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ABSTRACT
Partitioning is an important step in several database algo-
rithms, including sorting, aggregation, and joins. Partition-
ing is also fundamental for dividing work into equal-sized
(or balanced) parallel subtasks. In this paper, we aim to
find, materialize and maintain a set of partitioning elements
(splitters) for a data set. Unlike traditional partitioning ele-
ments, our splitters define both inequality and equality par-
titions, which allows us to bound the size of the inequality
partitions. We provide an algorithm for determining an op-
timal set of splitters from a sorted data set and show that
it has time complexity O(k lg2 N), where k is the number
of splitters requested and N is the size of the data set. We
show how the algorithm can be extended to pairs of tables, so
that joins can be partitioned into work units that have bal-
anced cost. We demonstrate experimentally (a) that finding
the optimal set of splitters can be done efficiently, and (b)
that using the precomputed splitters can improve the time
to sort a data set by up to 76%, with particular benefits in
the presence of a few heavy hitters.

1. INTRODUCTION
Partitioning is an important component of a scalable database
system. It is commonly used for fundamental operations
such as joins, aggregation, sorting, and dividing work into
balanced pieces. Balanced pieces of work are relevant for
parallel processing (to get good processor utilization) or
memory-constrained processing (to get good spatial local-
ity).

Current partitioning paradigms include hash-partitioning and
range-partitioning [7]. A problem with both of these paradigms
is that neither can guarantee a nontrivial upper-bound on
the size of a partition. Common keys, sometimes known
as “heavy hitters,” may cause a partition to be much larger
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than the average partition size. This is problematic for two
reasons:

• If the complexity of processing each partition is super-
linear in the partition size, such as for sorting, unbal-
anced partitions are potentially inefficient.

• If the partitioning is done to divide a job into pieces
to be executed in parallel, an unbalanced partitioning
could lead to an inefficient use of the parallel resources.

We propose an alternative range-partitioning scheme in which
a table with N records is partitioned using a set of k dis-
tinct keys into 2k + 1 partitions. Unlike traditional range-
partitioning, our ranges involve strict inequalities, and we
have k additional partitions explicitly devoted to single keys.

There are two main advantages to this scheme, which uses
the same number of splitters as traditional range-partitioning.
Firstly, we can provide an upper bound on the size of the in-
equality partitions in terms of the number of records within
each partition. By choosing splitters that cover the heaviest
hitters, we can ensure that no inequality partition contains

more than d (N−k)
(k+1)

e elements. (This is a worst-case bound;

we can often do better when there are heavy hitters as we
will show in Section 3.)

Secondly, in a database context, one often can leverage the
knowledge that an equality partition contains a single key
to process the partition more efficiently. Examples include:

• For sorting, the partition does not need to be further
processed.

• For aggregation, a scalar aggregation (with running ag-
gregates in registers) is likely to be much more efficient
than a grouped aggregate (with running aggregates in
a hash table).

• For joins of fixed-length records, a matching key in a
joined table can use a simple memcpy operation for the
whole partition, rather than having to do key matching
for every record.

The splitters can be computed either on-line or off-line. In
an on-line computation, one could sample the column being
partitioned. A sample of O(

√
N) elements appears to be a
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good choice [21]. Since the number of partitioning elements
k is likely to be many orders of magnitude smaller than the
number N of records, it is feasible to sample say 10k records
from the table with cost negligible compared to the cost of
a table scan. With such oversampling, it is highly likely
that heavy hitters can be identified from the sample [10].
The algorithm for computing the splitters would then be
the same as the off-line computation described below, but
using the sample rather than the full data set.

In an off-line computation, one can compute an optimal set
of splitters. In Section 2 we provide an algorithm for com-
puting this optimal set from a sorted column in O(k lg2 N)
time. The sorted input could come from a tree index on
the column, or from an explicit sort of the column itself.
We have implemented this algorithm, and show that it is
practical, taking fractions of a second for realistic memory-
resident examples.

The algorithm simultaneously computes the exact count in
each partition. The count can be an important piece of
information. For example, it allows a partition-based sorting
algorithm such as sample-sort [12] to partition the data into
contiguous regions, so that each partition can be sorted in
place to generate the final sorted result without further data
movement.

The splitter structure can provide time savings at a fraction
of the space cost of alternatives. For example, the C-Store
system advocates the physical storage of multiple versions of
a single table according to multiple sort keys [27]. For large
tables, the number of physical representations would be lim-
ited by the amount of available storage and (depending on
the implementation) by the cost of incremental maintenance
for updates. Our splitter structure can save a substantial
fraction of the sorting cost, using a data structure that is
orders of magnitude smaller than a table or an index. (We
will quantify these claims in Section 3.)

Precomputed splitters are also useful for partitioning on par-
allel machines to make sure that work is balanced across pro-
cessors. In the case of a join, using a splitter set from one of
the participating tables may give unbalanced partitions for
the other table. We provide a modification of our optimal
splitter finding algorithm that chooses an optimal splitter
set for a pair of tables using a column (with a common do-
main) from each. This algorithm uses a cost function to give
the best possible cost bound on the generated partitions for
a given number of splitters. This algorithm uses O(k lg3 N)
time.

The obvious alternative to our splitter method is to use con-
ventional range-partitioning, where the splitters are quan-
tiles of the data set [9, 1, 20, 3]. For uniform datasets with
many unique values, this alternative method is likely to do
as well or better than our proposed method, for a fixed num-
ber of partitions, because (a) finding quantiles can be done
with lower asymptotic complexity, and (b) our method will
underutilize some of the partitions: equality partitions may
contain just a few values.

