
Optimizing Joins in a Map-Reduce Environment

Foto N. Afrati
National Technical University of Athens,Greece

afrati@softlab.ntua.gr

Jeffrey D. Ullman
Stanford University, USA

ullman@infolab.stanford.edu

ABSTRACT
Implementations of map-reduce are being used to perform
many operations on very large data. We examine strategies
for joining several relations in the map-reduce environment.
Our new approach begins by identifying the “map-key,” the
set of attributes that identify the Reduce process to which a
Map process must send a particular tuple. Each attribute of
the map-key gets a “share,” which is the number of buckets
into which its values are hashed, to form a component of the
identifier of a Reduce process. Relations have their tuples
replicated in limited fashion, the degree of replication de-
pending on the shares for those map-key attributes that are
missing from their schema. We study the problem of opti-
mizing the shares, given a fixed number of Reduce processes.
An algorithm for detecting and fixing problems where an
attribute is “mistakenly” included in the map-key is given.
Then, we consider two important special cases: chain joins
and star joins. In each case we are able to determine the
map-key and determine the shares that yield the least repli-
cation. While the method we propose is not always superior
to the conventional way of using map-reduce to implement
joins, there are some important cases involving large-scale
data where our method wins, including: (1) analytic queries
in which a very large fact table is joined with smaller dimen-
sion tables, and (2) queries involving paths through graphs
with high out-degree, such as the Web or a social network.

1. INTRODUCTION AND MOTIVATION
Search engines and other data-intensive applications have

large amounts of data needing special-purpose computa-
tions. The canonical problem today is the sparse-matrix-
vector calculation involved with PageRank [6], where the
dimension of the matrix and vector can be in the 10’s of
billions. Most of these computations are conceptually sim-
ple, but their size has led implementors to distribute them
across hundreds or thousands of low-end machines. This
problem, and others like it, led to a new software stack
to take the place of file systems, operating systems, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

database-management systems.
Central to this stack is a file system such as the Google

File System (GFS) [14] or Hadoop Distributed File System
(HDFS) [2]. Such file systems are characterized by:

• Block (chunk) sizes that are perhaps 1000 times larger
than those in conventional file systems — multimega-
byte instead of multikilobyte.

• Replication of chunks in relatively independent loca-
tions (e.g., on different racks) to increase availability.

A powerful tool for building applications on such a file
system is Google’s map-reduce [10] or its open-source ver-
sion, Hadoop [2]. Briefly, map-reduce allows a Map function
to be applied to data stored in one or more files, resulting
in key-value pairs. Many instantiations of the Map function
can operate at once, and all their produced pairs are routed
by a master controller to one of several Reduce processes,
so that all pairs with the same key wind up at the same Re-
duce process. The Reduce processes apply another function
to combine the values associated with one key to produce a
single result for that key.

Map-reduce, inspired from functional programming, is a
natural way to implement sparse-matrix-vector multiplica-
tion in parallel, and we shall soon see an example of how it
can be used to compute parallel joins. Further, map-reduce
offers resilience to hardware failures, which can be expected
to occur during a massive calculation. The master controller
manages Map and Reduce processes and is able to redo them
if a process fails.

The new software stack includes higher-level, more data-
base-like facilities, as well. Examples are Google’s BigTable
[7], or Yahoo!’s PNUTS [9], which can be thought of ad-
vanced file-level facilities. At a still higher level, Yahoo!’s
PIG/PigLatin [19] translates relational operations such as
joins into map-reduce computations. [8] suggests adding to
map-reduce a “merge” phase and demonstrates how to ex-
press relationa-algebra operators thereby.

1.1 A Model for Cluster Computing
The same environment in which map-reduce proves so use-

ful can also support interesting algorithms that do not fit the
map-reduce form. Clustera [13] is an example of a system
that allows more flexible programming than does Hadoop,
in the same file environment. Although most of this paper is
devoted to new algorithms that do fit the map-reduce frame-
work, one could take advantage of more general computation
plans (see Section 1.4). Here are the elements that describe

99

the environment in which computations like map-reduce can
take place.

1. Files: A file is a set of tuples. It is stored in a file
system such as GFS. That is, files are replicated with
a very large chunk size. Unusual assumptions about
files are:

(a) We assume the order of tuples in a file cannot be
predicted. Thus, these files are really relations as
in a relational DBMS.

(b) Many processes can read a file in parallel. That
assumption is justified by the fact that all chunks
are replicated and so several copies can be read
at once.

(c) Many processes can write pieces of a file at the
same time. The justification is that tuples of the
file can appear in any order, so several processes
can write into the same buffer, or into several
buffers, and thence into the file.

2. Processes: A process is the conventional unit of com-
putation. It may obtain input from one or more files
and write output to one or more files.

3. Processors: These are conventional nodes with a CPU,
main memory, and secondary storage. We do not as-
sume that the processors hold particular files or com-
ponents of files. There is an essentially infinite supply
of processors. Any process can be assigned to any one
processor.

1.2 The Cost Measure for Algorithms
An algorithm in our model is an acyclic graph of processes

with an arc from process P1 to process P2 if P1 generates
output that is (part of) the input to P2. A process cannot
begin until all of its input has been created. Note that we
assume an infinite supply of processors, so any process can
begin as soon as its input is ready.

• The communication cost of a process is the size of the
input to this process. Note that we do not count the
output size for a process. The output must be input to
at least one other process (and will be counted there),
unless it is output of the algorithm as a whole. We
cannot do anything about the size of the result of an
algorithm anyway. But more importantly, the algo-
rithms we deal with are query implementations. The
output of a query that is much larger than its input
is not likely to be useful. Even analytic queries, while
they may involve joining large relations, usually end
by aggregating the output so it is meaningful to the
user.

• The total communication cost is the sum of the commu-
nication costs of all processes comprising an algorithm.

• The elapsed communication cost is defined on the acyc-
lic graph of processes. Consider a path through this
graph, and sum the communication costs of the pro-
cesses along that path. The maximum sum, over all
paths, is the elapsed communication cost.

In our analysis, we do not account for the computation
time taken by the processors. Typically, processing at a

compute node can be done in main memory, if we are care-
ful to assign limited amounts of work to each process. Thus,
the cost of reading data from disk and shipping it over a
network such as gigabit Ethernet will dominate the total
elapsed time. Even in situations such as we shall explore,
where a process involves joining several relations, we shall
assume that tricks such as semijoins and judicious ordering
can bring the processing cost down so it is at most commen-
surate with the cost of shipping data to the processor. The
technique of Jakobsson [16] for chain joins, involving early
duplicate elimination, would also be very important for mul-
tiway joins such as those that follow paths in the graph of
the Web.

1.3 Outline of Paper and Our Contributions
In this paper, we investigate algorithms for taking joins

of several relations in the environment just described. In
particular, we are interested in algorithms that minimize
the total communication cost. Our contributions are the
following:

1. In Section 2, we begin the study of multiway (natural)
joins. For comparison, we review the “normal” way
to compute (2-way) joins using map-reduce. Through
examples, we sketch an algorithm for multiway join
evaluation that optimizes the communication cost by
selecting properly those attributes that are used to
partition and replicate the data among Reduce pro-
cesses; the selected attributes form the map-key. We
also show that there are some realistic situations in
which the multiway join is more efficient than the con-
ventional cascade of binary joins.

