
How Big Must Complete XML Query Languages Be?

Clemens Ley Michael Benedikt

Computing Laboratory
Oxford University

Parks Rd, Oxford OX13QD, UK
{clemens.ley, michael.benedikt}@comlab.ox.ac.uk

ABSTRACT
Marx and de Rijke have shown that the navigational core of
the w3c XML query language XPath is not first-order com-
plete – that is it cannot express every query definable in first-
order logic over the navigational predicates. How can one
extend XPath to get a first-order complete language? Marx
has shown that Conditional XPath – an extension of XPath
with an “Until” operator – is first order complete. The com-
pleteness argument makes essential use of the presence of up-
ward axes in Conditional XPath. We examine whether it is
possible to get “forward-only” languages that are first-order
complete for XML Boolean queries. It is easy to see that a
variant of the temporal logic CTL∗ is first-order complete;
the variant has path quantifiers for downward, leftward and
rightward paths, while along a path one can check arbitrary
formulas of linear temporal logic (LTL). This language has
two major disadvantages: it requires path quantification in
both horizontal directions (in particular, it requires looking
backward at the prior siblings of a node), and it requires the
consideration of formulas of LTL of arbitrary complexity on
vertical paths. This last is in contrast with Marx’s Condi-
tional XPath, which requires only the checking of a single
Until operator on a path. We investigate whether either of
these restrictions can be eliminated. Our main results are
negative ones. We show that if we restrict our CTL∗ lan-
guage by having an until operator in only one horizontal
direction, then we lose completeness. We also show that no
restriction to a “small” subset of LTL along vertical paths is
sufficient for first order completeness. Smallness here means
of bounded “Until Depth”, a measure of complexity of LTL
formulas defined by Etessami and Wilke. In particular, it
follows from our work that Conditional XPath with only for-
ward axes is not expressively complete; this extends results
proved by Rabinovich and Maoz in the context of infinite
unordered trees.

Introduction
XPath [20] is the w3c standard for querying XML docu-
ments; the navigational core of XPath is a query language

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
ICDT 2009, March 23–25, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-423-2/09/0003 ...$5.00

on finite labeled ordered trees. Marx and de Rijke [13]
showed that this language is incomplete in a fundamental
sense – there are properties expressible in first-order logic
over the navigational predicates that XPath cannot express.
This incompleteness manifests itself in other shortcomings
of XPath. For instance, XPath is not closed under comple-
ment of path relations; indeed, Marx has shown [12] that
such closure for an extension of XPath is equivalent to first-
order completeness.

How can one extend XPath to get a first-order complete lan-
guage? One answer is given by Marx in [11], who defines a
first-order complete query language Conditional XPath (CX-
Path). Roughly speaking, CXPath extends XPath by an
“until operator” φUψ: this operator holds at a node in an
ordered tree iff there is a finite path from the node that sat-
isfies φ up to the end of the path, at which point it must sat-
isfy ψ. Marx considers four kinds of paths: leftward within
the siblings of a given node, rightward within the siblings,
upward through the ancestors, or downward through some
chain of descendants.

CXPath has the disadvantage that it involves both “for-
ward navigation” (downward and to the right) and “back-
ward navigation”: this makes it less amenable to one-pass
evaluation. The forward-only fragment of CXPath, which
we denote by ForCXPath, is the variant of CXPath where
the paths allowed in the until operator are downward and
rightward, with an additional filter added to detect whether
a child is the first among its siblings. Is ForCXPath com-
plete for arbitrary ordered trees? It follows from results of
[2] that this language is first-order complete over finite or-
dered trees of any fixed depth. In this paper, we determine
whether ForCXPath is first-order complete over arbitrary or-
dered trees.

There is an alternative approach to obtain a first-order com-
plete language on ordered trees, building on the existing
work for word and (unordered) tree languages. On words,
first order complete languages can be defined using Linear
Temporal Logic (LTL). LTL defines formulas that hold at
the beginning of a word. Formulas can be built up from
atomic propositions (i.e. node labels) via Boolean operators
and the modalities U (until), X (next), and F (eventually).
Indeed, it suffices to have only one modality, the “strong”
variant of until (which we use in this work)[6]: ϕUψ is true
at the beginning of a word if there is a proper suffix β of the
word such that ψ is true at β and ϕ is true on every suffix

183

properly containing β. A refinement of Kamp’s Theorem [8]
shows that LTL is first-order complete over words.

This can be lifted to the setting of finite ordered trees by
considering a variant of the temporal logic CTL∗ [4]. CTL∗

contains path formulas, which hold with respect to a path
within a tree, and also state formulas, which hold with re-
spect to a node within a tree. Path formulas are built up
from state formulas via the LTL operators, while state for-
mulas are built up from atomic propositions via Boolean
operators and path quantification. CTL∗ is not complete
over trees, since it has no means of determining the number
of children of a node with a certain property. But this abil-
ity to distinguish among children is known to be the only
obstacle to completeness. For example, if we look at infi-
nite binary trees, where a child is labelled as either left or
right child, Hafer and Thomas have shown that CTL∗ ex-
tended with predicates for left and right sibling is first-order
complete [7]. Related results on completeness up to bisim-
ulation equivalence can be found in [14]. To extend this to
arbitrary ordered trees, we can distinguish between vertical
and horizontal paths, and add a path quantifier for each.
A simple variation of the argument of Hafer and Thomas
(given in Section 1) shows that this language is first-order
complete over ordered trees – this is noted in Barcelo and
Libkin’s work (Theorem 3.4 of [1]). Indeed, we will consider
a variant CTL∗↔ with downward paths, rightward paths,
and leftward paths, where on the horizontal paths we allow
only simple until operators, with no nesting – this language
will turn out to be first-order complete. CTL∗↔ has two
disadvantages: the first is that it requires paths in both hor-
izontal directions, the second is that it requires all of LTL
as a sublanguage in the vertical dimension. Can we make
due without one of these two restrictions?

We give negative answers to these questions. In our first
result, we show that one cannot weaken the horizontal nav-
igation to look only in one direction. Indeed one cannot
make due with a language that has the U operator in one
horizontal direction (in addition to F and X), but only the
F and X operators in the other direction.

In our second result, we consider restricting the power in
the vertical direction. For any fragment F of LTL, we let
CTL∗↔(F) be the ordered tree language that restricts CTL∗↔

as follows: node formulas are built up as before from label
predicates and a last child test, while being closed under
quantification of downward and rightward paths; path for-
mulas are built up by substituting node formulas as propo-
sitions within formulas of F . For example, the language
ForCXPath is contained in CTL∗↔(F) where F contains only
the formula pU q. Our question can now be formalised as:
for which fragments F is CTL∗↔(F) first-order complete?

We show that if F is any fragment of LTL with bounded
“Until-Depth”, then CTL∗↔(F) is not first-order complete.
In fact, our results show that languages CTL∗↔(Fn) where
Fn is the subset of LTL formulas of depth at most n, form
a strict hierarchy. In particular it follows from our results
that ForCXPath is not first-order complete. Furthermore, it
shows that any forward-only first-order complete language
must be fairly large.

Related Work. The question of a complete first-order forward-
only language was considered in the context of unordered
trees by Rabinovich and Maoz [18]. They consider languages
of the form CTL∗(F) where F is a fragment of first-order
logic on ω-words. The main result of [18] is that CTL∗(QRn)
is incomplete, where QRn is the set of first-order formulas
of quantifier rank at most n. The results are proven for both
finite and infinite trees. In [16] an extension is announced,
stating that CTL∗(ADn) is incomplete, where ADn is the
set of formulas of bounded quantifier-alternation depth.

There has been work also in the ordered case. Barcelo and
Libkin consider several logics on ordered trees; in the first-
order context, the main result is that a variant of CTL∗

with quantifiers for vertical and horizontal paths is first-
order complete. In [3], Bojańczyk defines a hierarchy of
logics using a general notion of a “tree operator” – a tree
automaton with “holes” for lower level formula. The result
announced in [3] is that no logic based on a finite set of such
operators can be first-order complete.

Our notion of “Until-Depth” is taken from Etessami and
Wilke’s work [5]. They deal with infinite words, and use
a variant of LTL that contains both past and future op-
erators. They define a hierarchy within this based on the
number of nestings of the operators U and its backward
analog S (for “Since”). The main result of [5] is that the
subsets UDk formed by restricting the number of nested U
or S operators to k, form a strict hierarchy in expressiveness
on words.

Our first result states that the restrictions of CTL∗↔ where
the use of U is limited in one of the horizontal directions is
incomplete. This contradicts an earlier claim from Barcelo
and Libkin ([1], again Theorem 3.4: the contradiction is only
with the “Moreover” addendum).

Our second main result is that the languages CTL∗↔(UDk)
increase in expressiveness as k increases; in our case the
Until-Depth ud is defined by bounding the number of nest-
ings of U in any path formula, while allowing arbitrary nest-
ings of the temporal operators X and F The proof technique
used blends the techniques of Etessami and Wilke with that
of Rabinovich and Maoz. We compare this result with the
prior results in the unordered case. It follows from our re-
sults that none of the languages CTL∗(UDk) are complete
on unordered trees. This in turn implies the incomplete-
ness theorem of [18], since the sets of formulas QDk they
consider are finite for any fixed vocabulary, and hence each
is contained in some UDk. However, Rabinovich has also
shown [17] that formulas of Until-depth k have bounded
alternation-depth. Combining this with the result on incom-
pleteness of bounded alternation-depth claimed in [16] im-
plies the restriction of our result to unordered trees. When
restricted to unordered trees, our results are incomparable
to those announced by Bojańczyk in [3], since each of our
sets CTL∗↔(UDi) contains formulas of unbounded Opera-
tor Depth.

We note that the case of ordered trees does present new
difficulties, as explained in Section 4.

In [10], Marx claims a “separation theorem”, stating that

184

CondXPath formulas can be split as a Boolean combination
of pure future and pure past parts – this would be a tree
analog of the separation theorem of Gabbay for temporal
logics on words [6]. In particular, this would imply that
ForCXPath is first-order complete for nodes at the root (i.e.
for Boolean queries). The argument in [10] has a flaw, and
indeed our main result disproves this claim. This flaw does
not impact the main results of Marx in [10], which are re-
proven by other means in [11].

Organisation: Section 1 defines the languages we deal with
formally, and states the main results of the paper. The
rest of the paper is dedicated to the proof of our main
incompleteness result. Section 2.1 defines the variant of
Ehrenfeucht-Fräıssé games used in the arguments, along with
the method of building examples trees that will witness the
incompleteness of the languages. Section 3 gives our first
main result, about incompleteness of languages that restrict
the use of horizontal navigation. Section 4 gives the second
result, concerning incompleteness of languages restricting
vertical navigation. Section 5 gives conclusions. Remain-
ing details are given in the appendix.

1. FIRST ORDER COMPLETE QUERY LAN-
GUAGES

Let Σ be a finite alphabet of labels. An ordered tree consists
of: a parent/child relation that is acyclic and such that ev-
ery node having in-degree at most one and a unique node
having in-degree 0; a right-sibling relation which is the suc-
cessor relation of a linear order on the children of any given
node; and a labelling function assigning elements of Σ to
each node. We refer to the usual derived notions on ordered
trees, such as the ancestor, descendant, following-sibling,
and preceding-sibling relations. All of the ordered trees we
deal with will be finite.

Linear Temporal Logic (LTL) over a set of propositions Prop
has formulas built up from the grammar:

φ = P | ¬φ | φ ∧ φ | Xφ | Fφ | φUφ

where P ∈ Prop.