However, when the distibution has even a few heavy hitter
values, quantiles are problematic for partitioning because

one value may appear as multiple quantiles. Consider using
such quantiles as splitters, but eliminating duplicate quan-
tiles so that all splitters are unique. Conventional range
partitioning using these splitters in the presence of heavy
hitters will create large partitions containing the heavy hit-
ter value(s). Because conventional range partitioning pro-
vides no guarantees on equality within a partition, or on
the partition size, the relatively large partitions containing
heavy hitter values must be processed with the assumption
that the values may not all be equal. In contrast, our split-
ters support equality partitions for heavy hitters in which
an operation, such as sorting, can be optimized for a parti-
tion containing equal values. We substantiate these claims
experimentally in Section 3.

In a database context, where skewed distributions are the
rule rather than the exception [8], robustness to heavy-hitters
is important. We argue that in the presence of heavy hit-
ters our technique offers advantages over conventional parti-
tioning that outweigh the few situations where conventional
partitioning could be slightly better. Section 3.3 provides an
experimental comparison of our technique with conventional
range partitioning when used to accelerate sorting.

As well as providing the performance benefits mentioned
above, a splitter set possesses many of the statistical prop-
erties of an equi-depth histogram, and can be used as such
for approximate query processing [15] or for selectivity es-
timation of range predicates [2]. It can also provide exact
selectivities for heavy hitters, like a compressed histogram
[25].

An important contribution of this splitter technique is its ro-
bustness given any distribution. We provide guarantees on
the size of the inequality partitions generated by the split-
ters, without requiring special knowledge about the input
such as the number of unique keys or information about
heavy hitters.

Section 2 presents the definition of splitters as well as split-
ter finding algorithms for single columns and multiple tables.
An experimental evaluation of the splitter finding algorithm,
efficient data set partitioning, a comparison with conven-
tional range partitioning, and an application to sorting can
be found in Section 3. We present refinements to these op-
timal splitters in Section 4. Section 5 presents related work.
We conclude and discuss future work in Section 6. Proofs
that are not in the main text can be found in Appendix A.

2. COMPUTING THE SPLITTERS
2.1 Terminology
We assume an ordered data type, such as a number or string,
for the partitioning key. A set of k distinct keys s1, . . . , sk

called splitters defines 2k + 1 partitions:

• k equality partitions of the form {x|x = si}, i = 1, . . . , k.

• k − 1 inequality partitions of the form {x|si < x <
si+1}, i = 1, . . . , k − 1.

• Two inequality partitions {x|x < s1} and {x|x > sk}.
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A table T may be distributed to partitions according to a
splitter set; each record is mapped to a single partition based
on the value of a particular column of T . The breadth of a
splitter set for a table T is the maximum cardinality among
all inequality partitions of T .

A splitter set S is optimal for table T and cardinality bound
k if, among all splitter sets with at most k elements, S has
minimal breadth for T . By limiting the size of the biggest
inequality partition, optimality ensures that these partitions
are (to the extent possible given the data distribution) well-
balanced.

Definition 2.1. A splitter si in a splitter set
s0, . . . , sm satisfies a bound b to the left in a sorted array
r, if the inequality interval immediately to the left of si in
r (either the leftmost inequality partition if i = 0, or one
defined by si−1 and si) has cardinality at most b.

2.2 Splitters for Single Columns
We now present Algorithm 2.1 in Figure 1, a greedy algo-
rithm that finds, if possible, a set of up to k splitters that
yield breadth at most b for a given data set.

Lemma 2.1. Algorithm 2.1 is correct. See Appendix A
for proof.

Corollary 2.2. It is always possible to split N records
using k splitters so that at most dN−k

k+1
e elements are in each

inequality partition.

Corollary 2.3. A key that occurs at least dN
k
e times in

a data set of size N must be represented in any optimal
splitter set of size k.

Proof. If not, then some inequality range would contain
too many elements to be optimal.

Lemma 2.4. Algorithm 2.1 takes time
O(min{(N/b), k} lg N).

Proof. The number of iterations is at most
min{(N/b), k}. In each iteration, the work is O(lg N): the
index of the first nonmatching key can be found by doubling
the index range until a distinct key is found, then using bi-
nary search to locate the earliest nonmatch.

Algorithm 2.2 in Figure 2 uses a binary search with Algo-
rithm 2.1 to find the best bound b for a data set, given k.

Theorem 2.5. Algorithm 2.2 returns an optimal
splitter set.

Lemma 2.6. Algorithm 2.2 takes time O(k lg2 N).

Proof. The number of iterations is at most lgdN−k
k+1

e. In

each iteration, the work is O(k lg N) by Lemma 2.4.

2.3 Multiple Tables
If two tables R1 and R2 are often joined on a shared attribute
C, we might try to utilize a precomputed splitter set to
make the join process more efficient. This would be a space-
efficient alternative to materializing and maintaining the full
join result. There are several alternative splitter choices,
depending on the efficiency goal. In what follows we focus
on the inequality partitions, since the equality partitions are
easier to process (no key matching is needed) and they can
be replicated/divided among processors if they are large [4].

If the partitioning step is a precursor to a hash join, then
the goal might be to bound the size of the build partitions
so that they fit in the appropriate level of the memory hier-
archy, such as the L2 cache. With this in mind, one could
use a precomputed splitter set for the smaller of the two ta-
bles (say R2) to partition both tables. (Since the per-record
build time is usually more than the per-tuple probe time,
and since less memory is required, building on the smaller
table is usually preferred.1) Even though the size of the R1

partitions may vary, the R2 partitions will be bounded in
size.

