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ABSTRACT
This article deals with consistent query answering to con-
junctive queries under primary key constraints. The repairs
of an inconsistent database db are obtained by selecting a
maximum number of tuples from db without ever selecting
two tuples that agree on their primary key. For a Boolean
conjunctive query q, we are interested in the following ques-
tion: does there exist a Boolean first-order query ϕ such that
for every database db, ϕ evaluates to true on db if and only
if q evaluates to true on every repair of db? We address this
problem for acyclic conjunctive queries in which no relation
name occurs more than once. Our results improve previous
solutions that are based on Fuxman-Miller join graphs.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—query lan-
guages; H.2.4 [Database Management]: Systems—rela-
tional databases

General Terms
Theory, Algorithms

Keywords
Conjunctive queries, consistent query answering, database
repairing, primary key, query rewriting

1. INTRODUCTION
Database repairing and consistent query answering (CQA)
have received much research attention ever since the seminal
article by Arenas et al. in 1999 [2], as witnessed by invited
talks at ICDT [6] and PODS [8]. The issue is defined rela-
tive to a relational database schema with a set of integrity
constraints. A database db over this database schema may
violate one or more of the integrity constraints. A repair rep
of db is any database that satisfies the integrity constraints
and that is maximally close to db according to some fixed
distance criterion. Under most reasonable distance criteria,
an inconsistent database can have multiple repairs. Then,
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for a fixed Boolean query q, CQA(q) is the following prob-
lem: given a database db, decide whether q evaluates to
true on every repair of db.

In this article, we deal with primary key constraints, which
are fundamental in the relational data model. Moreover,
primary key violations naturally arise in modern data inte-
gration applications, when data from different databases are
combined. Under primary key constraints, there is a single
most natural way for defining the repairs of a (possibly in-
consistent) database: every repair is obtained by selecting a
maximal number of tuples from the database, without ever
selecting two tuples that agree on their primary key.

It is known that consistent query answering under primary
keys is generally intractable for conjunctive queries [7]. In
particular, CQA(q1) is coNP-complete for the Boolean con-
junctive query q1 given next:

q1 : ∃x∃y∃z(R(x, y) ∧ S(z, y)) ,

in which primary key positions are underlined. Thus, it is
understood that R (as well as S) is a relation name of arity
2 and that the first attribute is the primary key.

A significant research question is to characterize classes of
queries for which consistent query answering is tractable.
It is known, for example, that CQA(q2) is tractable for the
following query q2 [11]:

q2 : ∃x∃y∃z(R(x, y) ∧ S(y, z)) .

Notice the difference between both queries: the “join” vari-
able y is a primary key in q2, but not in q1.

CQA(q2) is not only tractable, but even first-order definable.
Witness thereof is the following formula ϕ2, which evaluates
to true on any database db if and only if q2 evaluates to
true on every repair of db:

ϕ2 : ∃x∃y(R(x, y) ∧ ∀y′(R(x, y′) → ∃z(S(y′, z)))) .

We call ϕ2 a consistent first-order rewriting of q2. Clearly,
if q is a query with a consistent first-order rewriting ϕ, then
CQA(q) is in P (because ϕ can be evaluated on db in polyno-
mial time data complexity). Saying that q has a consistent
first-order rewriting is tantamount to saying that CQA(q) is
first-order definable.

First-order rewriting is an elegant approach to consistent
query answering and is suited for implementation in practi-
cal systems [9]. Therefore, a significant task is: Characterize
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the queries that have a consistent first-order rewriting un-
der primary key constraints. Fuxman and Miller commenced
this task by defining the class Cforest [11] (the preceding con-
ference article is [10]). Every query in Cforest is conjunctive
and has a consistent first-order rewriting. There is an easy
syntactic test to check whether a conjunctive query belongs
to Cforest .

Inspired by the work of Fuxman and Miller, we defined the
class Crooted [18], a subclass of conjunctive queries, together
with a rewrite function that yields a consistent first-order
rewriting for every query in Crooted . A query is called rooted
if it belongs to Crooted . Thus, each rooted query has a consis-
tent first-order rewriting. The class Crooted (strictly) contains
all Boolean queries in Cforest . It is an open conjecture that
every Boolean conjunctive query is either rooted or has no
consistent first-order rewriting.

The definition of the class Crooted , however, is semantic and
provides no practical means to check whether a conjunctive
query belongs to Crooted . For practical purposes, a syntactic
characterization of Crooted is important. In this article, we
show that membership of Crooted can be decided for Boolean
conjunctive queries q that simultaneously

• are acyclic (in the sense of [3]);

• contain no self joins (i.e. without repeated relation
names); and

• satisfy some mild condition called key-awareness.

Key-awareness is a syntactic condition needed in the proof of
Theorem 5; like acyclicity, it can only be falsified by queries
with three or more atoms. The acyclicity condition and the
absence of self joins simplify the theoretical development
without rendering it practically irrelevant; this restriction is
not unusual:

• The class Cforest also excludes self joins. It seems that
determining the tractability and first-order definabil-
ity of CQA(q) becomes more complicated if the same
relation name can occur more than once in q.

In previous work [18], we showed that for the Boolean
query q0 = ∃x∃y(R(x, y) ∧R(y, c)), where c is a con-
stant, the set CQA(q0) is in P but is not first-order
definable. On the other hand, it is an open conjecture
that the implication “CQA(q) not first-order definable
=⇒ CQA(q) coNP-complete” is true for all Boolean
conjunctive queries q without self joins.

• The class Cforest also imposes some acyclicity condition,
which is however not defined in the same way as [3].
We show in this article (see Theorem 3) that the tree
components that constitute a Cforest query are actually
acyclic in the sense of [3].