2. In Section 2.4 we introduce the notion of a “share”
for each attribute of the map-key. The product of the
shares is a fixed constant k, which is the number of
Reduce processes used to implement the join. Each
relation in a multiway join is replicated as many times
as the product of the shares of the map-key attributes
that are not in the schema for that relation.

3. The heart of the paper explores how to choose the
map-key and shares to minimize the communication
cost.

• The method of “Lagrangean multipliers” lets us
set up the communication-cost-optimization prob-
lem under the constraint that the product of the
share variables is a constant k. There is an im-
plicit constraint on the share variables that each
must be a positive integer. However, optimiza-
tion techniques such as Lagrange’s do not support
such constraints directly. Rather, they serve only
to identify points (values for all the share vari-
ables) at which minima and maxima occur. Even
if we postpone the matter of rounding or other-
wise adjusting the share variables to be positive
integers, we must still consider both minima that
are identified by Lagrange’s method by having all
derivatives with respect to each of the share vari-
ables equal to 0, and points lying on the boundary
of the region defined by requiring each share vari-
able to be at least 1.

100

• In the common case, we simply set up the La-
grangean equations and solve them to find a mini-
mum in the positive orthant (region with all share
variables nonnegative). If some of the share vari-
ables are less than 1, we can set them to 1, their
minimum possible value, and remove them from
the map-key. We then re-solve the optimization
problem for the smaller set of map-key attributes.

• Unfortunately, there are cases where the solu-
tion to the Lagrangean equations implies that at
a minimum, one or more share variables are 0.
What that actually means is that to attain a min-
imum in the positive orthant under the constraint
of a fixed product of share variables, certain vari-
ables must approach 0, while other variables ap-
proach infinity, in a way that the product of all
these variables remains a fixed constant. Sec-
tion 3 explores this problem. We begin in Sec-
tion 3.2 by identifying “dominated” attributes,
which can be shown never to belong in a map-
key, and which explain most of the cases where
the Lagrangean yields no solution within the pos-
itive orthant.

• But dominated attributes in the map-key are not
responsible for all such failures. Section 3.4 han-
dles these rare but possible cases. We show that it
is possible to remove attributes from the map-key
until the remaining attributes allow us to solve
the equations, although the process of selecting
the right set of attributes to remove can be expo-
nential in the number of attributes.

• Finally, in Section 3.5 we are able to put all of the
above ideas together. We offer an algorithm for
finding the optimal values of the share variables
for any natural join.

4. Section 4 examines two common kinds of joins: chain
joins and star joins (joins of a large fact table with sev-
eral smaller dimension tables). For each of these types
of joins we give closed-form solutions to the question
of the optimal share of the map-key for each attribute.

• In the case of star joins, the solution not only tells
us how to compute the join in a map-reduce-type
environment. It also suggests how one could opti-
mize storage by partitioning the fact table perma-
nently among all compute nodes and replicating
each dimension table among a small subset of the
compute nodes. This option is a realistic and eas-
ily adopted application of our techniques.

The complete version of this paper can be found in [1].

1.4 Joins and Map-Reduce
Multiway joins can be useful when processing large am-

ounts of data as is the case in web applications. An example
of a real problem that might be implemented in a map-
reduce-like environment using multiway join is the HITS
algorithm [17] for computing “hubs and authorities.” While
much of this paper is devoted to algorithms that can be im-
plemented in the map-reduce framework, this problem can
profit by going outside map-reduce, while still exploiting the
computation environment in which map-reduce operates. In

the full version we give details in support of the following
claims:

• Multiway joins of very large data appear in practice.

• It is common for the results of these joins, although
huge, to be aggregated so the output is somewhat com-
pressed.

• Sometimes there are better ways to perform database
queries in the cluster-computing environment than a
sequence of map-reduce operations.

2. MULTIWAY JOINS
There is a straightforward way to join relations using map-

reduce. We begin with a discussion of this algorithm. We
then consider a different way to join several relations in one
map-reduce operation.

2.1 The Two-Way Join and Map-Reduce
Suppose relations R(A, B) and S(B, C) are each stored

in a file of the type described in Section 1.1. To join these
relations, we must associate each tuple from either relation
with a “key”1 that is the value of its B-component. A col-
lection of Map processes will turn each tuple (a, b) from R
into a key-value pair with key b and value (a, R). Note that
we include the relation with the value, so we can, in the
Reduce phase, match only tuples from R with tuples from
S, and not a pair of tuples from R or a pair of tuples from
S. Similarly, we use a collection of Map processes to turn
each tuple (b, c) from S into a key-value pair with key b and
value (c, S). We include the relation name with the attribute
value so in the reduce phase we only combine tuples from
different relations.

The role of the Reduce processes is to combine tuples from
R and S that have a common B-value. Thus, all tuples with
a fixed B-value must be sent to the same Reduce process.
Suppose we use k Reduce processes. Then choose a hash
function h that maps B-values into k buckets, each hash
value corresponding to one of the Reduce processes. Each
Map process sends pairs with key b to the Reduce process
for hash value h(b). The Reduce processes write the joined
tuples (a, b, c) that they find to a single output file.

2.2 Implementation Under Hadoop
If the above algorithm is implemented in Hadoop, then

the partition of keys according to the hash function h can
be done behind the scenes. That is, you tell Hadoop the
value of k you desire, and it will create k Reduce processes
and partition the keys among them using a hash function.
Further, it passes the key-value pairs to a Reduce process
with the keys in sorted order. Thus, it is possible to imple-
ment Reduce to take advantage of the fact that all tuples
from R and S with a fixed value of B will appear consecu-
tively on the input.

That feature is both good and bad. It allows a simpler
implementation of Reduce, but the time spent by Hadoop
in sorting the input to a Reduce process may be more than
the time spent setting up the main-memory data structures
that allow the Reduce processes to find all the tuples with
a fixed value of B.
1Note that “keys” in the map-reduce sense are not unique.
They are simply values used to distribute data between a
Map process and the correct Reduce process.

101

2.3 Joining Several Relations at Once
Let us consider joining three relations

R(A, B) ./ S(B, C) ./ T (C, D)

We could implement this join by a sequence of two 2-way
joins, choosing either to join R and S first, and then join
T with the result, or to join S and T first and then join
with R. Both joins can be implemented by map-reduce as
described in Section 2.1.

An alternative algorithm involves joining all three rela-
tions at once, in a single map-reduce process. The Map
processes send each tuple of R and T to many different Re-
duce processes, although each tuple of S is sent to only one
Reduce process. The duplication of data increases the com-
munication cost above the theoretical minimum, but in com-
pensation, we do not have to communicate the result of the
first join. As we shall see, the multiway join can therefore
be preferable if the typical tuple of one relation joins with
many tuples of another relation, as would be the case, for
example, if we join copies of the matrix of the Web.

Much of this paper is devoted to optimizing the way this
algorithm is implemented, but as an introduction, suppose
we use k = m2 Reduce processes for some m. Values of B
and C will each be hashed to m buckets, and each Reduce
process will be associated with a pair of buckets, one for B
and one for C. That is, we choose to make B and C part of
the map-key, and we give them equal shares.