There are two drawbacks to this approach. Firstly, even if
R2 is the smaller table, it may happen that some R1 par-
titions are smaller than the corresponding R2 partitions.
In that case, we have perhaps partitioned too finely, and
a coarser set of splitters would have been optimal to achieve
the given bound. Secondly, this partitioning scheme can lead
to highly unbalanced partitions if the distribution of column
C values in R1 is very different from that of R2. In the con-
text of partitioning for parallelism, such imbalance can lead
to unnecessarily long latencies and/or processor underuti-
lization.

Instead, we propose to construct a splitter set based on the
sorted C columns from both tables. Let N1 and N2 be the
cardinalities of R1 and R2 respectively. We let r1[0..N1-1]
and r2[0..N2-1] denote the sorted lists of C values from R1

and R2 respectively.

We look for a set of splitters for the combination of r1 and
r2 based on a cost function. For the join example above, a
cost model for partitions of R1 and R2 with sizes p1 and p2

respectively might be:

cost(p1, p2) = build-cost(min(p1, p2))
+max(p1, p2)probe-cost(min(p1, p2))

(1)

Equation 1 expresses the preference for building the hash
table on the smaller partition. The function’s build-cost and
probe-cost may themselves have parameters. For example,
the probe cost may depend on the size of the hash table, such
as whether it fits into the L2 cache or not. A more practical
cost function would also take into account the number of
columns in each of the participating tables. Despite the
possible complexity of the cost function, it should be fairly

1The build-cost for a hash join refers to the cost of building
the hash table over the inner relation. The probe-cost for a
hash join is the cost of probing the hash table over the inner
relation with tuples from the outer (probe) relation.
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Algorithm 2.1.
Input: Number of records N ≥ 1, number of keys k ≥ 0, bound b ≥ 1, Records r[0], . . . , r[N−1] in ascending

key order.
Output: Either (a) “error”, indicating that the records cannot be split using k splitters in a way that ensures

all inequality partitions have cardinality no more than b; or (b) A minimal-length sequence of up to
k splitters (together with partition counts) that ensures all inequality partitions have cardinality no
more than b.

Method: start=0; i=0;
while (start + b) < N {

if i≥k return error;
s[i] = key(r[start+b]);
next = index j of first record after r[start+b] with key(r[j])>key(r[start+b]), or N if no such j

exists;
prev = index m of earliest record before or at r[start+b] with r[m] = r[start+b];
count[2i] = prev-start; // Even index counts are for inequality partitions
count[2i+1] = next-prev; // Odd index counts are for equality partitions
start = next;
i = i+1;

}
count[2i] = N-start; // final inequality partition
return s[0],. . . ,s[i-1],count[0],. . . ,count[2i];

Figure 1: Algorithm for finding splitters on a single column.

Algorithm 2.2.
Input: Number of records N ≥ 1, number of keys k ≥ 0, Records r[0], . . . , r[N − 1] in ascending key order.
Output: A bound b and a sequence of up to k splitters that ensures all inequality partitions have cardinality

no more than b.
Method: UpperB = dN−k

k+1
e; /* Corollary 2.2*/

LowerB = 1;
Do a binary search on b between UpperB and LowerB, calling Algorithm 2.1 at each iteration. Move
to the upper half when “error” is returned, and move to the lower half when b is feasible. When the
smallest feasible value of b has been found, return b and the splitters provided by Algorithm 2.1 for
that value of b.

Figure 2: Using Algorithm 2.1 to find the best bound for a given data set when partitioned by k splitters.

Algorithm 2.3.
Input: Numbers N1, N2 ≥ 1, number of keys k ≥ 0, bound b ≥ 1, Records r1[0], . . . , r1[N1 − 1] in ascending

key order and r2[0], . . . , r2[N2 − 1] in ascending key order.
Output: Either (a) “error”, indicating that the records cannot be split using k splitters in a way that ensures

all inequality partitions have cost no more than b; or (b) A minimal-length sequence of up to k
splitters that ensures all inequality partitions have cost no more than b.

Method: start1=0; start2=0; i=0;
while cost(N1-start1, N2-start2) > b {

if i≥k return error;
find the largest q among {r1[start1], . . . , r1[N1 − 1], r2[start2], . . . , r2[N2 − 1]} such that

cost(c1, c2) ≤ b, where
c1 = number of keys less than q among r1[start1], . . . , r1[N1 − 1];
c2 = number of keys less than q among r2[start2], . . . , r2[N2 − 1];

s[i] = q;
start1 = index j1 of first record in r1 with r1[j1] > q, or N1 if no such j1 exists;
start2 = index j2 of first record in r2 with r2[j2] > q, or N2 if no such j2 exists;
i = i+1;

}
return s[0],. . . ,s[i-1];

Figure 3: Finding splitters for multiple tables.
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Algorithm 2.4.
Input: Numbers N1, N2 ≥ 1, number of keys k ≥ 0, Records r1[0], . . . , r1[N1 − 1] in ascending key order,

and records r2[0], . . . , r2[N2 − 1] in ascending key order.
Output: A bound b and a sequence of up to k splitters that ensures all inequality partitions have cost no

more than b.
Method: UpperB = cost(N1, N2);

LowerB = cost(0, 0);
Do a binary search on b between UpperB and LowerB, calling Algorithm 2.3 at each iteration. Move
to the upper half when “error” is returned, and move to the lower half when b is feasible. When the
smallest feasible value of b has been found, return b and the splitters provided by Algorithm 2.3 for
that value of b.

