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ABSTRACT

We study the problem of repairing an inconsistent database
that violates a set of functional dependencies by making the
smallest possible value modifications. For an inconsistent
database, we define an optimum repair as a database that
satisfies the functional dependencies, and minimizes, among
all repairs, a distance measure that depends on the num-
ber of corrections made in the database and the weights of
tuples modified. We show that like other versions of the
repair problem, checking the existence of a repair within
a certain distance of a database is NP-complete. We also
show that finding a constant-factor approximation for the
optimum repair for any set of functional dependencies is NP-
hard. Furthermore, there is a small constant and a set of
functional dependencies, for which finding an approximate
solution for the optimum repair within the factor of that
constant is also NP-hard. Then we present an approxima-
tion algorithm that for a fixed set of functional dependencies
and an arbitrary input inconsistent database, produces a re-
pair whose distance to the database is within a constant
factor of the optimum repair distance. We finally show how
the approximation algorithm can be used in data cleaning
using a recent extension to functional dependencies, called
conditional functional dependencies.

Categories and Subject Descriptors

H.2.0 [Database Management]: General- Security, in-
tegrity, and protection; H.2.4 [Database Management]:
Systems- Relational databases

General Terms
Algorithms, Theory
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Functional Dependency Violation, Inconsistent Databases,
Repair, Approximation Algorithm
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1. INTRODUCTION

Data dependencies or integrity constraints capture con-
straints that data values appearing in a database are re-
quired to satisfy, and have long been used for the purpose of
database design. Key constraints and functional and inclu-
sion dependencies are prime examples of such constraints.
Recently, with the popularity of data integration systems,
we often encounter large databases that violate an underly-
ing set of constraints and hence are inconsistent.

Salvaging the information in an inconsistent database has
been attacked in several ways. The different attempts at
dealing with inconsistent data can be categorized into three
different approaches according to a recent survey by Fan [15].
Most of these attempts rely on the notion of minimal re-
pair [3, 5] to an inconsistent database, which is a database
satisfying the constraints but at the same time is as close
as possible to the original inconsistent database in the sense
that a minimal set of modifications have been applied to the
original database to yield the repair.

The first approach, often referred to as consistent query an-
swering [3, 7, 11], tries to extract the most trustworthy
answer to a query posed to an inconsistent database. A
consistent answer to a query corresponds to running the
query against all possible minimal repairs and taking the
intersection of the resulting answer sets. The complexity
of consistent query answering has been studied for different
classes of integrity constraints [7, 3, 5, 12], and practical im-
plementations have been proposed that compute consistent
answers, for some restricted classes of first-order queries and
constraints, using query rewriting [19, 20].

The second approach tries to actually repair an inconsistent
database by minimally modifying it, so that the resulting
database satisfies the integrity constraints. This modifica-
tion can take the form of deleting or inserting tuples [12,
28] or value modifications [10, 8, 27]. Typically, we would
like the repair to be as “close” to the original inconsistent
database as possible. To achieve this, one defines a cost mea-
sure. The measure can make use of a weight associated with
every tuple in the original database or with every attribute
value of every tuple. The weight may reflect the confidence
the data owner places in the original tuple of values. Addi-
tionally, the cost measure uses a distance measure between
values. This distance may reflect, e.g., the edit distance or



the numerical distance between an original value and the
changed value. The overall distance of a repair to an incon-
sistent database is the weighted sum over tuples that are
changed in the repair, of the distance between the original
values and their changed values. In this line of study, we
are typically interested in the minimum repair, i.e., a repair
that enjoys the smallest distance to the original database
among all its repairs.

The third approach aims at producing a nucleus, which is a
condensed representation of all repairs that can be used for
consistent query answering [27, 26, 4]. Computing consistent
answers, minimum repairs, and nuclei has been shown to be
not tractable for most classes of constraints and queries,
and efficient heuristic [10] and approximation [8, 23, 18] ap-
proaches have been proposed for dealing with inconsistent
data in practice.

In this paper, we focus on the problem of repairing a
database that violates a set of functional dependencies by
modifying attribute values. An important property of func-
tional dependencies is that correcting a violation may intro-
duce a new one, and this makes finding a minimum repair
more challenging, compared to repairing w.r.t. some of the
other integrity constraints (such as local denial constraints
considered in [8]).

To deal with repairing an inconsistent database w.r.t. func-
tional dependencies, we introduce V-repairs, which are
databases that contain variables representing incomplete in-
formation. A V-repair reflects two types of changes made to
the original database to resolve functional dependency vio-
lations: changing a constant to another constant whenever
there is enough information for doing so, and changing a con-
stant to a variable whenever we cannot suggest a constant
for an incorrect value. This is done in a way that a ground
repair will be produced if different values not in the active
domain are assigned to different variables. So, basically, a
V-repair represents a set of repairs obtained by constant-
to-constant modifications. For an inconsistent database, we
would ideally want to produce an optimum V-repair that is
as close as possible to the original database.

We first illustrate V-repairs with an example.

ExAMPLE 1. Figure 1(a) shows a database instance over
name, country (cnt), province/state (prov), region (reg),
area code (arCode), and phone. In the instance, ‘Van’ refers
to Vancouver/Lower mainland, ‘Vic’ to Victoria region, etc.
The database instance in Figure 1(a) violates the functional
dependencies ¥ = {cnt, arCode — reg, cnt,req — prov}.
The V-repair shown in Figure 1(b) reflects two necessary
value modifications to resolve the violations. In one modifi-
cation, we change the value of reg ‘Man’ to the correct value
of ‘Van’, and in the other, we replace the value ‘CAN’ with a
variable v1, showing that to obtain an optimum repair, one
viable option is to change the value of country to something
else. The semantics is that v; stands for a value outside the
active domain of cnt. |

We define a measure of distance between a database and
its repair that depends only on the number of value mod-

name ent | prov | reg | arCode phone
t1 Smith CAN | BC | Van 604 123 4567
to | Adams | CAN | BC | Van 604 765 4321
t3 | Simpson | CAN | BC | Man 604 345 6789
ta Rice CAN | AB | Vic 604 987 6543