Let h be a hash function with range 1, 2, . . . , m, and asso-
ciate each Reduce process with a pair (i, j), where integers
i and j are each between 1 and m. Each tuple S(b, c) is sent
to the Reduce process numbered

(
h(b), h(c)

)
. Each tuple

R(a, b) is sent to all Reduce processes numbered
(
h(b), x

)
,

for any x. Each tuple T (c, d) is sent to all Reduce processes
numbered

(
y, h(c)

)
for any y. Thus, each process (i, j) gets

1/m2th of S, and 1/mth of R and T . An example, with
m = 4, is shown in Fig. 1.

0 1 2 3

3

2

1

0

h(b)=

h(T.c)=1

h(R.b)=2

h(c)= h(S.b)=1 and h(S.c)=3

Figure 1: Distributing tuples of R, S, and T among
k = m2 processes

Each Reduce process computes the join of the tuples it
receives. It is easy to observe that if there are three tuples
R(a, b), S(b, c), and T (c, d) that join, then they will all be
sent to the Reduce process numbered

(
h(b), h(c)

)
. Thus, the

algorithm computes the join correctly. Experiments were
run to demonstrate some cases where the 3-way join is more
efficient in practice (see full version).

2.4 An Introductory Optimization Example

In Section 2.3, we arbitrarily picked attributes B and C
to form the map-key, and we chose to give B and C the
same number of buckets, m =

√
k. This choice raises two

questions:

1. Why are only B and C part of the map-key?

2. Is it best to give them the same number of buckets?

To learn how to optimize map-keys for a multiway join,
let us begin with a simple example: the cyclic join

R(A, B) ./ S(B, C) ./ T (A, C)

Suppose that the target number of map-keys is k. That
is, we shall use k Reduce processes to join tuples from the
three relations. Each of the three attributes A, B, and C
will have a share of the key, which we denote a, b, and c,
respectively. We assume there are hash functions that map
values of attribute A to a different buckets, values of B to b
buckets, and values of C to c buckets. We use h as the hash
function name, regardless of which attribute’s value is being
hashed. Note that abc = k.

• Convention: Throughout the paper, we use upper-
case letters near the beginning of the alphabet for at-
tributes and the corresponding lower-case letter as its
share of a map-key. We refer to these variables a, b, . . .
as share variables.

Consider tuples (x, y) in relation R. Which Reduce pro-
cesses need to know about this tuple? Recall that each Re-
duce process is associated with a map-key (u, v, w), where
u is a hash value in the range 1 to a, representing a bucket
into which A-values are hashed. Similarly, v is a bucket in
the range 1 to b representing a B-value, and w is a bucket in
the range 1 to c representing a C-value. Tuple (x, y) from R
can only be useful to this reducer if h(x) = u and h(y) = v.
However, it could be useful to any reducer that has these
first two key components, regardless of the value of w. We
conclude that (x, y) must be replicated and sent to the c dif-
ferent reducers corresponding to key values

(
h(x), h(y), w

)
,

where 1 ≤ w ≤ c.
Similar reasoning tells us that any tuple (y, z) from S must

be sent to the a different reducers corresponding to map-keys(
u, h(y), h(z)

)
, for 1 ≤ u ≤ a. Finally, a tuple (x, z) from T

is sent to the b different reducers corresponding to map-keys(
h(x), v, h(z)

)
, for 1 ≤ v ≤ b.

This replication of tuples has a communication cost asso-
ciated with it. The number of tuples passed from the Map
processes to the Reduce processes is

rc + sa + tb

where r, s, and t are the numbers of tuples in relations R,
S, and T , respectively.

• Convention: We shall, in what follows, use R, S, . . .
as relation names and use the corresponding lower-case
letter as the size of the relation.

We must minimize the expression rc+sa+tb subject to the
constraint that abc = k. There is another constraint that we
shall not deal with immediately, but which eventually must
be faced: each of a, b, and c must be a positive integer. To

102

start, the method of Lagrangean multipliers serves us well.
That is, we start with the expression

rc + sa + tb− λ(abc− k)

take derivatives with respect to the three variables, a, b, and
c, and set the resulting expressions equal to 0. The result is
three equations:

s = λbc
t = λac
r = λab

These come from the derivatives with respect to a, b, and
c in that order. If we multiply each equation by the vari-
able missing from the right side (which is also the variable
with respect to which we took the derivative to obtain that
equation), and remember that abc equals the constant k, we
get:

sa = λk
tb = λk
rc = λk

We shall refer to equations derived this way (i.e., taking
the derivative with respect to a variable, setting the result
to 0, and then multiplying by the same variable) as the
Lagrangean equations.

If we multiply the left sides of the three equations and
set that equal to the product of the right sides, we get
rstk = λ3k3 (remembering that abc on the left equals k).

We can now solve for λ = 3
√

rst/k2. From this, the first

equation sa = λk yields a = 3
√

krt/s2. Similarly, the next

two equations yield b = 3
√

krs/t2 and c = 3
√

kst/r2. When
we substitute these values in the original expression to be
optimized, rc+sa+tb, we get the minimum amount of com-
munication between Map and Reduce processes: 3 3

√
krst.

Note that the values of a, b, and c are not necessarily
integers. However, the values derived tell us approximately
which integers the share variables need to be. They also
tell us the desired ratios of the share variables; for example,
a/b = t/s. In fact, the share variable for each attribute is
inversely proportional to the size of the relation from whose
schema the attribute is missing. This rule makes sense, as it
says we should equalize the cost of distributing each of the
relations to the Reduce processes. These ratios also let us
pick good integer approximations to a, b, and c, as well as
a value of k that is in the approximate range we want and
is the product abc.

2.5 Comparison With Cascade of Joins
Under what circumstances is this 3-way join implemented

by map-reduce a better choice than a cascade of two 2-way
joins, each implemented by map-reduce. As usual, we shall
not count the cost of producing the final result, since this
result, if it is large, will likely be input to another operator
such as aggregation, that reduces the size of the output.

To simplify the calculation, we shall assume that all three
relations have the same size r. For example, they might each
be the incidence matrix of the Web, and the cyclic query is
asking for cycles of length 3 in the Web (this query might
be useful, for example, in helping us identify certain kinds
of spam farms).

If r = s = t, the communication between the Map and
Reduce processes simplifies to 3r 3

√
k. We shall also assume

that the probability of two tuples from different relations
agreeing on their common attribute is p. For example, if
the relations are incidence matrices of the Web, then rp
equals the average out-degree of pages, which might be in
the 10–15 range.

The communication of the optimal 3-way join is:

1. 3r for input to the Map processes.

2. 3r 3
√

k for the input to the Reduce processes.

The second term dominates, so the total communication cost
for the 3-way join is O(r 3

√
k).

For the cascade of 2-way joins, whichever two we join first,
we get an input size for the first Map processes of 2r. This
figure is also the input to the first Reduce processes, and
the output size for the Reduce processes is r2p. Thus, the
second join’s Map processes have an input size of r2p for the
intermediate join and r for the third relation. This figure
is also the input size for the Reduce processes associated
with the second join, and we do not count the size of the
output from those processes. Assuming rp > 1, the r2p
term dominates, and the cascade of 2-way joins has total
communication cost O(r2p).