Figure 4: Using Algorithm 2.3 to find the best bound for a given data set when partitioned by k splitters.

obvious that any realistic cost function must be monotonic
in both p1 and p2. Adding more records to the build and/or
probe phases can only increase the cost of the join, all else
remaining equal. In what follows, we assume only that we
are given an integer cost function that (a) is monotonic, and
(b) gives equal weight to all records in a table. (Condition
(b) is necessary if we wish to compute the cost based simply
on counts.)

A set of splitters defines partitions in both r1and r2. The cost
function for a partitioning range can be calculated from the
number of records in each list that fall within the partition’s
range.

Our problem can now be phrased as follows: Find a set of
up to k splitters for r1 and r2 such that the biggest cost
among all inequality partitions is minimized. A splitter set
is optimal if it meets this condition.

For a fixed monotonic cost function, we can modify Algo-
rithm 2.1 to give Algorithm 2.3 in Figure 3. We omit the
count calculations for brevity.

Lemma 2.7. Algorithm 2.3 is correct. See Appendix A
for proof.

The asymptotic complexity is slightly higher that Algorithm 2.1,
due to the complexity of the step that determines the largest
q value.

Lemma 2.8. Let N = N1 + N2 be the total size of the
input. Algorithm 2.3 takes time O(k lg2 N).

Proof. The number of iterations is at most k. In each
iteration, the work is O(lg2 N) for the step to find the largest
q. One can use an exponentially expanding search followed
by binary search to find the appropriate q. Within that loop,
we perform a similar search to find the latest value in each
input array that is less than q, in order to compute c1 and
c2.

Figure 4 shows Algorithm 2.4 for finding the best partition-
ing bound for multiple tables.

Theorem 2.9. Algorithm 2.4 returns an optimal
splitter set.

Processor Core 2 Duo 2.4 GHz (E6600)
RAM 4 GB

L2 Cache 4 MB
TLB 256 entries [5]

Operating System Linux (2.6.18 kernel)
C++ Compiler GCC 4.1.1

Compiler Options -O3 -funroll-loops -msse2

Table 1: Experimental Platform

Lemma 2.10. Let N = N1 + N2 be the total size of the
input to Algorithm 2.4, and suppose that the cost function is
bounded above by a polynomial function of its inputs. Then
Algorithm 2.4 takes time O(k lg3 N).

Proof. The number of iterations is at most
lg(cost(N1, N2)− cost(0, 0)).
For a polynomially bounded cost function,
lg(cost(N1, N2)− cost(0, 0)) = O(lg N).
In each iteration, the work is O(k lg2 N) by Lemma 2.8.

3. EXPERIMENTAL EVALUATION
We implemented the splitter-finding and partitioning algo-
rithms in C++ and performed an experimental evaluation
on real hardware: an unloaded Linux server with an Intel
Core 2 Duo processor. The specifications of our experimen-
tal platform are in Table 1. Although the Core 2 Duo pro-
cessor has two cores, our implementation is single threaded
and only one processor core was used during the experi-
ments. For all experiments, the input is memory resident
before timing begins.

We conducted experiments with a number of input distri-
butions that are encountered in practice: (1) uniform, (2)
sorted, (3) heavy hitter, (4) sequential, (5) zipf, (6) self-
similar, and (7) moving cluster. The methods described in
Gray et al. [8] were used to generate the probablistic dis-
tributions. In all cases, the input consisted of 1 GB of 16
byte tuples, for a total of 226 tuples. Each tuple contains
an 8 byte partitioning key and an 8 byte payload, which
could be a record ID. For each distribution type we gen-
erated input with 2a unique partitioning key values, where
a = 1, 2, . . . , 24.

In the heavy hitter input, one value accounts for 50% of the
partition keys, while the other values are chosen uniformly
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(a) Varying k (N = 226) (b) Varying N (k = 1048575)

Figure 5: Time to find splitters on uniform input.

from the other partition keys. The sequential distribution
consists of input records in segments, each consisting of a
numerically increasing sequence of partition values. For ex-
ample, with 10000 partition values, the sequence of partition
values would be 1, 2, . . . , 10000, 1, 2, . . . , 10000, 1, 2, . . .. The
self-similar distribution uses an 80-20 proportion, and the
Zipf distribution uses an exponent of 0.5. In the moving-
cluster distribution with c ≥ W , record number i is chosen
uniformly from the range b(c−W )i/rc to b(c−W )i/r+W c,
where c is the target partition key cardinality, r is the num-
ber of records, and W is a window size. For c < W moving-
cluster reverts to a uniform distribution. We use W = 1024.

3.1 The Splitter-Finding Algorithm
We implemented the splitter-finding algorithm in C++ to
empirically verify its running time and confirm its practica-
bility. Figure 5 shows the time required to find k splitters
on uniform, sorted input of size N . This time does not in-
clude the time to sort the input. The predicted O(klg2N)
running time is confirmed: Figure 5(a) shows the running
time to be O(k) and Figure 5(b) shows the running time to
be quadratic in lgN . For 1 GB of input, a reasonable num-
ber of splitters can be found in one second or less, making
splitter-finding a relatively inexpensive database task.

The data structure for partitioning requires an array of the
k splitters as well as the starting offsets for each of the 2k+1
partitions. Because of the way our optimized key searching
works (see Section 3.2), the splitter array must be of length
2n − 1.2 Our keys are 8 bytes, so our splitters are 8 bytes as
well. We use 4 byte offsets, giving a total data structure size
of about 16k + 4 bytes. For most of our experiments we use
k = 511, which fully utilizes the splitter array (29−1 = 511)
and yields a total size of almost 8KB. The L1 cache size
is 32KB, meaning that the search step for partitioning is
entirely L1 cache resident. Given that the experimental data
sets are 1GB in size and the splitter array described above is
only 8KB, the partitioning data structures for 511 splitters
have a storage overhead of only 0.00076%. This means that
storing precomputed splitters for different sort properties is

2If the number of splitters desired is not one less than a
power of two, a full-sized splitter array must still be used,
but the unused splitters are filled with dummy values so that
the search works correctly.

not costly in terms of space overhead, and as we will see
in Section 3.3 such splitters greatly accelerate resorting the
data.