(a)

name ent | prov | reg | arCode phone
t1 Smith | CAN | BC | Van 604 123 4567
to | Adams | CAN | BC | Van 604 765 4321
ts | Simpson | CAN | BC | Van 604 345 6789
ta Rice V1 AB Vic 604 987 6543

(b)

Figure 1: (a) A database instance violating X =
{ent, arCode — reg, cnt,reg — prov}. (b) An optimum
V-repair.

ifications made in the database and the weights of tuples
modified. This measure is somewhat simpler compared to
other measures [10, 8]. Following previous work [10], recall
that tuple weights correspond to the confidence that the
data owner places in their correctness. Our measure simply
counts the number of value modifications, and thus amounts
to treating all modifications as equally expensive. One key
motivation for looking at simpler distance measures is that
it helps us understand whether the previously established
results on the hardness of finding a minimum repair can be
sharpened, and in some cases, whether efficient approxima-
tion algorithms can be developed.

Our first result is that even with a simpler notion of re-
pair and distance measure between database instances, we
still cannot efficiently find an optimum V-repair or even a
good approximation. Specifically, we show that like previ-
ously studied versions of minimum repair [10, 8], deciding
whether there is a V-repair within distance k of a database
is NP-complete, even for unary functional dependencies. We
also show that if functional dependencies are part of the in-
put, finding a repair whose distance to the original database
is always within a constant factor of the optimum repair
distance is NP-hard. Moreover, for a fixed set of functional
dependencies, finding a (1 + €)-approximation is also NP-
hard for some € > 0. In other words, finding an optimum
V-repair is Max-SN P-hard (for a background on hardness of
approximation for optimization problems, see [14, 25, 24]).

After establishing the hardness results, we ask whether we
can leverage the simplified distance measure, and develop
efficient approximation algorithms for special cases. Indeed,
the combination of V-repairs and simpler distance measure
enables us to design an approximation algorithm that for a
fixed set of functional dependencies and an arbitrary incon-
sistent database produces a V-repair, whose distance to the
original database is within a constant factor of the distance
of an optimum V-repair, where the constant depends on the
set of functional dependencies.

Traditional database dependencies have recently been re-
visited to make them more expressive for the purpose of
cleaning an inconsistent database [15]. Conditional func-



tional dependencies (CFDs) [9, 13] are extensions to tradi-
tional functional dependencies in the following ways: first,
CFDs make it possible to restrict the application of a func-
tional dependency to only a subset of a relation, and second,
CFDs allow forcing attribute values not only to be equal
to each other, but also to be equal to constants. For ex-
ample, for the database instance of Figure 1, one can ex-
press the following constraints as CFDs: if country (cnt) is
Canada (‘CAN’), then the value of region (reg) determines
the value of province (prov).! Furthermore, if country is
Canada (‘CAN’) and area code (arCode) is 604, then reg
must be ‘Van’. We show that our approximation framework
is applicable to conditional functional dependencies. More
precisely, for a fixed set of CFDs, we can produce a V-repair
for an arbitrary inconsistent database, whose distance to the
original database is within a constant factor of an optimum
V-repair distance.

1.1 Related Work

Here we compare our work with previous works on repairs
that are most similar to ours. As already pointed out above,
our distance measure is simpler than the one studied by Fan
et al. [10, 13] and Bertossi et al. [8]. Hardness results for find-
ing minimum repairs under value modifications were already
established in previous work [8, 10, 16]. However, since our
distance measure only counts the number of changes in the
repair (similar to measure used in [16, 17]) and the hard-
ness proof uses only (unary) functional dependencies, our
intractability results cannot be derived from previous re-
sults.

Max-SNP-hardness for approximating a minimum repair
by modifying numerical attributes for a fixed set of denial
constraints [22] has been proved by Bertossi et al. [8]. In this
paper, we present a similar result by focusing only on a fixed
set of functional dependencies and a simpler distance mea-
sure for databases. Approximation algorithms for finding
the minimum repair for a fixed set of local denial constraints
have also been presented [8, 23]. Local denial constraints
have the property that by resolving a constraint violation
no new violation could be generated. Since functional de-
pendencies do not have this property, we need a new strategy
for approximating the best repair.

Repairing a database using functional dependencies and con-
ditional functional dependencies has been studied by others
(including [10, 9, 13]). However, these works rely on heuris-
tic approaches for finding a good repair. We are not aware
of any approximation algorithms in this context. We believe
that our approximation framework would be useful for prac-
tical cases when a guarantee of small number of changes is
required, and it complements the heuristic approach devel-
oped in [10, 13].

Finally, we would like to add that our notion of V-repair is
different from that of fizes with variables in [26, 27]. While
our V-repairs are homomorphic to a consistent relation, they
are not necessarily homomorphic to the original relation, un-
like fixes with variables. A V-repair can be thought of as a
special case of conditioned tables [2], for representing incom-

Tt is possible in some countries, regions may straddle
state/provincial boundaries.
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plete information, with no local conditions and a conjunction
of inequalities, one for each pair of distinct variables.

The rest of the paper is organized as follows: we give pre-
liminary notations and definitions in Section 2. Then in
Section 3, we introduce V-repairs for functional dependency
violations, and we study the hardness of finding an optimum
V-repair or an approximate solution to it. We present an ap-
proximation algorithm for finding an optimum V-repair for
a fixed set of functional dependencies in Section 4, and in
Section 5, we show how the approximation algorithm can be
used for repairing with CFDs. We give concluding remarks
in Section 6.

2. BACKGROUND AND NOTATIONS

An instance I of a relation schema R(Ai,...,A,,) is a set
of tuples in Dom(A1) X ... X Dom(Ay,), where Dom(A;)
denotes the domain of attribute A4;, ¢ € [1,m]. The active
domain of A; is denoted by ADom(A;). For convenience, we
associate every tuple in an instance with an identifier ¢ that
remains unchanged even if some values in the tuple change.
Given an instance I, the set of positions of I is defined as
Pos(I) = {(t, A;) | t is an identifier for a tuple in I and i €
[1,m]}. The set {A1,..., A} is sometimes referred to as
sort(R). We denote the value contained in position p =
(t, A) € Pos(I) by I(t, A). If the instance [ is clear from the
context, we may write ¢[A] instead of I(¢, A). We sometimes
use the term tuple interchangeably with tuple identifier.