The semantics of LTL is generally given with respect to infi-
nite words. We will give a variant for a finite labelled linear
order: that is, a finite linear order (D,<) with a labelling
function lab() that maps each node of the order to a subset
of Prop, where Prop is a finite set of propositions. For a
labelled linear order σ, we let |σ| be the number of nodes in
σ. For i ≤ |σ| we let σ(i) be the ith node in σ and σi the
labelled linear order induced by restricting σ to the subset
σ(i) . . . σ(|σ|).

Then we define:

σ |= p iff p ∈ lab(σ(1)).

σ |= Xφ iff |σ| > 1 and σ2 |= φ.

σ |= Fφ iff there is a j with 1 < j ≤ |σ| and σj |= φ.

σ |= φUφ′ iff there is a j with j ≤ |σ| and σj |= φ′

and for all j′, if 1 < j′ < j then σj
′
|= φ.

Here we use the“strong variant”of U , in which φUφ′ asserts

the existence of a node satisfying φ′. It is known that the
expressiveness of LTL would be unaffected if we had replaced
this by the usual notion, which asserts only that if such a
node exists, all the nodes below the first such satisfy φ [4].
Using this variant will make our negative results stronger,
but will not impact our positive results.

We define the Until-Depth ud(φ) of an LTL formula φ by
induction on the Path-Depth;

ud(p) = 0
ud(φ ∧ φ′) = max{ud(φ), ud(φ′)}
ud(¬φ) = ud(Fφ) = ud(Xφ) = ud(φ)
ud(φUφ′) = max{ud(φ), ud(φ′)}+ 1

This is precisely the definition of [5], restricted to LTL for-
mulas with only future operators. Note that there are in-
finitely many formulas of any fixed Until-Depth.

We define the Next/Eventually-depth ned of an LTL formula
similarly:

ned(p) = 0
ned(φ ∧ φ′) = ned(φUφ′) = max{ned(φ), ned(φ′)}
ned(¬φ) = ned(φ)
ned(Fφ) = ned(Xφ) = ned(φ) + 1

A downward path in a finite ordered tree is a set of nodes
that is linearly-ordered by the child relation of the tree. A
downward fullpath is a downward path that contains a leaf
node. Similarly, a rightward path is a set of nodes linearly-
ordered by the right-sibling relation of the tree, and a right-
ward fullpath is a rightward path that contains a node with
no right sibling. A leftward path and leftward fullpath are
defined analogously.

For Σ a set of labels, and k ≥ 0, we inductively define the
sets Pk and Nk of CTL∗↔ path formulas and node formulas.

• The symbols in Σ are the only formulas in N0.

• Any LTL formula over propositions in Nk is in Pk.

• If φ ∈ Pk then ∃�φ, ∃�φ, and ∃�φ are in Nk+1.

• Both Nk and Pk are closed under Boolean operations.

CTL∗↔ is the union over k of the formulas in Nk and Pk.

The semantics of CTL∗↔ is defined by induction: t, α |= a iff
α is labelled with a in t. t, p |= φ, for φ ∈ Pk iff Nk(p) |= φ,
where Nk(p) is the labelled linear order formed by labelling
each node with the formulas of Nk that it satisfies in t.
t, α |= ∃�φ iff there is a downward fullpath p starting at α
such that t, p |= φ, and similarly for ∃� and ∃�. For a node
formula φ, we write t |= φ iff t, root(t) |= φ.

We can also consider the language CTL∗↔↑ formed by al-
lowing a quantifier ∃�; that is, extending the rules for node
formulas to say that if φ ∈ Pk then ∃�φ in Nk+1. The se-
mantics is analogous to that of CTL∗↔, but the quantifier ∃�

quantifies over upward fullpaths, originating at a given node
and extending to the root, with the linear ordering being the

185

ancestor ordering rather than the descendant ordering. We
denote by CTL∗↔↑ud=1 the set of CTL∗↔↑ with Until-Depth 1.

The Down-Closure dcl(φ) of a CTL∗↔ formula is the set of
LTL formulas within that are directly nested within down-
ward path quantification. That is

dcl(p) = ∅
dcl(φ ∧ φ′) = dcl(φUφ′) = dcl(φ) ∪ dcl(φ′)
dcl(¬φ) = dcl(Fφ) = dcl(Xφ) = dcl(φ)
dcl(∃�φ) = dcl(∃�φ) = dcl(φ)
dcl(∃�φ) = dcl(φ) ∪ {φ}

The Left-Closure lcl(φ) and Right-Closure rcl(φ) of φ are de-
fined similar for leftward and rightward quantification. The
Closure cl(φ) of φ is the union of dcl(φ), lcl(φ), and rcl(φ).

The Next/Eventually-depth ned(φ) of φ is the maximal ned
of an element in the closure of φ. The Down-Until-Depth
dud(φ) of φ is the maximal Until-Depth of any element
within the Down-Closure of φ. Left-Until-Depth lud(φ) and
Right-Until-Depth rud(φ) are defined alike with respect to
the Left- and Right-Closure.

The Down-Path-Depth dpd(φ) is the nesting depth of ∃�-
quantifiers within φ. Formally

dpd(p) = ∅
dpd(φ ∧ φ′) = dpd(φUφ′) = dpd(φ) ∪ dpd(φ′)
dpd(¬φ) = dpd(Fφ) = dpd(Xφ) = dpd(φ)
dpd(∃�φ) = dpd(∃�φ) = dpd(φ)
dpd(∃�φ) = dpd(φ) + 1

The Left-Path-Depth lpd(φ) and the Right-Path-Depth rpd(φ)
are defined in the obvious way. For example the formula

∃�((∃�(aU b)) Ud).

has next/eventually depth 0, right until depth 0, down until
depth 1, until depth 1, and path depth 2.

Let D = {lpd, dpd, rpd, lud, dud, rud, ned}. For d1, . . . , dn ∈
D we denote by CTL∗↔(d1 ≤ x1, . . . , dn < xn) the set
of CTL∗↔ formulas φ with d1(φ) ≤ x1, . . . , dn(φ) ≤ xn.
In addition we use the shorthand notation CTL∗↔(d1 ≤
x1, . . . , dn < xn, other ≤ o) to denote the set of CTL∗↔ for-
mulas φ with d1(φ) ≤ x1, . . . , dn(φ) ≤ xn, and d(φ) ≤ o for
all d ∈ D \ {d1, . . . , dn}.

Let Σ be a label alphabet for ordered trees. We consider
first-order logic over a signature having unary predicates
a(x) for every a ∈ Σ as well as binary predicates for the
parent/child relation, the immediate right-sibling relation,
and the transitive closures of these predicates. The syntax
and semantics of first-order logic is as usual [9]. The quan-
tifier depth of a first order formula ϕ is – as usual – the
maximal nesting depth of quantifiers in ϕ.

It has been shown by Hafer and Thomas that CTL∗ – CTL∗↔

without sibling axes – is equivalent to first order logic over
unordered binary trees [7]. In [14] Moller and Rabinovich
show that CTL∗ is equivalent to the bisimulation invariant
fragment of first order logic over unordered trees. Theorem
3.4 in [1] extends this to ordered trees:

Theorem 1 (Barcelo and Libkin). CTL∗↔ is first-
order complete. That is, for every finite alphabet Σ, for
every first-order sentence φ, there is an CTL∗↔ query φ′

such that for every ordered tree t labelled in Σ, t |= φ↔ t |=
φ′.

As noted in the introduction, Theorem 3.4 of [1] actually
states a much stronger claim, which our Theorem 5 contra-
dicts. We thus give a brief sketch of the proof. One approach
is via the composition technique of Moller and Rabinovich
[14]. Indeed, this extension is almost implicit in the work of
Moller and Rabinovich and that of Hafer and Thomas.

Fix an alphabet Σ. For a node α in a Σ-labeled tree t, let:
subtreek(α) be the set of first-order formulas of quantifier
rank at most k true at α. Let Σk be the label set consisting
of a label for each set of first-order formulas of quantifier
rank at most k in one variable (say, in prenex normal form
with propositionally redundant or inconsistent clauses re-
moved from the quantifier-free part; clearly there are then
only finitely many such formulas).

Given a vertical path p in t and a node α that is on p but is
not a leaf of p,

• Let leftchildk(p, α) be the Σk-labelled string subtreek(αi) :
i < n, where α0 is the unique child of α on p and
αi : 1 ≤ i < n is the sequence of left-siblings of
α0, ordered from right to left, where each node in
leftchildk(p, α) is labelled with subtreek(α).

• Let leftchildk(p, α) be defined analogously for right sib-
lings.

• For k, l numbers let childk,l(α) be the pair consisting
of the set of first-order sentences of quantifier rank at
most l that hold of leftchildk(p, α) and the set of first-
order sentences of quantifier rank at most l that hold
of rightchildk(p, α).

• Let Σk,l be the alphabet with a label for each pair
of sets of (normalised) sentences of quantifier rank at
most l in the vocabulary for labelled strings over Σk,
and an additional label ⊥.

• Let Typek,l(p) be the Σk,l-labelled string expanding p
by labelling each interior node α with childk,l(α), and
the leaf node of p with a special label ⊥.

Then we have:

Lemma 2. For every first-order sentence φ, there are k
and l and a first-order sentence φ′ over Σk,l-labelled strings
such that: (t, α) |= φ↔ Typek,l(p) |= φ′, where p is the path
from the root of t to α.

This is proved as in Theorem 3.2 of [14]. In the presence of
an ordering the assumption of “wideness” used there is not
needed.

The result then follows from:

186

Lemma 3. For every first-order sentence φ′ over Σk,l-
labelled strings, there is an CTL∗↔ formula such that Typek,l(p) |=
φ′ ↔ (t, α) |= φ

This is proved using Kamp’s theorem, as in Lemma 4.2 of
[14].

CTL∗↔ is a large language, since it contains all of LTL as a
sublanguage. Clearly, we can eliminate syntactic features of
LTL that do not add expressiveness: for example, the even-
tually operator Fφ and the next operator Xφ can both be
defined using our form of the until operator [4], and so both
are unnecessary. What about the use of the until operator?

The following result follows directly from the work of Marx
[10, 11]:

Theorem 4 (Marx). CTL∗↔↑ud=1 is first-order complete

Proof. In [10] a language Xuntil is defined that is a sub-

set of CTL∗↔↑ud=1. Xuntil has quantification over partial paths
in the downward, upward, leftward, and rightward paths fol-
lowed immediately by an until operator (this is analogous to
the temporal logic CTL, which also restricts the sequencing
of path quantifiers and LTL operators). Xuntil can be easily
translated into the Conditional XPath language of [10, 11],
which is proved first-order complete in [11]. Thus Xuntil,

and hence CTL∗↔↑ud=1 are both first-order complete.

We thus have two ways of getting first-order completeness:
Theorem 1 allows arbitrary LTL, downward paths and both
horizontal paths, while Theorem 4 restricts the use of the
Until operator but also allows upward paths. Can one make
use of only one horizontal operator? Can one restrict the
nesting of Until operators without introducing upward axes?
Our main results give negative answers to both these ques-
tions.

Main Results. We show two incompleteness results. First,
CTL∗↔ becomes incomplete if the number of ∃� quantifiers
is restricted to some fixed p and the number of nested U s
within ∃� quantifiers is restricted to u. Observe that despite
this restriction, there still might be arbitrary many X and
F s on leftward paths and arbitrary LTL formulas on the
other path.

Theorem 5 (Horizontal Incompleteness). For all
p, u ∈ N, CTL∗↔(rpd ≤ p, rud ≤ u) is not first-order com-
plete on finite ordered trees. In addition, if up > u′p′ then
CTL∗↔(rpd ≤ p, rud ≤ u) is more expressive than CTL∗↔(rpd ≤
p′, rud ≤ u′). The symmetric statements hold for leftward
axes.