Figure 6 shows the sizes of the partitions created by 511
splitters on uniform input with (a) 2048 distinct keys and
(b) 2040 unique keys. The blue data points represent the
sizes of equality partitions and the red data points repre-
sent the sizes of the inquality partitions. The horizontal,
dotted green line shows the maximum inquality partition
size bound. For 2048 unique keys, shown in Figure 6(a),
the bound does not appear to be very tight, because there
are only two inequality partitions whose size is close to the
bound. Because the number of splitters is one less than a
power of 2 and 2048 is a power of 2, this distribution rep-
resents a type of worst case situation. One could attempt
to partition using a tighter bound, but it would not suc-
ceed. There are 511 equality partitions, which will account
for 511 of the 2048 unique keys, leaving 1537 keys to be dis-
tributed among the 512 inequality partitions, or just barely
more than three keys per partition. Because there are a fixed
number of inequality partitions, by the pigeon hole principle
one of the partitions would have to hold at least four keys.
In contrast, a uniform distribution with 2040 unique keys as
shown in Figure 6(b) exhibits a much tighter bound because
there are now just under three keys per inequality partition
on average.

The robustness of the splitters for distributions with heavy
hitters is demonstrated in the case of a Zipf input, as shown
in Figure 7. In this case, we see that the largest partitions
are equality partitions that effectively capture all heavy hit-
ters. The inequality bound is an order of magnitude smaller
than the size of the largest equality partition. Because there
are no or few values between heavy hitter values, some in-
equality partitions are empty (the flat red line at the right of
the chart). We argue that this is a small price to pay for ro-
bust guarantees on the size of inequality partitions, as well
as the special equality handling of heavy hitters, without
needing to know anything about the input distribution.

3.2 Efficient Partitioning
In order to make the partitioning step as efficient as possi-
ble, we hand-optimized the partitioning code. We used some
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(a) 2048 Unique Keys (b) 2040 Unique Keys

Figure 6: Partition sizes on uniform input using 511 splitters, sorted largest to smallest.

of the same optimization methods described by Sanders and
Winkel for their sample-sort algorithm [26]: (a) we used con-
ditional move instructions rather than branches, to avoid
misprediction penalties and to convert control dependencies
into data dependencies; (b) we instructed the compiler to
unroll the inner loop (which uses a fixed partitioning depth),
and we processed multiple3 keys at a time to expose a higher
degree of instruction-level parallelism; (c) we invoked the
compiler with flags allowing it to use instructions (in partic-
ular, conditional moves) specific to the hardware platform
(see Table 1); (d) we allocated memory to exactly fit the par-
titions, so no end-of-partition check is needed when incre-
menting the partition index. However, unlike [26], our algo-
rithm handles both equality and inequality partitions, with
no extra work in the inner loop. Our partitioning implemen-
tation works for numbers and short (≤ 8 byte) strings. The
cost for variable length strings or user-defined data types
would be higher. Nevertheless, numeric codes representing
row ids are common in databases and are typical of columns
on which partitioning would take place. Listing 8 shows the
method for finding the appropriate partition for a key; the
generated machine code contained no conditional branch in-
structions.

In order to ensure that the conditional moves were generated
as outlined in Figure 8, using a single compare instruction,
we had to write the first three lines of the inner loop in as-
sembly language. We also write to each partition starting
at a random location, and then wrap around at the end of
the partition. This randomness helps avoid degenerate be-
haviors, such as repeated conflict misses in the TLB when
the partitions have size that is a large power of 2. Other dif-
ferences from the sample-sort of [26] include: (a) we assume
that the splitters and partition counts are precomputed, so
we can avoid the sampling and counting steps of sample-
sort; (b) our splitters are guaranteed to be optimal; (c) for
equality partitions, we avoid the recursive sort step entirely.

Figure 9(a) shows the performance of our partitioning im-
plementation on the various input distributions. The spike
in execution times around 511 to 1023 unique keys is due to

3Three keys at a time appeared to work best on our plat-
form.

Figure 7: Partition sizes on Zipf input using 511
splitters, sorted largest to smallest.

TLB thrashing. As the number of unique keys in the distri-
butions requires more active output partitions than the TLB
can cover, partitioning time increases.4 The sorted distribu-
tion does not experience this TLB coverage problem because
consecutive input tuples map to the same partition. Even
considering the TLB overhead, partitioning is very efficient
on all distributions.

Based on performance measurements, an average of 93 in-
structions are required to locate an element’s partition and
then copy it into that partition. On uniform input, our
partitioning implementation retires between 1.1 and 1.68
instructions per cycle (IPC), depending on the number of
unique keys. This is a reasonable IPC considering that
each element processed requires reading from and writing
to RAM. An improvement in IPC may be possible, but we
leave further optimization to future work.