A functional dependency (FD) over attributes of R is an
expression of the form X — Y, where X,Y C sort(R). An
FD X — Y is unary if | X| = 1. An instance I of R satisfies
X — Y, denoted I = X — Y, if for every two tuples t1, {2
in I with t1[X] = t2[X], we have ¢1[Y] = t2[Y]. An instance
I satisfies a set of FDs X, if it satisfies all FDs in 3. An
FD X — Y is called trivial if Y C X. We say that an FD
X — A is implied by X, written ¥ = X — A, if for every
instance [ satisfying X, I satisfies X — A. In this paper,
we always assume that ¥ is minimal (see [1]), i.e., a set of
FDs of the form X — A (with a single attribute on the
right-hand side), such that ¥ j£ X’ — A for every X' C X,
and ¥ — {X — A} £ X — A. We usually denote sets of
attributes by X, Y, Z and single attributes by A, B, C, or D.

We deal with inconsistent instances of R that violate some
of the FDs in . Following other works on repairs [10], we
assume that each tuple ¢ in I is associated with a weight
w(t) > 0, which could have different meanings such as the
accuracy of data or a confidence value placed by a user. In
the absence of such weights, we can simply assume they are
all equal to 1.

For an attribute A € sort(R), an implicant X of A is a
subset of sort(R), such that ¥ =X — A, A fnX, and for
every X' C X, ¥ £ X’ — A. Then Imp(A) denotes the set
of all implicants of A. An attribute A is called primitive if
Imp(A) = 0.

3. V-REPAIRS AND OPTIMUM REPAIR
PROBLEM

We assume that we have an infinite set of variables V =
{v1,v2,...}. Given an instance I of R that violates FDs in



Y (I = %), we define a V-instance for I to be an instance
Iy with the same tuple identifiers (and therefore Pos(Iy) =
Pos(I)),? such that for every position p = (t, A;) in Pos(Iy),
Iv(p) = a for some a € ADom(A;), or Iv(p) = v; for some
v; €V.

For a V-instance Iy, a ground substitution is a mapping o
from variables in Iy to Dom(A;) U ... U Dom(A.,), such
that for each position p = (¢, A;) in Pos(Iy) with Iv(p) =
vj, o(vj) = a for some a € Dom(A;) \ ADom(A;), and
o(v;) # o(vr) whenever j # k. Ground substitutions can
be lifted to V-instances in the obvious way. The instance ob-
tained by applying a ground substitution o, denoted o (Iv),
is called a ground instance. A V-instance is called a V-repair
if for some ground substitution o, o(Iv) | X. If for every
ground substitution o, o(Iv) violates an FD X — A in X,
we simply say that Iy violates X — A. Note that if the
attribute domains are not finite, V-repairs always exist, and
the satisfaction of an FD by a V-instance could be checked
in polynomial time.

Our approach to repairing a database instance I that vio-
lates a set of functional dependencies is finding a V-repair
that is as close as possible to I. More precisely,

DEFINITION 2. Given an instance I of schema R that vi-
olates a set of FDs X over attributes of R, we define the
distance between I and a V-repair Iy as

AL Iv)= > w(t)-dist(I(t, A),Iv(t, A)), where
(t,A)ePos(I)

. |1 dfa#b
dist(a,b) = { 0 ifa=b.
REPAIR CHECKING for a set of FDs is the problem of de-
ciding, given an integer k > 0 and an instance I, whether
there is a V-repair Iv with A(I,Iv) < k. A V-repair Iv is
an optimum repair if the distance A(I,Iv) is the minimum
among all V-repairs of I. OPTIMUM REPAIR for a set of
FDs is the problem of finding an optimum repair for a given
instance 1.

In this section, we show that like other definitions of “best”
repair for an inconsistent database, finding an optimum re-
pair does not seem to be possible in polynomial time in the
size of the input database, even when the FDs are unary.
We will also show that if the set of functional dependencies
is given as an input, it is NP-hard to approximate the opti-
mum repair within any constant factor. Furthermore, if we
fix a set of FDs, it is NP-hard to approximate the optimum
repair within an arbitrary small constant factor. It is worth
mentioning that all of our hardness results can be obtained
in the absence of tuple weights. These results motivate the
next section, where we present a constant-factor approxima-
tion algorithm for finding an optimum V-repair for any fixed
set of FDs and an arbitrary violating instance.

THEOREM 3. There is a set of unary functional depen-
dencies for which REPAIR CHECKING is NP-complete.

2Technically, we need to define an isomorphism between
I, Iy, but for simplicity, we deliberately assume that the
set of tuple identifiers are equal.
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Proof. For every set of functional dependencies, it is easy to
see that REPAIR CHECKING is in NP: given a V-instance Iy
for an input inconsistent instance I, it is possible to check
whether Iy satisfies the FDs and measure A(Z, Iy) in poly-
nomial time.

Now consider relation schema R(FEdge, Vertex, Dummy) and
the set of FDs ¥ = {Edge — Vertex, Vertex — Dummy}.
To prove hardness, we reduce from the vertex cover problem.
Given a graph G(U, E), a vertex cover is a subset C of U such
that for every edge (u1,u2) € E, C contains at least one of
U1 Or u2.