It follows from our proof that CTL∗↔(lud = 0)is not first
order complete. This contradicts a statement made in [1].
It follows from [1] that CTL∗↔(lud = 1) is already first order
complete.

Our second incompleteness result is concerned with down-
ward axes. It states CTL∗↔ is not first order complete if the
nesting depth of U on downward paths is restricted to u –
even with an arbitrary nesting depth of all other modifiers.

Theorem 6 (Vertical Incompleteness). On finite,
ordered trees, CTL∗↔(dud ≤ u) is not first-order complete
for all u ∈ N. In addition, the family CTL∗↔(dud ≤ u)
forms a strict hierarchy in expressiveness.

We will show that this incompleteness result holds even over
binary trees.

Discussion. It is known from [5] that on strings, the sub-
sets of LTL formed by restricting the Until-Depth to some
fixed number form a strict hierarchy in expressiveness. This
does not imply the corresponding result for ordered trees,
since path quantification coupled with LTL operators could
add more expressiveness. For example, when one restricts
to trees that consist of exactly one path, CTL∗↔(ud = 1)
is first-order complete: arbitrary nesting of untils can be
mimicked by putting each until in a path quantifier, since
the Until-Depth only counts nesting within a given path
quantification. Consider also the analogous situation when
LTL is extended with “past operators” S and P , which are
the duals of U and F (see [4] for the precise definition):
Etessami and Wilke [5] have shown that the subsets of LTL
extended with past operators formed by restricting the nest-
ing of both until and its dual S form a strict hierarchy. But
the theorem of Marx mentioned above implies that CTL∗↔

based on LTL-with-past but restricted to Since/Until-Depth
one is already sufficient for first-order completeness.

Thus the incompleteness of query languages based on fixed
Until-Depth when only future operators are available is not
obvious. The proofs of Theorems 5 and 6 are quite complex,
and will take up the remainder of the paper.

2. BACKGROUND: GAMES FOR WORDS
AND TREES

In this section we define an Ehrenfeucht-Fräıssé game that
corresponds to CTL∗↔. Then we recall an incompleteness
result on strings by Etessami and Wilke.

2.1 Ehrenfeucht-Fraïssé Games for Bounded
Until-Depth

Before we define a game that corresponds to CTL∗↔ on
trees, we define a game on paths that is used as a sub-game
within the tree game. This game was introduced by Etes-
sami and Wilke in [5] where they showed that it corresponds
to LTL.

The Path Game. The LTL(ned ≤ e, ud ≤ u)-game (or
LTL(e, u)-game for short) is played by two players, a male
Spoiler and a female Duplicator, on two paths p, q. The goal
of Spoiler is to show that the paths are different while Du-
plicator tries to show that they are similar. At each stage
of the game a pair pi, qj of suffixes of p, q is selected. There

187

are different kinds of moves – X -, F -, and U -moves – in
which the players alter the selected paths. When the game
is played, we track the number of moves of each kind remain-
ing in the game, which can be thought of as an additional
part of the game state. Initially, there are e X - and F -, and
u U -moves left to play (denoted (e, u) moves to play). p, q
are selected initially.

We describe the play of the LTL(e, u)-game with selected
paths p, q and e′, u′ moves to play, for e′ ≤ e and u′ ≤ u. If
(e′, u′) is (0, 0) Duplicator wins if the roots of the selected
paths have same label and Spoiler wins otherwise. We call
p, q the final position of the game. If e′ > 0 Spoiler can
chooses to play either an X -, or an F -move.

• In an X -move neither player has any choice: the new
selected paths are p2, q2. Spoiler can only choose this
move if one of the paths has such a suffix. If one of p, q
has such a suffix and the other does not, Duplicator
cannot move and Spoiler wins. If the roots of the new
selected paths have different labels Spoiler wins.

• In an F -move Spoiler picks one of the two paths, say
p. He then selects a proper suffix pi of p with i > 1.
Again, Spoiler can only choose this move if such a suffix
exists. Duplicator selects a suffix qj of q with j > 1.
Duplicator loses if she cannot respond with a suffix
such that the roots of pi and qj have the same label.

If Duplicator did not lose the round, the players play the
LTL(e, u)-game on the newly selected paths with (e′−1, u′)
moves to play.

If u′ > 0 then Spoiler can also consider to play an U -move.

• In an U -move Spoiler picks one of the paths and we
assume he picks p. An U -move consists of two half
moves. In the first half move the Spoiler selects a
proper suffix pi of p for i > 1. The Duplicator has
to reply with a proper suffix qj of q for some j > 1
such that the roots of pi and qj have the same label.
Again, Spoiler can only choose this move if pi exists
and Duplicator looses if the roots of pi and qj have
different labels.

In the second half move Spoiler selects qj
′

such that

1 < j′ ≤ j. Duplicator has to select pi
′

such that 1 <

i′ ≤ i and such that the roots of pi
′

and qj
′

have the

same label. In the case that the Spoiler picks qj
′

such
that j′ = j, i′ must be equal to i. Again, Duplicator
looses if she cannot select such a path.

If Duplicator survives both half rounds, the players con-

tinue playing the LTL(e, u)-game with pi
′
, qj

′
selected with

(e′, u′ − 1) moves left to play.

Etessami and Wilke [5] have shown the following:

Proposition 7 (Etessami, Wilke). Two paths satisfy
the same LTL(ned ≤ e, ud ≤ u) formulas iff the Duplicator
has a winning strategy in the LTL(e, u)-game.

The Tree Game. The CTL∗↔(lpd ≤ lp, dpd ≤ dp, rpd ≤
rp, lud ≤ lu, dud ≤ du, rud ≤ ru, ned ≤ e)-game (CTL∗↔(lp,
dp, rp, lu, du, ru, e)-game for short) is played by Spoiler and
Duplicator on a pair of trees t, s. Again there are different
kinds of moves – ∃�-, ∃�-, and ∃�-moves – in which the
players alter a pair of selected nodes α, β. Initially, the roots
of p, q are selected.

The state of a game consists of the pair of selected nodes α, β
and a move tuple (l, d, r). The intuition is that there are l
left, d down-, and r right-path-moves left to play. Therefore
we often say that there are (l, d, r) moves left. Initially the
roots of t and s are selected and there are (lp, dp, rp) moves
left.

We describe the play of the game with α, β selected and
(l, d, r) moves left for l ≤ lp, d ≤ dp, and r ≤ rp. The
Duplicator wins if the move tuple is (0, 0, 0) and α and β
have the same label. Otherwise Spoiler can choose one of
the following moves:

• Spoiler can choose an ∃�-move if l > 0. He picks one
of the two trees t, s, say t. Spoiler then picks a leftward
fullpath p that is rooted at α. Duplicator responds by
picking a leftward fullpath q that is rooted at β. Then
Spoiler and Duplicator play the LTL(e, lu)-game on
p, q. If Spoiler wins this path-game then he wins the
tree-game. Otherwise Spoiler chooses the roots α′, β′

of some intermediate position of the LTL-game. The
players play the tree game with (l− 1, d, r) moves left
and α′, β′ selected.

• An ∃�-move can be chosen by Spoiler if d > 0. It
is played like an ∃�-move, just that the players pick
downward fullpaths p, q instead of leftward fullpaths
and the players play the LTL(e, du)-game on p, q in-
stead of the LTL(e, lu)-game. Again, Spoiler wins the
tree game if he wins the game in p, q. Otherwise the
players proceed to play the tree game with (l, d− 1, r)
moves left and the roots of some intermediate position
of the path game selected.

• Spoiler may play an ∃�-move if r > 0. The rules are as
above, just with rightward-paths on which the players
play the LTL(e, ru)-game. Again, Spoiler can win the
tree game by winning the game on p, q. Otherwise the
game proceeds with the tree game on an intermediate
position of the path game with (l, d, r − 1) moves left.

A winning strategy for either player from a given initial po-
sition and set of moves is defined as usual. The following
lemma shows the connection between the tree game and the
logic CTL∗↔.

Proposition 8. Duplicator has a winning strategy for
the CTL∗↔(lp, dp, rp, lu, du, ru, e)-game on t, s iff t and s
agree on all CTL∗↔(lp, dp, rp, lu, du, ru, e) node formulas.

Proof. (sketch) We show only the “if” direction; the
other direction is similarly straightforward. Given the hy-
pothesis, we show that Duplicator’s winning strategy has the

188

property that if the position after a move is α, β at a stage
with (l, d, r) moves to play, then (t, α) agrees with (s, β) on
CTL∗↔(lp, dp, rp, lu, du, ru, e) node formulas. We show this
by upward induction on l+d+p. The base case of no moves
remaining is clear.

One inductive case is when Spoiler plays an ∃� move p By
induction, (t, α) satisfies the same formulas of CTL∗↔(lp, dp,
rp, lu, du, ru, e) as (s, β), and hence there is a path q rooted
at β such that (t, p) and (s, q) satisfy the same path formu-
las of CTL∗↔(lp, dp−1, rp, lu, du, ru, e). Duplicator respond
with such a path. Consider LTL over the alphabet with
propositions form CTL∗↔(lp, dp−1, rp, lu, du, ru, e) node for-
mulas, and consider the expansion of p and q where nodes
are decorated by the formulas in the above language that
they satisfy. The hypothesis on p and q and Proposition
7 guarantee that there is a winning strategy for Duplicator
in the LTL(e, du)-game over this alphabet. Duplicator uses
this strategy in the remainder of the move.

The case of leftward and rightward paths is done similarly.

2.2 The Until Hierarchy on Words
The proof of Theorems 5 and 6 makes use of a hierarchy
Theorem on words by Etessami and Wilke [5]. As we reuse
their proof for our incompleteness results on trees, we re-
prove this theorem here.

Theorem 9 (Etessami, Wilke). LTL(ud ≤ u) is not
first order complete over finite words for every u ≥ 0. In
addition, for each u LTL(ud ≤ u + 1) is more expressive
than LTL(ud ≤ u).

To show Theorem 9, we define for each u ∈ N a property Su
such that Su that can be expressed in LTL(ud ≤ u) but not
in LTL(ud ≤ u − 1). Let Su denote the set of paths that
satisfy the regular expression

a(c∗a)xΣ∗.

where Σ is the alphabet.

Su can be encoded by the LTL(ud = u) formula ψu defined
recursively as follows:

ψ0 := a ψx := a ∧ (cUψx−1)

Together with Proposition 8, the following Lemma shows
that Su can not be expressed in LTL(ud ≤ u − 1, ned ≤
e), even for any nesting depth e of X and F modifiers.
This completes the proof of Theorem 9. It simplifies the
presentation to show the lemma for infinite paths. We will
later show how the proof can be altered for the finite case.

Lemma 10 (Etessami, Wilke). For each u ≥ 1, e ≥
0 there are two infinite paths vu,e and wu,e such that (i)
every vu,e satisfies Su no wu,e does, and (ii) Duplicator has
a winning strategy for the LTL(ud ≤ u − 1, ned ≤ e)-game
on vu,e, wu,e.

For all u, e ∈ N we define the infinite paths

vu,e = (ace)u+1bce wu,e

wu,e = ((ace)ubce)ω

Observe that wu,e can be visualised as the following “stair-
case”.

a

a

c ... c a

.
.
.

c ... c

a

c ... c

b

c ... c

u

a

c ... c a

.
.
.

c ... c

a

c ... c

b

c ... c

. . .
a

c ... c

c ... c

.
.
.

.
.
.

a

c ... c a

c ... c

a

c ... c

b

c ... c

u

a

c ... c a

c ... c

a

c ... c

b

c ... c

. . .

The following proposition is obvious.

Proposition 11. For all u, e ∈ N, vu,e satisfies Su while
wu,e does not.