Our membership test for (a syntactic restriction of) Crooted

pinpoints the reason why the class Cforest admits consistent
first-order rewriting (see Theorem 3).

Finally, our membership test is used to show the following
dichotomy result: a join of two distinct relations is either
rooted or has no consistent first-order rewriting.

All results in this article are stated for Boolean queries. Nev-
ertheless, as observed in [10] and as discussed in the upcom-
ing journal version of [18], rewriting techniques for Boolean
queries yield correct results for non-Boolean queries when
free variables are treated as new constants.

The article thus extends the theory of CQA under primary
keys by providing a new and more powerful syntactic charac-
terization of conjunctive queries with a consistent first-order
rewriting. It is organized as follows. Section 2 introduces
notations and terminology, and Section 3 discusses related
work. The class Crooted is introduced in Section 4. The no-
tion of reifiable atom is introduced and it is explained that it
can be tested whether a query is rooted if it can be verified
whether a query atom is reifiable. In Section 5, the syntac-
tic construct of reifiability-attack is introduced. Section 6
shows that the absence of a reifiability-attack in a join tree
is a sufficient condition for reifiability. Section 7 shows that
for key-aware queries, the absence of a reifiability-attack is
also a necessary condition for reifiability. Our results thus
allow to check membership of Crooted for key-aware acyclic
conjunctive queries without self joins. Section 8 shows that
if a join of two distinct relations is outside Crooted , then it
has no consistent first-order rewriting. Section 9 concludes
the article.

2. NOTATIONS AND TERMINOLOGY
A symbol is either a constant or a variable. If ~x is a sequence
of symbols, then vars(~x) is the set of variables that occur in
~x.

Let V be a set of variables. A valuation over V is a total
mapping θ from symbols to symbols such that for every vari-
able v ∈ V , θ(v) is a constant; if s is a variable not in V or
if s is a constant, then θ(s) = s. If θ is a valuation over V
and Z ⊆ V , then θ|Z denotes the restriction of θ to Z; thus
θ|Z(x) = θ(x) if x ∈ Z and θ|Z(x) = x if x 6∈ Z.

Key-equal atoms. A database schema is a finite set of rela-
tion names. Every relation name R has a unique signature,
which is a pair [n, k] with n ≥ k ≥ 1: n is the arity of the
relation name and the coordinates 1, 2, . . . , k make up the
primary key . If R is a relation name with signature [n, k],
then R(s1, . . . , sn) is an R-atom (or simply atom), where
each si is a constant or a variable (1 ≤ i ≤ n). Such an
atom is commonly written as R(~x, ~y) where ~x = s1, . . . , sk

and ~y = sk+1, . . . , sn. An atom is ground if it contains no
variables. All constructs that follow are defined relative to
a fixed database schema.

A database (over a database schema) is a finite set db of
ground atoms using only the relation names of the schema.

Two ground atoms R1(~a1,~b1), R2(~a2,~b2) ∈ db are key-equal

if R1 = R2 and ~a1 = ~a2. We write [[R1(~a1,~b1)]]db for the set

containing each atom of db that is key-equal to R1(~a1,~b1).

Repair. A database db is consistent if it does not contain
two distinct atoms that are key-equal. Thus, db is consistent
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q1 = R(x, y), S(z, y)
q2 = R(x, y), S(y, z)
q3 = R0(z), R1(x, y, z), R2(x, y, z, u), R3(x, y), R4(x, y, u)
q4 = R(x, y), S(x, y)
q5 = R(x, y), S(x, y) (R is “all-key”)
q6 = R0(x, y), R1(u, x, y), R2(u, x, y)
q7 = R0(x, y), R1(u, x, y), R2(u, y)

Figure 1: List of example rules used in this article.

if for every atom A ∈ db, [[A]]db = {A}. A repair of a
database db is a maximal (under set inclusion) consistent
subset of db.

Rules. As in [1, p. 41], the term rule will be used as a short-
hand for rule-based conjunctive query . Moreover, all rules
are understood to be Boolean. Thus we have the following
definitions.

A rule is a finite set q = {R1(~x1, ~y1), . . . , Rn(~xn, ~yn)} of
atoms. This rule is satisfied by a database db, denoted
db |= q, if there exists a valuation θ over vars(~x1~y1 . . . ~xn~yn)
such that for each i ∈ {1, . . . , n}, Ri(θ(~xi), θ(~yi)) ∈ db.
Rules do not contain built-in predicates. We say that a rule
q has a self join if some relation name occurs more than
once in q.

For easy reference, Fig. 1 lists the rules that will serve as
examples throughout this article.

Acyclic rules. A rule q is acyclic if it has a join tree [3]. A
join tree for a rule q is a tree whose vertices are the atoms
of q such that:

Connectedness Condition: whenever the same
variable x occurs in two atoms Ri(~xi, ~yi) and
Rj(~xj , ~yj), then x occurs in each atom on the

unique path linking Ri(~xi, ~yi) and Rj(~xj , ~yj).

The term Connectedness Condition appears in [12] and refers
to the fact that the set of vertices in which x occurs in-
duces a connected subtree. Notice that a join tree is an
undirected graph. In certain proofs, some vertex of the
join tree is chosen as the root, yielding a directed rooted
join tree. It is common to label the edges of a join tree as
follows: if E is an edge between Ri(~xi, ~yi) and Rj(~xj , ~yj),
then E is labeled by the set of variables that occur in both
Ri(~xi, ~yi) and Rj(~xj , ~yj). Given a join tree, we will write

Ri(~xi, ~yi)
L

a Rj(~xj , ~yj) to indicate that there is an edge la-

beled L between vertices Ri(~xi, ~yi) and Rj(~xj , ~yj). This no-
tation extends to paths.

