
Logging Last Resource Optimization for Distributed

Transactions in Oracle WebLogic Server

Tom Barnes Adam Messinger Paul Parkinson Amit Ganesh German Shegalov
Saraswathy Narayan Srinivas Kareenhalli

Oracle Corporation

 500 Oracle Parkway

Redwood Shores, CA 94065, USA

{firstname.lastname}@oracle.com

ABSTRACT
State-of-the-art OLTP systems execute distributed transactions

using XA-2PC protocol, a presumed-abort variant of the Two-

Phase Commit (2PC) protocol. While the XA specification pro-

vides for the Read-Only and 1PC optimizations of 2PC, it does

not deal with another important optimization, coined Nested 2PC.

In this paper, we describe the Logging Last Resource (LLR) opti-

mization in Oracle WebLogic Server (WLS). It adapts and im-

proves the Nested 2PC optimization to/for the Java Enterprise

Edition (JEE) environment. It allows reducing the number of

forced (synchronous) writes and the number of exchanged mes-

sages when executing distributed transactions that span multiple

transactional resources including a SQL database integrated as a

JDBC datasource. This optimization has been validated in

SPECjAppServer2004 (a standard industry benchmark for JEE)

and a variety of internal benchmarks. LLR has been successfully

deployed by high-profile customers in mission-critical high-

performance applications.

1. I�TRODUCTIO�
A transaction (a sequence of operations delimited by commit or

rollback calls) is a so-called ACID contract between a client ap-

plication and a transactional resource such as a database or a mes-

saging system that guarantees: 1) Atomicity: effects of aborted

transactions (hit by a failure prior to commit or explicitly aborted

by the user via rollback) are erased. 2) Consistency: transactions

violating consistency constraints are automatically re-

jected/aborted. 3) Isolation: from the application perspective,

transactions are executed one at a time even in typical multi-user

deployments. 4) Durability (Persistence): state modifications by

committed transactions survive subsequent system failures (i.e.,

redone when necessary) [13].

Transactions are usually implemented using a sequential recovery

log containing undo and redo information concluded by a commit

record stored in persistent memory such as a hard disk. A transac-

tion is considered committed by recovery when its commit record

is present in the log. When a transaction involves several re-

sources (participants, also denoted as agents in the literature)

with separate recovery logs (regardless whether local or remote),

the commit process has to be coordinated in order to prevent in-

consistent subtransaction outcomes. A dedicated resource or one

of the participants is chosen to coordinate the transaction. To

avoid inconsistent subtransaction outcomes, the transaction coor-

dinator (TC) executes a client commit request using a 2PC proto-

col. Several presume-nothing, presumed-abort, and presumed-

commit variants of 2PC are known in the literature [2, 3, 4, 5, 13].

We briefly outline the Presumed-Abort 2PC (PA2PC) because it

has been chosen to implement the XA standard [12] that is pre-

dominant in today's OLTP world.

1.1 Presumed-Abort 2PC
Voting (Prepare) Phase: TC sends a prepare message to every

participant. When the participant determines that its subtransac-

tion can be committed, it makes subtransaction recoverable and

replies with a positive vote (ACK). Subtransaction recoverability

is achieved by creating a special prepared log record and forcing

the transaction log to disk. Since the transaction is not committed

yet, no locks are released to ensure the chosen isolation level.

When the participant determines that the transaction is not com-

mittable for whatever reason, the transaction is aborted; nothing

has to be force-logged (presumed abort); a negative vote is re-

turned (�ACK).

Commit Phase: When every participant returned an ACK, the TC

force-logs the committed record for the current transaction, and

notifies all participants using commit messages. Upon receiving a

commit message, participants force-log the commit decision, re-

lease locks (acquired for transaction isolation), and send a commit

status to the TC. Upon collecting all commit status messages from

the participants, the TC can discard the transaction information

(i.e., release log records for garbage collection).

Abort Phase: When at least one participant sends a �ACK, the

TC sends rollback messages without forcing the log (presumed

abort) and does not have to wait for rollback status messages.

The complexity of a failure-free run of a PA2PC transaction on n

participants accumulates to 2n+1 forced writes and 4n messages.

Since commit/rollback status messages are needed only for the

garbage collection at the coordinator site, they can be sent asyn-

chronously, e.g., as a batch, or they can be piggybacked on the

vote messages of the next transaction instance. Thus, the commu-

nication cost is reduced to 3n messages, and more importantly to

just 1 synchronous round trip as seen above. If one of the partici-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

EDBT 2010, March 22-26, 2010, Lausanne, Switzerland.

Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

651

pants takes the role of the coordinator, we save one set of mes-

sages at the coordinator site, and we save one forced write since

we do not need to log transaction commit twice at the coordinator

site. Thus, the overhead of a PA2PC commit can be further re-

duced to 2n forced writes and 3(n-1) messages [13].

1.2 Related Work
There are several well-known optimizations of the 2PC protocol.

The following two optimizations are described in the XA spec and

should be implemented by the vendors:

Read-Only Optimization: A participant may vote “read-only”

indicating that no updates have been made on this participant on

behalf of the current transaction. Thus, this participant should be

skipped during the second phase.

One-Phase Commit (1PC): The TC should detect situations in

which only one participant is enlisted in a distributed transaction

and skip the vote phase.

�ested 2PC: Another interesting optimization that is not part of

the XA standard has originally been described by Jim Gray in [2].

It is also known as Tree or Recursive 2PC. It assumes that we deal

with a fixed linear topology of participants P1, …, Pn. There is no

fixed TC. Instead the role of TC is propagated left-to-right during

the vote phase and right-to-left during the commit phase. Clients

call commit_2pc on P1 that subsequently generates a prepare

message to itself. Each Pi (indicated by variable i in the pseudo-

code) executes the simplified logic outlined in Figure 1 process-

ing a 2PC message from the source Pfrom. A failure-free execution

of an instance of the Nested 2PC Optimization costs 2n forced

writes and 2(n-1) messages.

1.3 Java Transaction API
Java Transaction API (JTA) is a Java “translation” of the XA

specification; it defines standard Java interfaces between a TC and

the parties involved in a distributed transaction system: the trans-

actional resources (e.g., messaging and database systems), the

application server, and the transactional client applications [11].

A TC implements the JTA interface javax.transaction.Trans-

actionManager. Conversely, in order to participate in 2PC trans-

actions, participant resources implement the JTA interface

javax.transaction.xa.XAResource. In order to support a hierarchi-

cal 2PC, a TC also implements javax.transaction.xa.XAResource

that can be enlisted by third-party TC's. From this point on, we

will use the JTA jargon only: we say transaction manager (TM)

for a 2PC TC, and (XA)Resource for a 2PC participant.

Every transaction has a unique id that is encoded into a structure

named Xid (along with the id of the TM) representing a subtrans-

action or a branch in the XA jargon. The isSameRM method al-

lows the TM to compare the resource it is about to enlist in the

current transaction against every resource it has already enlisted to

reduce the complexity of 2PC during the commit processing, and

potentially enable 1PC Optimization. The TM makes sure that the

work done on behalf of a transaction is delimited with the calls to

start(xid) and end(xid), respectively, which adds at least 4n mes-

sages per transaction since these calls are typically blocking.

When a client requests a commit of a transaction, the TM first

calls prepare on every enlisted resource and based on the returned

statuses, in the second phase, it calls either commit or rollback.

After a crash, the TM contacts all registered XAReresource's and

executes a misnamed method recover to obtain the Xid list of

prepared but not committed, so-called in-doubt transactions. The

TM then checks every Xid belonging to it (there can be other

TM's Xid's) against its log and (re)issues the commit call if the

commit entry is present in the log; otherwise abort is called.

1.4 Contribution
Our contribution is an implementation of the LLR optimization

through JDBC datasources in WLS [8], an adaptation of the

Nested 2PC optimization to the JEE. The rest of the paper is or-

ganized as follows: Section 2 outlines relevant WLS components,

Section 3 discusses the design considerations of the LLR optimi-

zation, Section 4 describes the implementation details of normal

operation and failure recovery, Section 5 highlights performance

achieved in a standard JEE benchmark, and finally Section 6 con-

cludes this paper.