We now fix u, e and write v instead of vu,e and w instead
of w. It remains to show that Duplicator has a winning
strategy for the LTL(ud ≤ u− 1, ned ≤ e)-game on v and w.

The idea of the proof will be to show that Spoiler can force
the selected nodes up only one step of the staircase on each
U -move. As the number of steps depends on the number
of U -moves, Spoiler can not detect that the selected nodes
are on different steps of the staircase in the beginning of the
game.

To describe Duplicator’s winning strategy, we need some
notation. Give two nodes α, β on the same string we denote
by (α, β) the sequence of nodes between α and β, excluding
α and β. We denote by right-b(α) the next node to the
right of α that is labelled b. right-ab(γ) is the next a or b
labelled right sibling of α. The Plateau-Depth pd(α) of a
node α in v or w is the distance of α to the end of the its
“plateau” to the right. Formally, pd(α) is the number of cs
in (α, right-ab(α)). The Top-Depth td(α) of α in v or w is
the number of steps between α and the top of the staircase,
that is td(α) is the number of a nodes in (α, right-b(α)). If
p is a path the we write td(p) for td(root(p)) and similarly
for pd. We also write α =pd β if pd(α) = pd(β) and similar
for td.

Part (ii) of Lemma 10 follows from the following claim.

Claim 1. Duplicator can play the LTL(ud ≤ u− 1, ned ≤
e) game on v and w so that if there are e′ ≤ e X - or F -
moves and u′ ≤ u−1 U -moves left to play then the roots α, β
of the selected paths in v, w maintain the following invariant:

1. α =pd β.

2. |td(α)− td(β)| ≤ 1.

3. If α 6=td β then

(a) td(α) ≥ u′ and td(β) ≥ u′

(b) if td(α) = u′ or td(α) = u′ then pd(α) = pd(β) ≥
e′.

189

Proof. On X -moves, Duplicator’s strategy is determined
by the rules of the game. Basically, condition 3b assures that
Spoiler can not use X moves to falsify condition 3a.

The strategy on F -moves is very easy for Duplicator. It
relies on the observation that if v, w satisfy the invariant,
then v and w have the same set of suffixes. Therefore, given
Spoilers selection, Duplicator can select the same suffix in
the other path.

On U -moves, Duplicator can not use the same strategy as
for F -moves in her first half move: if she did, Spoiler might
play on the path with the smaller td and just move the
selected suffix by one node. Then Duplicator might skip
e+1 nodes to the next isomorphic suffix. Then in the second
half move, Spoiler can pick from e+2 nodes (the nodes that
Duplicator skipped and the one she selected), but Duplicator
can only choose the node that Spoiler selected. Hence, when
Spoiler skips only few nodes, Duplicator will skip the same
number of nodes. Only when Spoiler skips sufficiently many
nodes will Duplicator try to find an isomorphic suffix.

Assume that Spoiler picks a path p ∈ {v, w} and a suffix
p′ of p in his first half move. Duplicator will respond with
a suffix q′ of the other path q. Let γ, γ′, δ, δ′ be the roots
of p, p′, q, q′ respectively. There are two cases. If Spoiler
skips at most e nodes (that is |(γ, γ′)| ≤ e), then Duplicator
skips the same number of nodes as Spoiler did. That is,
she picks δ′ such that (γ, γ′) = (δ, δ′). Otherwise Duplicator
picks the next q′ such that p′ and q′ are isomorphic (formally
(γ′, right-b(γ′)) = (δ′, right-b(δ′)) and |(γ, γ′)− (δ, δ′)| ≤ e+
1). In the second half move Spoiler chooses some δ′′ in
(δ′, δ′′). It is easy to check that Duplicator can always choose
γ′′ such that |(γ′, γ′′)− (δ′, δ′′)| ≤ o+ 1.

Observe that if p′ and q′ are not isomorphic, then the roots
of the selected paths have been moved to the right at most
e+ 1 nodes. It follows that the invariant is maintained.

b c c c c c c c cac c c ca c c c cac c c c ab c c c c

c c c ca b c

c c c ca c c c ca b c

c c c ca c c c ca b c

α

β

c c c ca c c c ca b c

c c c c

α

β

a

c c c ca

c c c ca

c c c ca c c c ca b c

c c c ca c c c ca b c

α

β

c c c ca

c c c ca b c

c c c ca c c c ca b c

c c c c

α

β

a

c c c ca

Figure 1: Duplicator’s strategy on U -moves on v2,4
and w2,4.

Figure 1 shows the position of the LTL(ud ≤ 1, ned ≤ 4)-
game on v2,4, w2,4 after four X -moves. The first and the
third path shown are v2,4, while the second and fourth path
are prefixes of w2,4. The roots of the selected paths are

marked with α and β. The arrows indicate Duplicator’s
strategy on U -moves: if Spoiler picks a node γ′ in either
v2,4 or w2,4 in his first half move, then Duplicator picks the
node δ′ in the other path, such that there is a arrow from γ′

to δ′ in Figure 1. Observe that the position α, β is a winning
position for Duplicator if there are no X -moves, and at most
one U -move left to play.

We now turn to the finite case. How must the construction
be altered to show the result for finite words? If Duplicator
only jumps to the next (ace)ubce section on each eventually
move, then e + 1 such sections are obviously sufficient for
Duplicator to win the game. Hence

Corollary 12 (Etessami, Wilke). Duplicator has a
winnig strategy for the LTL(ud ≤ u − 1, ned ≤ e)-game on
the finite words vfin

u,e and wfin
u,e defined as

vfin
u,e := (ace)u+1bce wfin

u,e

wfin
u,e := ((ace)ubce)e+1

3. THE HORIZONTAL UNTIL HIERARCHY
In this section we show Theorem 5. The argument is based
on a construction of Miko laj Bojańczyk. We define a prop-
erty Qx such that CTL∗↔(lpd ≤ p, lud ≤ u) can express Qpu
but not Qpu+1.

Let the right path of a node α in a tree be the sequence of its
right siblings. Qx is the set of ordered trees that have a full
path p ending at a leaf labelled d, and each node on p apart
from the root and the leaf has a right path that satisfies the
regular expression

a(c∗a)xΣ∗

where Σ is the alphabet.

If pu ≥ x then Qx can be expressed in CTL∗↔(lpd ≤ p, lud ≤
u) by ∃�(µx U (d ∧ X false)) where µx says “there is a right-
ward path satisfying a(c∗a)xΣ∗”. Formally

µ0 = a

µy = ∃�(λu,y−1) if y > 0

λ0,y = µy

λx,y = a ∧ (cUλx−1,y) if x > 0

The following lemma shows that CTL∗↔(rpd ≤ p, rud ≤ u)
can not express Qx+1 if pu ≤ x. Theorem 5 immediately
follows from this lemma.

Lemma 13. For each p, u, o ∈ N, there are trees tp,u,o and
sp,u,o such that (i) tp,u,o satisfies Qpu+1 but sp,u,o does not
and (ii) Duplicator has a winning strategy for the CTL∗↔(rpd ≤
p, rud ≤ u; other ≤ o)-game on tp,u,o, sp,u,o.

We begin by showing the lemma for “wide trees”: those in
which a node can have infinitely many left and right siblings,
but where any two siblings have only finitely many nodes be-
tween them (i.e. the sibling order has type ω∗+ω). To show
the lemma by induction we show a more general statement

190

for hedges – ordered sequences of wide trees, where the se-
quence can again be infinite in both directions. Later we will
explain how the proof must be altered for the finite case.

To construct tp,u,o and sp,u,o, we need some machinery. A
template π is a hedge with two sets of distinguished nodes
– positive ports and negative ports – labelled by “+” and
“−” respectively. A template π and two hedges t̄, s̄ can be
combined to form a new hedge π[t̄, s̄] which is obtained from
π by replacing each positive port with the hedge t̄ and each
negative port with the hedge s̄.

d

b c c c c c c c cac c c ca c c c ca

- - - - - - - - - - - - - - - - - - -+

c c c c

- - - -

b c c c c

- - - - -

a

-

b c c c c c c c cac c c ca c c c ca

- - - - - - - - - - -- - - - - - - -+

c c c c a

-- - - -

b c c c c

- - - - -

π3,0,1 =

τ3,0,1 =

b c caca ca

- - - - - - -+

c

-

b c

- -

a

-

b c caca ca

- - - - -- -+

c a

--

b c

- -
π =

τ =

a

+ -

b c a

b c d

π = t̄ =

s̄ =

π[t̄, s̄] =

We define two hedges t̄ kp,u,o and s̄ kp,u,o by induction on k.
These hedges will be constructed from two templates π =
πp,u,o and τ = τp,u,o which we define first. Both π and τ are
hedges of infinite width. Each tree in π or τ consists of a
root with a single child that is either a positive or a negative
port. For a word q, we denote by qrev the reverse of q. The
sequence of roots of both π and τ spell out the infinite word
(pω)rev · b · pω where

p := (c̄a)pu+o2+2c̄b

and where c̄ abbreviates cmax(po,o2). Now fix in both π and
τ some node labelled b. We will refer to this node as the
center of π and τ respectively. In both templates all ports
but one are negative. What distinguishes π from τ is the
location of the positive port with respect to the center: In
π the sequence of roots from the parent of the positive port
to the center is labelled a(c̄a)pu+1c̄b; in τ this sequence is
labelled a(c̄a)puc̄b. Figure 2 shows π and τ for p = 1, u = 0
and o = 0.

d

b c c c c c c c cac c c ca c c c ca

- - - - - - - - - - - - - - - - - - -+

c c c c

- - - -

b c c c c

- - - - -

a

-

b c c c c c c c cac c c ca c c c ca

- - - - - - - - - - -- - - - - - - -+

c c c c a

-- - - -

b c c c c

- - - - -

π3,0,1 =

τ3,0,1 =

b cac ca

- - - - -+

c

-

b c

- -

a

-

b cac ca

- - -- -+

c a

--

b c

- -
π =

τ =

a

+ -

b c a

b c d

π = t̄ =

s̄ =

π[t̄, s̄] =

Figure 2: The templates π and τ for p = 1, u = 0
and o = 0. The right b node is the center of each
template.

For fixed p, u, o ∈ N we define two sequences t̄ kp,u,o and s̄ kp,u,o
of hedges by induction on k: t̄ 0p,u,o is the single node labelled
d and s̄ 0

p,u,o is the single node labelled c. For k > 0

t̄ kp,u,o := πp,u,o
h
t̄ k−1
p,u,o, s̄

k−1
p,u,o

i
s̄ kp,u,o := τp,u,o

h
t̄ k−1
p,u,o, s̄

k−1
p,u,o

i
We say that a node α in t̄ kp,u,o corresponds to a node β

in s̄ kp,u,o (or vice versa) if α and β have the same distance
and direction to the center of their respective sequence of

siblings. A root α of t̄ kp,u,o or s̄ kp,u,o has positive polarity, if

the sequence of its children forms t̄ k−1
p,u,o and α has negative

polarity otherwise. Observe that α has positive polarity iff it
is obtained from the parent of a positive port in the inductive
construction of t̄ kp,u,o or s̄ kp,u,o.

Finally, tp,u,o is the tree with positive polarity in t̄ o+1
p,u,o and

sp,u,o is a tree with root labelled a and negative polarity in
the same hedge. Figure 3 shows t and s for p = 1, u = 0 and
o = 0.

Part (i) of Lemma 13 is obvious:

Proposition 14. For all p, o, u ∈ N, tp,u,o satisfies Qpu+1

but sp,u,o does not.

We now fix p, u, o and omit p, u, o as a subscript.

