
can lower boundRE(oi) for the unseen tuples byE[|I |]− p̄ · (E[|I |]−
∑

o j∈H
+
s

p(oj) + 1).
In a summary, the bounds for tuples in different sets are listed in

Table 4. Where theSet column is the name of the set that the tuple
belongs to, andU denotes the set of unseen tuples. The S and P
columns means whether we know the score and probability for the
tuple respectively. We show bounds forE[|I |] − RE(oi) in Table 4.
All the lower bounds forE[|I |] − RE(oi) become upper bounds for
RE(oi), and upper bounds forE[|I |] − RE(oi) become lower bounds
for RE(oi).

Example 4.2: Assume that we have retrieved 3 tuples from both
relation S and relationP in Table 3, respectively. Then,Hs =

{o1(100,0.3),o2(95,−), o3(90,0.4)} andH¬s = {o5(−,0.45)}. Hs

can be further partitioned intoH+s = {o1(100,0.3),o3(90,0.4)}and
H−s = {o2(95,−)}. “-” means the value of that field is unknown.
Here, p̄ = p(o1) = 0.3, which is the last probability we have seen.
E[|I |] = 1.8. For tupleo1, no tuple has a larger score.p(o1) = 0.3,
and thenRE(o1) = 1.8− 0.3× (1.8− 0.3+ 1) = 1.05. For tuple
o2, tuple o1 is the only tuple with a larger score, and we do not
know the probability ofo2. We compute its lower bound, which
is Rlow

E (o2) = 1.8 − 0.3 × (1.8 − 0.3 + 1) = 1.05. For tupleo3,
tupleo1 ando2 are the tuples with a larger score, andp(o3) = 0.4.

480

Tuple Randomly AccessP Sequentially AccessP
Rlow

E (oi) Rup
E (oi) Rlow

E (oi) Rup
E (oi)

o1 1.05 1.05 1.05 1.05
o2 1.4475 1.4475 1.05 -
o3 1.02 1.02 0.96 1.08
o5 - - 1.0575 -

unseen 0.85 - 1.17 -

Table 5: Bounds ofRE(oi) in ran /seq access

RE(o3) = 1.8−0.4×(1.8−0.3− p(o2)−0.4+1) = 0.96+0.4× p(o2),
thenRup

E (o3) = 0.96+0.4×0.3= 1.08 andRlow
E (o3) = 0.96. For tuple

o5, we do not know its exact score, and only know that the tuples in
Hs are with a larger score. Hence,Rlow

E (o5) = E[|I |]−p(o5)×(E[|I |]−
p(o1)− p(o2)− p(o3)− p(o5)+1) ≥ 1.8−0.45× (1.8−0.3−0−0.4−
0.45+ 1) = 1.0575, with a lower bound 1.0575. For all the unseen
tuplesoi , Rlow

E (oi) = E[|I |]− p̄× (E[|I |]− p(o1)− p(o2)− p(o3)+1) ≥
1.17, with a lower bound 1.17. �

Table 5 summarizes the bounds for seen and unseen tuples, after
three iterations of random/sequential accesses on relationP respec-
tively. The RE(oi) for o1, o2, ando3, are exact values in random
access, which is tighter compared to the bounds in sequential ac-
cess. But the lower bound for unseen tuples in random access is
looser, i.e. Rlow

E (o) = 0.85, whereasRlow
E (o) = 1.17 in sequential

access, which is tighter.
Fig. 1 shows the [lower bound, upper bound] interval for tupleo3

ando5 in every iteration from 1 to 7. As we get more information,
the lower bound goes non-decrease, and the upper bound goes non-
increase, eventually we get the exactRE values.

0

0.5

1

1.5

2

 1 2 3 4 5 6 7

Bo
un

ds

(a) o3 (random)

0

0.5

1

1.5

2

 1 2 3 4 5 6 7

Bo
un

ds

(b) o3 (sequential)

0

0.5

1

1.5

2

 1 2 3 4 5 6 7

Bo
un

ds

(c) o5 (random)

0

0.5

1

1.5

2

 1 2 3 4 5 6 7

Bo
un

ds

(d) o5 (sequential)

Figure 1: RE bound changes foro3 and o5

Lemma 4.2: Our bounding scheme is correct. �

The bounding scheme is correct based on Lemma 4.1.

4.2 Ranking FunctionPHR

If the tupleso1, · · · ,on are in descending score order and are to-
tally independent, thePHR(oi) function can be simplified as below.

PHR(oi) = p(oi) ×
i−1
∏

j=1

(1− p(oj)) (4)

It is the product of the nonexistence probability of tuplesoj that
have a larger score than the score ofoi and the probability of tupleoi

itself. We prove thatPHR is a monotone function in the following.

Lemma 4.3: The PHR function, on which the Top-kPHR query is
based, is a monotone function. For any two tuples, oi and oj , if
score(oi) ≥ score(oj) and p(oi) ≥ p(oj), then PHR(oi) ≥ PHR(oj).

�

Tuple Randomly AccessP Sequentially AccessP
Pup

HR(oi) Plow
HR(oi) Pup

HR(oi) Plow
HR(oi)

o1 0.3 0.3 0.3 0.3
o2 0.105 0.105 0.21 -
o3 0.238 0.238 0.28 0.196
o5 - - 0.189 -

unseen 0.357 - 0.126 -

Table 6: Bounds ofPHR(oi) in ran/seq access

Proof Sketch: As all the tuples are totally independent, the follow-
ing equation holds.

PHR(oj)

PHR(oi)
=

p(oj)

p(oi)
×

j−1
∏

l=i

(1− p(ol)) (5)

Here, the first partp(oj)/p(oi) ≤ 1 becausep(oi) ≥ p(oj), and the
second part is no larger than one too. Therefore the probabilistic
score functionPHR is monotone,PHR(oi) ≥ PHR(oj), if score(oi) ≥
score(oj) andp(oi) ≥ p(oj). �

Let the upper and lower bounds ofPHR(oi) bePup
HR(oi) andPlow

HR(oi),
respectively. We consider random and sequential accesses on rela-
tion P respectively.

Random access on relationP: In this scenario, we get the prob-
ability for each seen tuple by a random access on relationP. For
any seen tuple we know its exactPHR value. For all the unseen tu-
ples we can upper bound it by

∏i
j=1(1− p(oj)), whereoi is the last

accessed tuple from relationS. Note that this upper bound is tight,
because an unseen tupleoi+1 may have probability 1.

Example 4.3: Consider relationS and relationP in Table 3. As-
sume the first three tuples in relationS have been retrieved. The set
of seen tuples is{o1(100,0.3),o2(95,0.15),o3(90,0.4)}. Based on
Eq. (4), we havePHR(o1) = 0.3, PHR(o2) = 0.105, andPHR(o3) =
0.238. The upper bound for any unseen tuple,o, is Pup

HR(o) =
(1−0.3)·(1−0.15)·(1−0.4)= 0.357. This upper bound is achieved
by giving the unseen tuple with highest score a probability 1. That
is, o4 is estimated to have a probability 1. �

Sequential access on relationP: In this scenario, in every itera-
tion, we retrieve a tuple from relationS and a tuple from relation
P in descending score/probability order respectively. We know the
score and/or probability for the retrieved tuples from both relations.
Let p̄ denote the last retrieved probability fromP.