2. ORACLE WEBLOGIC SERVER
As part of Oracle Fusion Middleware 11g, a family of standards

based middleware products, WLS [7] is a Java application server

void procesess(TwoPCMessage msg) {
 switch (msg) {
 case PREPARE:
 if (i == n) {
 if (executeCommit() == OK) {
 sendCommitTo(msg.from);
 } else {
 executeAbort();
 sendAbortTo(msg.from);
 }
 } else {
 if (executePrepare() == OK) {
 sendPrepareTo(i+1);
 } else {
 executeAbort();
 sendAbortTo(i-1);
 sendAbortTo(i+1);
 }
 }
 break;
 case ABORT:
 if (i != n) {
 sendAbortTo(msg.from == i-1 ? i+1 : i-1);
 }
 executeAbort();
 break;
 case COMMIT:
 if (i != 1) {
 sendCommitTo(i-1);
 }
 executeCommit();
 break;
 } // switch
}

// a)normal operation
// ->prepare-> ->prepare-> ->prepare->
// P1 P2 P3 P4
// <-commit<-- <--commit<- <--commit<-
//
// b) failure on P3
// ->prepare-> ->prepare-> -->abort-->
// P1 P2 P3 P4
// <--abort<-- <--abort<--

Figure 1: C-style pseudo code of �ested 2PC, and its effect

in a commit (a) and an abort (b) case.

652

that provides, inter alia., a complete implementation of the JEE5

specification. JEE5 defines containers that manage user applica-

tion components such as servlets (for web-based applications),

Enterprise Java Beans (EJB), Message Driven Beans (MDB),

application clients (outside the server container), and services that

containers provide to user application components such as Java

Database Connectivity (JDBC) for accessing SQL databases, Java

Messaging Service (JMS) for reliable asynchronous point-to-point

and publish-subscribe communication, and JTA for coordinating

2PC transactions. User applications typically access container

services by looking up relevant API entry points in a directory

implementing the Java Naming Directory Interface (JNDI) pro-

vided by the application server. Specifications and documentation

about JEE5 are linked from the online reference [10].

In WLS, users register JMS and JDBC resources needed by their

application components by means of corresponding deployment

modules. JMS modules configure JMS client objects such as (po-

tentially XA-enabled) connection factories, and message destina-

tions (queues or topics). A JDBC module provides a definition of

a SQL datasource, a collection of parameters, such as the name of

a (potentially XA-capable) JDBC driver and the JDBC URL.

JDBC datasources provide database access and database connec-

tion management. Each datasource defines a pool of database

connections. User applications reserve a database connection from

the datasource connection pool by looking up the datasource

(java.sql.DataSource) on the JNDI context, and calling getCon-

nection() on the datasource. When finished with the connection,

the application should call close() on it as early as possible, which

returns the database connection to the pool for further reuse. Us-

ing even an ideal XA JDBC driver is in general more expensive

even in the single-resource 1PC transaction case: extra round-trip

XAResource methods start and end have to be called regardless of

the number of resources participating in the transaction.

WLS ships with integrated JMS provider (i.e., a JMS server) that

can use a local filesystem or a JDBC datasource as an underlying

message persistence mechanism.

The WLS JTA implementation consists of a distributed service

that runs one TM instance per WLS server. A transaction may

span multiple WLS servers (e.g., when an application invokes

remote EJB's), in which case the TM's form a coordinator tree

with the global coordinator being the root node. Each TM main-

tains persistent state for 2PC transactions in its transaction log for

crash recovery purposes.

All WLS services on a server instance that require persistence

including the JMS servers and the TM can be configured to use a

single transactional Persistence Store that enables them to appear

as a single resource in the 2PC. Persistent Store is either a File

Store, a file-based implementation optimized for fast writes, or a

JDBC Store utilizing a SQL database. Customers with high per-

formance requirements use File Stores.

3. LLR DESIG� CO�SIDERATIO�S
In contrast to the Nested 2PC Optimization, we do not want to

invoke prepare sequentially in a nested manner because it in-

creases the overall latency to approximately (n-1)(rtt+dst), where

rtt is a roundtrip time between two resources and dst is an average

hard disk sync time. This part of the Nested 2PC Optimization

saves the number of messages and was targeted three decades ago

to expensive thin network links and frequent rollbacks, which we

no longer experience today in the broadband age. However, we

still need to single out one resource that we want to commit di-

rectly without calling prepare. The TM will call asynchronously

prepare on n-1 resources. If the TM has received n-1 ACK's, it

will invoke commit on the nth resource (Last Resource) and the

success of this call is used as a global decision about whether to

call commit on n-1 resources prepared during the voting phase as

well.