Example 1. A join tree is shown in Fig. 2 (left). The path
from the top to the bottom right vertex can be denoted

R0(z)
{z}

a R1(x, y, z)
{x,y}

a R3(x, y).

The class Cforest . The original definition of Cforest covers
both Boolean and non-Boolean queries [11]. The definitions
hereafter are for Boolean queries only.

The Fuxman-Miller join graph of a rule q is a directed graph
whose vertices are the atoms of q such that there is a directed
edge from an atom Ri(~xi, ~yi) to a different atom Rj(~xj , ~yj)

if some variable that occurs in ~yi also occurs in the atom
Rj(~xj , ~yj).

The class Cforest is the class of rules q satisfying the following
properties:

1. no relation name occurs more than once in q;

2. the Fuxman-Miller join graph of q is a directed forest;
and

3. Full-join Condition: whenever the Fuxman-Miller join
forest of q contains a directed edge from Ri(~xi, ~yi) to
Rj(~xj , ~yj), then every variable that occurs in ~xj also

occurs in ~yi.

It is important not to confuse classical join trees [3] and
Fuxman-Miller join graphs. Fig. 2 illustrates the difference
for the rule q3. Since the Fuxman-Miller join graph is not a
directed forest, it follows q3 6∈ Cforest . On the other hand, in
Example 12, we will show q3 ∈ Crooted .

In this article, we denote by Ctree the class containing every
query of Cforest whose Fuxman-Miller join graph is a (con-
nected) directed tree.1

Consistently true. A rule q is consistently true in database
db, denoted db|=

sure
q, if for every repair rep of db, rep |= q.

The problem CQAΣ(q), where Σ is a database schema and
q is a rule, is the complexity of (testing membership of) the
set:

CQAΣ(q) = {db | db is a database over Σ and db|=
sure

q} .

Throughout this article, the schema Σ will be implicitly un-
derstood and therefore omitted.

Consistent first-order rewriting. We say that a Boolean
first-order query ψ is a consistent first-order rewriting of
a rule q if for every database db, db|=

sure
q if and only if

db |= ψ. Thus, a rule q has a consistent first-order rewriting
if and only if CQA(q) is first-order definable.

3. RELATED WORK
Under primary key constraints, each repair is a maximal
consistent subset of the original database. In the case of
primary keys, it makes no difference whether maximality is
expressed relative to set inclusion (as in [2]) or cardinality
(as in [16]). Inserting new tuples is useless for restoring
primary key violations. Tuple modifications, as proposed
in [17], are not considered in this article.

The idea of consistent query rewriting first appeared in [2].
Fuxman and Miller [11] have realized a number of break-
throughs in the consistent first-order rewriting of queries

1Caveat: This class is not the same as the class Ctree in
Fuxman and Miller’s original conference article [10]. The
definition of Ctree in [10] does not require that the Fuxman-
Miller join graph be connected.
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R0(z)

R1(x, y, z)

R2(x, y, z, u)
R3(x, y)

R4(x, y, u)

{z}

{x, y, z}
{x, y}

{x, y, u}

R0(z)

R1(x, y, z)

R2(x, y, z, u)
R3(x, y)

R4(x, y, u)

Figure 2: Join tree (left) and Fuxman-Miller join graph (right) for the same rule q3.

under primary key constraints, which motivated the Con-
Quer system [9]. They introduced the class Cforest [11] and
showed that every query in Cforest has a consistent first-
order rewriting. Fuxman and Miller also proved that re-
laxations of the conditions imposed by Cforest easily lead to
intractability of consistent query answering. In particular,
Lemma 6 in [11] exhibits a rule q0 that contains no self join
and whose Fuxman-Miller join graph is a directed forest,
such that CQA(q0) is intractable. That rule q0 violates the
Full-join Condition.

The results of Fuxman and Miller have been generalized and
extended to exclusion dependencies by Grieco et al. [13] and
to unions of conjunctive queries by Lembo et al. [14].

In [18], we defined the class of rooted queries (denoted Crooted

in the current article) and we showed that every query in
that class has a consistent first-order rewriting. The class
Crooted strictly contains Cforest . A difficulty with the class
Crooted is that its definition is semantic and provides no syn-
tactic test to check whether a conjunctive query is rooted.
In [18], we developed a number of ad hoc syntactic condi-
tions that are sufficient for membership of Crooted .

Complexity results on consistent query answering for larger
classes of constraints appear in [4, 7]. Cal̀ı et al. [5] study
query rewriting under key and inclusion dependencies in a
larger context of data integration.

4. ROOTED RULES
Definition 3 recalls the class of rooted rules [18], which is
based on the notion of reifiable atom. Fuxman and Miller [11]
were the first ones to observe that reifiable atoms are sig-
nificant for consistent first-order rewriting (see their Exam-
ple 7 and the paragraph preceding that example), though
they did not use the term “reifiable.” The term was coined
in [18]. Roughly, reifiable atoms admit existential quantifiers
in consistent first-order rewritings.

Definition 1. Let q = {R1(~x1, ~y1), . . . , Rn(~xn, ~yn)} be a
rule and 1 ≤ i ≤ n. We say that the atom Ri(~xi, ~yi) is
reifiable in q if for every database db, if db|=

sure
q, then there

exists a valuation θ over vars(~xi) such that db|=
sure

θ(q).