For a tupleoi ∈ Hs, all the tuplesoj such thatscore(oj) >
score(oi) are inHs already. We computePHR(oi) using Eq. (4).
However, because the probability for some tuples may be unknown,
we need to upper bound and lower boundPHR(oi). If p(oi) is un-
known, then we upper bound it by ¯p, and lower bound it by 0.
For each tupleoj involved in Eq. (4) to computePHR(oi), the up-
per/lower bounds of (1− p(oj)) are 1 and (1− p̄) respectively.

For a tupleoi ∈ H¬s, we upper/lower boundPHR(oi) value. Note
that its lower bound is 0. All the tuples inHs have a score larger
thanscore(oi). We upper boundPHR(oi) by multiplying p(oi) and
(1 − p(oj)) for all the tuples inHs as discussed above. Note that
there may exist some tupleoj that has a larger score thanoi but has
not been retrieved from relationS yet. Similarly, we upper bound
PHR(o) for the unseen tuples by multiplying ¯p and (1− p(oj)) for
all the tuples inHs as discussed above.

In a summary, the bounds ofPHR for tuples in different sets are
listed in Table 4.

Example 4.4: Assume that we have retrieved 3 tuples from both
relation S and relationP in Table 3, respectively. Then,Hs =

{o1(100,0.3), o2(95,−), o3(90,0.4)} andH¬s = {o5(−,0.45)}. Hs

481

can be further partitioned intoH+s = {o1(100,0.3),o3(90,0.4)}and
H−s = {o2(95,−)}. Here, p̄ = 0.3, which is the last probability we
have seen. In the following, we compute upper bounds and lower
bounds for all the partial/full seen tuples. For tupleo1, no tuple
has a larger score.p(o1) = 0.3, thenPHR(o1) = p(o1) = 0.3. For
tuple o2, tupleo1 is the only tuple with a larger score, but we do
not know the probability ofo2. PHR(o2) = p(o2) × (1− p(o1)), then
Pup

HR(o2) = p̄ × (1 − p(o1)) = 0.21 andPlow
HR(o2) = 0. For tupleo3,

tupleo1 ando2 are the tuples with larger scores, andp(o3) = 0.4.
PHR(o3) = p(o3)× (1− p(o1))× (1− p(o2)) = 0.4× (1− 0.3)× (1−
p(o2)) = 0.28× (1 − p(o2)), thenPup

HR(o3) = 0.28 andPlow
HR(o3) =

0.28× (1 − p̄) = 0.196. For tupleo5, we do not know its exact
score, but we know that the tuples inHs are with a larger score.
So Pup

HR(o5) = p(o5) × (1 − p(o1)) × (1 − p(o2)) × (1 − p(o3)) ≤
0.45× (1− 0.3)× (1− 0)× (1− 0.4)= 0.189, with an upper bound
0.189. For all the unseen tuplesoi , Pup

HR(oi) = p̄× (1− p(o1))× (1−
p(o2)) × (1− p(o3)) ≤ 0.126, with an upper bound 0.126. �

Table 6 summarizes the bounds for seen and unseen tuples, after
three iterations of random/sequential accesses on relationP respec-
tively. ThePHR(oi) for o1, o2, ando3, are exact values in random
access, which is tighter compared to the bounds in sequential ac-
cess. But the upper bound for unseen tuples is a little looser i.e.
Pup

HR(o) = 0.357, whereasPup
HR(o) = 0.126 in sequential access,

which is tighter.

Lemma 4.4: Our bounding scheme is correct and tight among all
possible bounding schema provided that relation P is sorted in de-
scending probability order. �

Proof Sketch: The correctness of our bounding scheme directly
follows from Lemma 4.3. For the tightness, we assume that a tuple
may have zero probability. There does not exist any other bounding
scheme (without random guess) that is more tight than ours. Based
on Eq. (4), the lower bound is achieved, when all the tuples with
a larger score has probability ¯p; and the upper bound is achieved
when all the tuples with larger score has probability 0. Note that
the upper bound and lower bound are achievable individually.�

4.3 Ranking Function with Exclusive Relation-
ship

In the previous section, we discussed the bounds forRE andPHR

respectively, assuming that all the tuples are independent. In this
section, in a general, we discuss bounds forRE andPHR in an x-
Relation with exclusive relationships.

Let oi ⋄ oj denote that tupleoi andoj are mutually exclusive, i.e.
they belong to the same x-tupleτ, oi ∈ τ andoj ∈ τ, and letoi ⋄̄oj

denote that tupleoi andoj are from different x-tuples (independent).
Note thatoi andoj are different tuples. Letτoi denote the x-tuple
thatoi belongs to, i.e.,τoi = {oj | oj ⋄ oi} ∪ {oi}.

4.3.1 RE function
Assume the tupleso1, · · · ,on are in descending score order, the

RE(oi) with exclusive relationship is as follows.

RE(oi)
= p(oi) ·

∑

o j ⋄̄oi , j<i

p(oj)

+(1− p(oi)) · (
∑

oj ⋄oi
p(oj)

1−p(oi)
+
∑

o j ⋄̄oi
p(oj))

= p(oi) · (
∑

j<i

p(oj) −
∑

o j⋄oi , j<i

p(oj)) +
∑

o j⋄oi

p(oj)

+(1− p(oi)) · (E[|I |] − p(oi) −
∑

o j⋄oi
p(oj)).

= E[|I |] − p(oi) · (E[|I |] −
∑

j<i

p(oj) − p(oi) + 1)

+p(oi) ·
∑

o j⋄oi , j>i p(oj)

(6)

where the first equation is from [11]. Compared withRE in the
independent case, there is one extra termp(oi) ·

∑

o j⋄oi , j>i p(oj).
When randomly accessing relationP, the lower bound for the

unseen tuples isRE(oi) ≥
∑

j≤i p(oj), which is the same as Eq. (3).
However, theRE(oi) for the seen tuples can not be bounded tightly.
Even though we have retrieved all the tuples with higher score and
their probabilities, we still do not know those tuples in the same
x-tuple withoi , i.e., the term

∑

o j⋄oi , j>i p(oj) is unknown.
When sequentially accessing relationP, the bounding scheme

is more complicated compared to that discussed in Section 4.1.
In Section 4.1,p(oi) for unknown probability is bounded by 0≤
p(oi) ≤ p̄. But, when mutually exclusive exists, it is upper bounded
by

min{p̄,1−
∑

o j⋄oi ,o j∈H
+
s ∪H¬s

p(oj)}

When
∑

o j⋄oi ,o j∈H
+
s ∪H¬s

p(oj) > 1− p̄, p(oi) must be less than ¯p. In
order to boundRE(oi) when mutually exclusive exists, we reorga-
nize Eq. (6) in the granularity of x-tuples. It is possible to get better
bounds, because

∑

o j∈τ
p(oj) ≤ 1. Eq. (6) is reorganized as follows.