The following points suggest choosing a JDBC datasource as an

LLR:

• In a typical scenario, an application in WLS accesses a local

JMS server, and remote database servers, and such a

(sub)transaction is coordinated by the local TM. Passing 2PC

messages to a local resource has a negligible cost of a local

method invocation in Java because we use collocation. There-

fore, a JDBC datasource connection is a perfect candidate to be

selected as the Last Resource.

• In contrast to JMS messages, database data structures such as

data records, primary and secondary indices are subjects to

frequent updates. Committing a database transaction in one

phase without waiting for the completion of the voting phase

greatly reduces the duration of database locks. This potentially

more than doubles the database transaction throughput. There-

fore, even when the application accesses a remote JMS server

(and the collocation argument no longer holds), the user will

want to use a JDBC datasource as an LLR.

• When any component involved in a PA2PC transaction fails

during the commit phase, the progress of this PA2PC instance

(transaction) blocks until the failed component is restarted

again. Reducing the number of components minimizes the risk

of running components being blocked by failed ones. The LLR

optimization enables the TM to eliminate the local Persistent

Store resource by logging the global transaction outcome di-

rectly to the LLR. Hence, applications that do not involve local

JEE services using the local Persistent Store other than JTA

TM benefit even more from the LLR optimization.

• 2PC provides only Atomicity and Durability in the ACID con-

tract; it does not provide global concurrency control (serializa-

tion, isolation) for global transactions [13]. Even worse, the

order in which the changes made in different branches within

the same global transaction become visible is not defined. LLR

adds some intra-transaction determinism by defining the partial

order: updates to the LLR branch are visible before updates to

other branches. An application that makes an update to a JDBC

datasource that is an LLR and sends a notification about this

particular update to a JMS destination in the same transaction

is guaranteed that the JDBC update is visible at the time when

the notification is received.

The decision to use a JDBC resource as the last transaction out-

come decider poses another challenge. Nested 2PC Optimization

builds upon the fact that every resource in the chain is capable of

being a coordinator, i.e., to persist the transaction outcome and

continue the protocol execution after a crash. However, by design,

there is no mechanism in a vanilla (XA) JDBC driver to remember

transaction outcomes. The database is obliged by the ACID con-

tract to preserve the updates of a committed transaction, but it will

discard the transaction information from the log as we explained

above for PA2PC.

653

The solution to this problem is to maintain an extra LLR table in

the schema connected by the Last Resource datasource. When the

TM performs the LLR Optimization, instead of force-logging the

transaction commit to the local Persistent Store it inserts an entry

for the transaction id (XID) into the LLR table and only then the

TM invokes commit on the Last Resource. This way we make sure

that the commit of the Last Resource and logging the global trans-

action outcome is an atomic operation (hence, the name Logging

Last Resource) (see commit in Figure 2). Therefore, the TM will

be able to query the LLR table to determine the real transaction

outcome even if the TM or the database fail once both operate

normally again. Persisting of the transaction id as part of the

transaction has also been used for recoverable ODBC sessions in

a non-XA setting [1].

Once the TM committed the LLR transaction it issues asynchro-

nously commit requests to the prepared XA resources. Receiving

all outstanding commit request replies terminates the XA-2PC

protocol. The WLS TM lazily garbage-collects in the LLR table

log entries of terminated 2PC instances as part of subsequent

transactions.

Now that we realize that we do not utilize the XAResource func-

tionality to deal with the Last Resource, we can safely replace the

XA JDBC driver in the LLR datasource definition by a faster non-

XA version of the JDBC driver, which also eliminates expensive

roundtrip calls to the XAResource methods start and end.

4. LLR PROCESSI�G DETAILS
On a datasource deployment or during the server boot, LLR

datasources load or create a table on the database from which the

datasource pools database connections. The table is created in the

original datasource schema. If the database table cannot be created

or loaded, then the server boot will fail.

Within a global transaction, the first connection obtained from an

LLR datasource transparently reserves an internal JDBC connec-

tion on the transaction’s coordinator. All subsequent transaction

operations on any connections obtained from a same-named

datasource on any server are routed to this same single internal

JDBC connection.

Figure 2 sketches the LLR-modified processing of JTA transac-

tions in WLS. During normal operation, using the LLR resource

saves us at least one blocking call start(xid) when the LLR is be-

ing enlisted in the transaction (update), and one blocking call

end(xid) when the LLR is being committed. Instead of calling

prepare on LLR we call an insert statement to record the transac-

tion xid in the LLR table, however, this call does not incur log

forcing on the LLR. In contrast to Nested 2PC, all non-LLR re-

sources execute 2PC concurrently. However, the commit of LLR

is not started until the prepare phase of all non-LLR resources

completes.