We proceed to show that Duplicator has a winning strat-
egy for the CTL∗↔(rpd ≤ p, rud ≤ u; other ≤ o)-game on
t̄ o+1 and s̄ o+1. We use the obvious extension of CTL∗↔ to
hedges: The node formula ∃�φ is true at the root α of a
tree in a hedge t̄ if φ is true on the sequence of roots of t̄
to the right of α. In a similar way, the CTL∗↔-game can
be extended to hedges, such that the players can choose the
sequence of roots right of the current selection in ∃� moves.
The symmetric definitions hold for leftward paths.

During the game t̄ o+1 and s̄ o+1, Duplicator can maintain
an invariant on the string of siblings of the selected nodes
α, β. This invariant is similar to the invariant used in the
word game from Section 2.2. But this time, Duplicator not
only has to assure that the strings to the right of the se-
lected nodes are similar, but also those to the left of them.
We therefore define the inverse versions of Top-Depth and
Plateau-Depth. The Inverse-Plateau-Depth ipd(α) of a node
α is the number of cs between α and the next node labelled
a or b to the left of α. Then Bottom-Depth bd(α) of α is the
number as between α and the next b to the left of α. For
a node α in t̄k or s̄k we denote by pd(α) the Plateau-Depth
of α with respect to the sequence of siblings of α or on the
sequence of roots of t̄k or s̄k, if α is the root. We use the
same notation for ipd, td, and bd.

The following claim is sufficient for part (ii) of Lemma 13.

Claim 2. Let r ≤ p and d, l ≤ o. Assume that α is a
root in t̄ d+1 and β is a root in s̄ d+1 such that α, β satisfy
the conditions 1 to 4 below. Then Duplicator can win the
CTL∗↔(rpd ≤ p, rud ≤ u; other ≤ o)-game with α, β selected
and (l, d, r) moves left to play.

1. α =pd β.

2. |td(α)− td(β)| ≤ 1.

3. If α 6=td β then

(a) td(α) ≥ ru and td(β) ≥ ru
(b) if td(α) = ru or td(β) = ru then pd(α) = pd(β) ≥

ro.

191

dccc c c

c a c a c b
... ...

a

dccc c c

c a c a c b
... ...

bc

a

c a c a c b

a

...

...

c cc c cd

...

...

...

dccc c c

c a c a c b
...

c

...

a

dccc c c

c a c a c b
... ...

a

dccc c c

c a c a c b
... ...

dccc c c

c a c a c b
...

c

...
c a c a c b

a

...

c cc c cd

...

dccc c c

c a c a c b
...

c

...

dccc c c

c a c a c b
... ...

b...

Figure 3: The trees t2 (top) and s2 (bottom) for p = 1, u = 0, and o = 0. Roots of positive subtrees are
displayed with double circles, roots of negative subtrees with single ones.

4. If α 6=bd β then

(a) bd(α) ≥ lo and bd(β) ≥ lo
(b) if bd(α) = lo or bd(β) = lo then ipd(α) = ipd(β) ≥

lo.

Proof. The lemma is proven by induction on l + d + r.
The base case holds as it follows from the invariant that α
and β have the same label.

For the induction step, we first consider downward moves.
Assume that Spoiler picks a downward path p. Let α′ be
the child of α on p. We first determine the child β′ of β on
the path q that Duplicator chooses. Duplicator’s goal is to
pick β′ such that α′, β′ satisfies the invariant, for (l, d−1, r)
moves left and such that the trees rooted at α′ and β′ have
the same polarity. The easiest case is when the node γ that
corresponds to α′ has the same polarity as α′: in this case
Duplicator can choose β′ to be γ. Otherwise there are two
cases: If α′ has positive polarity, then Duplicator picks the
single child of β that has positive polarity. If β has nega-
tive polarity (and hence its corresponding node has positive
polarity), the Duplicator picks the single child of β who’s
corresponding node has positive polarity. Observe in any
case α′ has the same polarity as β′. Thus the trees rooted
at α′ and β′ are isomorphic, and Duplicator can choose a
path starting at β′ isomorphic the suffix of p starting at α′.

Chosen this way, p and q have the same labelling. Therefore
Duplicator can play isomorphically on the path game. It
remains to verify that all possible intermediate positions of
the path game are winning positions for Duplicator. This
is obvious if α, β is the final position. For the case that
α′, β′ is an intermediate position of the path game, we ver-
ify that this position maintains the invariant for (l, d− 1, r).
The interesting case is when α′ and β′ both have positive
polarity. Assume that the sequence of siblings of α′ is ob-
tained from π and that the siblings of β′ are obtained from
τ . We now check the invariant. Conditions 1 and 2 are ob-
vious. To check Condition 3 observe that the string from
α′ to the next right sibling labelled with b forms the string
a(c̄a)pu+1c̄b and the string from β′ to its next b right sib-

ling is labelled a(c̄a)puc̄b where c̄ abbreviates cmax(po,o2). As
r ≤ p this shows that Condition 3 is maintained. For Condi-

tion 4, observe that both α′ and β′ are contained in a block
of siblings forming the string

bc̄(ac̄)pu+o2+2b

Hence the string from α′ to its next b left sibling is a(c̄a)o
2
c̄b

and the string from β′ to its next b left sibling is a(c̄a)o
2+1c̄b.

As l ≤ o this shows that Condition 4 is maintained. If the
final position of the path game is further down in p, q than
α′, β′, then the selected nodes are isomorphic positions in
isomorphic hedges, and therefore winning positions for any
number of moves left to play.

Now assume that Spoiler picks a rightward fullpath p in
either hedge. Duplicator has to choose the unique rightward
fullpath q starting at the selected node in the other hedge.
The players then play the LTL(ud ≤ u, ned ≤ o) game on the
selected paths. In this game, Duplicator uses the strategy
described in Section 2.2. The following claim can be shown
using the strategy described under Claim 1.

Claim 3. In the setting above, assume Duplicator uses
the Etessami-Wilke strategy. Let α′, β′ be the roots of the
selected paths p′, q′ after u′ ≤ u U - and o′ ≤ o F - and X -
moves of the path game. Then either p′ is isomorphic to q′

or

1. α =pd β.

2. |td(α)− td(β)| ≤ 1.

3. If α 6=td β then

(a) td(α) ≥ (r − 1)u+ u′ and td(β) ≥ (r − 1)u+ u′

(b) if td(α) = (r − 1)u + u′ or td(β) = (r − 1)u + u′

then pd(α) = pd(β) ≥ (r − 1)o+ o′.

It is easy to check that at any intermediate position of the
path game satisfies the invariant of Claim 2.

Duplicator’s strategy for leftward path moves is symmetric
to her strategy on right paths moves. The proof that this
strategy maintains the invariant follows the same lines as
above.

192

As in the case of the word game, it is easy to see that Du-
plicator can still win the game if the templates are pruned
to (po+1)rev · b · po: i.e. that Lemma 13 holds for finite trees.

Now consider the special case of Lemma 13 where u = 0. In
this case the lemma reads that each tp,0,o satisfies Q1 but no
sp,0,o does. In addition Duplicator wins the CTL∗↔(rpd ≤
p, rud = 0; other ≤ o)-game on tp,0,o, sp,0,o. Hence Q1 can
not be expressed in CTL∗↔(rpd ≤ p, rud = 0; other ≤ o) for
any p, o. Hence

Corollary 15. CTL∗↔(rud = 0) is not first order com-
plete on ordered trees of infinite width

4. THE VERTICAL UNTIL HIERARCHY
We now show Theorem 6. We define a property Pu that can
be expressed in CTL∗↔(dud ≤ u) but not in CTL∗↔(dud ≤
u − 1). It simplifies our presentation to first show the the-
orem on infinite trees. Later, we will extend the proof to
finite trees.

For all x ∈ N we let Px be the set of ordered trees which
have a fullpath p ending at d such that each suffix of p that
starts with b satisfies the regular expression

b(c∗a)xΣ∗.

Pu can be expressed in CTL∗↔(dud ≤ u) by

∃� (G ((b→ µu) ∧ (X false→ d)))

where µu is defined recursively by

µ0 = true µx = cU (a ∧ µx−1)

We show that Pu can not be expressed in CTL∗↔(dud ≤
u− 1) for every u. By Proposition 8, the following lemma is
sufficient.

Lemma 16. For all u ≥ 1, o ≥ 0 there are two finite
trees tu,o and su,o such that (i) each tu,o satisfies Pu but no
su,o does and (ii) Duplicator has a winning strategy for the
CTL(dud ≤ u− 1; other ≤ o) game on tu,o, su,o.

We first describe how to construct tp,o and sp,o. Figure 4
shows two templates πu,o and τu,o that will be of interest to
us. Positive and negative ports are denoted with “+” and
“−” respectively. The node labelled “±” represents the only
distinction between πu,o and τu,o: it is a positive port in
πu,o and a negative port in τu,o

In each of the two templates, the leftmost branch consists
of the root labelled b followed by infinitely many coa blocks.
The final c node in any co sequence has two children: the
left child is labelled a and the right child is a positive or
negative port. In both πu,o and τu,o the topmost u−1 ports
are negative. In πu,o the next two ports are positive, while
in τu,o only the next port is positive. All other ports are
negative.

Fixing u ≥ 1, o ≥ 0, we will define two sequences of trees
tku,o and sku,o by induction on k. t0u,o consists of a single node

u-1 many c*a blocks

fooling node

witness node

-

c

c

-

c

c

a

c

c

a

c

c

a

c

c

a

+

+

fooling node

-

b

a

o many c nodes

-

Figure 4: The templates πu,o and τu,o

labelled d, while s0u,o consists of a single node labelled c. For
k ≥ 1:

tku,o := πu,o
h
tk−1
u,o , s

k−1
u,o

i
sku,o := τu,o

h
tk−1
u,o , s

k−1
u,o

i
We will later define tu,o (and su,o) to be tku,o (sku,o respec-
tively) for some large k that depends on u and o.

We call a b(c∗a)ω labelled path within tku,o or sku,o a stem.
Observe that a stem is isomorphic to πu,o (or τu,o) without
ports. A node that is connected to the root of a stem by a
path labelled b(c∗a)xc∗b is called a witness node if x = u and
fooling node if x = u− 1 or x = u+ 1. A path that always
departs from the stem on the witness node is a witness path.
Observe that both tk and sk contain several witness paths.
The enclosing subtree of a node α in t ∈ {tku,o, sku,o} is the
smallest subtree of t that contains α and that is isomorphic

to either tk
′
u,o or sk

′
u,o for some k′ ≤ k. A Subtree t of tku,o or

sku,o has positive polarity if it is isomorphic to tk
′
u,o for some

k′ ≤ k and t has negative polarity otherwise. The polarity
pol(α) of a node α is the polarity of its enclosing subtree.

We first note:

Proposition 17. Let u ≥ 1 and k, o ≥ 0. Then tku,o
satisfies Pu but sku,o does not.

Proof. The proposition obviously holds for the trees t0u,o
and s0u,o. We show by induction on k that the witness path

that contains the root of tku,o witnesses that tku,o ∈ Pu: As the

193

witness path departs from the topmost stem on the witness
node it starts with a sequence labelled b(c∗a)uc∗b. Hence the
first b is followed by sufficiently many a nodes. In addition,
it departs from the topmost stem into a subtree isomorphic
to tk−1

u,o . Within tk−1
u,o we can conclude by induction that the

witness path containing the root witnesses that tku,o ∈ Pu.

For sku,o we know by induction that any subtree of sku,o of
negative polarity does not contain a path witnessing that
sku,o ∈ Pu. Hence a path witnessing sku,o ∈ Pu must con-
tain the upper fooling node of the topmost stem. But any
path that contains this node starts with a sequence labelled
b(c∗a)u−1c∗b.