As the number of splitters used increases, as shown in Fig-
ure 9(b), the partitioning cost increases. This is because
good partitioning performance relies on fast, cache-resident

4Using large memory pages may help mitigate this problem
by increasing the TLB coverage, but such issues are beyond
the scope of this paper.
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int findpartition(N, d, k, p) {

// N = number of keys, one less than a power of 2; d = lg(N+1);

// k = search key; p[1..N] is the partitioning array, p[0] contains -MAXINT

lo = 0; hi = N + 1; mid = hi >> 1; // shift is division by 2

for(i = 0; i < d; i ++) { // loop can be unrolled if d is fixed

CMP k, p[mid]; // compare key with p[mid]

CMOVl hi, mid; // if key smaller, move hi down

CMOVg lo, mid; // if key larger, move low up

mid = (low + hi) >> 1; // if key equal, do nothing to low or hi!

}

temp = mid << 1; // even numbers are inequality partitions

return temp - (k == p[mid]); // odd numbers are equality partitions

}

Figure 8: Code for finding a partition for a key.

access to the partitioning data structures, such as the split-
ters and partition offsets. When that data does not fit in
the cache, each tuple processed from a uniformly distributed
input causes many cache misses in both the binary search
and offset lookup, slowing performance dramatically.

3.3 Application: Sorting
We apply our partitioning implementation to improve the
performance of recreating a sorted data set. Suppose that
at some point in the past, the data set was sorted and split-
ters calculated. The data set has since lost that sort prop-
erty; for instance, it may have been sorted on a different
attribute. To sort this data set, we first partition it and
then apply std::sort to each of the inequality partitions. We
choose to compare against std::sort from the GCC STL li-
brary, which uses a quicksort variant called Introsort [22],
because it is regarded as one of the fastest general purpose
sorting implementations [26].

Figure 10(a) shows the improvement achieved by various
numbers of splitters on one uniform data set. The best per-
formance is achieved when the number of splitters is 255 or
511. For 255 and greater numbers of splitters, the inequality
partitions fit within the L2 cache of our processor, resulting
in cache resident sorting tasks. At 511 splitters, the splitter
data structures needed for partitioning are also L1 resident,
resulting in more efficient partitioning. Increasing the num-
ber of splitters beyond this point actually results in lower
improvement or even worse performance than std::sort. This
is because the partitioning step becomes more expensive as
the splitter data structures cease to be L1 and then L2 cache
resident as well increased cache pressure caused by more out-
put partitions. For all subsequent experiments, 511 splitters
are used.

Figure 10(b) shows the improvement of our partition-then-
sort approach to simply sorting the entire data set with
std::sort on multiple input distributions. To provide an idea
of sort cost on our experimental platform, consider the case
of sorting 1 GB of input with 224 unique keys. Sorting with
std::sort takes 10.5 seconds. In contrast, our approach takes
7.89 seconds, with 2.09 seconds spent partitioning and 5.8
seconds spent sorting the inquality partitions with std::sort.

The partition-then-sort approach performs well, particularly
if heavy hitters are present in the input. For instance, re-
gardless of the distribution, when the number of unique keys
is less than the number of splitters, partitioning will place
almost all tuples into equality partitions that do not require
further sorting. In Figure 10(b), this is the reason for the
better than 60% improvement over naive std::sort for all dis-
tributions when the number of unique keys is less than 511,
and the maximum improvement is 76%. The heavy hitter,
Zipf, and self-similar distributions show an improvement of
at least 25% in all experiments. This is due in large part to
the guarantee that heavy hitters will be placed in equality
partitions that do not require further sorting.

Sorted and moving cluster benefit the least from partition-
ing. In the case of sorted input, partitioning is unneces-
sary, but it does provide a small benefit by creating smaller
chunks of the data set to be sorted, resulting in better cache
usage. The clustering present in the moving cluster input
provides some of the benefit of partitioning, resulting in
faster sort times that make it more difficult for partition-
then-merge to show an improvement. This is because ele-
ments in the moving cluster data set are already close to
their final sorted partition. Therefore, initial quicksort par-
titioning passes do not need to swap elements, leading to
fast execution because there is good branch prediction and
no data movement. When elements must be swapped, they
are only moved within a small region of the input, which is
more likely to be cache resident.

After initially falling, partition-then-sort performance im-
provement on the sequential distribution increases as the
number of unique keys in the data set becomes quite large.
This is likely because std::sort, which uses Introsort [22],
chooses poor pivots. Introsort may detect the poor pivot
choices and switch to another sorting algorithm (heapsort)
that is less efficient than quicksort, but does not have as bad
a worse-case running time.

Figure 11 shows a comparison of the total time to sort
when using std::sort alone or accelerated by conventional
range partitioning or our optimal equality splitter technique.
When conventional range partitioning is used, twice as many
splitters are computed so that the number of output parti-
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(a) Various Distributions (k = 511) (b) Various k (Uniform keys = 224)

Figure 9: Partitioning performance

(a) Varying the number of splitters with 224 unique
keys.

(b) Varying the number of unique keys with k = 511

Figure 10: Partition-then-sort improvement over std::sort.

tions is the same as with the equality splitters. The splitters
are computed as described in Section 4.3. As with the opti-
mal equality splitters, the conventional range splitters also
record the size of each partition so partitioning with the
range splitters requires only one pass. When partitioning
with range splitters we use a similarly optimized search as
that shown in Listing 8.

In the presence of heavy hitters (Fig. 11(b) and 11(c)) the
optimal splitters accelerate the sort by placing the heavy
hitters in equality partitions that are trivially sorted. For
the uniform distribution, Fig. 11(a), our splitter technique
is only better than range partitioning when the input car-
dinality is less than or close to the number of equality par-
titions. In that case, the partitioning step effectively sorts
most of the data. For larger input cardinalities, our splitters
and range splitters perform similarly and for, reasons noted
above, are out performed by std::sort on very large input
cardinalities.