We must thus compare r2p with the cost of the 3-way
join, which we found to be O(r 3

√
k). That is, the 3-way join

will be better as long as 3
√

k is less than rp. Since r and
p are properties of the data, while k is a parameter of the
join algorithm that we may choose, the conclusion of this
analysis is that there is a limit on how large k can be in
order for the 3-way join to be the method of choice. This
limit is k < (rp)3. For example, if rp = 15, as might be the
case for the Web incidence matrix, then we can pick k up to
3375, and use that number of Reduce processes.

Example 2.1. Suppose r = 107, p = 10−5, and k =
1000. Then the cost of the cascade of 2-way joins is r2p =
109. The cost of the 3-way join is r 3

√
k = 108, which is

much less. Note also that the output size is small compared
with both. Because there are three attributes that have to
match to make a tuple in R(A, B) ./ S(B, C) ./ T (A, C),
the output size is r3p3 = 106.

2.6 Trade-Off Between Speed and Cost
Before moving on to the general problem of optimizing

multiway joins, let us observe that the example of Section 2.4
illustrates the trade-off that we face when using a method
that replicates input. We saw that the total communication
cost was O(3

√
krst). What is the elapsed communication

cost?
First, there is no limit on the number of Map processes

we can use, as long as each process gets at least one chunk
of input. Thus, we can ignore the elapsed cost of the Map
processes and concentrate on the k Reduce processes. Since
the hash function used will divide the tuples of the relations
randomly, we do not expect there to be much skew, except
in some extreme cases. Thus, we can estimate the elapsed
communication cost as 1/kth of the total communication

cost, or O(3
√

rst/k2).

Thus, while the total cost grows as k1/3, the elapsed cost
shrinks as k2/3. That is, the faster we want the join com-
puted, the more resources we consume.

103

3. OPTIMIZATION OF MULTIWAY JOINS
Now, let us see how the example of Section 2.4 generalizes

to arbitary natural joins. We shall again start out with an
example that illustrates why certain attributes should not
be allowed to have a share of the map-key. We then look at
more complex situations where the Lagrangean equations do
not have a feasible solution, and we show how it is possible
to resolve those problems by eliminating attributes from the
map-key.

3.1 A Preliminary Algorithm for Optimizing
Share Variables

Here is an algorithm that generalizes the technique of Sec-
tion 2.4. As we shall see, it sometimes yields a solution and
sometimes not. Most of the rest of this section is devoted to
fixing up the cases where it does not. Suppose that we want
to compute the natural join of relations R1, R2, . . . , Rn, and
the attributes appearing among the relation schemas are
A1, A2, . . . , Am.

Step 1: Start with the cost expression

τ1 + τ2 + · · ·+ τn − λ(a1a2 · · · am − k)

where τi is the term that represents the cost of communi-
cating tuples of relations Ri to the Reduce processes that
need the tuple. That is, τi is the product of ri (the number
of tuples in Ri) times the product of those share variables
aj such that attribute Aj does not appear in the schema of
Ri. Note that this product of share variables is the num-
ber of Reduce processes to which each tuple of Ri must be
distributed.

Step 2: For each share variable ai, differentiate the cost
expression with respect to ai, and set the resulting expres-
sion to 0. Then, multiply the equation by ai. The result
is a collection of equations of the form Sai = λa1a2 · · · am,
where Sai is the sum of those τj ’s such that Ai is not in the
schema of Rj . Since the product a1a2 · · · am is constrained
to equal k, we can write the equations as Sai = λk. These
are the “Lagrangean equations” for the join.

Step 3: Since Step 2 gives us m equations in m unknowns
(the ai’s), we can in principle solve for the ai’s, in terms of
λ, k, and the relations sizes, the ri’s. Including the equation
that says the product of all the share variables is k, we can
further eliminate λ.

3.2 Dominated Attributes
What can go wrong in Step 3? A lot. First, the solution

for the share variables may assign some values less than 1.
If so, we need to eliminate those share variables from the
map-key and repeat the algorithm of Section 3.1 with the
new map-key. However, there are more complex cases where
the equations do not have a feasible solution because some
of the τi’s are forced to be 0. We shall study the simple
case of this phenomenon, identify its cause (a “dominated”
attribute), and show how to eliminate the problem. Then,
in Section 3.4 we show how to deal with the general case
where a sum of τi’s is forced to be 0. We can work around
these cases as well, although the algorithm to find a feasible
solution can take time that is exponential in the number of
attributes.

To see the simple case of the problem, as well as to il-
lustrate the algorithm of Section 3.1, consider the following

join:

R(A, B, C) ./ S(A, B, D) ./ T (A, D, E) ./ U(D, F)

whose hypergraph representation is shown in Fig. 2. In
Step 1 we construct the cost expression:

rdef + scef + tbcf + uabce −
λ(abcdef − k)

For example, the first term has the size of the relation R
and the product of all share variables whose attributes are
not in the schema of R.

C

A B

D
E

F

Figure 2: Hypergraph of relations illustrating dom-
inated attributes

The Lagrangean equations of Step 2 are:

uabce = λk
tbcf + uabce = λk
scef + tbcf + uabce = λk
rdef = λk
rdef + scef + uabce = λk
rdef + scef + tbcf = λk

Unfortunately, these equations do not yield a feasible so-
lution. For example, if we subtract the first from the second,
we get tbcf = 0. But since all share variables and relation
sizes are positive integers, this situation is impossible. Sev-
eral other terms can be shown equal to 0 as well.

A tool that lets us avoid some problems of this sort is
the concept of “dominated attributes.” Say attribute X
dominates attribute Y if every schema that has Y also has
X.

Example 3.1. For the four relations above, we see that
A dominates B. That is, A appears in the schemas of R,
S, and T , while B appears only in the schemas of R and
S. However, B is not the only dominated attribute. In gen-
eral, any attribute that appears only once in the join will be
dominated. Thus, C, E, and F are also dominated.

Any dominated attribute may be given a share equal to
1. Note that a variable with share 1 is effectively out of the
map-key, since there is only one bucket for that attribute
and all map-keys have the same value for that component.

3.3 Proof of the Dominator Rule
In proof, suppose we have a solution to some cost-min-

imization problem where attribute A dominates B, but the
solution assigns a value b > 1 to the share for B. Replace
a and b in the supposedly minimum solution by ab and 1,
respectively. We claim that the cost of the solution does not
increase. There are three possibilities regarding which of a
and b is a factor of a term in the cost function:

104

1. Both a and b are factors. This case occurs for terms
like uabce in the running example of this section. The
reason is that neither A nor B is an attribute of the
schema of U . If both a and b are factors, their product
is ab both before and after the transformation in the
shares of A and B.

2. b is a factor, but a is not. This case corresponds to
a relation that has A in its schema but not B, such
as tbcf in our running example. In this case, the cost
function goes down when we replace b by 1.

3. Neither a nor b are factors. This case corresponds to a
relation that has both A and B in its schema, such as
rdef in our running example. Here, changing a and/or
b has no effect on the term.

The important point to observe that the fourth case, where
a is a factor but b is not, cannot occur if A dominates B.
Such a term corresponds to a relation whose schema has
B but not A, and that is exactly what cannot occur if A
dominates B.

3.4 Dealing With a Sum of Terms Equal to
Zero

Whenever some sum of terms equals 0, we cannot get a
feasible solution to the Lagrangean equations. Eliminating
dominated attributes can handle some of these problems, as
we saw in Section 3.2. However, more complex problems
may sometimes arise.