We now turn to part (ii) in Lemma 16. Before we delve into
the details of Duplicator’s strategy, we describe this strategy
at a higher level.

4.1 The Strategy: Challenges for Duplicator
Fixing u ≥ 1, o ≥ 0 we now refer to just tk and sk omitting
the subscripts.

Our goal will be to show that there is a k such that Du-
plicator has a winning strategy for the CTL∗↔(dud ≤ u −
1, other ≤ o) game on tk, sk.

We start with some intuition about the strategy of Dupli-
cator. The idea is that tk and sk consist of several “similar
levels” of subtrees. We will show that there is a number λ
such subtrees on levels that are λ apart and of the same po-
larity are winning positions for Duplicator. The game will
start on similar levels, but on trees of different polarity. As
Spoiler eventually wins on trees of non-similar levels, Du-
plicator must assure that the selected nodes stay on similar
levels throughout the game. Duplicator can not force the
game to a position with both similar levels and of the same
polarity, thus her strategy is to maintain the position on
similar levels regardless of the polarities. As Duplicator has
to keep the position on similar levels, Spoiler can force the
game down a fixed number of levels on each move. Thus
Duplicator can only win the game on trees with very many
similar levels. Thereby she must assure that the selected
nodes are high up in the tree if the polarities of their enclos-
ing subtrees differ.

Basically, Duplicator will have to disguise that the witness
path in tk ends on a d while the witness path in sk ends in
a c. Clearly, Duplicator must have a remedy when Spoiler
plays the witness path in tk. In fact, Duplicator’s strategy
depends on the place where Spoilers path departs from the
witness path. Assume Spoiler picks a path pp′ that departs
from the witness path on the root of p′. Then Duplicator’s
response depends on the length on p.

The case where p is short is“easy”for Duplicator: she picks a
path qq′ such that q is isomorphic to p. To choose q′, observe
that there are two possibilities for path pp′ to depart from
the witness path. If pp′ departs above the witness node then
Duplicator can choose the root of q′ such that the roots p′

and q′ have the same polarity. As Duplicator maintained
similar levels throughout the game the roots of p′ and q′ are
on similar levels and hence winning positions for Duplicator.

She can use her winning strategy to determine the rest of
q′. If pp′ does not depart from the witness path above the
witness node then it departs on the (a-labelled) sibling of
the witness node. We will see that in this case Duplicator
has an “easy” strategy to determine q′. It is easy to see that
Duplicator wins the path game if the paths are chosen in
this way. There are two cases for its final position: If the
final position is in p, q, the Duplicator has achieved her goal
to keep the trees big, and therefore she wins by induction.
If the final position is in p′, q′ then the selected nodes are
on similar levels and of the same polarity – and Duplicator
wins by the definition of similar levels.

The case that p is long is more threatening for Duplicator.
If Duplicator uses the strategy for “short” moves described
above then the final position of the path game might be in
small subtrees of different polarity. In this case it is not
guarantied that there are sufficiently may levels below the
selected nodes for Duplicator to use her strategy. Therefore
Duplicator will respond to such a “long” move of Spoiler by
picking a path that moves off of a stem at a different point
some place down the tree – Duplicator has some flexibility
as to where to do this “fooling”, which we will exploit.

But given that Duplicator has played a fooling path, the first
cause for concern is that Spoiler may try to detect a distinc-
tion in the paths by moving to the “fooling point” where
the two paths are first distinguished – the point in which
one path departs from a stem at a different point from the
other path. Note that on the witness path, the number of
c∗a blocks between the root of a stem and the departure
point is u. Hence Spoiler will be unable to use only until
moves to force the play to this point on the critical path,
since his until moves are limited to u−1. But one must still
worry that Spoiler can try to push the play down to this
point using eventually moves, which he has in some abun-
dance. The response of the Duplicator to these threatening
eventually moves will be to jump down to a lower stem.
This is analogous to the strategy used by the Duplicator
in the linear case of the Until-Depth hierarchy theorem of
Etessami and Wilke ([5], Theorem 9); there, the Duplicator
responds to eventually moves of the Spoiler by jumping to
next b(c∗a)∗c∗b block in the word.

However, this “jumping response” of Duplicator can not be
done so naively in the setting of ordered trees. If Duplicator
jumps so that the position is only one level off from the posi-
tion of Spoiler, then the two nodes are on non-similar levels.
In particular the selected nodes are in enclosing subtrees ti

and sj where i and j have different parities; Spoiler can de-
tect this difference in parity of i and j by playing paths that
alternate in the way they jump from stem to stem: e.g. by
playing a path that will depart after two a’s on even levels
and after one a on odd levels. This method of detecting
differences in trees of different depths goes back to Potthoff
[15]. The general problem is that two distinct depths of the
tree could have cardinalities with different properties, and
this difference can be exposed by further path moves.

Duplicator will remedy this problem by making not a small
jump down one stem, but an“exaggerated jump”that moves
down λ stems to a place that looks locally (on its stem)
isomorphic to the place where Duplicator has played. How

194

do we ensure that a locally similar place exists? Duplicator
will make sure that in all cases where Spoiler can execute this
strategy, the currently-played paths below the fooling point
begin with a large segment of the witness path. Duplicator
can guarantee this on path moves because if p is not long,
there is no need to perform fooling at all. On the other
hand, if p is long, Duplicator can play a path that has a long
regular structure at the top, which allows him to perform the
exaggerated jump.

We now formalise the notion of “similar levels”. The next
lemma states that if k is sufficiently big, then tk and sk

contain many levels of subtrees that can not be distinguished
by CTL∗↔(ud ≤ u, ned ≤ o+ 1) formulas.

Lemma 18. For all u, o ∈ N there are µu,o, λu,o ∈ N such
that λu,o ≥ 2 and for all n ≥ µu,o

tnu,o ≡u,o+1 t
n+λu,o
u,o and snu,o ≡u,o+1 s

n+λu,o
u,o

As we fixed u, o above, we abbreviate µu,o by µ and λu,o by
λ.

Proof. Let Ek be the pair of ≡u,o+1-classes of tku,o and

sku,o. Since the number of equivalence classes is finite for
each fixed u, o, there must be µ and λ such that Eµ+λ = Eµ,
and we claim that this µ and λ suffice. We first note that
for a fixed template q the ≡u,o+1-class of q[t, s] for ordered
trees t, s depends only on the ≡u,o+1-classes of t and s. This
follows by induction using the usual composition technique
for trees (see e.g. [14]). Hence from tnu,o ≡u,o+1 t

n+λ
u,o and

sn+1
u,o ≡u,o+1 s

n+1+λ
u,o we can conclude (applying πu,o to both

equivalence classes) tn+1
u,o ≡u,o+1 tn+1+λ

u,o , and snu,o ≡u,o+1

sn+λ
u,o (applying τu,o to both equivalence classes). The result

now follows by induction.

Now define

Definition 19. For all u, o ∈ N we define the relation
.
=u,o ⊆ N× N by

m
.
=u,o n iff n,m ≥ µ and n = m+ λ

Again, we write
.
= for

.
=o,u. Observe that if n,m ≥ µ then

n
.
= m iff n+ k

.
= m+ k for any k ∈ N.

A node α is on level i if its enclosing subtree is isomorphic
to either ti or si. Two nodes α, β in tk or sk are on similar
levels if α is on level i, β is on level j, and i

.
=u,o j. In this

case we write α
.
= β.

We now define

tu,o := tf(u,o)u,o

su,o := sf(u,o)u,o

where f(u, o) = 3o2λ+ µ+ 1.

We now turn to the notion of an “easy game”. For many
positions α, β in the game played on tk and sk, there is an
“easy win” for Duplicator in the CTL∗↔(dud ≤ u; other ≤ o)
game starting at α, β; this is the case whenever α, β are in
stems of similar (i.e.

.
=) depth, they are locally isomorphic

on their stems, and both nodes are not on the witness path.

We denote by pd(α) the Plateau-Depth (pd) of α on the
stem that contains α.

Lemma 20. Let k ∈ N. Let α be a node in tk and let β
be a node in sk such that

• α .
= β,

• α =pd β, and

• α and β are both not on witness paths.

Then Duplicator has a winning strategy for the CTL∗↔(dud ≤
u; other ≤ o+ 1) game on tk, sk with α, β selected.

Proof. The definition of
.
= implies that Duplicator has

a winning strategy for the CTL∗↔(dud ≤ u; other ≤ o + 1)
game played from the root of any two enclosing trees of
the same polarity (i.e. both ti’s or both si’s) that are λ
apart. Duplicator can derive a winning strategy for the
CTL∗↔(dud ≤ u; other ≤ o + 1) game starting at α, β from
this: in response to a path move p of Spoiler, she plays a
fullpath that concatenates a path isomorphic to q on the up-
permost stem with a fullpath that is a given by the winning
strategy above below the uppermost stem. The latter win-
ning strategy exists because the stems below the uppermost
ones must also differ in b-depth by λ, and must have the
same polarity. Subsequent next, eventually, and until moves
can be handled by breaking up into cases: for example, an
eventually move in the uppermost stem is answered isomor-
phically, while an eventually move outside the uppermost
stem is done according to the winning strategy.

4.2 The Strategy in Detail
In this section we show a claim that is sufficient for part
(ii) of Lemma 16. As in the game arguments given in the
previous sections, we show that Duplicator can maintain an
invariant throughout the game. Recall that we denote by
pd(α) the Plateau-Depth of α on the stem that contains α.

Claim 4. Let d, l, r ≤ o and let k > λ(u + o)(l + d +
r) + µ. Assume that p, q are paths in tk, sk that satisfy
the Conditions 1 to 4 below. Then Duplicator can win the
CTL∗↔(dud ≤ u − 1; other ≤ o)-game with (l, d, r) path
moves left to play and p, q selected.

1. lab(root(p)) = lab(root((q)).

2. p
.
= q.

3. p =pd q.

4. If pol(root(p)) 6= pol(root(q)) then level(root(p)) > m
and level(root(q)) > m where m = (λ(u + o) + 1)(l +
d+ r) + µ.

195

Proof. If pol(root(p)) = pol(root(q)) then Duplicator
has a winning strategy by definition of

.
= . Hence we prove

the claim by induction on l+d+r assuming that pol(root(p))
6= pol(root(q)).

The base case follows from Condition 1.

In the induction step, the cases where Duplicator chooses a
horizontal path are obvious.

For downward moves we distinguish several cases.

Case 1. Spoiler chooses a downward path p in tk. As noted
above, Duplicator’s strategy depends on the length of the
prefix of p that is on a witness path. Therefore let p1, . . . , pn
be a partition of p such that the concatenation p1 · . . . · pn−1

is a maximal prefix of p that is a witness path and each pi
(i ≤ n− 1) is contained in exactly one stem.

Below we write r =lab s if the path r has the same labels as
the path s. Observe that the labelling determines a down-
ward path in tk or sk as any node has at most one child with
each label.