Given a graph G(U, E), we create an instance I of R that vio-
lates the set of FDs X as follows: for every edge e, = (us,u; )
in E, I contains two tuples tri(er,u;,0) and t,;(er, u;,0).
Moreover, for every vertex u; € U, [ contains a tuple
ti(fi,ui, 1), where f; is an edge identifier not in E, and
fi # fj for i # j. Every tuple ¢ in I has a weight w(t) = 1.
Obviously, there is a pair of tuples for every edge in the
graph that violates Fdge — Vertex, and for every vertex
connected to an edge, there is at least a pair of tuples vi-
olating Vertex — Dummy. We can see that the graph has
a vertex cover C of size |C| < k if and only if I has a V-
repair Iy with A(Z, Iv) < |E| + k. First, let C be a vertex
cover of size k. We produce V-repair Iy as follows: for every
edge e, = (ui,u;) with u; € C, Iv has tuples tri(er,u;,0)
and trj(er,u;,0) (no matter if u; is also in C'). For every
vertex u; € C, Iy contains tuple ¢;(f;,v;, 1) for a fresh vari-
able v; € V| and for every vertex u; ¢ C, Iy contains the
unchanged tuple t;(fi,ui,1). Clearly, A(I,Iy) is exactly
|E| + k.

Conversely, suppose that there is a V-repair [y with
A(I,Iv) = |E| + k for some k smaller than k', the size
of a minimum vertex cover. Let C be the set of vertices
u; such that their corresponding tuple ¢; shows at least one
change in Iy. It is easy to see that for every edge e, € F,
Iy should have changed at least one position in each pair
of tuples t,;,1,;, due to the violation of Edge — Vertex.
Therefore, A(I,Iy) > |E| +|C|, and thus |C] < k < k.
Since C' cannot be a vertex cover due to |C| < k', there
are at least k' — |C| edges between the remaining vertices
u; in V' — C, whose corresponding tuples ¢; show no change
in Iy. For each edge e, among these k' — |C| edges, we
need to see at least two changes in the pair of tuples ¢,, t,;
due to the violation of Vertex — Dummy. We thus have:
AL Iv) > 2- (K — [C]) + (1B — K +|C) + C] = |B| + ¥,
which is a contradiction. m|

The following theorem shows that approximating OpTIMUM
REPAIR for all sets of FDs within any constant factor is NP-
hard.

THEOREM 4. Let o > 1 be any constant. Then unless
P=NP, there is no algorithm that approximates OPTIMUM
REPAIR for any given set of FDs within a factor of «, and
runs in polynomial time in the size of the input FDs and
inconsistent instance.

Proof. We give a gap-preserving reduction (see [14, 25]) from
the hypergraph vertex cover problem (or equivalently the set



cover problem), whose approximation within any constant
factor is known to be NP-hard [6]. Given a hypergraph
G(U, E), a vertex cover (or a hitting set) is a subset C' of U
that overlaps every edge e € . A minimum vertex cover is
a vertex cover with the smallest cardinality.

Given a hypergraph G(U, E), we create a relation schema
R with sort(R) = U U {D}, a set of functional dependen-
cies ¥, and an instance I of R as follows. For every edge
e; = {u1,...,um} in E, there is a functional dependency
Ut ...um — D in ¥ and a tuple ¢; in I with w(¢;) = W for
a large positive W, where ¢;[u;] = 0 for u; € e;, ti[u;] =1
for u; & e, and ¢;[D] = i. There is also another tuple to
in I with w(to) = 1, where to[u;] = 0 for all u; € U and
to[D] = 0. It is easy to see that hypergraph G has a ver-
tex cover of size k if and only if I has a V-repair Iy with
A(I,Iv) = k. Let I¥™ and MinVertCover(G) denote an
optimum V-repair for I and a minimum vertex cover for G,
respectively. Then every approximation algorithm that pro-
duces a V-repair Iy with A(I, Iv/) < a- A(I, IP™), for some
constant a > 1, will produce a vertex cover whose size is at
most « times the size of MinVertCover(G). More precisely,
the reduction is gap-preserving since we have:

1. if |MinVertCover(G)| < k, then A(I, IP™) < k, and
2. if |MinVertCover(G)| > o - k, then A(I, IF™) > a - k.

O

The next theorem rules out the possibility of approximating
OPTIMUM REPAIR for a fixed set of FDs within an arbitrar-
ily small factor in polynomial time in the size of the input
inconsistent instance. To show that an optimization prob-
lem P is Max-SA'P-hard [24], it is enough, by definition,
to show that P behaves just like MAX3SAT in terms of ap-
proximability, i.e., there is a gap-preserving reduction from
MAX3SAT to P. Then we can immediately conclude that
there exists € > 0 such that achieving an approximation
factor (1 +¢€) for P is NP-hard (see [14]).

THEOREM 5. For a fixed relation schema and set of FDs,
OPTIMUM REPAIR is Maz-SN'P-hard. In other words, there
ezists € > 0, a relation schema and a set of FDs, for which
approzimating OPTIMUM REPAIR within a factor of (1 + €)
is NP-hard.

Proof. We give a gap-preserving reduction from MAX3SAT
problem, whose approximation within (1 — ¢’) factor, for
some &’ > 0, is known to be NP-hard (see [14, 25]). Given
a CNF formula, whose clauses have at most three literals,
MAX3SAT is the problem of finding an assignment that
maximizes the number of satisfied clauses.

Let C = Cy AN ... AN Cn be a CNF formula, where C; =
li1 V12 V 1i3 for every clause C; (i € [1, N]), and each literal
l;; is either z or -z for some variable x € X (we assume each
clause has exactly three literals). We create an instance I of
relation schema R(Cls, Asn, Var, Lit), which violates FDs
¥ = {Var, Asn — Lit, Cls,Asn — Var}, as follows: for
every clause C; and every literal [;; of variable x;; (j € [1, 3])
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in Cj, there is a tuple ¢;; in I, where ¢;;[Cls| = Cj, ti;[Asn] =
1, tij[Var] = Tij, tij [Lit] = lij (mij or —m:ij). All tuples have
weight equal to 1. Let MAX3SAT(C) denote the maximum
number of clauses satisfiable over all assignments, and Amnmin
be the distance between I and any optimum V-repair. Then
it is enough to show that:

1. if MAXSSAT(C) = k, then Apin = 3N — k, and

2. if MAX3SAT(C) < (1 —¢")k for some & > 0, then
Amin > (1+¢€)(3N — k) for some € > 0.