RE(oi)
= E[|I |] − p(oi) · (E[|I |] + 1−

∑

j<i

p(oj) − p(oi) −
∑

o j⋄oi
j>i

p(oj))

= E[|I |] − p(oi) · (E[|I |] + 1−
∑

τ∈X
oi<τ

∑

o j∈τ

j<i

p(oj) −
∑

o j∈τoi

p(oj))
(7)

The x-tuples are independent, so are their bounds. For the term
∑

o j∈τ, j<i p(oj), the lower bound is obtained by replacing all the un-
known p(oj) with 0, i.e.,

∑

o j∈τ,o j∈H
+
s , j<i p(oj). There exist two pos-

sible upper bounds. One is to replace all of the unknownp(oj) with
p̄, i.e.,

∑

o j∈τ,o j∈H
+
s , j<i p(oj) + p̄ · |{oj ∈ τ | oj ∈ H

−
s , j < i}|, where

| · | is the size of a set. The other is one minus the summation of the
probabilities for tuples inτ that has a larger score thanscore(oi),
i.e., 1−

∑

o j∈τ,o j∈H
+
s && j>i||o j∈H¬s

p(oj). The upper bound is the min-
imum of the two. Similarly, for the term

∑

o j∈τoi
p(oj), its lower

bound can be obtained by replacing all the unknownp(oj) with 0,
i.e.,
∑

o j∈τoi ,o j∈H
+
s ∪H¬s

p(oj), the upper bound can be obtained by re-
placing all the unknownp(oj) for tuples inτoi with p̄, if we can get
the size information about x-tupleτoi , otherwise, it can only be triv-
ially upper bounded by 1. By combining the corresponding lower
bounds and upper bounds for each term, we get the lower bound
and upper bound for Eq. (7).

In a summary, the bounds ofE[|I |] − RE for tuples in different
sets are shown in Table 7.

Example 4.5: Consider the two relationsS and P in Table 3,
assume there is a mutually exclusive relationship between tuple
o1 and o6, i.e. τ1 = {o1,o6}, and the other tuples are indepen-
dent. The x-tuple information can be possibly maintained in re-
lation S, in an additional column named XID. The tuples iden-
tified by unique OID share the same XID if they belong to the
same x-tuple. In addition, we add an additional column called
Xcnt which records the number of alternatives an x-tuple has. With
this additional column Xcnt, we can achieve tighter bound. It is
achieved by the following information. For example, when retriev-
ing o6 from relationS by sequential access, we get the informa-
tion that all the alternatives of x-tupleτ1 have been retrieved, be-
causeτ1 has only two alternatives and the other alternativeo1 has
been retrieved.E[|I |] = 1.8. After three sequential accesses on
both S and P, Hs = {o1(100,0.3),o2(95,−), o3(90,0.4)}, H¬s =

{o5(−,0.45)}, and ¯p = 0.3. We also know that tupleo2 ando3 have
no other alternatives from the same x-tuple, and there are more al-
ternatives from the x-tuple that containso1. For tupleo1, RE(o1) =

482

Set S P Type Bounds for E[|I |] − RE

H+s X X upper p(oi) · (E[|I |] + 1−
∑

τ∈X,oi<τ

∑

o j∈τ,o j∈H
+
s , j<i p(oj) −

∑

o j⋄oi ,o j∈H
+
s ∪H¬s

p(oj) − p(oi))
H+s X X lower p(oi) · (E[|I |] + 1

−
∑

τ∈X
oi<τ

min{
∑

o j∈τ

o j∈H
+
s

j<i

p(oj) + p̄ · |{o j ∈ τ | o j ∈ H
−
s , j < i}|, 1−

∑

o j∈τ

o j∈H
+
s

j>i

p(oj) −
∑

o j∈τ

o j∈H¬s

p(oj)}

−min{
∑

o j⋄oi ,o j∈H
+
s ∪H¬s p(oj) + p(oi) + p̄ · (|τoi | − |{o j ⋄ oi | o j ∈ H

+
s ∪H¬s}| − 1),1})

H−s X × upper min{p̄,1−
∑

o j⋄oi
o j∈H

+
s ∪H¬s

p(o j)} · (E[|I |] + 1−
∑

τ∈X
oi<τ

∑

o j∈τ

o j∈H
+
s

j<i

p(oj) −
∑

o j⋄oi
o j∈H

+
s ∪H¬s

p(oj))

H¬s × X upper p(oi) · (E[|I |] + 1−
∑

o j ⋄̄oi ,o j∈H
+
s

p(oj) −
∑

o j∈τoi ,o j∈H
+
s ∪H¬s

p(o j))
U × × upper p̄ · (E[|I |] + 1−

∑

o j∈H
+
s

p(oj))

Table 7: E[|I |] − RE boundsfor tuple oi (independent/exclusive)

E[|I |] − p(o1)(E[|I |] + 1−
∑

o j∈τo1
p(oj)) = 0.96+ 0.3

∑

o j∈τo1
p(oj),

where
∑

o j∈τo1
p(oj) is lower bounded byp(o1) = 0.3 and upper

bounded byp(o1) + p̄ = 0.6. ThenRlow
E (o1) = 1.05 andRup

E (o1) =
0.96+0.3×0.6= 1.14. For tupleo2, RE(o2) = E[|I |]−p(o2)(E[|I |]−
p(o1)−p(o2)+1), and thenRlow

E (o2) = 1.8−0.3×(1.8−0.3+1) = 1.05.
For tupleo3, Rlow

E (o3) = 0.96 andRup
E (o3) = 1.08. For tupleo5,

Rlow
E (o5) = 1.0575. AndRlow

E (o) = 1.17 for unseen tuples. �

In this example, although we know both score and probability
for o1 ando1 has the highest score, we can not get the exactRE(o1),
because there may exist some tuples with a smaller score and in the
same x-tuple whereo1 belongs to.

4.3.2 PHR function
Assume the tupleso1, · · · ,on are in descending score order, the

PHR(oi) with exclusive relationship is as follows.

PHR(oi) = p(oi) ×
∏

τ∈X,oi<τ

(1−
∑

o j∈τ, j<i

p(oj)) (8)

which is the multiplication of the existence probability ofoi and the
nonexistence probabilities of other tuples with higher score. Note
that, the multiplication is in the granularity of x-tuple, because the
tuples from an x-tuple are mutually exclusive.

When randomly accessing relationP, we only need to upper
bound the unseen tuples. Letoi be the last seen tuple, thePHR for
unseen tuples can be upper bounded by

∏

τ∈X(1−
∑

o j∈τ, j<i p(oj)).
When sequentially accessing relationP in descending proba-

bility order, we need both upper and lower bounds for seen tu-
ples. In Eq. (8), ifp(oi) is unknown, then the upper bound is
min{p̄, 1 −

∑

o j⋄oi
p(oj)} and the lower bound is 0. For each un-

knownp(oj) in the second part of Eq. (8), we replace it by 0 for the
upper bound, and by ¯p for the lower bound. If the lower bound is
negative, then its lower bound is 0.

For eachoi ∈ H¬s whose score is unknown, we upper bound it
by Pup

HR(oi) = p(oi)×
∏

τ∈X,oi<τ
(1−
∑

o j∈τ,o j∈H
+
s

p(oj)). For the unseen
tuples, we can upper bound it by

max
τ∈X
{
min{p̄,1−

∑

o j∈H
+
s ∪H¬s

p(oj)}

1−
∑

o j∈H
+
s

p(oj)
}
∏

τ∈X

(1−
∑

o j∈τ,o j∈H
+
s

p(oj))

4.4 Discussions
In this section, we discuss two issues. One is the advantages and

disadvantages related to random/sequential access. The other is
the bounding scheme for other possible top-k probabilistic ranking
queries.