Case 1.1. n ≤ λ(u + o) + 1. That is, Spoiler has made
a “short move”. As described in the previous subsection,
Duplicator has an easy strategy. Duplicator first chooses a
prefix q1 · . . . · qn−1 of the full path q = q1 · . . . · qn that
she will choose in the game. She picks this prefix such that
qi =lab pi for i ≤ n−1. The qi exists by Condition 4 and our
assumption that pol(α) 6= pol(β). To determine qn, recall
that p departs from the witness path on the root of pn. There
are two ways in which a path can depart from a witness path:
above the witness node or on the sibling of the witness node.
In the first case the root αn of pn is labelled b and in the
second case αn is labelled a. In both cases we define the root
βn of qn to be the child of the leaf of qn−1 that has the same
label αn. If αn and βn are labelled a then both nodes are not
on any witness path. Hence it follows from Lemma 20 that
Duplicator wins the CTL∗↔(dud ≤ u; other ≤ o + 1)-game
if αn, βn are selected. If αn and βn are labelled b then the
subtrees rooted at αn and βn have the same polarity. As αn
and βn are also on

.
= levels, it follows from the definition of

.
=

that Duplicator can win the CTL∗↔(dud ≤ u; other ≤ o+ 1)
if αn, βn are selected. In both cases, Duplicator can use her
winning strategy for the CTL∗↔(dud ≤ u; other ≤ o + 1)-
game to determine a path qn rooted at βn such that she
has a winning strategy for the LTL(ud ≤ o, ned ≤ o + 1)
on pn, qn and each intermediate position of this game is a
winning position for the CTL∗↔(dud ≤ u; other ≤ o)-game.

We now describe Duplicator’s strategy for the LTL game on
p, q. Duplicator can the play isomorphically on p1 · . . . ·pn−1

and q1 · . . . · qn−1 as these paths are isomorphic. If Spoiler
chooses a node in pn or qn then Duplicator can use her
winning strategy for the LTL(ud ≤ u − 1, ned ≤ o + 1) on
pn, qn. These strategies can be composed to derive a win-
ning strategy for p, q (as described in Lemma 20). This
composed strategy has the property that if r, s is an inter-
mediate position of the path-game, then either the root of r
is in p1 · . . . · pn−1 and the root of s is in q1 · . . . · qn−1 or the
root of r in pn and the root of s is in qn.

It remains to show that any intermediate position r, s of the
path-game on p, q is a winning position for Duplicator in
the CTL∗↔ (dud ≤ u − 1; other ≤ o)-game. For positions
where the root of r is in p1 · . . . · pn−1 and the root of s is
in q1 · . . . · qn−1 it is easy to see that Conditions 1 to 3 of
Claim 4 are true. Condition 4 is satisfied as p1 · . . . ·pn−1 and
q1 · . . . · qn−1 are “short” (n ≤ (u+ o)λ) and hence the levels
of the roots of both r and s are sufficiently high up in the
trees. Thus Duplicator wins on these position by induction.
If the root of r is in pn and the root of s is in qn then γ, δ is
a winning positions for Duplicator by construction.

Case 1.2. n > λ(u + o) + 1. That is, Spoiler has played a
“long move”.

We first describe how Duplicator picks a path in response.
She will first pick a prefix q1 · . . . · qλ(u+o)+1 of her response
q = q1·. . .·qλ(u+o)+2 in the game. The qi with i ≤ λ(u+o)+1
have the following properties:

• q1 =lab p1

• q2 is labelled b(coa)u−1co. That is q2 is a prefix of a
stem that departs from its stem on the upper fooling
node. This is Duplicator’s “fooling” move.

• qi =lab pi for 3 ≤ i ≤ λ(u+ o) + 1.

The qi (i ≤ λ(u+ o) + 1) exist by Condition 4.

qλ(u+o)+2 can be obtained as in the short move. Let α′

be the root of pλ(u+o)+2 and let β′ be the child of the leaf
of qλ(u+o)+1 that has the same label as α′. Observe that
both the root of p3 and the root of q3 are roots of positive
subtrees. Hence α′ and β′ have the same polarity and Dupli-
cator wins the CTL∗↔(dud ≤ u; other ≤ o+1) game if α′, β′

are selected. This allows Duplicator to determine q(u+o)λ+2

rooted at β′ such that she wins the LTL(ud ≤ u, ned ≤ o)-
game on pλ(u+o)+2 · . . . · pn and qλ(u+o)+2, and each inter-
mediate position of this game is a winning position for the
CTL∗↔(dud ≤ u; other ≤ o) game. Duplicator chooses this
path, which completes the construction of q.

p1 q1

p2
q2

qλ(u+o)+1 pλ(u+o)+1 ·

pλ(u+o)+2 ·… pn

Figure 5: The paths chosen by Spoiler and Duplica-
tor in Case 1.2

196

In summary, we have two paths that consist of: isomorphic
segments on the first stem, similar (but undetectably dif-
ferent) segments on the second stem, isomorphic segments
lying on the witness path for a large number of subsequent
stems, and then terminating with suffixes that we know are
indistinguishable in a suitable LTL game (compare with the
informal description in Subsection 4.1). See Figure 4.2

We will show that Duplicator can win the LTL(ud ≤ u −
1, ned ≤ o) game on p2 . . . pλ(u+o)+1 and q2 . . . qλ(u+o)+1,
and that any intermediate position of this game is a winning
position for Duplicator in the CTL∗↔ (dud ≤ u− 1; other ≤
o)-game. As in Case 1.1. this strategy can be combined
with the obvious strategies for p1, q1 and pλ(u+o)+2 · . . . ·
pn, qλ(u+o)+2 to get a strategy for p, q.

Observe that the paths p2 . . . pλ(u+o)+1 and q2 . . . qλ(u+o)+1

are “long” versions of the paths used in Lemma 10. A stem
corresponds to a staircase, and hence the Top-Depth of a
node corresponds to its distance to the place where the path
leaves the stem. A block of the form coa within a stem
corresponds to a plateau, and hence the Plateau-Depth is
the position within such a block. We show that Duplicator
can maintain an invariant similar to the one in Claim 1. Let
the End-Depth ed(r) of a path r is the number of b labelled
nodes on r — that is, the number of stems remaining in the
path.

Claim 5. Duplicator can play the LTL(ud ≤ u− 1, ned ≤
o) game on p2 · . . . ·pλ(u+o)+1 and q2 · . . . ·qλ(u+o)+1 so that if
there are o′ ≤ o X - or F -moves and u′ ≤ u−1 U -moves left
to play then the selected path p′, q′ maintain the conditions
below.

1. p′ =pd q
′.

2. |td(p′)− td(q′)| ≤ 1.

3. If p′ 6=td q
′ then

(a) td(p′) ≥ u′ and td(q′) ≥ u′

(b) if td(p′) = u′ or td(q′) = u′ then pd(p′) = pd(q′) ≥
e′.

4. If p′ 6=ed q
′ or p′ 6=td q

′ then ed(p′) ≥ λ(u′ + o′) and
ed(q′) ≥ λ(u′ + o′)

5. p′
.
= q′

Observe that Conditions 1 to 3 are identical with Conditions
1 to 3 of Claim 1. Duplicator’s strategy is an extension of
her strategy explained in the proof of Claim 1.

Fix p′ and q′ satisfying the invariant. If u′ + o′ = 0 then it
follows from the invariant that p′ and q′ have the same label
and Duplicator wins. Now let u′ + o′ > 0.

It is easy to check that X -moves can not falsify Conditions
1 to 5. Now assume that Spoiler plays an F move and he
selects a suffix ri of some r ∈ {p′, q′}. Duplicator needs to
choose a suffix sj of the other path s.

Recall Duplicator’s strategy for F -moves from Claim 1. There
Duplicator selects sj such that ri is isomorphic to the suffix
sj that Spoiler selected. This is not possible in our current
setting for two reasons. First, the paths p′ and q′ are finite,
and hence there might not be a suffix of s that is isomorphic
to ri. Second, Duplicator must make sure that the roots of
the selected paths are

.
=.

Therefore Duplicator distinguishes two cases:

1. If Spoiler picks a suffix ri that is a suffix of s then
Duplicator picks si.

2. Otherwise, s must be a suffix of ri, since the initial
paths were in a suffix relationship, and hence suffixes
must be comparable. Duplicator picks the largest suf-
fix of s such that ri =pd s

j , ri =td s
j , and ri

.
= sj .

This is Duplicator’s “exaggerated jump”, moving up to
λ many b(coa)uco blocks (that is up to λ many stems)
to pick a suffix with the desired properties.

Observe that in the first case the roots of pi, qj are
.
= as the

leafs of pi, qj are
.
= and both paths span the same number of

stems. The other conditions are easy to check. In the second
case the chosen suffix of s will always be within the next
λ many b(coa)uco blocks. This shows that Condition 5 is
maintained. The other Conditions are obviously maintained.

We now describe Duplicator’s strategy for U -moves. As-
sume that Spoiler picks a suffix ri of r ∈ {p′, q′}. Duplica-
tor will choose a suffix sj of the other path s. We let (γ, γ′)
denote the subpath of r between γ and γ′, and similarly for
(δ, δ′).

Observe that if r =ed s and r =td s then it follows from
Condition 1 that r and s are isomorphic, and hence Dupli-
cator wins. Therefore we can assume that r 6=ed s or r 6=td s.
Hence it follows from Condition 4 that ed(s) ≥ λ(u′+o′). In
particular, |s| ≥ λ(u′+o′)(u+1)(o+1) since each b(coa)uco

block contains exactly (u+ 1)(o+ 1) many nodes. This will
be sufficient for the existence of the suffixes sj selected by
Duplicator in the first half move.

We distinguish several subcases.

• Subcase 1. Spoiler selects a suffix ri of r such that
i ≤ o + 2; si exists because the cardinality of |s| ≥
λ(u′ + o′)(u + 1)(o + 1) Then Duplicator chooses si.
Figure 6 shows a visualisation of this strategy.

Condition 3 is maintained since the td of both r and
s can decrease at most by one on such a move. The
other conditions are obvious.

b co a co b co a

b co a co b co a

b co a co b co a

b co a co b co a

b co a co b co a

Figure 6: Duplicator’s strategy on the first half move
in Subcase 1. Duplicator selects sj such that there
is an arrow from the root of ri to the root of sj.

197

• Subcase 2. Spoiler selects a suffix ri such that i >
o+ 2 and either i ≤ λ(o+ 1)(u+ 1) or ri is not a suffix
of s.

Duplicator selects the largest suffix sj of s such that
sj =pd r

i, sj =td r
i and sj

.
= ri. The intuition is that

if ri is in the same stem as the root of r, then Du-
plicator picks an appropriate node within the current
stem. This is possible, since the td of the roots of r
and s were off by at most one, and Spoiler has moved
at least o+ 2 (i.e. at least one coa block). If ri is not
in the same stem as r but within the next λ stems,
then Duplicator can find such a suffix by skipping the
same number of stems as Spoiler, and then finding the
appropriate node within that stem (see Figure 7). If
level(r) − level(ri) = k and k ≥ λ, that is ri is more
than λ stems away from r, then Duplicator skips k
mod λ stems to find the appropriate suffix sj .

b co a co b co a

b co a co b co a

b co a co b co a

b co a co b co a

b co a co b co aFigure 7: Duplicator’s strategy for Subcase 2. when
Spoiler chooses ri such that i ≤ λ(o+1)(u+1). Dupli-
cator selects sj such that there is an arrow from the
root of ri to the root of sj. All nodes in grey boxes
are

.
=.

Duplicator can do this because the suffix sj can be
found within the next λ(o+ 1)(u+ 1) nodes: Observe
that for any suffix of the witness path w it holds that
w =pd w

o+2, provided that wo+2 exists. Hence there
is a suffix sk of s such that sk =pd r

i and k ≤ o+ 1. A
similar argument shows that a sk with sk =pd r

i and
sk =td r

i can be found within the next (o + 1)(u + 1)
nodes. If in addition sk

.
= ri has to be satisfied then

λ(o + 1)(u + 1) nodes are sufficient. This shows that
sj exists, as |s| ≥ λ(u′ + o′)(u+ 1)(o+ 1).

In the second half move, Spoiler selects a suffix sj
′

such

that 1 < j′ ≤ j. Then Duplicator selects ri
′

where

i′ =

(
j′ if j′ ≤ o+ 2 and td(r) < td(s)

i− (j − j′) otherwise.