Suppose MAX3SAT(C) = k. Then there exists a truth
assignment that satisfies exactly k clauses. First, we build
a V-repair Iv with A(I,Iv) = 3N — k as follows: for every
satisfied clause C; = l;1 V lia V l;3, assuming l;1 is assigned
true, Iv has three tuples t;1 = (Ci, 1,241,0i1), and t;; =
(Ci,vij,mij,lij) for j = 2,3, where v;;s are fresh variables
taken from V. For every unsatisfied clause C; = l;1 V12 Vi3,
Iy has three tuples tij = (C’,’,Uij,xij,lij) for j = 1,2,3,
where v;;s are fresh variables taken from V. Clearly, Iy is a
V-repair with A(I, Iv) = 2k + 3(N — k) = 3N — k. Second,
we show that for every V-repair I{,, A(I,I;,) > 3N — k. Let
D be the set of clauses C; with at least one tuple ¢;; whose
all positions has remained unchanged in Iy,. Then there is
a truth assignment that satisfies at least |D| clauses. We
thus have |D| < k. For every clause C; € D, there are at
least two positions p1,p2 in the three tuples ¢;; (j € [1, 3]),
such that I(p1) # Iy (p1) and I(p2) # Iy (p2). This is due
to violations of FD Cls, Asn — Var. Moreover, for every
clause C; ¢ D, each of the three corresponding tuples have
at least one changed position. Therefore, A(I,I{,) > 2 -
|D|+3- (N —|D|) =3N —|D| > 3N — k. To prove part 2,
using the fact that MAX3SAT(C) > N/2, we have Apmin =
3N —MAXSSAT(C) > 3N —(1—¢")k = 3N —k+¢'/5(5k) >
(14+¢'/5)(3N — k). m|

4. A CONSTANT-FACTOR APPROXIMA-
TION

Theorem 5 rules out the possibility of finding a polynomial-
time approzimation scheme for the OPTIMUM REPAIR prob-
lem of a set of FDs. We show, in this section, that we
were nevertheless able to find a repair algorithm that runs
is polynomial time in the size of the input inconsistent in-
stance, and produces a V-repair whose distance to the input
instance is within a constant factor of the optimum repair
distance, where the constant factor depends on the set of
FDs.

The algorithm starts by finding all FD violations in the
instance, and puts each of them in a hyperedge of a con-
flict hypergraph. Let I be an instance of relation schema
R(Ai,...,Ay) that is inconsistent w.r.t. a set of functional
dependencies ¥. We assume, without loss of generality, that
Y} is minimal. Note that this is an important assumption for
the correctness of the algorithm.

DEFINITION 6. The initial conflict hypergraph of in-
stance I is defined to be Gr = (V, E), where V is the set
of positions p = (t, A) in Pos(I) with weight w(t), and
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Figure 2: Hyperedges in an initial conflict hyper-
graph.

e for every functional dependency X — A € ¥ and two
tuples ti,t2 in I that violate X — A, the set of posi-
tions {p | p = (t1,B) orp = (t2,B),B € XA} form a
hyperedge in E, which is called an initial pair con-
flict.

o for every three tuples ti,ta,ts in I such that:

— there exists an FD X — A such that t:1[X] =
t2[X], and

— there exists an FD'Y — A such that t1[Y] =
t3lY], and

— t2[A] # t3[4],

the set of positions {p = (t1,C) | C € XY} U {p =
(t2,C) | C € XA U{p = (t3,C) | C € YA}, form
a hyperedge in E, which is called an initial triple
conflict.

e for every three tuples t1,t2,ts3 in I such that:

— there exists an FD X — A such that t:1[X] =
t2[X], and

— there exists an FD'Y — B such that A € Y,
tQ[A] = tg[A], and tl[Y — A] = tg[Y — A], and

— t[B] # ta[B],

the set of positions {p = (t1,C) | C € (XY B—{A})}U
{p = (t2,C) | C € XA}U{p = (t35,C) | C € Y B},
form a hyperedge in E, which is also called an initial
triple conflict.

Intuitively, each hyperedge in the initial conflict hypergraph
of an instance represents a conflicting set of positions that
cannot completely remain unchanged in any repair. In other
words, in every repair of the instance, at least one position
in every hyperedge should get a new value. As a useful
consequence we have:

PROPOSITION 7. The weight of a minimum vertexr cover
of the initial conflict hypergraph Gr is a lower bound on the

min

distance between instance I and any optimum V-repair Iy,
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Input: An instance I of schema R violating FDs X.
Output: A V-repair Iy for I.

# STEP 1: CAPTURING INITIAL VIOLATIONS:
create initial conflict hypergraph G; for I;

find an approximation VC' for minimum vertex cover
in Gr;

change :== VC;

Lye i =1;1:=1;

while there are tuples t1,t2 in [, violating an FD
X — A€ X st (t1,A) is the only position in VC' do
(6) Ivc(thA) = Ivc(t27A);

(7)  change := change — {(t1, A)};

(8) for every position p € change do

(9) Lve(p) :=wvis i =1+ 1,

(10) Iy := Iy

# STEP 2: RESOLVING NEW VIOLATIONS:
while there are violating tuples do

let p = (¢, B) be a position in VC' with smallest
) .
\violation;uinvolving p|’

) let CT be a set of attributes in MinCorlmpy,(B);
) for every attribute C' € (CI U {B}) do

) Iv(t,C) == v i =1+ 1;

) return [y.

(11)
(12)

ratio

Figure 3: Algorithm FINDVREPAIR.

The notion of conflict hypergraph was previously used in
managing inconsistency in databases (e.g., see [12, 8, 5]).
The main difference is that the hypergraphs considered be-
fore contained database tuples as vertices and constraint vi-
olations as hyperedges. Since we believe that functional de-
pendency violations could be resolved at the level of chang-
ing attribute values, versus deleting whole tuples, we create
conflict hypergraphs in which vertices are positions in an
inconsistent database.

