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ABSTRACT
World-set algebra is a variable-free query language for uncer-
tain databases. It constitutes the core of the query language
implemented in MayBMS, an uncertain database system.
This paper shows that world-set algebra captures exactly
second-order logic over finite structures, or equivalently, the
polynomial hierarchy. The proofs also imply that world-
set algebra is closed under composition, a previously open
problem.

1. INTRODUCTION
Developing suitable query languages for uncertain data-

bases is a substantial research challenge that is only cur-
rently starting to get addressed. Conceptually, an uncertain
database is a finite set of possible worlds, each one a re-
lational database. World-set algebra (WSA) [4] is a query
language for processing uncertain data in the spirit of rela-
tional algebra. WSA consists of the operations of relational
algebra plus two further operations, one to introduce uncer-
tainty and one to compute possible tuples across groups of
possible worlds. WSA forms a core of the query language
implemented in the probabilistic database management sys-
tem MayBMS [13, 4, 3, 14, 12, 9]. The complexity and
expressive power of world-set algebra have so far remained
open.

The first main result of this paper is a proof that world-set
algebra over uncertain databases precisely captures second-
order logic (SO) over finite structures, or equivalently, the
polynomial hierarchy. This seems to be a somewhat surpris-
ing coincidence, since the language was not designed with
this result as a goal but by abstraction from a set of use cases
from the contexts of hypothetical (“what-if”) queries, deci-
sion support queries, and data cleaning. Viewed differently,
WSA is a natural variable-free language equivalent to SO;
it is to SO what relational algebra is to first-order logic. To
the best of the author’s knowledge, no other such language
is known.

The fact that WSA exactly captures second-order logic is
a strong argument to justify it as a query language for uncer-
tain data. Second-order logic is a natural yardstick for lan-
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guages for querying possible worlds. Indeed, second-order
quantifiers are the essence of what-if reasoning in databases.
World-set algebra seems to be a strong candidate for a core
algebra for forming query plans and optimizing and execut-
ing them in uncertain database management systems.

It was left open in previous work whether world-set alge-
bra is closed under composition, or whether definitions are
adding to the expressive power of the language. Compo-
sitionality is a desirable and rather commonplace property
of query algebras, but in the case of WSA it seems rather
unlikely to hold. The reason for this is that the algebra con-
tains an uncertainty-introduction operation that on the level
of possible worlds is nondeterministic. First materializing a
view and subsequently using it multiple times in the query is
semantically quite different from composing the query with
the view and thus obtaining several copies of the view def-
inition that can independently make their nondeterministic
choices. In the paper, evidence is given that seems to sug-
gest that definitions are essential for the expressive power of
WSA.

As the second main result, the paper nevertheless gives
a proof that definitions do not add to the power of the
language: WSA is indeed compositional. There is even
a (nontrivial) practical linear-time translation from SO to
WSA without definitions. This result, and the techniques
for proving it, may also be relevant in other contexts. For
example, it is shown that, essentially, self-joins can always
be eliminated from classical relational algebra at the cost of
introducing difference operators.

The proofs also imply that the data complexity of WSA is
exactly characterized by the polynomial hierarchy. That is,
each query of WSA is in one of the classes of the polynomial
hierarchy and for each such class there is a WSA query that
is complete for it. Moreover, WSA is PSPACE-complete
with respect to combined complexity [19, 18].

For use as a query language for probabilistic databases,
WSA has been extended very slightly by a tuple confidence
computation operation (see e.g. [12]). The focus of this pa-
per is on the nonprobabilistic language of [4]. For the ef-
ficient processing of queries of the probabilistic version of
WSA, the confidence operation is naturally orthogonal to
the remaining operations [3, 14, 12]. The expressiveness and
complexity results obtained in the present paper constitute
lower bounds for the probabilistic version of the language.
But the non-probabilistic language is interesting and im-
portant in its own right: Many interesting queries can be
phrased in terms of the alternatives possible in a data man-
agement scenario with uncertainty, without reference to the
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relative (probability) weights of these alternatives.
The structure of this paper is as follows. Section 2 estab-

lishes the connection between second-order logic and uncer-
tain databases. Section 3 introduces world-set algebra and
gives formal definitions of syntax and semantics. Section 4
proves that WSA exactly captures the expressive power of
second-order logic over finite structures. These proofs as-
sume the availability of a construct for making definitions
(materializing views). Section 5 discusses the importance of
being able to eliminate these definitions, and shows why it
should seem rather surprising that definitions are not needed
for capturing second-order logic. Section 6 finally proves
that definitions can indeed be eliminated without loss of ex-
pressive power, and a construction for composition is given.
We obtain from these results that WSA with or without defi-
nitions is complete for the polynomial hierarchy with respect
to data complexity and PSPACE-complete with respect to
combined complexity. We discuss related work in Section 8
and conclude in Section 9.