4.1 LLR Table
Each WLS instance maintains a LLR table on the database to

which a JDBC LLR datasource pools database connections. These

tables are used for storing 2PC commit records. If multiple LLR

datasources are deployed on the same WLS instance and connect

to the same database instance and database schema, they will also

share the same LLR table. Unless configured explicitly, LLR table

names are automatically generated as WL_LLR_<server�ame>.

4.2 Failure and Recovery Processing for LLR
WLS TM processes transaction failures in the following way:

For 2PC errors that occur before the LLR commit is attempted, the

TM immediately throws an exception. For 2PC errors that occur

during the LLR commit: If the record is written, the TM commits

the transaction; If the record is not written, the TM rolls back the

transaction; If it is unknown whether the record is written, the TM

throws an ambiguous commit failure exception and attempts to

complete the transaction every five seconds until the transaction

abandon timeout; If the transaction is still incomplete, the TM

logs an abandoned transaction message.

During server boot, the TM will use the LLR resource to read the

transaction 2PC record from the database and then use the recov-

ered information to commit any subtransaction on any participat-

ing non-LLR XA resources.

If the JDBC connection in an LLR resource fails during a 2PC

record insert, the TM rolls back the transaction. If the JDBC con-

update(XAResource xares, Transaction t,…)

1. if xares is LLR accept only if t.llr is null
and set t.llr = xares.

2. if xares is not LLR and t.enlisted doesn't
contain xares

a. t.enlisted.add(xares)
b. xares.start(t.xid)

3. Perform updates via xares' connection

commit(Transaction t)

1. for each xares in t.enlisted submit concur-
rent tasks { xares.end(t.xid);
xares.prepare(xid); }

2. wait for prepare tasks to finish
3. if t.llr is not null

a. t.llr.insert(t.xid)
b. t.llr.commit(), hence commit is test-

able by looking up xid in the t.llr's
table.

4. if t.llr is null force-log commit record
t.xid to local Persistent Store

5. for each xares in t.enlisted submit concur-
rent tasks { xares.commit(xid); }

On any error prior commit's 3.b the following is
called. Otherwise the LLR table is consulted.

error(Transaction t)

1. for each xares in t.enlisted submit concur-
rent tasks { xares.end(t.xid);
xares.rollback(xid); }

2. if t.llr is not null t.llr.rollback()
3. throw exception to interrupt the caller

recover(TransactionManager tm):

1. add commited xid's from local Persistent
Store to tm.committedXidSet.

2. add commited xid's from llr tables to
tm.commitedXidSet.

when recreating JMS, and non-LLR XA JDBC re-
sources

recover(XAResource xares)

1. unresolvedXidSet = xares.recover()
2. for each xid in unresolvedXidSet

a. if xid is in tm.committedXidSet
xares.commit(xid)

b. if xid is not in tm.committedXidSet
xares.rollback(xid)}

Figure 2: Simplified pseudocode of LLR processing.

654

nection in an LLR resource fails during the commit of the LLR

transaction, the result depends on whether the transaction is 1PC

(i.e., when the LLR resource is the only participant) or 2PC:

For a 1PC transaction, the transaction will be committed, rolled

back, or block waiting for the resolution of the LLR transaction.

The outcome of the transaction is atomic and is determined by the

underlying database alone. For a 2PC transaction, the outcome is

determined based on the LLR table.

4.3 LLR Transaction Recovery
During server startup, the TM for each WLS must recover incom-

plete transactions coordinated by the server, including LLR trans-

actions. Each server will attempt to read the transaction records

from the LLR database tables for each LLR datasource. If the

server cannot access the LLR database tables or if the recovery

fails, the server will not start.

5. PERFORMA�CE EVALUATIO�
LLR datasources have been used for the recent world record re-

sults achieved by Oracle Fusion Middleware in the

SPECjAppServer2004 benchmark [6]. SPECjAppServer2004 is a

benchmark of JEE-based application servers. It is an end-to-end

application which exercises all major JEE technologies imple-

mented by compliant application servers: The web container,

including servlets and JSP's, the EJB container, EJB2.0 Container

Managed Persistence, JMS and Message Driven Beans, Transac-

tion Management, and JDBC [9]. Figure 3 depicts the way that

these components relate to each other.