Random vs Sequential access: We discuss the advantages and
disadvantages of the bounds for random and sequential accesses.
Consider at the iterationi, we distinguish the whole set of (seen or
unseen) tuples into two setsHs andH¬s ∪ U.

When randomly accessing relationP, we retrieve the probability
by a random access each time we retrieve the corresponding tuple
from relationS. H¬s = ∅ andHs = H

+
s . For tuplesoi ∈ H

+
s , we

can get the exactpscore(oi) values, both upper bound and lower
bound arepscore(oi) which is absolutely tight. But, for tuplesoi ∈

U, we do not know any information about the score and probability.
Then, the upper bound forpscore(oi) can be arbitrarily loose.

When sequentially accessing relationP, we have additional in-
formation p̄, which is the upper bound for all the unknown proba-
bilities. We can upper boundpscore(oi) for tuplesoi ∈ H¬s ∪ U
more tighter than that in random access. But, among tuplesoi ∈

Hs, the probability for some tuples may be unknown, we can only
bound it by 0 from below and ¯p from above. The lower/upper
bound forpscore(oi) is a little looser than that in random access.

In summary, with random access on relationP, we can get better
bounds ofpscore(oi) for tuples inHs. With sequential access on
relation P, we can get better bounds ofpscore(oi) for tuples in
H¬s ∪ U. But, we can not get better bounds for both tuples inHs

and tuples inH¬s ∪ U at the same time, in either random access or
sequential access.

The bounds for other functions: There are also other probabilistic
ranking functions used in the literature, e.g., top-k probability [16],
or the probability for a tuple to be ranked at thej-th position in
possible worlds [34]. The same approach in the literature can be
used to boundpscore in random access, because it is the same as
to process in the same relation. However, it is very difficult to find
an upper bound or nontrivial lower bound (other than 0) for these
probabilistic ranking functions, in sequential access of relationP.
Below, we discuss why it is difficult to find an upper bound for
the probability that a tuple ranked at thej-th position in possible
worlds.

Suppose we have done 4 sequential accesses, and we haveHs =

{o1(100,p1), o2(95,p2),o3(90,p3),o4(85,0.4)}, wherepi is short
for p(oi) and is unknown. We only know thatp1, p2, and p3, are
in the range of [0, p̄], where p̄ is the last seen probability. Then
the probability foro4 to be ranked at the second place in possible
worlds is as follows.

p(o4) · (p1(1− p2)(1− p3)+ p2(1− p1)(1− p3)+ p3(1− p1)(1− p2))

which is 0.4· (3p1p2p3 − 2p1p2 − 2p1p3 − 2p2p3 + p1 + p2 + p3).
It is a polynomial of degree 3, it is hard to get the upper bound.
A very loose upper bound is 0.4 · (3p1p2p3 + p1 + p2 + p3), where
p1, p2, p3 is replaced by ¯p. This upper bound can be very loose, and
can be arbitrarily large when there are more than 3 tuples with un-
known probability. Even worse, in order to get such upper bound,
it takesO(2n) time in order to compute the probability for a tuple
to be ranked at the second position, wheren is the number of prob-
abilities that are unknown.

483

Algorithm 1 PRR(S, P, k)
Input : relationS, relationP, and a numberk
Output: Top-k tuples in sorted order based onRE.

1: initialize a priority queue of sizek, Q, to be empty;
2: while less thank tuples reporteddo
3: (oi , si)← next(S);
4: (oi , pi)← f ind(P,oi);
5: computeRE(oi) using Eq. (2);
6: insert (oi ,RE(oi)) intoQ;
7: compute the lower bound of all the unseen tuples asRlow

E (o);
8: while less thank tuples reporteddo
9: let oi be the tuple with largestRE(oi) in Q.

10: if RE(oi) ≤ Rlow
E (o) then

11: reportoi as the next tuple in the top-k answers;
12: deleteoi fromQ;
13: else
14: break;

5. I/O EFFICIENCY
We discussed the bounding schema for bothRE andPHR in Sec-

tion 4. In this section, we discuss two algorithms for random ac-
cess and sequential access of relationP respectively for Top-kERV
queries when all x-tuples are independent. It is straightforward
to extend the algorithms to support the general mutually exclusive
case, and it is straightforward to extend the algorithms to compute
probability of highest rank queries using the bounding scheme of
PHR instead ofRE. We also discuss how to combine the advantages
from both random/sequential access.

5.1 Random Access on RelationP
The algorithm for random access on relationP is similar to the

algorithms for probabilistic rank queries in a single relation.
Algorithm 1 shows the detailed steps of computing Top-kERV

queries. It takes three inputs: a relationS which is sorted in de-
scending score order, a relationP, and a numberk. It uses a pri-
ority queueQ of sizek which is initialized to be empty (line 1).
It outputs the top-k answers in a while loop (line 2-14), and will
stop when top-k answers are output. In the while loop, it gets the
next pair (oi , si) from relationS wheresi = score(oi) (line 3). The
score will be the largest among those unseen tuples in relationS,
because relationS is sorted in descending score order. Then, it
obtainsp(oi) by calling f ind(P, oi) with the OID oi by a random
access (line 4). It computesRE(oi) using Eq. (2) (line 5), and in-
serts the pair (oi ,RE(oi)) into the priority queueQ where tuples are
sorted in ascendingRE(oi) order (line 6). If its size exceedsk when
inserting a pair intoQ, we delete the pair with the largestRE value
from Q. It also computes the lower bound for all the unseen tu-
ples denoted asRlow

E (o), using the bounding approach discussed in
Section 4.1 (line 7). All the tuplesoi in Q with RE(oi) ≤ Rlow

E (o)
can be determined to be the top-k answers (line 8-14). Note that
in Algorithm 1 the numbers of tuples retrieved from relationS and
relationP are the same.

Example 5.1:Consider the two relations,S andP, in Table 3. Let
k = 2. Algorithm 1 executes as follows. In the first two iterations,
(o1,100) and (o1,0.3), and (o2,95) and (o2,0.15), are retrieved from
relationS and relationP. In the third iteration, (o3,90) and (o3, 0.4)
are retrieved. We haveRE(o1) = 1.05, RE(o2) = 1.4475, and
RE(o3) = 1.02. The lower bound is computed asRlow

E (o) = 0.85.
All theseRE(o1), RE(o2), andRE(o3) are larger than the lower bound
Rlow

E (o). Therefore, no tuples can be determined to be in the top-k
answers in this iteration. In the fourth iteration, we retrieveo4 from
both relations: (o4,85) and (o4,0.1). RE(o4) = 1.615. The lower

Algorithm 2 PRS(S, P, k)
Input : relationS, relationP, and a numberk
Output: Top-k tuples in sorted order based onRE.