2. UNCERTAIN DATABASES
The schema of a relational database is a set of relation

names together with a function sch that maps each relation
name to a tuple of attribute names. The arity |sch(R)| of a
relation R is denoted by ar(R). We use calligraphic symbols
such as A and B for relational databases. Relations are sets
of tuples (rather than multisets, as in SQL).

We will use the standard syntax of second-order logic (SO;
see e.g. [15]). Its semantics is defined using the satisfac-
tion relation �, as usual. We use R ⊆ S as a shortcut for
∀~x R(~x) ⇒ S(~x). Throughout this paper, we will only use
second-order logic relativized to some given finite set of do-
main elements (say, D), as is common in finite model theory
(cf. [15]). That is, first-order quantifiers ∃x φ are to be read
as ∃x D(x) ∧ φ and second-order quantifiers ∃R φ are to be

interpreted as ∃R R ⊆ Dar(R) ∧ φ.
An uncertain database over a given schema represents a

finite set W = {A1, . . . ,An} of relational databases of that
schema, called the possible worlds. One world among these
is the true world, but we do not know which one.

We assume that the domain relation D is given in the
input and is the same relation in all worlds. Specifically, it
contains two symbols 0 and 1.

A representation for a finite set of possible worlds W over
schema (R1, . . . , Rk) is a pair of a relational database schema
and a representation formula ω over that database schema
with free second-order variables R1, . . . , Rk and without free
first-order variables such that ω is true on exactly those
structures that are in W :

(R1, . . . , Rk) � ω ⇔ (R1, . . . , Rk) ∈W.

Example 2.1 (Standard Representation). Consider
a representation of an uncertain database by relations that
associate with each tuple a local condition in the form of
a conjunction of propositional literals. A possible world is
identified by a truth assignment for the propositional vari-
ables used, and a tuple is in a possible world if the world’s
truth assignment makes the tuple’s clause true.

A representation database consists of a set V of proposi-
tional variables, a relation L such that L(c, p, 1) is true iff
variable p occurs positively in conjunction c and L(c, p, 0) is
true iff variable p occurs negated in c, and a representation

relation R′i for each schema relation Ri which extends the
schema of Ri by a column to associate each tuple with a
conjunction.

Possible worlds are identified by subsets P ⊆ V of vari-
ables that are true. A tuple ~t is in relation Ri in possible
world P if R′i(~t, c) is true for some conjunction c and c is
true for the variable assignment that makes the variables in
P true and the other variables false.

The representation formula ω(R1, . . . , Rk) is

∃P P ⊆ V ∧
k̂

i=1

∀~t Ri(~t) ⇔ ∃c R′i(~t, c) ∧

∀p (L(c, p, 0) ⇒ ¬P (p)) ∧ (L(c, p, 1) ⇒ P (p)).

This is the representation system that is essentially used
in MystiQ [6], Trio [5], and MayBMS [3]. It is a special
case of c-tables [10] in which variables are Boolean, local
conditions are conjunctions of propositional literals, there
is no global condition, and no variables occur in the data
tuples themselves (just in the local conditions associated
with the data tuples). Note that it is complete in the sense
that it can represent any nonempty finite set of possible
worlds. Moreover, it is succinct, i.e., the cardinality of the
represented set of possible worlds is in general exponential
in the size of the representation database. 2

It is now easy to use second-order logic to express queries
on uncertain databases encoded by a representation. For
instance, Boolean query φ is possible if ∃R1 · · ·Rk ω ∧ φ
and certain if ∀R1 · · ·Rk ω ⇒ φ. Second-order logic allows
us to use succinct representations of probabilistic databases,
but also yields very powerful hypothetical queries that can
ask questions about possible choices of sets of tuples. Such
a choice of sets could be e.g. clusters of tuples in record
matching (also known as deduplication and under many
other names).