That is, if Spoiler selected a node close to the root of s
then Duplicator mimics the distance from the root of

s to the root of sj
′
. Otherwise Duplicator mimics the

distance from the end of s to the end of sj
′
.

We show that 1 < i′ ≤ i. This is obvious if i′ is
defined by the first line of its definition. Now assume
that i′ is defined by the second line. Then j′ > o + 2
or td(r) ≥ td(s). First assume td(r) ≥ td(s). As r
and s satisfy the conditions of Claim 5, r and s are
equivalent under =pd and

.
=. By Duplicator’s strategy

for the first half move ri and sj are equivalent under
=pd, =td, and

.
=. It follows from Condition 2 that there

is an l ∈ N such that either i = j+m or i = j+o+1+m
where m = lλ(o + 1)(u + 1). Substituting this into
definition of i′ shows that either i′ = j′ + m > 0 or
i′ = j′ + o + 1 + m > 1. Now assume j′ > o + 2 and
td(r) < td(s). Then i = j − (o + 1) + m and thus

i′ = j′ − (o + 1) + m. As j′ > o + 2 it follows that
i′ > 1. It holds that i′ ≤ i since j′ ≤ j.
It is easy to check that the conditions are maintained
if i′ is defined by the first line of its definition. For the
other case observe that if ri and sj are equivalent under
=pd, =td, and

.
= then ri−1 and sj−1 are equivalent

under =pd, =td, and
.
=. Hence ri

′
and sj

′
are equivalent

under =pd, =td, and
.
= and thus Conditions 1, 2, 3, and

5 are true for ri
′

and sj
′
.

To check Condition 4, recall that we can assume that
either r 6=ed s or r 6=td s (see the paragraph before the
subcases). Therefore by Condition 4, ed(r) ≥ λ(u′+o′)
and ed(s) ≥ λ(u′ + o′). We have argued above that
s was shortened by at most λ(o + 1)(u + 1) nodes,

thus sj
′

satisfies Condition 4. By the premise of this
subcase either i < λ(u+ 1)(o+ 1) or ri is not a suffix
of s. In both cases ed(ri) ≥ λ(u′ + o′) and hence

ed(ri
′
) ≥ λ(u′ + o′).

• Subcase 3. Spoiler selects a suffix ri of r such that
i > λ(o+ 1)(u+ 1) and ri is a suffix of s. In this case
Duplicator chooses sj such that ri =lab s

j . See Figure
8.

In the second half move, assume that Spoiler selects

a suffix sj
′

of s for some 1 < j′ ≤ j. Duplicator first

tries to select a suffix ri
′

of r such that ri
′

=lab s
j′ . If

r does not have such a suffix then Duplicator selects

the largest suffix of r such that ri
′

and sj
′

are equal
under =pd, =td, and

.
=.

We argue that there is a suffix as above exists. Note
that i > λ(o+1)(u+1) and we have argued in Subcase

2 that λ(o+ 1)(u+ 1) nodes are sufficient to find a ri
′

with the desired properties. Hence we can find i′ such
1 < i′ ≤ i.

b co a co b co a

b co a co b co a

b co a co b co a

b co a co b co a

b co a co b co a

Figure 8: Duplicator’s strategy for Subcase 3.

It is obvious that the conditions are maintained, if

Duplicator chooses ri
′

such that ri
′

=lab s
j′ . Other-

wise Conditions 1, 2, 3, and 5 are obvious. We now
argue that Condition 4 is maintained. First assume

that r =ed s. Then there is a suffix ri
′

of r such that
ri

′
=lab s

j′ contradicting the hypothesis. Therefore as-
sume r 6=ed s. Then by Condition 4 ed(r) ≥ λ(u′ + o′)
and ed(s) ≥ λ(u′+o′). By Duplicator’s strategy in the
first half move, r only got shortened by λ(u+1)(o+1)

nodes and hence ed(ri
′
) ≥ ed(r)−λ. In addition r must

be a suffix of sj
′

and hence ed(sj
′
) ≥ ed(r) ≥ λ(u′+o′).

Thus Condition 4 is maintained.

This completes the proof of Claim 5.

Case 2. Spoiler picks a path q in sk that is rooted at q. In
this case Duplicator’s strategy is largely symmetric to her
strategy in Case 1. The only difference is that if Duplicator

198

plays a fooling move, then she chooses a path that moves off
the stem on the lower fooling path.

Case 2.1. n ≤ (u+ o)λ. This case is exactly like Case 1.1.

Case 2.2. n > (u+ o)λ. The Duplicator picks p = p1 · . . . ·
p(u+o)λ such that each pi for i ≤ (u + o)λ − 1 is the prefix
of a stem and

• p1 =lab q1

• p2 is labelled b(coa)u+1co. That is, q2 is a prefix of a
stem that departs from its stem on the lower fooling
node.

• pi =lab qi for 3 ≤ i ≤ λ(u+ o) + 1.

The pi exist by Condition 4. Duplicator picks pλ(u+o)+2 as
in Case 1.2.

Duplicator’s strategy for the path-game is similar to Case
1.2. In fact, Duplicator can maintain the same invariant as
in Case 1.2.

We fix a suffix p′ of p2 · . . . · pλ(u+o)+1 and a suffix q′ of
q2 · . . . · qλ(u+o)+1 satisfying the invariant.

X -moves are as in Case 1.2.

Duplicator’s strategy on F -moves is as in Case 1.2, apart
from the following case. Assume that Spoiler plays an F -
move and he selects pi for some i ≤ o+ 2. Observe that

p2 · . . . · pλ(o+u)+1 =lab b(coa)u+1co(b(coa)uco)λ(o+u)

q2 · . . . · qλ(o+u)+1 =lab (b(coa)uco)λ(o+u)

Thus there is no qj such that pi =td q
j . In this case Dupli-

cator will select qi. It is easy to check that this maintains
the invariant.

Observe that if i > o+ 2 or Duplicator selects a suffix of q′

then Duplicator can use the strategy described in Case 1.2.

On U -moves Duplicator uses the same strategy as in Case
1.2.

4.3 The Finite Case
Part (ii) of Lemma 16 can also be shown for finite trees.
The idea is to define trees tkfin and skfin that are obtained
from tk and sk by pruning the stems at some point. In
particular, each stem in tkfin and skfin spells out the finite word
b(c∗a)o(u+o)+u. The witness node and the fooling nodes are
as in tk and sk.

Let the Stem-Depth sd(α) of a node α be the number of a
labelled nodes on a full downward path rooted at α that
contains no right siblings. The Stem-Depth of a path p is
the Stem-Depth of its root. One can show the following for
some fixed o ≥ 0 and u ≥ 1.

Claim 6. Let d, l, r ≤ o and let k > λ(u + o)(l + d +
r) + µ. Assume that p, q are paths in tkfin, s

k
fin that satisfy

the Conditions 1 to 4 below. Then Duplicator can win the
CTL∗↔(dud ≤ u − 1; other ≤ o)-game with (l, d, r) path
moves left to play and p, q selected.

1. lab(root(p)) = lab(root((q)).

2. p
.
= q.

3. p =pd q.

4. If pol(root(p)) 6= pol(root(q)) then level(root(p)) > m
and level(root(q)) > m where m = (λ(u + o) + 1)(l +
d+ r) + µ.

5. sd(p) ≥ d(u+ o) and sd(q) ≥ d(u+ o)

Duplicator can use a similar strategy as in the infinite case.
But if the stems are finite, Spoiler might try to detect that
the roots of the selected nodes are off by one, when Du-
plicator plays a “fooling” move. Therefore the finite stems
must be chosen long enough for Duplicator to disguise the
non-isomorphic position on the stem. We omit the details.

5. CONCLUSIONS AND FUTURE WORK
In this work we have investigated what direction-restricted
XML query languages can be first-order complete. We be-
gan with the language CTL∗↔ based on the whole of LTL
going downwards and sideways, and we have shown that one
cannot make due either with no untils in one of the horizon-
tal directions or with a restriction on the number of untils
vertically.

In future work we intend to characterise the precise ex-
pressiveness of the languages CTL∗↔ud=k, in terms of frag-
ments of first-order logic. We also need to investigate more
thoroughly the relationship of the languages CTL∗↔ud=k with
the queries of “bounded operator depth” mentioned by Bo-
jańczyk [3]. For the moment we note the following distinc-
tion: [3] states that the queries of bounded operator depth
cannot capture all languages of the form:

Qn := ∃�(anb)∗

In contrast, all these Qn are contained at the lowest level of
our hierarchy.

Thérien and Wilke [19] have given an algebraic characteri-
sation of the LTL formulas of fixed Until-Depth on words,
and have used this to show how to decide whether a formula
is of a given Until-Depth. We do not know whether one can
decide membership in CTL∗↔ud=k (or in CTL∗ud=k).

Acknowledgements: We thank the ICDT referees for in-
valuable comments on the submission. We also thank Miko laj
Bojańczyk for many suggestions and corrections, and for
providing the construction that underlies Theorem 5.

6. REFERENCES
[1] Pablo Barcelo and Leonid Libkin. Temporal Logics on

Unranked Trees. In LICS, 2005.

[2] Michael Benedikt and Alan Jeffrey. Efficient and
Expressive Tree Filters. In FSTTCS, 2007.

[3] Miko laj Bojańczyk. Effective Characterizations of Tree
Logics. In PODS, 2008.

199

[4] E. Allen Emerson. Temporal and Modal Logic. In Jan
van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume 2, chapter 16, pages
995–1072. Elsevier Science Publishers B.V., 1990.

[5] Kousha Etessami and Thomas Wilke. An Until
Hierarchy and Other Applications of an
Ehrenfeucht-Fräısse Game for Temporal Logic.
Information and Computation, 160:88–108, 2000.

[6] Dov Gabbay, Amir Pnueli, Saharon Shelah, and
Jonathan Stavi. On the temporal analysis of fairness.
In POPL, 1980.

[7] Thilo Hafer and Wolfgang Thomas. Computation Tree
Logic CTL* and Path Quantifiers in the Monadic
Theory of the Binary Tree. In ICALP, 1987.

[8] Hans Kamp. Tense logic and the theory of linear
order. PhD thesis, University of California, Los
Angeles, 1968.

[9] Leonid Libkin. Elements of Finite Model Theory.
Springer, 2004.

[10] Maarten Marx. Conditional XPath, the First Order
Complete XPath Dialect. In PODS, 2004.

[11] Maarten Marx. Conditional XPath. ACM Trans.
Database Syst., 30(4):929–959, 2005.

[12] Maarten Marx. First Order Paths in Ordered Trees. In
ICDT, 2005.

[13] Maarten Marx and Maarten de Rijke. Semantic
Characterizations of XPath. In TDM’04 Workshop on
XML Databases and Information Retrieval, 2004.

[14] Faron Moller and Alexander Rabinovich. On the
Expressive Power of CTL. In LICS, 1999.

[15] Andreas Potthoff. First-order logic on finite trees. In
Theory and Practice of Software Development
(TAPSOFT), 1995.

[16] Alexander Rabinovich. Expressive Power of Temporal
Logics. In Concur, 2002.

[17] Alexander Rabinovich. Personal communciation, 2008.

[18] Alexander Rabinovich and Shahar Maoz. Why so
Many Temporal Logics Climb up the Trees? In
MFCS, 2000.

[19] Denis Thérien and Thomas Wilke. Temporal Logic
and Semidirect Products: An Effective
Characterization of the Until Hierarchy. SIAM J.
Comput, 31(3):777–798, 2001.

[20] World Wide Web Consortium. XML Path Language
(XPath) Recommendation.
http://www.w3c.org/TR/xpath/, November 1999.

200