Compared to Sanders and Winkel [26] we do not require a
sampling or counting step (the splitters are precomputed)
and we have special handling for equality partitions, which
do not need to be sorted after partitioning. Also, unlike [26],

our evaluation considers a variety of data distributions.

4. REFINEMENTS
A number refinements of this splitter finding technique are
possible. We sketch some refinements in this section.

4.1 A Hierarchy of Splitters
Unfortunately, there is no guarantee that an optimal set of
splitters for k = x has any intersection with the optimal set
of splitters for k < x. So in general it is not possible to
take a subset of the splitters to use for smaller partitioning
factors.

Fortunately, both the space and time requirements for com-
puting and representing the splitters is linear in k. Thus,
given a maximum k value of K, we can compute splitter sets
of size 1, 2, 4, 8, . . . , K with total cost approximately double
that of computing just the K-splitters alone. Having a set
of variable granularities will allow one to partition to the
extent needed for the particular operation (and no more).

4.2 Incremental Maintenance
The counts can be incrementally maintained over time as
database updates occur. A large number of updates might
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Figure 11: Total time to partition and sort various input distributions. k = 511 for our optimal equality
partitioning and k = 1023 for conventional range partitioning.

create new heavy hitters and cause the splitters to no longer
be optimal. Periodic recomputation of the splitters would be
required to bound the divergence from optimality. In situa-
tions such as data warehousing that do updates in batches,
new optimal splitters could be computed during the batch
update window. Despite the possible divergence from opti-
mality, the maintained counts still provide a bound on the
size of the inequality partitions.

4.3 Splitters without Equality
An easy change to Algorithm 2.1 allows us to create optimal
splitters for conventional range partitioning without equality
by combining pairs of neighboring equality and inequality
partitions. Algorithm 2.2 can be used with the new version
of Algorithm 2.1, though it no longer provides a guarantee
on partition size. We use splitters computed in this manner
as our conventional range splitters in Section 3.3.

The step in Algorithm 2.1 that finds the last equality value
for the current partition is similar to eliminating duplicate
quantile values in the presence of heavy hitters. Compared
to naive quantile finding, our method can find more unique
splitters, which results in a potentially smaller maximum
partition size. To illustrate this difference, consider the in-
put 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 5,
6, 7, 8. If we would like to find three splitters using quantiles,
the quantiles from the input would be 2, 2, 5. After eliminat-

ing duplicates, the splitters would be 2 and 5. In contrast,
using our method would choose as splitters: 1, 2, 6.

4.4 Higher Dimensions
Histograms over multiple dimensions are used to estimate
selectivities and provide approximate query answers when
dimensions are correlated (see [13] for a survey). Multi-
dimensional partitioning might also be useful for making
database operators more efficient. Examples include parti-
tioning a data set according to a composite key, and par-
titioning a table on one attribute while at the same time
applying a selection condition on another attribute. Find-
ing optimal partitioning elements in two or more dimensions
is NP-complete [23], and so we expect to be satisfied with
efficiently computable heuristic algorithms.

There are a number of well-known data structures for mul-
tidimensional data access [6]. Many of these data structures
take balanced partitioning into account when choosing par-
titioning dimensions and values. One could construct one
of these tree-based data structures and store just the parti-
tioning elements from the higher levels of the tree. However,
none of these structures pay special attention to equality on
the splitter values, meaning that a heavy hitting point (or
plane) in multidimensional space could cause a major im-
balance in the tree.
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There are several ways one could generalize our approach
to higher dimensions. One could find kx optimal x-splitters
and ky optimal y-splitters in a one-dimensional fashion, and
then define a grid of (2kx + 1)(2ky + 1) partitions. Alterna-
tively, one could find kx optimal x-splitters, and then find
ky optimal y-splitters within each x-partition. This second
approach requires more splitters, but can better handle cor-
related dimensions. One could even balance the assignment
of y-splitters to x-partitions so that x-partitions with a wider
y range get more y splitters.

Even though the one-dimensional choices are optimal, these
approaches do not ensure that the cardinality bound of the
two-dimensional regions is optimal. The optimality of one-
dimensional projections of a multidimensional partitioning
structure is the best guarantee one can achieve in polynomial
time, given the NP-completeness of the multidimensional
problem, unless P=NP.

5. RELATED WORK
There has been much work on histogram construction for
database applications [13], but most of this work has been fo-
cused on the problems of approximate query processing [15]
and/or selectivity estimation [2]. As a result, the desired
error metric may be different. For example, Ioannidis and
Poosala define a notion of “V-optimality” based on the sum-
squared error [14]. Jagadish et al. provide a dynamic pro-
gramming algorithm for calculating histograms that are op-
timal according to an arbitrary error metric [17]. However,
this algorithm takes time O(kN2) in the worst case, making
it impractical for large data sets containing tens of millions of
records. Also, it does not do any special processing for heavy
hitters. Compressed histograms [25] set aside some space to
keep values with high frequencies in singleton buckets. How-
ever, compressed histograms have not previously been used
to save work in database operators for singleton partitions.
Muthukrishnan et al. have shown that optimal rectangular
partitioning in two or more dimensions is NP-hard [23].