Example 2. Take q1 = {R(x, y), S(z, y)}. Neither R(x, y)
nor S(z, y) is reifiable in q1. Witness thereof is the database
db = {R(a, 1), R(a, 2), R(d, 3), S(e, 1), S(b, 2), S(b, 3)}, with
four repairs:

rep1 = {R(a, 1), R(d, 3), S(e, 1), S(b, 2)}

rep2 = {R(a, 1), R(d, 3), S(e, 1), S(b, 3)}

rep3 = {R(a, 2), R(d, 3), S(e, 1), S(b, 2)}

rep4 = {R(a, 2), R(d, 3), S(e, 1), S(b, 3)}

Since each repair satisfies q1, we have db|=
sure

q1. The atom
R(x, y) is not reifiable in q1: for every valuation θ over {x},
there is some repair that does not satisfy θ(q1). In particular,
for θa = {x 7→ a}, we have rep4 6|= θa(q1); and for θd =
{x 7→ d}, we have rep1 6|= θd(q1). By a similar reasoning,
S(z, y) is not reifiable in q1.

The definition of Crooted relies on some linear order on the
atoms in a rule.

Definition 2. An ordered rule is a finite sequence q =
〈R1(~x1, ~y1), . . . , Rn(~xn, ~yn)〉 of atoms. Every construct that
is defined for (non-ordered) rules straightforwardly carries
over to ordered rules (through omission of the order).

Definition 3. Rooted ordered rules are recursively defined
as follows:

1. The empty rule is rooted.

2. A nonempty ordered rule

q = 〈R1(~x1, ~y1), R2(~x2, ~y2), . . . , Rn(~xn, ~yn)〉
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(n ≥ 1) is rooted if R1(~x1, ~y1) is reifiable in q and for
every valuation θ over vars(~x1~y1), the shorter rule

〈θ(R2(~x2, ~y2)), . . . , θ(Rn(~xn, ~yn))〉

is rooted.

A (non-ordered) rule is called rooted if it is rooted for some
linear ordering of its atoms. The class of rooted rules is
denoted by Crooted .

Rooted rules may be cyclic and contain self joins. The sec-
ond item in Def. 3 refers to reifiability, which is a purely
semantic construct.

Example 3. The ordered rule q2 = 〈R(x, y), S(y, z)〉 is
rooted, because R(x, y) is reifiable in q2 (this follows from
later results in this article) and for all constants a and b,
if θ = {x 7→ a, y 7→ b}, then θ(S(y, z)) = S(b, z) is rooted,
because an atom without variables in its primary key is ob-
viously reifiable.

The rule q1 of Example 2 is not rooted because neither of
its atoms is reifiable.

Theorem 1 ([18]). If q ∈ Crooted , then CQA(q) is first-
order definable. In other words, every rooted rule has a con-
sistent first-order rewriting.

Theorem 1 is an interesting and significant result. There
remains a practical difficulty, however: Definition 3 of rooted
rules provides no syntactic test to check whether a rule is
rooted, because the second item in that definition is semantic
in nature. Decidability of Crooted has not been addressed in
previous work.

As announced in Section 1, the remainder of of this article
will deal with rules in which no relation name occurs more
than once. The following theorem states that for rules with-
out self joins, the condition in the second item of Def. 3 can
be tested by inspecting only a single arbitrary valuation over
vars(~x1~y1).

Theorem 2. Let q be an ordered rule in which no relation
name occurs more than once. Let V be the set of variables
that occur in q, and X ⊆ V . If θ(q) is rooted for some
valuation θ over X, then µ(q) is rooted for every valuation
µ over X.

Consequently, let q be a rule without self join and let θ be
a valuation over the variables in q. Then, q is rooted if and
only if there exists an ordering 〈R1(~x1, ~y1), . . . , Rn(~xn, ~yn)〉
of q’s atoms such that for every i ∈ {1, . . . , n}, θi(Ri(~xi, ~yi))
is reifiable in 〈θi(Ri(~xi, ~yi)), . . . , θi(Rn(~xn, ~yn))〉, where θi is
θ restricted to vars(~x1~y1 . . . ~xi−1~yi−1). It follows that for
rules in which no relation name occurs more than once,
membership of Crooted can be decided if the following prob-
lem can be decided:

Reifiability Problem: given a rule q and an atom
Ri(~xi, ~yi) ∈ q, decide whether Ri(~xi, ~yi) is reifi-
able in q.

Solutions to the Reifiability Problem will be developed in the
remainder of this article.

5. REIFIABILITY-ATTACK
We introduce the notion of reifiability-attack . Roughly, if q
is an acyclic rule with join tree τ , then a reifiability-attack
against atom Ri(~xi, ~yi) is a special path in τ that starts at
Ri(~xi, ~yi). It can be easily checked whether a given join
tree contains a reifiability-attack against any given atom.
Reifiability-attacks will give us a handle on the Reifiability
Problem: if there is no reifiability-attack against an atom,
then the atom is reifiable; while a reifiability-attack against
an atom usually implies that the atom is not reifiable.

5.1 Key-closure
The presence in a rule of two distinct atoms with the same
primary key variables needs special care. An example is the
query q4 shown next:

q4 : ∃x∃y(R(x, y) ∧ S(x, y)) .

The query q4 is not in Cforest [11, page 628], yet is rooted and
hence has a consistent first-order rewriting, which is quite
straightforward:

ϕ4 : ∃x∃y
“

R(x, y) ∧ S(x, y)

∧∀y1(R(x, y1) → y1 = y)

∧∀y2(S(x, y2) → y2 = y)
”

The subformulas ∀y1(R(x, y1) → y1 = y) and ∀y2(S(x, y2) →
y2 = y) express that y is uniquely determined given x. We
will say that y is in the key-closure of x, as defined next.