In this section we present the general case of sums of terms
equal to 0. We begin with a simple example where all rela-
tions have the same size; thus assume without loss of gener-
ality that r = 1. As we shall see, the argument we use does
not really depend on the size of relations.

An Example
As in Section 3.1, denote by Sx the sum of terms in the
communication cost function that have share variable x as
a factor. Suppose for example that we have Sa + Se + Sc =
2Sb +Sd. Suppose also that all terms on the right hand side
(which is 2Sb + Sd) of this equation are canceled by terms
of the left hand side, so some terms in the left hand side
remain and are equated to 0. A useful observation is that
Sb contains only terms that have at least two of a, c, and e.
The reason is that:

a) Each term in Sa, Sb, . . . has coefficient 1 (because all
relations have the same size), and

b) Each term from 2Sb has to be canceled by either one
term from Sa and one term from Se or a term from
Sa and a term from Sc or a term from Sc and a term
from Se.

A second useful observation is that Sd contains only terms
that have at least one of a, c, and e.

Consider a solution a, c, e. If any of these variables are
less than 1, the solution is not feasible. We must raise any
fraction to 1, and can then eliminate that variable from the
map-key. Assuming a, c, and e are all greater than 1, pick
the smallest of them, say c. Do the following transforma-
tion: b′ = bc2; d′ = dc; a′ = a/c, e′ = e/c, and c′ = 1.
All other share variables are unchanged. We claim that this

transformation does not increase any term in the cost ex-
pression.

In proof, any term with b has at least two of a, c, and e.
First, suppose the term does not also have d. There are four
cases:

1. If the term has a and e but not c, then the new term
has factor b′a′e′ = (bc2)(a/c)(e/c) = bae; i.e., the term
does not change.

2. If the term has all of a, c, and e, then b′a′c′e′ =
(bc2)(a/c)(1)(e/c) = bae, which is less than the origi-
nal factor bace.

3. If the term has a and c, but not e, then

b′a′c′ = (bc2)(a/c)(1) = bac

i.e., the term does not change.

4. The final case, where the term has e and c but not a
is similar.

For the terms with d but not b, there are seven cases,
corresponding to the seven nonempty subsets of {a, c, e} that
may appear with d in the term. We shall consider only one;
the others are analogous. Suppose the term has a, but not
c or e. Then d′a′ = (dc)(a/c) = da, so the term does not
increase.

Finally, we must consider the case where both b and d
appear in a term. In this case we argue that all of a, c,
and e also appear in this term. In proof, the term appears
on the right hand side 2 + 1 = 3 times, so we must find
this term three times on the left hand side as well. The
only possibility is for this term to appear in all three Sx’s
on the left. Hence this term has factor abcde, and by the
transformation remains the same.

The final step is to argue that the transformation does not
violate the constraint that the product of all share variables
is a given constant k. But that argument is the same as the
last case above; the product abcde does not change, and no
other share variable was changed.

A Transformation That Eliminates a Sum of Terms Equal
to Zero
In general, whenever there is an equality in which all the
terms on one side also appear on the other side, then we
can discover a transformation of the shares that sets one of
the variables to 1. We can repeat this argument until all
variables that can be eliminated are gone.

There is, however, a subtle but important point that must
be addressed. In Example 3.4 we assumed that c was the
smallest of a, c, and e. Yet we cannot tell which is smallest
until we solve the equations, and until we get rid of all sums
of terms equal to 0, we cannot solve the equations. Thus,
we have to attempt solutions in which each of a, c, and e
plays the role of the smallest of the three and take the best
of what we get. Solving these three subcases may result in
more share variables being eliminated by the same process,
which in turn will multiply the number of subcases we need
to solve. In the worst case, we have to solve a number of
subproblems that is exponential in the number of share vari-
ables. However, the exponent is limited in general by the
number of variables we are forced to set to 1.

Now we generalize the argument we used in the above
example. We use the notation that we introduced in the

105

example above (Sa, etc.). By “sum of terms” we mean a sum
of τi’s (as in Section 3.1) with positive integer coefficients.
The generalization is based on the following lemma:

Lemma 3.2. If there is a sum-of-terms = 0 then there are
sums of terms Sai and Sbi and positive integers mi and ni,
such that the following hold:

1. Σµ
i=1miSai = Σν

i=1niSbi , and all the terms of the right
hand side of the equation are canceled by terms of the
left hand side.

2. Σµ
i=1mi = Σν

i=1ni

Proof. (1) is simply a restatement of the fact that some
sums and differences of the Si’s has led to a cancellation in
which there are terms on one side and not the other.

(2) follows from the fact that each of the Sx’s are equal,
and equal to λk. If Σµ

i=1mi 6= Σν
i=1ni, then we can replace

all occurrences of Si’s by λk, and get that

(Σµ
i=1mi − Σν

i=1ni)λk = 0

But k is a chosen positive constant, and λ is a parameter
that cannot be identically 0, so we would have a product of
three nonzero values equal to 0.

Convention:

• We call conditionally optimal a solution that minimizes
the cost expression over real values ≥ 1 and under the
constraint that the product of all shares is equal to a
certain given number.

• We call globally optimal a solution that minimizes the
cost expression over all real values and under the con-
straint that the product of all shares is equal to a cer-
tain given number.

Now we state (and prove in the complete version) the
following theorem.

Theorem 3.3. Suppose there is a sum-of-terms = 0. Sup-
pose that a0, b0, . . . is a conditionally optimal solution. Then
there is a conditionally optimal solution a′0, b

′
0, . . . where one

of the a′0, b
′
0, . . . is equal to 1.

3.4.1 The Algorithm That Eliminates Sums of Terms
Equal to 0

In conclusion, we proved above that the following algo-
rithm handles the cases where there exists a sum of terms
that equals zero. This algorithm takes as input a cost-
minimization problem that possibly derives (using the Lan-
gragean method) equations with a positive linear combina-
tion equal to zero and produces a set of cost-minimization
problems, none of which has a sum of terms equal to 0. The
solution to the original optimization problem is the solution
to that subproblem with the minimum optimized cost.

1. Suppose that for problem P , there is a sum of terms
which is equal to zero. Then, let mi, Sai ,ni, and Sbi

be such that they satisfy the conditions in Lemma 3.2.
For each ai, replace ai by 1 and create a new problem
Pi with one fewer variable.

2. For each problem Pi we repeat the first step above if
there is a sum of terms that equals to zero; otherwise,
we go to Step 3 below.

3. We solve all the created subproblems above and, for
each, we compute the optimum. The solution to our
problem is the solution to the subproblem with the
minimum optimum cost.

3.5 The Complete Algorithm
We can now describe an algorithm that yields the minimum-

cost solution for apportioning the share variables among the
attributes of a multiway natural join.

Step 1: Select those attributes that will get shares of the
map-key. To do so, eliminate any attribute that is domi-
nated by another attribute. In the case that two or more
attributes appear in exactly the same schemas, eliminate all
but one arbitrarily.

Step 2: Write the cost expression. This is the sum of one
term for each relation in the join. The term for a relation R
is the size r of that relation multiplied by the share variables
for all the attributes that are in the map-key but not in the
schema of R.

Step 3: Construct the Lagrangean equations for the join.