Poosala and Ioannidis study histograms for estimating the
size of a join result [24], and show that the lowest sum-
squared error is achieved using two V-optimal histograms on
the input relations’ join columns. They also use a cost func-
tion to compute balanced partitions for a parallel join. Their
cost function uses the two separate V-optimal histograms on
the participating tables to determine the workload distribu-
tion. For us, the cost function is used to determine a single
splitter set for the tables considered jointly. Further, our no-
tion of optimality that is based on the maximum partition
cost more directly matches the load-balancing application,
where one has to wait until the termination of the slowest
partition. Most other previous work on load balancing joins
for parallelism handles skew only on the build relation [19,
11, 4]

Efficiently computing quantiles [9, 1, 20] and using those
quantiles as splitters has been proposed [3], but as stated
in the introduction, heavy hitters pose a challenge for those
techniques. In somewhat related work, Iyer et al. [16] show
how to efficiently compute percentiles over many sorted runs,
for the purpose of merging the runs. This differs from our
work because our technique produces splitters sufficient for
repartitioning the relation if it loses its sort property. Ad-

ditionally, our splitter technique has the added benefits of
both guranteeing a bound on the size of inequality parti-
tions and placing heavy hitter values in equality partitions
which we have demonstrated has particular benefit for ap-
plications, such as sorting, that can optimize the processing
of equality partitions.

Khanna et al. [18] study the problem of partitioning an ar-
ray into contiguous regions so that the weight of each region
is minimized. An example weight function that is relevant
for load-balancing applications is the sum of the array val-
ues within the region. An O(n log n) time algorithm is de-
scribed. The main difference between that work and the
present work is that we have two classes of partition (equal-
ity and inequality partitions) that have different optimiza-
tion criteria. In particular, the size of the largest inequality
partition is minimized, while the size of the equality parti-
tions can be arbitrarily large.

6. CONCLUSION AND FUTURE WORK
In this paper we have introduced a novel method for effi-
ciently extracting optimal splitters for database partition-
ing from a sorted data set. We use these splitters to create
both equality and inequality partitions, and guarantee size
bounds on the inequality partitions. The data structures
required to support splitter calculation and partitioning re-
quire a very small amount of storage overhead, making the
calculation and storage of optimal splitters a low cost opera-
tion. These optimal splitters can be used to create partitions
with guaranteed size bounds, improving the performance of
sorting, joins, aggregation and parallel processing.

We have validated the running time and partition bound
guarantees experimentally, by implementing these algorithms
on real hardware. We also show an efficient partitioning im-
plementation that avoids conditional branches when calcu-
lating to which partition an element belongs. We further
demonstrate that the splitters are robust regardless of the
distribution of the data set. Finally, we use the optimal
splitters and our partitioning implementation to improve the
performance of sorting various 1GB data sets by up to 76%
over std::sort.

One avenue for future work is to extend partitioning with
size bounds to hash partitioning. Perhaps one could place
heavy hitters in special buckets within the hash table. Nev-
ertheless, creating hash buckets that are optimally balanced
seems like a difficult problem. We also plan to develop an
efficient parallel implementation of the splitter-finding and
partitioning algorithms for use on a multi-core architecture.
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APPENDIX
A. SUPPLEMENTARY PROOFS

Lemma A.1. Algorithm 2.1 satisfies the following
loop invariant immediately before the if statement:
Either i = 0, or there is no set of i splitters for
r[0],...,r[N-1] that extends further to the right than s[i-1]
while satisfying the bound b to the left of each splitter.

Proof Proof of Lemma A.1. The proof is by induction.
The base case i = 0 is trivial. Suppose the invariant holds
for i = m ≥ 0. We show it also holds for i = m + 1. By
the induction hypothesis, either m = 0, or m > 0 and no set
of m splitters that satisfies the bound b on the left of each
splitter, extends beyond s[m-1].

If m > 0, let j be the index of the first element r[j] with
r[j]>s[m-1], as in Algorithm 2.1. The maximal extension
beyond s[m-1] (that satisfies the bound b between s[m-1] and
s[m]) occurs when s[m]=r[j+b] as ensured by Algorithm 2.1.
If a smaller value of s[m] was chosen, it would not extend
as far to the right in r. If a larger value of s[m] was chosen,
then the inequality partition between s[m-1] and s[m] would
violate the bound b. The reasoning for m = 0 is similar,
considering the leftmost inequality partition.

The following is a proof of Lemma 2.1:

Proof. Algorithm 2.1 is guaranteed to terminate because
i is incremented on every iteration, and the loop terminates
(at the latest) when i ≥ k.

We first need to prove that when Algorithm 2.1 produces a
set of i splitters, that there are at most k of them, that i is
minimal, and that the inequality partitions they define sat-
isfy the bound b. (The correctness of the counts is straight-
forward.) By construction, we can only exit the while loop
when i ≤ k, so there are at most k splitters returned. Also
by construction, the splitters are located at most b elements
to the right of the first element non included as a previous
splitter. Thus, all ranges to the left of a splitter satisfy the
bound. The minimality of i follows for Lemma A.1. Finally,
the loop ends when there are no more than b elements re-
maining to the right of the final splitter. This concludes the
first part of the proof.

We now need to prove that when Algorithm 2.1 returns ”er-
ror”, it is impossible to find any set of at most k splitters
that satisfy the bound b. If k = 0, then the algorithm re-
turns error if and only if b < N , which is correct. For what
follows, we assume k > 0.

Assume that Algorithm 2.1 returns error, which must hap-
pen in the if statement. Since k > 0, i = k > 0 and by
Lemma A.1, there is no set of k splitters for r[0],...,r[N-1]
that extends further to the right than s[k-1] while satisfy-
ing the bound b to the left of each splitter. By the while
condition, (start + b) < N , and so there are more than b
elements in the rightmost inequality partition. Thus no set
of k splitters that satisfy the bound b exists.

The following is a proof of Lemma 2.7:

Proof. A result analogous to Lemma A.1 holds, due to
the monotonicity of the cost function. The remainder of the
proof is similar to the proof of Lemma 2.1.
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