Definition 4. Let q be a rule in which no relation name
occurs more than once. Let Z be a subset of the variables
occurring in q. A key-closure computation of Z (relative to
q) is a maximal sequence

Z = Z0

↓ R1(~x1, ~y1), S1(~u1, ~w1)
Z1

↓ R2(~x2, ~y2), S2(~u2, ~w2)
Z2

...
↓ Rn(~xn, ~yn), Sn(~un, ~wn)
Zn

where:

1. Z0 ( Z1 ( Z2 · · · ( Zn;

2. for each i ∈ {1, . . . , n},

(a) Ri(~xi, ~yi), Si(~ui, ~wi) are distinct atoms of q satis-
fying vars(~xi) = vars(~ui) ⊆ Zi−1;

(b) Zi = Zi−1 ∪ (vars(~yi) ∩ vars(~wi)).
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The last element Zn is called the result of the key-closure
computation. It is straightforward to show that two key-
closure computations of Z must necessarily yield the same
result, which will be denoted [Z]+ and called the key-closure
of Z. We will write vars

+(~x) as shorthand for [vars(~x)]+.

Example 4. Here is a key-closure computation of {x} rel-
ative to the rule q3 shown in Fig. 2.

{x}
↓ R1(x, y, z), R3(x, y)

{x, y}
↓ R2(x, y, z, u), R4(x, y, u)

{x, y, u}

Thus, [{x}]+ = {x, y, u}.

Remark 1. There is an apparent resemblance between key-
closures and fd closures of sets of attributes [1, p. 165]. For
a given rule q, let F be the set of functional dependencies
constructed as follows. Whenever R(~x, ~y) and S(~u, ~w) are
distinct atoms of q such that vars(~x) = vars(~u), then F con-
tains the functional dependency X → Y with X = vars(~x)
and Y = vars(~y) ∩ vars(~w). The key-closure of Z then co-
incides with the fd closure of Z relative to the set F of
functional dependencies.

5.2 Reifiability-attack
Definition 5 refines reifiability (see Def. 1) from primary keys
to arbitrary subsets of (key-closures of) primary keys. The
motivation can be understood from the following example.

Example 5. The “all-key” atom R(x, y) is not reifiable in
the rule q5 = {R(x, y), S(x, y)}, as witnessed by the database
db = {R(a, 1), R(a, 2), S(a, 1), S(a, 2)} with two repairs:

rep1 = {R(a, 1), R(a, 2), S(a, 1)}
rep2 = {R(a, 1), R(a, 2), S(a, 2)}

Since both repairs satisfy q5, we have db|=
sure

q5. The atom
R(x, y) is not reifiable in q5, because there is no valuation
θ over the entire primary key {x, y} such that db|=

sure
θ(q5).

On the other hand, the subset {x} is reifiable in the sense
that for each database db, if db|=

sure
q5, then there exists a

valuation µ over {x} such that db|=
sure

µ(q5). For the exam-
ple database db, take µ = {x 7→ a}.

Definition 5. Let q be a rule containing the atom R(~x, ~y).
Let Z ⊆ vars

+(~x) ∩ vars(~x~y). We say that [Z | R(~x, ~y)] is
reifiable in q if for every database db, if db|=

sure
q, then there

exists a valuation θ over Z such that db|=
sure

θ(q).

Conform with Def. 1, saying that an atom R(~x, ~y) is reifiable
in q is shorthand for saying that [X | R(~x, ~y)] is reifiable in
q with X = vars(~x).

Example 6 illustrates that the set Z in Def. 5 can contain
variables not contained in the primary key ~x.

Example 6. From the beginning of Section 5.1, it is cor-
rect to conclude that in the rule q4 = {R(x, y), S(x, y)}, not
only [{x} | R(x, y)] but even [{x, y} | R(x, y)] is reifiable.
Thus, for every database db, if db|=

sure
q4, then there exist

two constants a, b such that db|=
sure

R(a, b), S(a, b).

We can now define the syntactic construct of reifiability-at-
tack, which will be the key to the Reifiability Problem.

Definition 6. Let q be an acyclic rule in which no relation
name occurs more than once. Let R(~x, ~y) be an atom of q
and Z ⊆ vars

+(~x) ∩ vars(~x~y). Let τ be a join tree for q. A
reifiability-attack against [Z | R(~x, ~y)] is a path in τ of the
form

R0(~x0, ~y0)
L1

a R1(~x1, ~y1)
L2

a R2(~x2, ~y2) . . .
Ln

a Rn(~xn, ~yn) ,

with R(~x, ~y) = R0(~x0, ~y0) such that:

1. Z * vars
+(~xn); and

2. for each i ∈ {1, . . . , n}, Li * vars
+(~xn).

Thus, Z and the labels on the path are not contained in the
key-closure of the primary key of the last atom on the path.
Recall from Section 2 that each edge label Li is the set of
variables that occur in both Ri−1(~xi−1, ~yi−1) and Ri(~xi, ~yi).

A reifiability-attack against [X | Ri(~xi, ~yi)] where X is the
set of variables in the primary key ~xi (i.e. X = vars(~xi)) is
shortly called a reifiability-attack against Ri(~xi, ~yi).

Example 7. For the rule q3 in Fig. 2, we have [{x, y}]+ =
{x, y, u}. The path

R0(z)
{z}

a R1(x, y, z)
{x,y,z}

a R2(x, y, z, u)

in the join tree is a reifiability-attack against [{z} | R0(z)],
because the primary key {z} and the labels {z} and {x, y, z}
are not fully contained in [{x, y}]+. The path in the opposite

direction, i.e. R2(x, y, z, u)
{x,y,z}

a R1(x, y, z)
{z}

a R0(z), can-
not be a reifiability-attack because the label {z} is included
in the primary key of the R0-atom.