Step 4: Eliminate the cases where sum-of-terms = 0 ac-
cording to the algorithm in subsection 3.4.1 and derive a set
of subproblems to solve, in each of which there is no sum of
terms being equal to zero.

Step 5: Find the conditionally optimal solution for each of
the subproblems and keep the one with the minimum cost.

Example 3.4. Let us continue with the example

R(A, B, C) ./ S(A, B, D) ./ T (A, D, E) ./ U(D, F)

that we started in Section 3.2. We have already established
that Step 1 eliminates all attributes except A and D from
the map-key. Thus, the cost expression for Step 2 is

rd + s + t + ua

In Step 3 we obtain the Lagrangean equations:

ua = λk
rd = λk

Since ad = k, we can multiply the two equations to get
ruad = ruk = λ2k2, or ru = λ2k. From this equality we
deduce λ =

√
ru/k, then a =

√
rk/u and d =

√
uk/r.

It would be nice if all equation sets were as easy to solve
as those of Example 3.4, but unfortunately that does not
appear to be the case. In the next section, we shall consider
two important special cases — chain joins and star joins —
and see that these cases are solvable in closed form.

In the complete version, we give the details of how to find
a conditionally optimal solution in the cases where this does
not coincide with a globally optimal solution.

3.6 Meaning of Solutions
Since we are solving nonlinear equations in general, we

should not expect unique solutions. For example, notice in
the simple 3-way join examined in Section 2.4, we devel-
oped one solution that had positive values for a, b, and c.
However, if we negate any two of the three values, we get
another solution that offers a lower communication cost. Of

106

course this solution is not in the feasible region, since all
share variables must be 1 or more.

Even when we make the assumption that all values are
positive, we often get a solution in which some share vari-
ables are less than 1. The cases discussed in Sections 3.2
and 3.4 result in certain variables being removed from the
map-key, thus effectively forcing us to limit our search for
solutions to a boundary of the feasible region, that is, to
a subregion where certain variables are fixed at their lowest
possible value, 1. While it makes intuitive sense to make this
restriction and we have proved in the complete version that
at least one optimal solution lies in this subregion, we have
not ruled out the possibility of the existence of an optimal
solution where one or more of these variables have larger
values.

Finally, we have no guarantee that the solution we con-
struct will have integer values. One might expect that round-
ing each noninteger to its nearest integer will offer the best
integer solution, but there is no guarantee that is the case.
We should observe that integer linear programs are often
solved by finding the (noninteger) solution to the corre-
sponding linear program and then rounding the fractions.
However, that method is not guaranteed to produce the best
integer solution.

Thus, we suggest that the solution we propose for optimiz-
ing multiway joins should be viewed as providing guidance
as to which attributes deserve large shares and which do not.
When deciding the exact shares we must deal not only with
the constraint that shares be integers, but that their prod-
uct must be the specific integer k. That further limits our
choices to integers that evenly divide k, and in the rounding
process we must preserve the product. An alternative ap-
proach to selecting shares is to treat k as a suggestion rather
than a requirement. Then we can be more flexible in our se-
lection of shares, as long as we choose integers that are near
to the exact, noninteger values of the optimum solution.

4. IMPORTANT SPECIAL CASES
In this section, we consider the common case of a natural

join that is a chain of relations, each linked to the following
one by a single attribute. We prove a surprising simplifica-
tion of the general problem: the terms of the cost expression
always divide into two alternating groups with related val-
ues. Moreover, in the case of an even number of terms, one
of these groups has values independent of the number of Re-
duce processes k. We begin with a study of star joins, where
a fact table is joined with several dimension tables, and see
that there is a simple solution in this case.

4.1 Star Joins
A star join has the form suggested by Fig. 3. A central

fact table, represented here by the relation ABCD is joined
with several dimension tables, here represented by AE, BF ,
CG, and DH. It is expected that the fact table is very
large, while the dimension tables are smaller. Moreover, the
attribute or attributes shared by a dimension table and the
fact table are normally a key for the dimension table. It
is normal for there to be more attributes of the fact table
than those shown, but these will not be part of the map-
key for the join, and thus are not relevant to our discussion.
Similarly, there may be more than one nonkey attribute of
each fact table. Further, it is possible that there are sev-
eral attributes shared between the fact table and one of the

dimension tables, but for the purpose of optimizing the mul-
tiway join, we can combine them into one attribute as we
have done in our example.

A

E

B F

C

G

DH

Figure 3: A star join

We shall generalize Fig. 3 to a fact table F (A1, A2, . . . , An)
and n dimension tables, Di(Ai, Bi), for i = 1, 2, . . . , n. First,
observe that Ai dominates Bi, so we shall not have shares
of the map-key for any of the Bi’s. If we apply the method
of Section 3.5, we start with the cost expression

f + kd1/a1 + kd2/a2 + · · ·+ kdn/an

where k = a1a2 · · · an, the product of all the shares. When
we derive the equations for each of the share variables ai, we
find that the equation is missing the term f and the term
kdi/ai but has all the other terms.

Example 4.1. Consider the join of Fig. 3. To name the
relations, take the join to be

R(A, B, C, D) ./ S(A, E) ./ T (B, F) ./ U(C, G) ./ V (D, H)

Then the cost expression is

r + sbcd + tacd + uabd + vabc

and the Lagrangean equations are:

tacd + uabd + vabc = λk
sbcd + uabd + vabc = λk
sbcd + tacd + vabc = λk
sbcd + tacd + uabd = λk

If we subtract each equation from each other equation, we
conclude that each of the four terms sbcd, tacd, uabd, and
vabc must be equal. Remembering that abcd = k, we can
write these four terms as s/a = t/b = u/c = v/d. Thus, the
minimum-cost solution has shares for each variable propor-
tional to the size of the dimension table in which it appears.
That makes sense; it says that the map-keys partition the
fact table into k parts, and each part of the fact table gets
equal-sized pieces of each dimension table with which it is
joined.

We can use these equations to solve for b, c, and d in
terms of a. The result is b = at/s, c = au/s, and d = av/s.
Then, using the fact that abcd = k, we derive a4tuv/s3 = k,

or a = 4
√

ks3/tuv, b = 4
√

kt3/suv, c = 4
√

ku3/stv, and

d = 4
√

kv3/stu.

We can easily generalize Example 4.1.

107

Theorem 4.2. Let d = d1d2 · · · dn, that is, the product of
the sizes of all the dimension tables. Then ai, the share for
the attribute that appears in the fact table’s schema and the
schema of the ith dimension table is di

n
√

k/d.

4.2 Advantage of Replication for Star Joins
Since the shared attributes of a star join are keys of the

dimension tables, we do not expect a large blow-up in the
size of the join. However, it is normal for the fact table to
be orders of magnitude larger than the dimension tables, so
there is a definite advantage of not having to communicate
the intermediate joins, where the fact table is joined with
each dimension table, in turn. Even if the dimension tables
are significantly replicated, the cost of communicating the
dimension tables can still be much smaller than the cost of
communicating the fact table.