1: while less thank tuples reporteddo
2: (oi , si)← next(S);
3: (o j , p j)← next(P);
4: p̄← p j ;
5: updateHs andH¬s;
6: for all the tuplesoi ∈ Hs, compute its upper bound and lower bound

Rup
E (oi) andRlow

E (oi);
7: compute the lower bound for all the tuples inH¬s and all the unseen

tuples;
8: while less thank tuples reporteddo
9: let oi be the unreported tuple inHs with smallest lower bound;

10: if Rup
E (oi) is no larger than all the other lower boundsthen

11: reportoi as the next tuple in the top-k answers;
12: else
13: break;

bound computed isRlow
E (o) = 0.95. No tuple can be determined to

be the top-k answers. In the fifth iteration, we retrieveo5 from both
relations: (o5,80) and (o5,0.45). RE(o5) = 1.17. The lower bound
computed isRlow

E (o) = 1.4. RE(o3) and RE(o1) are smaller than
Rlow

E (o), theno3 ando1 can be determined to be the top-2 results.
�

Theorem 5.1: Algorithm 1 correctly finds the top-k tuples with
respect to RE, with sequential access on relationS and random
access on relationP. �

Proof Sketch: For all the seen tuplesoi , we can computeRE(oi)
exactly by Eq. (2). For the unseen tupleso, it can be lower bounded
asRlow

E (o). All the tuples output by Algorithm 1 are guaranteed to
be no larger thanRlow

E (o) (line 10). Then it is guaranteed to be in
the top-k answers. �

5.2 Sequential Access on RelationP
Because random access usually is much expensive compared to

sequential access, in this section, we consider sequential accessing
relation P provided that relationP is sorted in descending order
in terms of probability, as well as sequential accessing relationS
which is sorted in descending score order.

We sequentially access relationS and relationP. In every itera-
tion, we retrieve (oi , si) from relationS, and (oj , pj) from relation
P, update ¯p to bepj , wherep̄ is the upper bound for all the unseen
probabilities. We updateHs andH¬s which may require joining
(oi , si) and (oj , pj) with the existing retrieved tuples inHs andH¬s.
We also update the upper bound and lower bound for all the seen tu-
ples, and compute the lower bound for all the unseen tuplesRlow

E (o).
Let oi be the tuple with smallest lower bound among all seen tuples.
If Rup

E (oi) is no larger than all the other lower bounds, then tupleoi

can be determined to be the next tuple in the top-k answers. Algo-
rithm 2 shows the detailed steps. We explain it using an example.

Example 5.2: Consider the two relations,S and P, in Table 3.
Let k = 2. Algorithm 2 executes as follows. In the first iteration,
(o1,100) and (o5,0.45) are retrieved from relationS and relation
P (line 2-3). p̄ = 0.45 (line 4). Here,Hs = {(o1(100,−)} and
H¬s = {(o5(−,0.45)}, where every entry inHs andH¬s represents
oi(score(oi), p(oi)). In the second iteration, (o2,95) and (o3,0.4)
are retrieved from relationS and relationP. p̄ = 0.4. Here,Hs =

{(o1(100,−),o2(95,−)} andH¬s = {(o5(−, 0.45), o3(−, 0.4)}. The
upper bounds forRE of all the seen tuples areE(|I |), no tuples can
be the top-k answers.

In the third iteration, after retrieving (o3,90) from relationS and

484

(o1,0.3) from relationP, we updateHs andH¬s (line 5). Here,
Hs = {(o1(100,0.3),o2(95,−), o3(90,0.4)}andH¬s = {(o5(−,0.45)}.
Note that the entryo3(−,0.4) is deleted fromH¬s and its probabil-
ity is added intoo3(90,0.4) inHs. The same is applied too1. The
upper bounds and lower bounds in the third iteration are shown
in Table 8. The tuple with smallest lower bound iso3 such that
Rlow

E (o3) = 0.96. Its upper bound (Rup
E (o3) = 1.08) is larger than the

lower bound ofo2 becauseRlow
E (o2) = 1.05, so we continue for the

next iteration.

Tuple Iteration 3 Iteration 4
Rup

E (oi) Rlow
E (oi) Rup

E (oi) Rlow
E (oi)

o1 1.05 1.05 1.05 1.05
o2 - 1.05 - 1.3
o3 1.08 0.96 1.04 0.96
o4 - - - 1.38
o5 - 1.0575 - 1.0575
o6 - - - 1.42

unseen - 1.17 - 1.38

Table 8: Upper/lower bounds in 3rd and 4th iteration

In the fourth iteration, after retrieving (o4,85) from relationS
and (o6,0.2) from relationP, we haveHs = {o1(100,0.3),o2(95,−),
o3(90,0.4),o4(85,−)} andH¬s = {o5(−, 0.45),o6(−, 0.2)}. p̄ = 0.2.
We recompute the upper bounds and lower boundsRE for the seen
tuples, as shown in Table 8. The lower boundRE value for the
tuples inH¬s is Rlow

E (o5) = 1.0575, and the lower bound for the un-
seen tuples isRlow

E (o) = 1.38. The tuples with smallest lower bound
is o3, and its upper bound 1.04 is no larger than any other lower
bounds. Therefore,o3 can be determined to be the top-1 answer,
although its exactRE(o3) is still unknown. Then the unreported tu-
ples with the smallest lower bound iso1, and its upper bound 1.05
is no larger than any other unreported lower bounds. We can report
o1 as the top-2 answer. �

Compare Example 5.1 and Example 5.2. For random access on
relation P, we report the top-2 answers after retrieving 5 tuples
from relationS and 5 tuples from relationP. For sequential access
on relationP, we can determine that tupleso3 ando1 must be in
the top-2 answers, in the fourth iteration. It is does not only incur
less expensive to conduct sequential access, but also retrieve less
number of tuples compared to random access on relationP.

Theorem 5.2: Algorithm 2 correctly computes the top-k tuples
based on RE, with sequential access on both relation S and relation
P. �

Proof Sketch: The correctness of Algorithm 2 directly follows
from Lemma 4.1 and Lemma 4.2, and the correctness of the non-
random access algorithms in [14, 32]. �

It is important to note that our sequential access is similar to the
scenario discussed in [14, 32]. For each seen tuple, there is an up-
per bound and lower bound ofRE(oi). If Rlow

E (oi) ≤ Rup
E (oj), then

tupleoi is guaranteed to rank higher thano j . For the unseen tuples,
RE(o) is guaranteed to be less than or equal to some lower bound
value. However, both work reported in [14, 32] are for determin-
istic datasets and cannot be directly applied to probabilistic query
processing.

5.3 Sequential and Random Access
In Section 5.1 and Section 5.2, we discussed algorithms to find

the top-k answers, with either random access or sequential access
on relationP. We also discussed the advantages and disadvantages
of these two access methods in Section 4.4. It is hard to get better
bounds ofpscore(oi) for both the seen tuples and unseen tuples.

Parameter Range Default
k 5, 10, 20, 30, 50 20
size 1, 2, 3, 4, 5 (×10k) 3
xsize 1, 2, 3, 4, 5 3
mean 0.4, 0.5, 0.6, 0.7, 0.8 0.6

Table 9: Parameters for all Testings

10K

100K

1M

5 10 20 30 50

C
os

t

Random
Hybrid

Sequent

(a) Varyk

10K

100K

1M

1 2 3 4 5

C
os

t

Random
Hybrid

Sequent

(b) Vary size

1K

10K

100K

1M

1 2 3 4 5

C
os

t

Random
Hybrid

Sequent

(c) Vary xsize

10K

100K

1M

.4 .5 .6 .7 .8

C
os

t

Random
Hybrid

Sequent

(d) Vary mean

Figure 3: Uniform Distribution

In this section, we discuss conducting both sequential and ran-
dom access at the same time, to utilize both advantages of random
access and sequential access. We can add random access of rela-
tion P into the framework of Algorithm 2, which is designed for
sequential access only. In some iteration in Algorithm 2 (line 3),
instead of sequentially retrieving the next tuple from relationP, we
issue a random access to find the probability for the tuple inHs

with the largest score and unknown probability. Then, the bounds
for all the tuples with smaller scores will become tighter. Note that,
when a random access is issued, the ¯p value will not be changed to
the probability retrieved. Below, we give an example to show how
random access helps bounding in sequential access.