The SPECjAppServer2004 benchmark's research workload,

coined EAStress2004, is used to evaluate the performance of LLR

in this paper. SPECjAppServer is a trademark of the Standard

Performance Evaluation Corp. (SPEC). The

SPECjAppServer2004 / EAStress2004 results or findings in this

paper have not been reviewed or accepted by SPEC, therefore no

comparison nor performance inference can be made against any

published SPEC result [9].

The five SPECjAppServer2004 domains are: Dealer, Manufactur-

ing, Supplier, Customer, and Corporate. The Dealer domain en-

compasses the user interface components of a Web-based applica-

tion used to access the services provided by the other domains

(i.e., Manufacturing, Supplier, Customer and Corporate), which

can be considered "business domains". There are producer-

consumer relationships between domains in the company and to

outside suppliers and customers as well.

Hardware used in our runs is depicted in Figure 4 where each box

represents a computer node. Java components such as the bench-

mark drivers, the supplier emulator, and WLS are run by Oracle

Jrockit JVM R27.6. The benchmark application accesses the data-

base from the WLS using Oracle JDBC Driver 11g. XA

datasources oracle.jdbc.xa.client.OracleXADatasource and non-

Figure 3: SPECjAppServer2004 world wide distributed business [9].

 Driver1 (3 Dealer Agents, 3 Manufacturing Agents)
CPU: two quad core 3.7Ghz x86_64, 2MB L2 Cache
RAM: 8GB

Driver2 (3 Dealer Agents, 3 Manufacturing Agents)
CPU: two quad core 2.7Ghz x86_64, 2MB L2 Cache
RAM: 16GB

External Supplier Emulator
CPU: two quad core 2.7Ghz x86_64, 2MB L2 Cache
RAM: 16GB

Oracle Weblogic Server 10.3 - Middle Tier (MT)
CPU: two quad core 2.83Ghz x86_64, 6MB L2 Cache
RAM: 16GB

Oracle Database 11g EE - Database Tier (DB)
CPU: four quad core 2.7Ghz x86_64, 2MB L2 Cache
RAM: 64GB

System Under Test (SUT) Driver1 (3 Dealer Agents, 3 Manufacturing Agents)
CPU: two quad core 3.7Ghz x86_64, 2MB L2 Cache
RAM: 8GB

Driver1 (3 Dealer Agents, 3 Manufacturing Agents)
CPU: two quad core 3.7Ghz x86_64, 2MB L2 Cache
RAM: 8GB

Driver2 (3 Dealer Agents, 3 Manufacturing Agents)
CPU: two quad core 2.7Ghz x86_64, 2MB L2 Cache
RAM: 16GB

External Supplier Emulator
CPU: two quad core 2.7Ghz x86_64, 2MB L2 Cache
RAM: 16GB

Oracle Weblogic Server 10.3 - Middle Tier (MT)
CPU: two quad core 2.83Ghz x86_64, 6MB L2 Cache
RAM: 16GB

Oracle Weblogic Server 10.3 - Middle Tier (MT)
CPU: two quad core 2.83Ghz x86_64, 6MB L2 Cache
RAM: 16GB

Oracle Database 11g EE - Database Tier (DB)
CPU: four quad core 2.7Ghz x86_64, 2MB L2 Cache
RAM: 64GB

Oracle Database 11g EE - Database Tier (DB)
CPU: four quad core 2.7Ghz x86_64, 2MB L2 Cache
RAM: 64GB

System Under Test (SUT)

Figure 4: EAStress2004 setup

655

XA datasources backed by oracle.jdbc.OracleDriver are used for

XA and LLR runs, respectively.

The EAStress2004 workload is run with 10 minutes ramp up time,

and 60 min steady state with Injection Rate (IR) 700 for both XA

and LLR datasources. IR refers to the rate at which business trans-

action requests from the Dealer application in the Dealer Domain

are injected into the system under test (SUT). Table 1 summarizes

important results. Average transaction response times dramatically

benefit from using the LLR Optimization.

In a run with an hour-long steady state, we observe that with XA

datasources: DB CPU utilization increases by 80%, MT CPU goes

up 6%. The round trips to the DB increase by around 50%. The

I/O writes on the MT increase by 80%, with I/O service times

remaining stable, but disk utilization increasing by 30%. Figure 5

depicts a resource utilization chart for the runs with and without

LLR.