Example 8. For the rule q5 = {R(x, y), S(x, y)}, we have

[{x}]+ = {x}. The path R(x, y)
{x,y}

a S(x, y) is a reifiabil-
ity-attack against [{y} | R(x, y)], because {y} and the label

{x, y} are not contained in [{x}]+. The path is not a reifi-
ability-attack against [{x} | R(x, y)].

We now state a property concerning the absence of reifiabil-
ity-attacks in rules of the class Ctree .

Theorem 3. Let q be a rule in Ctree . Let τ be the Fuxman-
Miller join tree of q. Then, τ is a directed rooted join tree
(join tree in the sense of [3]) such that for every atom A ∈ q,
there exists no directed path π from A to one of its descen-
dants such that π is a reifiability-attack against A.
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R1(x, y)

R2(y, z)

R3(z, w)

R4(y, a)

Figure 3: Fuxman-Miller join tree.

Example 9. This example illustrates Theorem 3. Fig. 3
shows the Fuxman-Miller join graph of a rule in Ctree (it
is the rule called q4 in [11]). The tree is also a directed
rooted join tree (in the sense of [3]) because it satisfies the
Connectedness Condition (edge labels have been omitted).
No directed “downward” path is a reifiability-attack against
the first atom on the path.

Theorem 3 together with the following Theorem 4 immedi-
ately leads to the inclusion Ctree ⊆ Crooted , hence every rule
in Ctree has a consistent first-order rewriting by Theorem 1.
The inclusion Cforest ⊆ Crooted can be easily obtained using
the observation that whenever two Ctree components of a
Cforest query share a variable x, then x can only occur in the
primary key of the root atoms of the component queries (see
Lemma 2 in [11]).

5.3 Stringent Repairs
Let q be a rule containing a reifiable atom R(~x, ~y). Let db
be a database such that db|=

sure
q. Then by definition, there

exists at least one valuation θ over vars(~x) such that θ(q) is
satisfied by every repair of db. In general, there exist other
valuations µ over vars(~x) such that µ(q) is satisfied by some,
but not all, repairs. The following question arises: is there a
repair rep such that for every valuation ω over vars(~x), ω(q)
is satisfied by rep only if ω(q) is satisfied by every repair of
db? Such a repair rep, if it exists, will be called stringent .

Definition 7. Let q be a rule. Let R(~x, ~y) be an atom of q
and Z ⊆ vars

+(~x)∩vars(~x~y). Let db be a database. A repair
rep of db is called stringent for [Z | R(~x, ~y)] in q if for every
valuation θ over Z, if rep |= θ(q), then db|=

sure
θ(q).

Example 10. Let q0 = {R(x, x)} and let db = {R(a, a),
R(b, b), R(b, c)}. The two repairs are:

rep1 = {R(a, a), R(b, b)}
rep2 = {R(a, a), R(b, c)}

Let θa = {x 7→ a} and θb = {x 7→ b}. Clearly, θa(q0)
evaluates to true on both repairs. On the other hand, θb(q0)
evaluates to true on rep1, but not on rep2. It is correct to
conclude that rep2 is stringent, but rep1 is not.

R0(x, y)

R1(u, x, y)

R2(u, x, y)

{x, y}

{u, x, y}

Figure 4: Join tree for the rule q6 which has a con-
sistent first-order rewriting.

6. ABSENCE OF REIFIABILITY-ATTACK
It remains to be shown that reifiability-attacks provide a
sound and complete syntactic characterization of the se-
mantic notion of reifiability, and hence allow to solve the
Reifiability Problem:

1. If a join tree contains no reifiability-attack against [Z |
R(~x, ~y)], then [Z | R(~x, ~y)] is reifiable.

2. If a join tree contains a reifiability-attack against [Z |
R(~x, ~y)], then [Z | R(~x, ~y)] is not reifiable (we will only
show this for key-aware rules).

This section shows the first item. The second item is handled
in Section 7. The following lemma generalizes a result by
Fuxman and Miller [11, p. 622].

Lemma 1. Let q be an acyclic rule in which no relation
name occurs more than once. Let R(~x, ~y) be an atom of q
and Z ⊆ vars

+(~x)∩ vars(~x~y). Let τ be a join tree for q. If τ
contains no reifiability-attack against [Z | R(~x, ~y)], then for
every database db, there exists a repair rep of db that is
stringent for [Z | R(~x, ~y)] in q.

Theorem 4. Under the same assumptions of Lemma 1,
if τ contains no reifiability-attack against [Z | R(~x, ~y)], then
[Z | R(~x, ~y)] is reifiable in q.

Proof. Assume τ contains no reifiability-attack against
[Z | R(~x, ~y)]. Assume db|=

sure
q. By Lemma 1, we can con-

struct a repair rep of db such that for every valuation θ
over Z, rep |= θ(q) implies db|=

sure
θ(q). Since db|=

sure
q and

since rep is a repair of db, rep |= q. Hence, we can assume
the existence of a valuation µ over Z such that rep |= µ(q),
and hence db|=

sure
µ(q).

Example 11. For the rule q6 of Fig. 4, we have [{u}]+ =
{u, x, y}. The join tree contains no reifiability-attack against
R0(x, y) (recall that this is shorthand for: reifiability-attack
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against [{x} | R0(x, y)]). From Theorem 4, it follows that
R0(x, y) is reifiable.

Using Theorem 2, it is easy to see that the rule belongs
to Crooted : if we replace x and y by arbitrary constants
(say ax and by) and drop the R0-atom, we obtain the rule
{R1(u, ax, by), R2(u, ax, by)}, which contains no reifiability-
attacks against its atoms.