Example 5.3: Consider the two relations,S and P, in Table 3.
Let k = 2. Assume the probability ofo5 is changed to 0.5, i.e.,
p(o5) = 0.5. E[|I |] = 1.85. After conducting four sequential ac-
cesses on relationS and relationP respectively,Hs = {o1(100,0.3),
o2(95,−), o3(90,0.4),o4(85,−)},H¬s = {o5(−, 0.5),o6(−, 0.2)}, and
p̄ = 0.2. Then the upper bounds and lower bounds are as fol-
lows. For tupleo1, RE(o1) = 1.085. For tupleo2, Rlow

E (o2) = 1.34.
For tupleo3, Rlow

E (o3) = 0.99, andRup
E (o3) = 1.07. For tupleo4,

Rlow
E (o4) = 1.42. For tupleo5, Rlow

E (o5) = 1.025. For tupleo6,
Rlow

E (o6) = 1.56. For unseen tupleo, Rlow
E (o) = 1.42. The upper

bound ofo3, which is the tuple with smallest lower bound, is larger
than the lower bound ofo5. Then no tuple can be determined to be
in the top-k answers in this iteration.

If, in the fourth iteration, we issue a random access onP in-
stead of sequential access to the probability ofo2. Then,Hs =

{o1(100,0.3),o2(95,0.15),o3(90,0.4),o4(85,−)},H¬s = {o5 (−,0.5)},
p̄ = 0.3. Note that ¯p is larger than that of sequential access. The
set of upper bounds and lower bounds are as follows. For tuple
o1, RE(o1) = 1.085. For tupleo2, RE(o2) = 1.49. For tuple
o3, RE(o3) = 1.05. For tupleo4, Rlow

E (o4) = 1.25. For tupleo5,
Rlow

E (o5) = 1.1. For unseen tupleo, Rlow
E (o) = 1.25. Then, tuple

o3 can be determined with the highest rank, and tupleo1 with the
second highest rank. �

6. PERFORMANCE STUDIES
We conducted extensive performance studies to get top-k an-

485

0

500

1000

1500

2000

2500

3000

5 10 20 30 50

Co
st

Hyrbid 1/3
Hybrid 1/2
Hybrid 1/1
Hybrid 2/1
Hybrid 3/1

(a) Varyk

100

1K

10K

100K

1M

5 10 20 30 50

Co
st

Random
Hybrid

Sequent

(b) Vary k

100

1K

10K

100K

1M

1 2 3 4 5

Co
st

Random
Hybrid

Sequent

(c) Vary size

Figure 2: Real Data

10K

100K

1M

5 10 20 30 50

C
os

t

Random
Hybrid

Sequent

(a) Varyk

10K

100K

1M

1 2 3 4 5

C
os

t

Random
Hybrid

Sequent

(b) Vary size

1K

10K

100K

1M

1 2 3 4 5

C
os

t

Random
Hybrid

Sequent

(c) Vary xsize

10K

100K

1M

.4 .5 .6 .7 .8

C
os

t

Random
Hybrid

Sequent

(d) Vary mean

Figure 4: Normal Distribution

10K

100K

1M

5 10 20 30 50

C
os

t

Random
Hybrid

Sequent

(a) Varyk

1K

10K

100K

1M

1 2 3 4 5

C
os

t

Random
Hybrid

Sequent

(b) Vary size

100

1K

10K

100K

1M

1 2 3 4 5

C
os

t

Random
Hybrid

Sequent

(c) Vary xsize

10K

100K

1M

.4 .5 .6 .7 .8

C
os

t

Random
Hybrid

Sequent

(d) Vary mean

Figure 5: Positive Correlated

swers using the twopscore functions, namelyRE and PHR. We
tested 3 algorithms, namelyRandom, Sequent, andHybrid. All
the 3 algorithms sequentially access relationS, and access rela-
tion P as the names imply.Random randomly accesses relationP,
Sequent sequentially accesses relationP, andHybrid may sequen-
tially and randomly access relationP.

We use both real datasets and synthetic datasets. For the real
datasets, we extracted several sets of x-tuples from the International
Ice Patrol (IIP) Iceberg Sightings Database (http://nsidc.org/
data/g00807.html) which is a database that collects the activ-
ities of the iceberg in the North Atlantic. The data are collected
through airborne Coast Guard reconnaissance missions and infor-
mation from radar and satellites to monitor iceberg danger near the
Grand Banks of Newfoundland. There are some imprecise infor-
mation for each record which is recorded as the confidence level
according to the source of sighting. The 6 confidence levels are
converted to confidence probabilities 0.8, 0.7, 0.6, 0.5, 0.4, and
0.3 respectively. Each drifting activity may be recorded several
times by several types of sources. The x-tuples are the records
that are obtained at the same time and the same location. We col-
lected records from 1998 to 2007 and generated 17,505 x-tuples

10K

100K

1M

5 10 20 30 50

C
os

t

Random
Hybrid

Sequent

(a) Varyk

10K

100K

1M

1 2 3 4 5

C
os

t

Random
Hybrid

Sequent

(b) Vary size

10K

100K

1M

1 2 3 4 5

C
os

t

Random
Hybrid

Sequent

(c) Vary xsize

10K

100K

1M

.4 .5 .6 .7 .8

C
os

t

Random
Hybrid

Sequent

(d) Vary mean

Figure 6: Negative Correlated

10

100

1K

10K

100K

1M

5 10 20 30 50

C
os

t
Random

Hybrid
Sequent

(a) Varyk

10

100

1K

10K

100K

1M

1 2 3 4 5

C
os

t

Random
Hybrid

Sequent

(b) Vary size

Figure 7: PHR Testing

which contain 50,879 tuples. For each x-tupleτ, we normalize the
probabilities for each tupleo ∈ τ as follows,p(o) = con f(o)

∑

o′∈τ conf (o′) ·

max{con f(o′)|o′ ∈ τ}, wherecon f(o) is the confidence probability
for the tupleo. For each tuple extracted, we set its score to be the
number of days drifted because it is important in determining the
status of icebergs. We extracted 5 datasets from the whole dataset,
which are sized 10,000, 20,000, 30,000, 40,000 and 50,000 in
terms of tuples respectively.

For the synthetic datasets, we have 4 types of distributions for
the probabilities of x-tuples in the datasets, namely, uniform dis-
tribution, normal distribution, positive correlated distribution and
negative correlated distribution. For the uniform distribution, given
a mean value 0< ave< 1, supposed = min{ave,1− ave}, all prob-
abilities of x-tuples are distributed uniformly in the range [ave−
d,ave+ d]. For the normal distribution, for a mean valueave, all
probabilities of x-tuples follow the normal distributionN(ave,0.2).
For the positive and negative correlated distribution, the probabili-
ties and the scores form a correlated bivariate with correlation 0.8
and−0.8 respectively.