6. CO�CLUSIO�
We introduced the LLR Optimization in WLS for XA-2PC in-

volving JDBC datasource connections. LLR provides significant

optimizations of and features beyond the original Nested 2PC in

the context of JEE, which are unique to Oracle WLS: Failure

during LLR resource recovery fails the boot process; LLR is clus-

ter-ready: in a cluster, only the TC node hosts the LLR transac-

tion's physical JDBC connection and requests submitted to identi-

cally named LLR datasources on other cluster members within the

same transaction are rerouted through the coordinator; LLR log

entries are automatically garbage collected. We are able to im-

prove the JTA performance in WLS in a transparent fashion such

that the user code does not require any changes. Solely the de-

ployment descriptors or server-wide datasource definitions need

to be redefined as LLR-enabled. Users need to make sure that

their application deployments do not enlist more than one LLR

datasource per global transaction. The LLR datasource connection

is automatically selected for logging the global transaction out-

come instead of the local Persistent Store. Successful commit of

the LLR datasource commits the global transaction. Saving one

phase on a remote datasource often more than doubles the transac-

tion throughput. This feature is widely used by our customers in

mission-critical applications with high performance requirements

and has been validated by deploying it in recognized industry

benchmarks [6].

7. REFERE�CES
[1] Barga, R., D. Lomet, T. Baby, and S. Agrawal: Persistent

Client-Server Database Sessions. In Proceedings of 7th Int'l

Conference on Extending Database Technology (EDBT),

Konstanz, Germany, Mar 2000: 462-477

[2] Gray, J.: Notes on Data Base Operating Systems. In Ad-

vanced Course: Operating Systems, Springer, 1978: 393-481

[3] Lampson, D. and D. Lomet: A New Presumed Commit Op-

timization for Two Phase Commit. In Proceedings of the

19th Int'l Conference on Very Large Data Bases, Dublin, Ire-

land, Aug 1993, Morgan Kaufmann, San Francisco, CA,

USA: 630-640

[4] Mohan, C. and B. Lindsay: Efficient Commit Protocols for

the Tree of Processes Model of Distributed Transactions. In

Proceedings of the 2nd ACM SIGACT/SIGOPS Symposium

on Principles pf Distributed Computing, Montreal, Quebec,

Canada, Aug 1983: 76-88

[5] Mohan, C., B. Lindsay, and R. Obermark: Transaction Man-

agement in the R* Distributed Database Management Sys-

tem. In ACM Transactions on Database Systems, 11(4), Dec

1986: 378-396

[6] Oracle Corp.: Oracle Benchmark Results,

http://www.oracle.com/solutions/performance_scalability/be

nchmark_results.html

[7] Oracle Corp.: Oracle Fusion Middleware.

http://www.oracle.com/products/middleware/index.html

[8] Oracle Corp.: Programming WebLogic JTA: Logging Last

Resource Transaction Optimization.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103

/jta/llr.html

[9] SPEC: SPECjAppServer2004,

http://www.spec.org/jAppServer2004/

[10] Sun Microsystems: Java EE at a Glance.

http://java.sun.com/javaee/.

[11] Sun Microsystems: Java Transaction API Specification 1.0.1,

http://java.sun.com/javaee/technologies/jta/

[12] The Open Group: Distributed Transaction Processing: The

XA Specification. X/Open Company Ltd., UK, 1991

[13] Weikum, G. and G. Vossen: Transactional Information Sys-

tems: Theory, Algorithms, and the Practice of Concurrency

Control and Recovery. Morgan Kaufmann, San Francisco,

CA, USA, 2001

0

20

40

60

80

100

120

140

M
T
-C
P
U

D
B
-C
P
U

I/
O
 R
e
q
u
e
s
ts
 /

s
e
c
 o
n

M
T
(H
u
n
d
re
d
s
)

R
o
u
n
d
 t
ri
p
s
 t
o

D
B
 (
M
ill
io
n
s
)

V
a
lu
e
s

LLR

XA

Figure 5: Resource utilization in EAStress2004.

Table 1: Summary of EAStess2004 v1.08 results for IR 700

 Response Time in seconds

 Purchase Manage Browse Manufacturing

XA 4.20 2.40 5.40 3.75

LLR 1.50 1.20 1.90 3.00

Delta 2.8x 2x 2.8x 1.25x

656