Since the rule q6 belongs to Crooted , it has a consistent-first
order rewriting. Note that rule q6 is not in Cforest because
its Fuxman-Miller join graph is cyclic.

Example 12. We show that the rule q3 is rooted, using
the join tree of Fig. 2. We have [{z}]+ = {z} and [{x}]+ =
[{x, y}]+ = {x, y, u}. We show that the join tree contains no
reifiability-attack against R2(x, y, z, u). Consider each path
that starts from R2(x, y, z, u):

• R2(x, y, z, u)
{x,y,u}

a R4(x, y, u) is not a reifiability-at-
tack (against R2(x, y, z, u)), because the label {x, y, u}

is contained in [{x, y}]+.

• R2(x, y, z, u)
{x,y,z}

a R1(x, y, z) is not a reifiability-at-
tack, because the primary key {x, y} is contained in
[{x}]+.

• R2(x, y, z, u)
{x,y,z}

a R1(x, y, z)
{z}

a R0(z) is not a reifi-
ability-attack, because the label {z} is contained in
[{z}]+.

• R2(x, y, z, u)
{x,y,z}

a R1(x, y, z)
{x,y}

a R3(x, y) is not a
reifiability-attack, because the label {x, y} is contained
in [{x}]+.

By Theorem 4, R2(x, y, z, u) is reifiable in q3. Let θ be any

valuation over {x, y, z, u}. Let q′3 = q3 \ {R2(x, y, z, u)}.

Since θ(q′3) is variable-free, θ(q′3) is obviously rooted for any
ordering of its atoms. By Theorem 2, it follows that q3 is
rooted.

7. PRESENCE OF REIFIABILITY-ATTACK
Theorem 4 expresses that an atom is reifiable if there is no
reifiability-attack against it. We now show that under some
mild condition, the inverse is also true, i.e. if an atom is
reifiable, then there is no reifiability-attack against it. This
mild condition is defined next.

Definition 8. Let q be an acyclic rule in which no relation
name occurs more than once. We say that a join tree τ for q
is key-aware if for all distinct atoms Ri(~xi, ~yi), Rj(~xj , ~yj) ∈ q

such that vars
+(~xi) = vars

+(~xj),

1. Intersection Condition: if the same variable z occurs
in both Ri(~xi, ~yi) and Rj(~xj , ~yj), then z belongs to

vars
+(~xi); and

R0(x, y)

R1(u, x, y)

R2(u, y)

{x, y}

{u, y}

Figure 5: Key-aware join-tree for q7 with a reifiabil-
ity-attack against R0(x, y).

2. Key-connectedness Condition: if some atomRk(~xk, ~yk)
is on the unique path linking Ri(~xi, ~yi) and Rj(~xj , ~yj),

then vars
+(~xk) = vars

+(~xi). In other words, the set of
atoms with the same key-closure of their primary key
induces a (connected) subtree.

We say that q is key-aware if it has a key-aware join tree.

It is easy to deduce that a rule is key-aware if no two distinct
atoms contain exactly the same primary key variables. If
two atoms agree on their primary key variables, then they
should not be separated in the join tree by an atom with a
different primary key (unless that primary key has the same
key-closure). Among the rules q1, . . . , q7 in Fig. 1, only q3 is
not key-aware, as illustrated next.

Example 13. For the rule q3 in Fig. 2, we have [{x}]+ =
[{x, y}]+ = {x, y, u} (see Example 4). The Key-connected-
ness Condition is satisfied by the join tree shown in Fig. 2.
The Intersection Condition is not satisfied, because the vari-
able z occurs in both R1(x, y, z) and R2(x, y, z, u), but z 6∈
{x, y, u}.

Theorem 5. Let q be a key-aware acyclic rule in which
no relation name occurs more than once. Let R(~x, ~y) be
an atom of q. Let Z ⊆ vars

+(~x) ∩ vars(~x~y). Let τ be a
key-aware join tree for q. If τ contains a reifiability-attack
against [Z | R(~x, ~y)], then [Z | R(~x, ~y)] is not reifiable in q.

Example 14. The rule q7 shown in Fig. 5 is key-aware. We

have [{u}]+ = {u, y}. The path R0(x, y)
{x,y}

a R1(u, x, y) is
a reifiability-attack against R0(x, y), because the primary
key {x} and the label {x, y} are not contained in [{u}]+.
It follows that R0(x, y) is not reifiable. Compare with the
lookalike rule q6 of Fig. 4, in which R0(x, y) is reifiable; the
(absence of) variable x in the R2-atom makes the difference.

Theorem 6. Given a key-aware acyclic rule q in which
no relation name occurs more than once, it can be decided
whether or not q belongs to Crooted .
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Proof. Consequence of Theorems 2, 4, and 5.

8. QUERIES WITH ONE JOIN
The construct of reifiability-attack is useful to the member-
ship problem for Crooted . A remaining task is to show the
conjecture that rules outside Crooted have no consistent first-
order rewriting. In this section, we show this conjecture for
rules with two atoms having distinct relation names. Since
such rules are obviously acyclic and key-aware, Theorems 4
and 5 can be used to obtain the following syntactic charac-
terization.

Lemma 2. Let q = {R(~x, ~y), S(~u, ~w)} with R 6= S. Then,
q ∈ Crooted if and only if one of the following four condi-
tions is satisfied, where L is the set of variables that occur
in both R(~x, ~y) and S(~u, ~w): vars(~x) ⊆ vars(~u), L ⊆ vars(~u),
vars(~u) ⊆ vars(~x), or L ⊆ vars(~x).