ExAMPLE 8. Consider relation schema R(A, B,C,D, E)
with FDs ¥ = {A — C,B — C,CD — E}. In instance [
shown in Figure 2, we can see three different types of hyper-
edges in the initial conflict hypergraph (not all hyperedges
are shown). It is easy to see that in any repair of this in-
stance, the value of at least one position in each hyperedge
should be modified. m|

The basic idea of the FINDVREPAIR algorithm, shown in Fig-
ure 3, is as follows. First, we construct the initial conflict
hypergraph G; for the input inconsistent instance /. Then
we find an approximation V' C for a minimum vertex cover
in Gr using the known algorithms in the graph theory liter-
ature. Positions in V' C are the initial set of positions whose
values need to be changed. For each position in VC, we
either put a value from the active domain if there are FDs
forcing it, or we put a fresh variable from V. The resulting
V-instance may still contain FD violations, which we resolve
in the last step by changing the values in some positions in
a way that no new violation may be introduced.

Before we explain how we resolve the FD violations that



arise after fixing values in the vertex cover VC, we intro-
duce the notion of core implicant for attributes in a relation
schema. Let R be a relation schema and X be a set of func-
tional dependencies on the attributes of R.

DEFINITION 9. For every attribute A in sort(R), a core
implicant of A is defined as a minimal set CI of attributes
that intersects with every implicant of A. That is, CI N
X # O for every X such that ¥ implies the nontrivial FD
X — A. A minimum core implicant for an attribute A is a
core implicant with the smallest cardinality. The sets of all
core and all minimum core implicants for an attribute A is
denoted by CorImpy(A) and MinCorImps,(A) respectively.

To resolve new FD violations by doing a limited number of
value modifications, the FINDVREPAIR algorithm uses the
following property of core implicants:

ProrosiTiON 10. For every non-primitive attribute B in
a core implicant CI € Corlmpy(A), CI U {A} contains a
core implicant CI' € Corlmpy(B) .

Proof. Suppose for some attribute B € CI, there is an
implicant Y such that Y N (CT U {A}) = 0. Let X be an
implicant of A that contains B (such implicants exist since
CT is minimal). If B is the only attribute in the intersection
of X and CI (i.e., XNCI = {B}),then YU(X —{B}) - A
is a nontrivial functional dependency whose left-hand side
does not have any intersection with C'I, which means CT
cannot be a core implicant. Therefore, every such implicant
X of A that contains B must have at least one more attribute
in common with C'I. This means B is a redundant attribute
in C'I, which contradicts with the assumption of minimality
for C1I.

Consequently, every implicant Y of a non-primitive at-
tribute B € C'I must have a non-empty intersection with
(CI1U{A}), which concludes the proof. O

We now explain step 2 of the algorithm (lines (11)—(15)) that
tries to resolve FD violations that arise as a result of running
step 1 (lines (1)—(9)). Let Iy be the V-instance after making
corrections for positions in the vertex cover VC, and t¢;,t; be
two tuples in Iy violating a functional dependency X — A.
Since this is a violation that happens after we resolve the
initial pair and triple conflicts, at least two positions (¢;, B)
and (t;, D) are in the vertex cover VC, where B, D € X A.
This is due to the way that the initial pair and triple conflict
hyperedges were picked.

LEMMA 11. For every two tuples t;,t; in Iy violating an
FD X — A, there are at least two positions p1,p2 in the
intersection of vertex cover VC' and the set S = {p | p =
(tiy B) orp=(t;,B),B € XA}.

Proof. First, if none of the positions in S are in V| this
would be an initial violation, and S forms an initial pair
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conflict hyperedge, which means it should have contained at
least one position in the vertex cover. Now suppose that
only one position p = (t;, A) € S is in the vertex cover
VC. Clearly, Iv(p) cannot contain a variable, because the
FD X — A would force Iv(p) to be equal to Iy (tj, A). If
Iv(p) = a for some a € ADom(A), it means that there
is a tuple tx in [ and an FD Y — A such that [Y] =
t;:[Y], t;[X] = t;[X] and tx[A] = a # t;[A]. Then positions
{fp=(t:C)|CeXYu{p=(C)|CeXAU{p=
(tx,C) | C € YA} form an initial triple conflict hyperedge,
which means either Iy (p) # a, or t;,t; in Iy cannot violate
X — A

If the only position from S in VC' is of the form p = (¢;, B)
for some B € X, Iv(p) cannot contain a variable, because
that would not lead to a violation of X — A. Therefore,
Iv(p) = b for some b € ADom(B), and thus there is a
tuple ¢t in I and an FD Y — B such that t;x[Y] = [Y],
tl[X — B] = tJ[X — B}, tJ[B] = tk[B], and tZ[A} 75 tJ[A}
Then positions {p = (¢;,C) | C € (XYA—-{BhH}U{p =
(t;,C) | C € XAYU{p = (tx,C) | C € YB} form an initial
triple conflict hyperedge, which means either Iy (p) # b, or
ti,t; in Iy cannot violate X — A. O

To resolve the violation, it is enough to pick one of (¢;, B) or
(t;, D) (say (ti, B)), and change the value of Iy (t;, B) to a
fresh variable from V. In order not to make new violations
by this change, we also change the value in Iy (t;,C) for
every attribute C' in a minimum core implicant of B to a
fresh variable. Then ¢;,t; no longer agree on X, and thus
the violation is gone. Furthermore, no new violation will be
introduced by these changes since for every attribute value
that we change into a fresh variable, we also change the value
of a core implicant of the attribute into a fresh variable. This
is due to Proposition 10.

In step 2 of the algorithm, we basically need to resolve a
number of violations, each of which involving at least two
positions in vertex cover VC'. If we do this in a greedy man-
ner by picking the most cost-effective position at each step
(smaueSt ratio |Violationzj(i]z)volving p|
violations by picking a set of positions in VC' whose total
weight is at most half of the total weight of all postions in
V' C. This is similar to the idea used in the greedy approxi-
mation algorithm for weighted set cover problem [25].

), we manage to cover all

THEOREM 12. For every set of FDs, FINDVREPAIR is
a polynomial-time constant-factor approximation algorithm
for OPTIMUM REPAIR.