The parameters used and their default values for both real and
synthetic data are given in Table 9.k is for the top-k value in a top-
k probabilistic query.sizeis the number of units for the dataset,
where each unit contains 10,000 tuples.xsizeis the average num-
ber of tuples in each x-tuple in the dataset.meanis the mean value
under a certain distribution discussed above. Thek andsizeparam-
eters are used for both real and synthetic datasets, whereasxsize
andmeanparameters are used for the synthetic datasets only. We
report the I/O cost follow the same approach given in [33]. The cost
is measured in unit, one sequential I/O contributes one unit, and one

486

random I/O contributes 5 units. All algorithms are implemented in
Visual C++, and all tests were conducted on a 2.8GHz CPU, 2GB
memory and 80GB disk space PC running Windows XP.

Exp-1 Real Datasets forRE: The testing results forRE using the
real datasets are shown in Fig. 2. In Fig. 2(a), we also test the
Hybrid algorithm with different accessing patterns between the
random access and the sequential access. In our testing,Hybrid

i/j means that the Hybrid algorithm performsi sequential ac-
cesses followed byj random accesses alternatively. From Fig. 2(a),
Hybrid i/j performs well wheni < j, and there is no much dif-
ference between differentHybrid algorithms withi < j regarding
the cost. BecauseHybrid 1/1 performs well among these vari-
ants, we useHybrid 1/1 asHybrid to conduct our testing below.
In Fig. 2(b), whenk increases, the numbers of tuples visited for
all the 3 algorithms increase because the top-k answers for all the
3 algorithms are incrementally generated.Random andSequent
have similar costs.Hybrid is much better than bothRandom and
Sequent. One of the bottlenecks forSequent is that, although the
lower bounds ofRE for the unseen tuples increase in every iteration,
the set of seen tuples with both scores and probabilities is small.
Note that the seen tuples with both scores and probabilities have an
upper bound, and thus can satisfy the stop conditions. When ran-
dom access is integrated into sequential access, the number of seen
tuples with both scores and probabilities increases. ThusHybrid
can stop in an early stage. In Fig. 2(c), when the number of tuples
in the datasets increases, the cost for bothRandom andSequent
increases, but it decreases forHybrid. The reason is that, in the
same iteration the upper bound ofRE for the seen tuples with both
scores and probabilities tend to be smaller in a dataset with a larger
size, wherep(oi) tends to be larger.Hybrid is also much better than
bothRandom andSequent.

Exp-2 Synthetic Datasets forRE: We tested all the 3 algorithms
for RE using synthetic data. For each of the four probability distri-
butions, namely, uniform, normal, positive correlated, and negative
correlated, we varyk, size,xsize, andmean, to test the performance
for each algorithm. The results are shown in Fig. 3, Fig. 4, Fig. 5
and Fig. 6 respectively.

Under the uniform distribution, Fig. 3(a) shows that whenk in-
creases, the cost for all the 3 algorithms increases,Hybrid does not
perform as good as in the real dataset, because in the real dataset,
some of the first several tuples tend to have high probabilities,
which make the upper bounds ofRE for those tuples small, and thus
output in early iterations. In Fig. 3(b), when the number of tuples in
the dataset increases, the cost for all the three algorithms increases,
Hybrid is betweenSequent and Random. Fig. 3(c) shows that
when xsizeincreases, the cost for all the 3 algorithms increases.
Sequent performs badly whenxsizeis small, because the average
probability for each tuple in each x-tuple is large. In this situation,
p̄ will be large in each iteration, thus the lower bound for unseen
tuples will be loose. In addition, when the average probability for
tuples is large, the lower bound forRE in Sequent is small. Thus
the performance is bad. On the other hand, the lower bound for the
unseen tuples inRandom increases faster, which makes it perform
good. In Fig. 3(d), when themeanvalue increases, the cost for all
the 3 algorithms decreases,Hybrid algorithm decreases faster. As
shown in Fig. 4, The algorithms under the normal distribution per-
form similar as in the uniform distribution,Sequent does not per-
form well in the normal distribution, because there are not many
tuples with very high probabilities or very low probabilities.

Fig. 5 and Fig. 6 show the distributions in two opposite situa-
tions, positive correlated and negative correlated. In the positive
correlated data, the tuples with large scores tend to have high prob-

abilities, whereas, in the negative correlated data, the tuples with
large scores tend to have low probabilities. The curves are all sim-
ilar to those in the normal distributions. The performance for all
testings in the positive correlated data is much better than those
in the negative correlated data. In the positive correlated data, the
lower bound ofRE in Random increases fast in the first several
iterations, because the first several tuples tend to have a large prob-
ability. For the same reason, the upper bound ofRE for each tu-
ple in Sequent decreases fast in the first several iterations. For
Sequent, the number of tuples with both scores and probabilities
in the positive correlated data is much larger than that in the neg-
ative correlated data. It makes it faster in the positive correlated
data.

Exp-3 Real Datasets forPHR: We tested thePHR function in the
real dataset for all the 3 algorithms. The results are shown in Fig. 7.
When eitherk or size increases, the cost for all the 3 algorithms
increases.Random andHybrid have similar performance, and is
much better thanSequent. This is because, the upper bound of
PHR in theRandom algorithm decreases fast. For example, even if
all of the first 30 tuples have very low probability, say 0.1, the upper
bound for the unseen tuples after 30 iterations becomes (1−0.1)30 =

0.04 which is very small. This means that we can output the top-k
answers in an early stage.

7. RELATED WORK
Top-k Queries in Probabilistic Data: Uncertain/probability data
has received increasing attention recently. There are several prob-
abilistic data models and systems proposed, for example, Trio sys-
tem [2, 6, 31], MystiQ system [12, 30], and MayBMS system [5,
4].

In the literature, several works study computing the top-k an-
swers by the interplay of score and probability, based on the possi-
ble worlds semantics. Soliman et al. first study the ranking issues
in probabilistic data under the possible world semantics [34], and
propose two probabilistic ranking queries: U-Topk query and U-
kRanks query. They also study ranking aggregate queries in prob-
abilistic data [35]. Yi et al. [37] improve the performance of the
U-Topk and U-kRanks queries using a dynamic programming ap-
proach. Hua et al. [16] study a PT-k query, which returns the set
of tuples whose top-k probability is above a user-specified thresh-
old, and propose three heuristic approaches to answer such PT-k
queries. Cormode et al. [11] propose the expected rank query.
They rank tuples based on their expected rank values. Jin et al.
[22] study the U-Topk/U-kRanks/Pk-topk queries in an uncertain
stream environment under a sliding-window model. Li et al. [23]
compute the top-kanswers in the scenario of uncertain distributed
data, where subsets of the tuples are distributed at different places.
All the existing studies assume that all the information about score
and probability is stored in a single relation.

Join queries in uncertain database are studied in [10, 3]. Cheng
et al. study probabilistic threshold join queries [10]. In [10], the
values of join attributes are uncertain, which is represented as pdf.
Two tuples can be joined with a probability, which is the probabil-
ity that the two pdfs can join. Agrawal et al. [3] study the problem
of finding top-k join answers in an uncertain database when mem-
ory is insufficient. Although they consider the join issues in a top-k
query, they treat each probability attribute as an ordinary numeric
attribute, and rank the answers based on the aggregated probabili-
ties. In this paper, we are dealing with a different problem.