Proof. (Crux.) The first two conditions express the ab-
sence of a reifiability-attack against R(~x, ~y); the last two
conditions express the absence of a reifiability-attack against
S(~u, ~w).

Rules q for which CQA(q) is coNP-complete appear in [7,
11]. Unless P = NP, a rule q can obviously have no consis-
tent first-order rewriting if CQA(q) is coNP-complete. The
following theorem shows that if a rule q, of size 2 and with
distinct relation names, does not belong to Crooted , then it
cannot have a consistent first-order rewriting, regardless of
the complexity of CQA(q). The proof uses the notion of
Hanf-locality [15].

Theorem 7. Let q = {R(~x, ~y), S(~u, ~w)} with R 6= S.
Then, q has a consistent first-order rewriting if and only
if q ∈ Crooted .

We explain the general idea behind the only-if part of the
proof (the if-part follows from Theorem 1). The explana-
tion relies on the following graphical representation defined
relative to a database db and a rule q without self join.

Definition 9. We define two hypergraphs whose vertices
are the atoms of db:

• the hyperedges of the key-conflict hypergraph are max-
imal sets of key-equivalent atoms; and

• the hyperedges of the query-answer hypergraph are the
elements of the set:

{θ(q) | θ valuation such that θ(q) ⊆ db} .

In a graphical representation, hyperedges of the key-conflict
hypergraph are indicated by full contours, and hyperedges
of the query-answer hypergraph by dotted contours.

Clearly, db 6∈ CQA(q) if and only if there exists a set rep ⊆
db such that for each hyperedge E:

1. if E is an hyperedge in the key-conflict hypergraph for
db, then rep contains exactly one atom of E; and

2. if E is an hyperedge in the query-answer hypergraph
for db, then E * rep.

Now we return to the only-if part of Theorem 7. Assume a
rule q = {R(~x, ~y), S(~u, ~w)} with R 6= S such that q 6∈ Crooted .
Using Lemma 2, one can show that for every integer k ≥ 0,
it is possible to construct two databases, dbyes and dbno ,
that are indistinguishable by first-order sentences of quan-
tifier rank k, such that dbyes |=

sure
q and dbno 6|=

sure
q. Indis-

tinguishability of dbyes and dbno follows, using Hanf’s the-
orem, from the fact that dbyes and dbno locally look alike.
The graphical representations of dbyes and dbno are shown
in Fig. 6. Both databases contain the same number of atoms
(represented by vertices) and the same number of constants
(not shown); within each database, R-atoms are positioned
at the left of S-atoms. The quintessence is that in con-
structing the atoms of dbyes and dbno , we use new fresh
constants wherever possible; a constant occurs more than
once only if this is necessary for realizing the hyperedges
shown in Fig. 6. The figure suggests that the local neigh-
borhoods of (constants in) the atoms denoted by α in dbyes

and dbno , are isomorphic (similar for β, γ, δ). A repair
of dbno is shown at the right: we have selected one vertex
from each hyperedge of the key-conflict hypergraph of dbno ,
without selecting two vertices that together satisfy q. It can
be easily verified that no such vertex selection can be made
in dbyes .

9. CONCLUSION
Consistent query answering under primary key constraints
is an important issue because, first, key constraints appear
in all database applications and, second, the problem of du-
plicate key values arises in modern data integration applica-
tions. An elegant and practical approach to the problem is
the technique known as (consistent) first-order query rewrit-
ing.

The semantic notion of reifiable atom seems fundamental
in the consistent first-order rewriting of conjunctive queries
under primary keys. The notion is implied in the class Cforest

and its rewriting algorithm [11], and is explicit in the class
Crooted and its associated rewrite function [18]. All queries
in Crooted have a consistent first-order rewriting. The class
Crooted is defined in a semantic way and, up to now, decid-
ability of Crooted remained largely unexplored.

The new syntactic construct of reifiability-attack in join trees
allows to decide reifiability of atoms in most acyclic conjunc-
tive queries without repeated relation names:

1. the absence of a reifiability-attack against an atom al-
ways implies that the atom is reifiable; and

2. a reifiability-attack against an atom implies that the
atom is not reifiable, unless the query is not key-aware.

The first result can be used to prove that a query belongs to
Crooted . In particular, it allows to ascertain Cforest ⊆ Crooted

(using Theorem 3), and to identify queries outside Cforest
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dbyes dbno repair of dbno

Figure 6: Key-conflict hypergraphs (full contours) and query-answer hypergraphs (dotted contours) of dbyes ∈
CQA(q) and dbno 6∈ CQA(q), used in the proof of Theorem 7.
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with a consistent first-order rewriting (examples are q3, q4,
and q6). The notion of reifiability-attack is thus more pow-
erful than the construct of Fuxman-Miller join graph as a
tool for characterizing conjunctive queries that have a con-
sistent first-order rewriting under primary keys. Further-
more, unlike Cforest , our characterization does not require
that nonkey-to-key joins be full.

The second result can be used to prove that a query does not
belong to Crooted . In particular, a query q is not in Crooted if it
has a key-aware join tree that contains a reifiability-attack
against each of its atoms (examples are q1 and q7).

These results imply that the following problem is decid-
able: given a key-aware acyclic conjunctive query q with-
out repeated relation names, does q belong to Crooted? Key-
awareness seems to be a mild condition satisfied by most
queries.

A syntactic characterization for Crooted is helpful for proving
the conjecture that every Boolean conjunctive query is either
rooted or has no consistent first-order rewriting. Using the
notion of Hanf-locality, we were able to prove this conjecture
for queries that are joins of two distinct relations. We are
currently investigating how to generalize that proof to larger
queries.
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