Proof. It is easy to see that the output of the algorithm is
a V-repair for an input instance I, and is produced in poly-
nomial time in the size of I. In step 1 we capture all initial
violations by changing the values in positions that fall in the
vertex cover. Then in step 2 we keep resolving new violations
by changing values to fresh variables, causing no new viola-
tion since we do not use a variable for two positions and we
also assume v; # v; for i # j (more precisely, no ground sub-
stitution assigns equal values to different variables). Clearly,
this process eventually terminates outputting a V-instance
that does not contain any FD violation.



Now we need to show that for every instance I of a schema
R that violates FDs in ¥, the algorithm outputs a V-repair
Iy, such that:

AL Iy) < a- AT, IP™),

where « is a constant that does not depend on I. We know

that if I is a V-repair, in each initial pair and triple con-

flict in I, there is at least one position p whose value is not

the same in I and Ii¥"". Therefore, the weight of a minimum

vertex cover of the initial conflict hypergraph Gr is a lower

bound on the distance between I and I{#™™ (Proposition 7):
AL TP™) > weight(Min VertCover(Gr)).

We know that if the size of the hyperedges in a hypergraph
is bounded by f (or equivalently, in the set cover problem,
the frequency of occurrence of every element in the sets is
bounded by f), then there is an approximation algorithm for
finding the minimum vertex cover with approximation factor
f (see [14, 25]). In our problem, the size of the hyperedges
does not depend on the instance, and is determined by the
number of attributes involved in a violated functional de-
pendency. Let MFS be the maximum number of attributes
involved in a functional dependency in X, which is minimal.
It is easy to see that each hyperedge of an initial pair conflict
contains at most 2- MF'S positions, and each hyperedge of an
initial triple conflict contains at most 4 - MF.S — 2 positions.
Therefore,

f<4-MFS-2.

Let VC be the vertex cover selected by the approximation
algorithm that we apply to the initial conflict hypergraph.
Then for I,., which is the V-instance that we obtain by
replacing values in positions selected by the vertex cover
algorithm, we have

A1, 1) < weight(VC)
< f - weight(MinVertCover(Gr))
< (4- MFS — 2) - weight(MinVertCover(Gr)).

During step 2 of the algorithm, for each remaining violation
involving a position (t1, B) in the vertex cover, we change
the value of at most |CI| additional positions into fresh vari-
ables for some core implicant CI € MinCorlmpy,(B), which
are all in the same tuple ¢; sharing the weight w(t:1). We
do this in a way that these positions never involve in any
FD violation from the moment we fix them. Furthermore,
at each step we resolve remaining violations by picking the
most cost-effective position of VC. If MCI denotes the size
of the largest minimum core implicant over all attributes,
then after resolving all violations in Iy, we have added at
most 3 - MCI - weight(V C) to the distance between the origi-
nal instance I and instance I,,.. Putting everything together,
we have

A, Iv) < (% “MCI+1)-A(1, L)
< (I -MCI+1) (4- MFS —2).
weight(Min VertCover(Gr))
< (MCI+2)-(2- MFS — 1) - A(I, IP™),
which completes the proof. a
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It would be interesting to ask whether any natural condition
on FDs (e.g., a normal form) guarantees a small constant
factor for the approximation algorithm. For instance, we
can guarantee MCI = 1 if we manage to partition the set
of attributes sort(R) into disjoint sets {Ai,..., Ax}, such
that there is no FD involving attributes from two different
sets, and for each set there is an FD A;...Ar_1 — Aj.
Interestingly, this is similar to a recently-studied restricted
version of third normal form, called 3NF* [21].

5. REPAIRING WITH CONDITIONAL
FUNCTIONAL DEPENDENCIES

An extension to traditional functional dependencies called
conditional functional dependencies (CFDs) has recently
been introduced [9, 13] that is capable of representing ac-
curate information and is useful in data cleaning. Using a
CFD we are able to express constraints that bind a set of
semantically related values. Here, we would like to show
that given a database instance that violates a set of CFDs,
we can use a similar technique to find an approximation for
an optimum V-repair.

Like traditional FDs, every set of CFDs has a minimal
cover [9]. We therefore assume that we are given a min-
imal set of CFDs that contain constraints of the form
(X — A,tp,), where X — Ais astandard FD, and ¢, is a pat-
tern tuple on attributes X A. For every attribute B € X A,
t,[B] is either a constant in the domain of B or the symbol

To define the semantics of CFDs, we need an operator =.
For two symbols u1,u2, we have w1 < usg if either u1 = us
or one of ui,uz is ‘_’. This operator naturally extends to
tuples. Let I be an instance of relation schema R, and X
be a set of CFDs over the attributes of R. Instance I sat-
isfies a CFD (X — A, t,) if for every two tuples t1,t2 in
I, t1[X] = t2[X] < t,[X] implies ¢1[A] = t2[A] < t,[A]. In-
stance [ satisfies X if it satisfies all CFDs in 3. For example,
for relation schema R(name, cnt, prov, reg, arCode, phone),
where the attributes represent name, country, province, re-
gion, area code, and phone number, we can express the fol-
lowing two CFDs: 1. (¢nt, arCode — reg, (CAN, 604, Van)),
which means whenever country is Canada and area code is
604, then the region must be Vancouver/Lower mainland. 2.
(¢ent, reg — prov, (CAN, _, _)), which means whenever coun-
try is Canada, the value of region uniquely determines the
province.

The notion of V-repairs can be extended for CFDs in a nat-
ural way. We now show how the approximation algorithm
of Section 4 can be extended, so it can be used for repairing
an instance using a set of CFDs. The new algorithm starts
with a step 0 (shown in Figure 4), which is necessary to
ensure that corrections are made based on the information
provided by pattern tuples. This step adds pattern tuples
of CFDs that enforce a fixed constant for an attribute to
the original instance. These added tuples have a very large
weight to ensure that their positions never fall in the vertex
cover.