Top-k Queries in Deterministic Data: Top-k queries in determin-
istic data have been studied extensively. A detailed survey can be

487

found in [19]. In general, it is to find the top-k answers with re-
spectto a user specified score function by joining and aggregating
multiple inputs(or relations).

The top-k algorithms by Fagin et al. are the most influential [13,
14]. They consider both random access and/or sequential access
of the lists of base scores, where each list of a base score can be
viewed as a separate relation. There are many works considering
the scenario that random access is not supported by the underly-
ing sources. The No Random Access (NRA) algorithm [14], the
Stream-Combine algorithm [15], and the LARA-j algorithm [25]
answer a top-k query by sequential accesses on the lists of base
scores. TheJ∗ algorithm [27], algorithms in [18], and the family of
PBRJ algorithms [32] retrieve the join answers with top-k scores,
using sequential access on the base relations. Marian et al. propose
Upper and Pick algorithm to answer top-k queries, when sequential
access is provided and also controlled random accesses is provided
[26]. But, these work consider deterministic data, and can not be
directly applied to probabilistic data. In probabilistic ranking, each
tuple has both a score and a probability, the tuples are ranked based
on the possible worlds semantics. In our work, we study the link-
age between probabilistic ranking and traditional ranking, and we
find the top-k answers in the framework of randomly and/or se-
quentially accessing relations.

8. CONCLUSION
In this paper we study probabilistic top-k ranking queries when

scores and probabilities are stored in different relations. We fo-
cus on reducing the join cost in probabilistic top-k ranking. We
investigate two probabilistic score functions, namely,RE andPHR,
and explore two access methods, random access and sequential ac-
cess. We give the upper/lower bounds for both access methods,
and provide insights on the advantages and disadvantages of ran-
dom/sequential access in terms of bounds. We propose random,
sequential, and hybrid algorithms. The hybrid algorithm takes ad-
vantages from both random and sequential access. We conducted
extensive performance studies using real and synthetic datasets, and
we confirmed the efficiency of our approaches.

Acknowledgement
The work was supported by grants of the Research Grants Coun-
cil of the Hong Kong SAR, China (No. 419008/419109), ARC
Discovery Grants (No. DP0987557/DP0881035), and Google Re-
search Award.

9. REFERENCES
[1] D. J. Abadi, S. Madden, and N. Hachem. Column-stores vs.

row-stores: how different are they really? InProc. of SIGMOD’08,
2008.

[2] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar,
T. Sugihara, and J. Widom. Trio: A system for data, uncertainty, and
lineage. InProc. of VLDB’06, 2006.

[3] P. Agrawal and J. Widom. Confidence-aware join algorithms. In
Proc. of ICDE’09, 2009.

[4] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple
relational processing of uncertain data. InProc. of ICDE’08, 2008.

[5] L. Antova, C. Koch, and D. Olteanu. From complete to incomplete
information and back. InProc. of SIGMOD’07, 2007.

[6] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. ULDBs:
Databases with uncertainty and lineage. InProc. of VLDB’06, 2006.

[7] G. Beskales, M. A. Soliman, and I. F. Ilyas. Efficient search for the
top-k probable nearest neighbors in uncertain databases.PVLDB,
1(1), 2008.

[8] C. Binnig, S. Hildenbrand, and F. Faerber. Dictionary-based
order-preserving string compression for main memory column stores.
In Proc. of SIGMOD’09, 2009.

[9] D. Burdick, P. M. Deshpande, T. S. Jayram, R. Ramakrishnan, and
S. Vaithyanathan. OLAP over uncertain and imprecise data.VLDB J.,
16(1), 2007.

[10] R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. S. Vitter, and Y. Xia.
Efficient join processing over uncertain data. InProc. of CIKM’06,
2006.

[11] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for
probabilistic data and expected ranks. InProc. of ICDE’09, 2009.

[12] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases.VLDB J., 16(4), 2007.

[13] R. Fagin. Combining fuzzy information from multiple systems.J.
Comput. Syst. Sci., 58(1):83–99, 1999.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware.J. Comput. Syst. Sci., 66(4), 2003.

[15] U. Güntzer, W.-T. Balke, and W. Kießling. Towards efficient
multi-feature queries in heterogeneous environments. InProc. of
ITCC’01, 2001.

[16] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries on uncertain
data: A probabilistic threshold approach. InProc. of SIGMOD’08,
2008.

[17] S. Idreos, M. Kersten, and S. Manegold. Self-organizing tuple
reconstruction in column-stores. InProc. of SIGMOD’09, 2009.

[18] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join
queries in relational databases.VLDB J., 13(3), 2004.

[19] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-kquery
processing techniques in relational database systems.ACM Comput.
Surv., 40(4), 2008.

[20] M. Ivanova, M. Kersten, and N. Nes. An architecture for recycling
intermediates in a column-store. InProc. of SIGMOD’09, 2009.

[21] M. Ivanova, M. L. Kersten, and N. Nes. Self-organizing strategies for
a column-store database. InProc. of EDBT’08, 2008.

[22] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin. Sliding-window top-k
queries on unceratin streams. InProc. of VLDB’08, 2008.

[23] F. Li, K. Yi, and J. Jestes. Ranking distributed probabilistic data. In
Proc. of SIGMOD’09, 2009.

[24] J. Li, B. Saha, and A. Deshpande. A unified approach to ranking in
probabilistic databases.PVLDB, 2(1):502–513, 2009.

[25] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung. Efficient
top-kaggregation of ranked inputs.ACM Trans. Database Syst.,
32(3):19, 2007.

[26] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries over
web-accessible databases.ACM Trans. Database Syst., 29(2), 2004.

[27] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter.
Supporting incremental join queries on ranked inputs. InProc. of
VLDB’01, 2001.

[28] H. Plattner. A common database approach for oltp and olap using an
in-memory column database. InSIGMOD’09, pages 1–2, 2009.

[29] C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. InProc. of ICDE’07, 2007.

[30] C. Re and D. Suciu. Managing probabilistic data with mystiq: The
can-do, the could-do, and the can’t-do. InProc. of SUM’08, 2008.

[31] A. D. Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom. Working
models for uncertain data. InProc. of ICDE’06, 2006.

[32] K. Schnaitter and N. Polyzotis. Evaluating rank joins with optimal
cost. InProc. of PODS’08, 2008.

[33] M. Shmueli-Scheuer, C. Li, Y. Mass, H. Roitman, R. Schenkel, and
G. Weikum. Best-effort top-k query processing under budgetary
constraints. InProc. of ICDE’09, 2009.

[34] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k query
processing in uncertain databases. InProc. of ICDE’07, 2007.

[35] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Probabilistic top-k
and ranking-aggregate queries.ACM Trans. Database Syst., 33(3),
2008.

[36] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil,
A. Rasin, N. Tran, and S. B. Zdonik. C-store: A column-oriented
dbms. InVLDB, pages 553–564, 2005.

[37] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient processing of
top-k queries in uncertain databases with x-Relations.IEEE Trans.
Knowl. Data Eng., 20(12), 2008.

488