There is another question that the result in Section 4.1
answers. Aster Data (www.asterdata.com), lays out fact
and dimension tables across a large number of nodes, by
partitioning the fact table across the nodes and replicating
the dimension tables so that each tuple of each dimension
table has a copy at any node with one or more fact-table
tuples that joined with it. They viewed the problem as
finding an optimum partition of the fact table, taking into
account the particular values in the data. The minimum-
communication solution we developed in Section 4.1 tells the
most space-efficient way to partition the fact and dimension
tables, but in a way that is oblivious to the data. We believe
that our solution will be the best in practice for two reasons:

1. It is unlikely that typical data distributions allows less
replication than the data-oblivious approach.

2. But more importantly, if we take the data into ac-
count, then as the fact table grows, we need to rethink
the distribution of the dimension tables with each ad-
ditional tuple. With the data-oblivious approach, we
would only add the new fact tuple to the one node to
which that tuple hashed.

4.3 Chain Joins
A chain join is a join of the form

R1(A0, A1) ./ R2(A1, A2) ./ · · · ./ Rn(An−1, An)

as suggested by Fig. 4. It is probably the most common
form of join, at least if one includes cases where the relations
have attributes other than the A’s that are unique to those
relations (and whose presence would not affect the analysis
we are about to offer).

A 0 A 1 A 2 A 3 A n−1A n−2 A n

R 1 R 2 R 3 R nR n−1

. . .

. . .

Figure 4: General form of a chain join

Example 4.3. We shall use, as a running example, the
specific chain join

R(A, B) ./ S(B, C) ./ T (C, D) ./ U(D, E)

In terms of the general chain-join form, n = 4, R, S, T ,
and U play the roles of R1, R2, R3, and R4, respectively,
and the roles of A0 through A4 are played by A, B, C, D,
and E, respectively.

Let us apply the algorithm of Section 3.5 to a chain join.
First, Step 1 tells us to eliminate the attributes A0 and An

from the map-key, as they are dominated by A1 and An−1,
respectively. No other attributes are dominated, so the map
key consists of {A1, A2, . . . , An−1}.

Example 4.4. For the case of Example 4.3, we eliminate
A and E. The map-key consists of B, C, and D.

In Step 2, we construct the cost expression. It is the sum
of terms, one for each relation. The term τi for Ri consists
of factor ri and all the share variables aj where Aj is not in
the schema of Ri but is in the map-key. That is, we require
either 1 ≤ j ≤ i− 2 or i < j < n.

Example 4.5. Let us continue Example 4.4. The cost
expression is

rcd + sd + tb + ubc

Note the general pattern. The term corresponding to R1 will
have factors r1 and all share variables aj for 2 ≤ j < n. The
first term above is an example. The term for Rn will have
factors rn and all share variables aj where 1 ≤ j ≤ n − 2;
the last term above illustrates. All other terms are like sd
and tb above, they have one fewer factor than the end terms,
and are missing the share variables for the two attributes of
their schema. Note also that as the chain gets longer, the
terms get larger. For arbitrary n, the end terms have n− 2
share variables as factors and the middle terms have n − 3
share variables as factors.

In what follows, we shall use τi to stand for the term
constructed in Step 2 for the relation Ri. Then, in Step 3,
we construct the Lagrangean equations:

τ3 + τ4 + · · ·+ τn = λk
τ1 + τ4 + · · ·+ τn = λk
τ1 + τ2 + τ5 + · · ·+ τn = λk
τ1 + τ2 + τ3 + τ6 + · · ·+ τn = λk

. . .

That is, each equation is missing two consecutive τ ’s.
If we subtract the first equation from the second, we get

τ1 = τ3. Subtracting the second from the third yields τ2 =
τ4, and in a similar manner we can derive τi = τi+2 for all
i from i = 1 to i = n − 2. That is, all the even terms are
equal, and all the odd terms are equal.

Example 4.6. Following Example 4.5, we get rcd = tb
and sd = ubc. These equations, together with bcd = k are
all we need to get a solution. First, from rcd = tb we get b =
(r/t)cd. Substitute for b in sd = ubc to get sd = (ur/t)c2d.

The latter equation simplifies to c =
√

st/ru. Notice that c
has a value that doesn’t depend on k. If st < ru, then c = 1
must be chosen; i.e., attribute C is not really part of the
map-key. However, if st > ru, then c has a constant value
greater than 1. For example, if st = 4ru, then C’s share is
exactly 2; i.e., we must partition C-values into two buckets.

We can continue to solve for b and d. From b = (r/t)cd

and c =
√

st/ru we deduce b = d
√

rs/tu by substituting

108

for c in the formula for b. Then, since bcd = k, we may
substitute for b and c to get d2

√
st/ru

√
rs/tu = k. From

this equation, we solve for d to get d =
√

ku/s. From there,

with b = d
√

rs/tu, we get b =
√

kr/t.

4.4 Solving the General Case of Chain Joins
Our goal is to give a closed-form expression for the share

belonging to every attribute in a chain join. Interestingly,
the solutions are rather different for odd- and even-length
chains.

We shall first analyze the case where all relations are of
equal size. That case involves considerably simpler algebraic
expressions, yet illustrates the two different forms of solu-
tion, one for even n and one for odd n. It also serves to
introduce the algorithm used in the general case, without
obscuring the idea behind the algebra. Figure 5 suggests
how the shares of the attributes of the map-key vary along
the chain in the two cases.

Recall that the Lagrangean equations

τ3 + τ4 + · · ·+ τn = λk
τ1 + τ4 + · · ·+ τn = λk
τ1 + τ2 + τ5 + · · ·+ τn = λk
τ1 + τ2 + τ3 + τ6 + · · ·+ τn = λk

. . .

imply that

τ1 = τ3 = τ5 = · · ·
τ2 = τ4 = τ6 = · · ·

Moreover, the converse holds as well, in the sense that the
equalities among the τ ’s imply the original equations, with
the exception of the fact that we lose the particular value
λk. However, since we need to solve for λ anyway, the loss is
not important, and we shall henceforth look only for values
of the share variables that satisfy the equalities of the even
τ ’s and the odd τ ’s.

(b) Pattern for odd
numbers of relationsnumbers of relations

(a) Pattern for even

Figure 5: For chains of even length, only alternating

attributes get a share; for odd lengths, the shares form

an increasing and decreasing sequence, interlaced

We can write τ1 as r1k/a1, τn as rnk/an−1 and all other
τ ’s as τi = rik/(ai−1ai). The fact that k is the product of
the ai’s justifies this rewriting. That is, the equalities of the
τ ’s, with common factor k removed, can be written in two
simple ways, depending on whether n is odd or even. For
even n:

r1
a1

= r3
a2a3

= r5
a4a5

= · · · = rn−1
an−2an−1

r2
a1a2

= r4
a3a4

= · · · = rn−2
an−3an−2

= rn
an−1

Note that for even n, the two end terms, for R1 and Rn,
have their contributions in different equations. These terms
differ from all others, in that they have only one a in the
denominator. For odd n, one equation has both of the “end”
terms, and the other has none:

r1
a1

= r3
a2a3

= r5
a4a5

= · · · = rn−2
an−3an−2

= rn
an−1

r2
a1a2

= r4
a3a4

= · · · = rn−1
an−2an−1

4.4.1 Even n, All Relations Equal in Size
We can simplify the equations by setting r1 = r2 = · · · =

rn and dividing through by the relation size. Further, we
can invert each term, so we need to solve the following:

a1 = a2a3 = a4a5 = · · · = an−2an−1

a1a2 = a3a4 = · · · = an−3an−2 = an−1

It turns out that expressing everything in terms of a2 is the
most effective way to resolve the equations. Remember that
we cannot solve for exact values of the ai’s until we apply
the condition that their product is k, but we can solve for
their ratios. To begin, we can prove by induction on i that:

Lemma 4.7. a2i = (a2)
i, for i = 1, 2, . . . , (n/2)− 1.