The initial conflict hypergraph for an instance violating a set
of CFDs can be built in a very similar way after artificially
adding pattern tuples to the instance. Again, we need to



# STEP 0: ENFORCING PATTERN TUPLES

(i) for every CFD (X — A, tp) s.t. t,[A] is not ‘_’ do

(ii)  create tuple t with t[X A] := ¢,[X A], and for every
attribute B ¢ X A, t[B] := v for some fresh variable
v €V, and w(t) := W for some large positive
integer W;

(i) I:=TU{t};

Figure 4: Additional step for extending algorithm
FINDVREPAIR for CFDs.

form sets of positions violating a CFD, whose values cannot
all together remain unchanged in any repair. After finding a
vertex cover for the initial conflict hypergraph and proposing
new values for positions in the vertex cover that are forced to
some value according to CFDs, we need to resolve possible
new violations.

The notion of core implicant can also be extended for CFDs.
Intuitively, a core implicant of an attribute A is a set of
attributes X such that whenever we change the value in
positions (¢, B), B € X A, for a tuple t, into fresh variables,
we ensure that those positions will never get involved in any
violation. We also wish to keep this set X of attributes as
small as possible.

A naive way to find core implicants for CFDs is by treat-
ing them as standard FDs and ignoring pattern tuples,
which obviously does not necessarily give us the smallest
core implicant sets. Let Xpp be a set of all FDs X — A,
where (X — A,tp) is a CFD in %, and Corlmpsy,, (A),
MinCorlmps,, (A) represent the set of all core and all min-
imum core implicants for an attribute A with respect to FDs
in Xrp. Then

DEFINITION 13. For every attribute A in sort(R), a CFD
core implicant CT is defined to be a set in Corlmps,, (A),
and a minimum CFD core implicant for an attribute A is a
set in MinCorImpsy,  (A).

The following lemma shows a property of CFD core impli-
cants, as defined above, that helps us resolve new violations
by changing the value in a limitted number of positions into
fresh variables.

LEMMA 14. Let t be a tuple in V-instance Iy, such that
for some attribute A and every attribute B in a minimum
CFD core implicant CI of A, we have Iy (t, B) = v; for some
variable v; € V. Then for every CFD (Y — C,tp) € ¥ and
tuple t' in Iv such that t,t' wviolate (Y — C,t,), we have
YCN(AUCIT) =.

Proof. Let D be an attribute in the intersection of Y C
and (AUCI). If D € Y, then Iv(¢,D) contains a fresh
variable and cannot be equal to Iv(¢',D) (¢t # ') or
tp[D]. Therefore, the violated CFD must be of the form
(Y — D,tp). Then (AU CI) should contain an attribute
B € Y (Proposition 10). Since Iy (t, B) contains a fresh
variable, again, Iy (¢, B) cannot be equal to Iy (t,B)
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(t #£t') or tp|B]. Therefore, t,t cannot violate (Y — C,tp)
unless the intersection is empty. a

This lemma is the key to showing that running step 0 (Fig-
ure 4) followed by FINDVREPAIR (Figure 3) produces a V-
repair whose distance to the original inconsistent instance is
within a constant factor of an optimum repair distance.

THEOREM 15. For every set of CFDs, STEP 0 + FIND-
VREPAIR is a polynomial-time constant-factor approrima-
tion algorithm for OPTIMUM REPAIR.

Proof. Follows from Lemma 14 and an argument similar to
the proof of Theorem 12. a

6. CONCLUSIONS

Databases often tend to be inconsistent in the sense of vi-
olating the set of integrity constraints they are supposed
to satisfy. This is typically the case with data obtained as
a result of integration of multiple data sources. There has
been considerable recent interest in dealing with inconsistent
databases. An inconsistent database can be repaired, i.e.,
turned into a consistent database, by updates in the form of
tuple insertion/deletions and/or value modifications. Prior
art in dealing with inconsistent databases has focused on
one of two things. The consistent query answering approach
produces answers to queries that are true in all minimal
repairs, by means of query rewriting or finding a nucleus.
In the second approach, researchers have studied the hard-
ness of finding minimum repairs, and in some cases proposed
heuristic solutions. Being minimum is w.r.t. distance mea-
sures that have been proposed to gauge how far away the
repair is from the original inconsistent database.

In this paper, we focused on repairs w.r.t. functional de-
pendencies and proposed a model of repair distance which
is based on the number of value modifications and the
weight /confidence associated with the tuples being modified.
This model is simpler than the one studied previously [10,
13, 8] in that all value modifications are treated alike. Yet
we showed that under this model, repair checking is NP-
complete, even when the functional dependencies are unary.
We also showed that if FDs are part of the input, finding a
constant-factor approximation for an optimum repair, i.e.,
a repair whose distance from the original database is mini-
mum, is NP-hard. Furthermore, for a fixed set of functional
dependencies, finding a (1 + €)-approximation for an opti-
mum repair is NP-hard, for some £ > 0. On the positive side,
we developed a polynomial time algorithm that produces a
constant-factor approximation for an optimum repair, when
the set of functional dependencies is fixed. We also showed
that our constant-factor approximation algorithm can be
easily extended for repairs w.r.t. conditional functional de-
pendencies. All our results are couched in terms of a notion
of V-rapairs we proposed in this paper. V-repairs are based
on the idea of changing values to other constants or to fresh
variables.

Several questions remain open. In practice, a DBA or data
owner may have some domain knowledge which enables her



to prefer certain (optimum) repairs over others. E.g., in
Figure 1(a), the data owner might know: ¢3[reg] cannot be
‘Van’, whereas t4[cnt] must be ‘CAN’ and t4]reg] = ‘Vic’
is suspect. It would be nice to formalize such preferences
coming from user’s background knowledge, and investigate
whether we can find constant-factor approximations to op-
timum repairs satisfying user preferences.

Our extension to the approximation algorithm to handle
conditional functional dependencies is not tight. By care-
fully reflecting pattern tuples in computing core implicants,
we may be able to improve the constant factor of the approx-
imation. Other interesting questions are as follows. Can the
approximation algorithm be extended to work with more so-
phisticated distance measures, such as the cost model of Fan
et al. [13]?7 What can we say about finding (approximate)
optimum repairs w.r.t. functional and inclusion dependen-
cies? We believe that the same approximation framework
can at least be extended for equality-generating dependen-
cies. Our ongoing work addresses some of these problems.
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