Next, use the equality of the ends of both sequences of
equal terms to get a1 = an−2an−1 and a1a2 = an−1. From
these, it follows that a2an−2 = 1. But we also have derived
an−2 = (a2)

(n/2)−1. That is, a2(a2)
(n/2)−1 = 1. But all the

ai’s are positive numbers, so it follows that a2 must be 1.
Therefore, all the even-subscripted a’s are 1; that is

a2 = a4 = a6 = · · · = an−2 = 1

Once we know the even a’s are all 1, it follows from either
set of equalities that the odd a’s are all the same; that is:
a1 = a3 = a5 = · · · = an−1. Further, we can use the fact
that the product of all the a’s is k to deduce that

a1 = a3 = a5 = · · · = an−1 = k2/n

That is, all the odd a’s are the (n/2)th root of k. This
solution makes intuitive sense; it says that each of the rela-
tions in the join has one of its attributes contributing to the
map-key and the other not.

4.4.2 Odd n, All Relations Equal in Size
We have to solve almost the same set of equations, but

the two terms a1 and an−1 that are different because they
are not the product of two a’s appear in the same set of
equalities as:

a1 = a2a3 = a4a5 = · · · = an−3an−2 = an−1

a1a2 = a3a4 = · · · = an−2an−1

The same argument as in Lemma 4.7 tells us that each of the
even-subscripted a’s is a power of a2; that is a2i = (a2)

i. But

now, an−1 is one of these, and we deduce an−1 = (a2)
(n−1)/2.

We also know from the first set of equalities that a1 =
an−1, so a1 = (a2)

(n−1)/2. Now, we can solve for the re-
maining odd-subscripted a’s. Using the first set of equal-
ities, we know that a1 = a2ia2i+1 for i = 1, 2, . . . , (n −
3)/2. We’ve also deduced that a2i = (a2)

i. Thus, a2i+1 =

(a2)
((n−1)/2)−i. That is, the even-subscripted a’s are in-

creasing powers of a2, while the odd-subscripted a’s are de-
creasing powers of a2.

109

Thus, the product of the a’s is (a2)
(n−1)(n+1)/4. Since this

product is k, we find a2 = k4/((n−1)(n+1)), from which we
can deduce each of the a’s.

Example 4.8. Suppose n = 7 and k = 4096 = 212. Then
a2 = 40961/12 = 2. It follows that a1 = a6 = 8, a2 = a5 = 2,
and a3 = a4 = 4.

In the complete version, we also give the analysis for the
case the relations have arbitrary sizes.

5. RELATED WORK
Optimization techniques for the evaluation of join queries

in parallel environments has been studied in various settings.
Several (e.g., see [11] and references therein) consider piple-
lined parallelism, which uses a limited number of processors
since the parallelism involves assigning a different processor
to each operator in the query. Adaptive techniques have
been proposed to overcome the bottleneck of one processor
being overworked, while the other processors are idle for a
long time [3]. Adaptive techniques for queries over stream
data are considered in [4,18] and for data integration in [15].
In [21], query optimization is investigated in a similar set-
ting, where, however, each Web service is viewed as a dif-
ferent processor. With a different goal — maximizing the
output rate of join queries over streaming data to address
the problem of computing a prefix of the query output as
soon as possible — the problem is investigated in [23]. The
problem of partitioning efficiently the data among a given
(possibly large) number of processors has been addressed
in [12,20].

Several works have noticed and investigated issues that
concern the computation of an n-way join as one multi-
tuple operation [5, 22, 23]. The multiway join operator has
been considered in [23] for processing streaming data. Tree-
based techniques for executing a multiway join operator for
both select-project-join and recursive queries are developed
in [16].

Acknowledgment We would like to thank Raghotham
Murthy, Chris Olston, and Jennifer Widom for their advice
and suggestions in connection with this work. Also we thank
Victor Kyritsis for running the experiments.

6. REFERENCES
[1] F. N. Afrati and J. D. Ullman. Optimizing joins in a

map-reduce environment. Technical report, Stanford,
http://ilpubs.stanford.edu:8090/952/, 2009.

[2] Apache. Hadoop. http://hadoop.apache.org/, 2006.

[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. In SIGMOD Conference,
pages 261–272, 2000.

[4] S. Babu, K. Munagala, J. Widom, and R. Motwani.
Adaptive caching for continuous queries. In ICDE,
pages 118–129, 2005.

[5] S. Babu and J. Widom. Streamon: an adaptive engine
for stream query processing. In SIGMOD Conference,
pages 931–932, New York, NY, USA, 2004. ACM.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks,
30(1-7):107–117, 1998.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and

R. E. Gruber. Bigtable: A distributed storage system
for structured data. ACM Trans. Comput. Syst.,
26(2), 2008.

[8] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S.
Parker. Map-reduce-merge: simplified relational data
processing on large clusters. In SIGMOD Conference,
pages 1029–1040, New York, NY, USA, 2007. ACM.

[9] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. PVLDB, 1(2):1277–1288, 2008.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[11] A. Deshpande and L. Hellerstein. Flow algorithms for
parallel query optimization. In ICDE, pages 754–763,
2008.

[12] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and
S. Seshadri. Practical skew handling in parallel joins.
In VLDB, pages 27–40, 1992.

[13] D. J. DeWitt, E. Paulson, E. Robinson, J. F.
Naughton, J. Royalty, S. Shankar, and A. Krioukov.
Clustera: an integrated computation and data
management system. PVLDB, 1(1):28–41, 2008.

[14] S. Ghemawat, H. Gobioff, , and S.-T. Leung. The
google file system. In 19th ACM Symposium on
Operating Systems Principles, 2003.

[15] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and
D. S. Weld. An adaptive query execution system for
data integration. In SIGMOD Conference, pages
299–310, 1999.

[16] H. Jacobsson. Tree-based techniques for query
evaluation. Ph.D. thesis, Dept. of CS, Stanford Univ.,
Stanford CA USA, STAN-CS-93-1492, 1993.

[17] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM,
46:668–677, 1999.

[18] S. Madden, M. A. Shah, J. M. Hellerstein, and
V. Raman. Continuously adaptive continuous queries
over streams. In SIGMOD Conference, pages 49–60,
2002.

[19] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD Conference, pages
1099–1110, 2008.

[20] K. A. Ross and J. Cieslewicz. Optimal splitters for
database partitioning with size bounds. In ICDT,
pages 98–110, New York, NY, USA, 2009. ACM.

[21] U. Srivastava, K. Munagala, J. Widom, and
R. Motwani. Query optimization over web services. In
VLDB, pages 355–366, 2006.

[22] K.-L. Tan and H. Lu. A note on the strategy space of
multiway join query optimization problem in parallel
systems. SIGMOD Rec., 20(4):81–82, 1991.

[23] S. D. Viglas, J. F. Naughton, and J. Burger.
Maximizing the output rate of multi-way join queries
over streaming information sources. In VLDB, pages
285–296, 2003.

110