3. THE ALGEBRA

3.1 Syntax and Semantics
World-set algebra (WSA) consists of the operations of re-

lational algebra (selection σ, projection π, renaming ρ, prod-
uct ×, union ∪, and difference −), two additional operations
repair-key ~A and possible ~A, and definitions “let R := Q in
Q′” where R is a new relation symbol from a countably
infinite supply of relation names; R may be used in Q′. Se-
lection conditions are Boolean combinations of atomic in-
equalities over <, ≤, =, and 6=.1 WSA without definitions
is the set of WSA queries in which no let-expressions occur.

Each relation name occurring within a WSA expression
can also be viewed as a relation variable in analogy with
second-order logic. A relation variable is called free if it is
not bound by a let-expression (as is R above). If a WSA
query is evaluated against a probabilistic database, each of
its free relation variables must occur in the schema of the
database.

Conceptually all operations are evaluated in each possible
world A individually.

1All results in this paper would still hold if selection condi-
tions were restricted to atomic inequalities, but this footnote
is too small to show this.
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[[{~t}]]AW := {{~t}}
. . . ~t constant tuple

[[R]]AW := {RA}

[[θ(Q)]]AW :=
˘
θ(R) | R ∈ [[Q]]AW

¯
. . . θ ∈ {σφ, π ~A, ρA→B}

[[Q1 θ Q2]]
A
W :=

˘
R1 θ R2 | R1 ∈ [[Q1]]

A
W , R2 ∈ [[Q2]]

A
W

¯
. . . θ ∈ {×,∪,−}

[[repair-key ~A(Q)]]AW :=
˘
R′ | R′ ⊆ R ∈ [[Q]]AW , π ~A(R) = π ~A(R′), ~A is a key for R′

¯
[[possible ~A(Q)]]AW :=

˘ S ˘
R′ | B ∈W, R′ ∈ [[Q]]BW , π ~A(R) = π ~A(R′)

¯
| R ∈ [[Q]]AW

¯
[[let R := Q in Q′]]AW :=

S ˘
[[Q′]]

(A,R)

{(B,R′)|B∈W, R′∈[[Q]]B
W
} | R ∈ [[Q]]AW

¯
Figure 1: Formal semantics of WSA.

• The operations of relational algebra are evaluated within
A in the normal way.

• Given input relation R, repair-key ~A(R) nondetermin-
istically chooses a maximal repair of the functional de-
pendency ~A→ sch(R) on R, that is, it returns a subset

R′ of R in which ~A is a (super)key such that there is
no strict superset of R′ which is a subset of R and in
which ~A is a (super)key. Subset R′ of R satisfies this
requirement iff it satisfies the functional dependency
and π ~A(R′) = π ~A(R).

• The operation possible ~A(R) is the only operation that
can look into possible worlds other than A. It com-
putes as result relation for A those tuples that occur
in at least one of the relations R across the group of
possible worlds that agree with A on π ~A(R). In other
words, a group is a maximal set of worlds in which the
query π ~A(R) computes the same relation.

• Definitions (statements “let R := Q in Q′”) temporar-
ily extend A by a named relation R defined by query
Q. Since the result of Q is nondeterministic in gen-
eral, the overall set of possible worlds on which Q′

runs (which is relevant for computing possible ~A) may
increase.

As a convention, we use {〈〉} to represent truth and ∅ to
represent falsity, over a nullary relation schema. We use
expressions {0, 1} and {r, g, b} as shortcuts for {〈0〉}∪ {〈1〉}
and {〈r〉} ∪ {〈g〉} ∪ {〈b〉}, respectively.

Example 3.1. In this example we will use an operation
possible(Q) which computes the set of tuples that occur in
the result of Q in at least one of the possible worlds. It will
be shown in Section 3.2 that this operation is syntactic sugar
and can be expressed in the base algebra defined above.

Given a relational database with two relations V (V ) and
E(From,To) representing a graph (directed, or undirected if
E is symmetric). Then the following WSA query Q returns
true iff the graph is 3-colorable:

let R := repair-keysch(V )

`
V × ρC

`
{r, g, b}

´´
in

possible
`
{〈〉}−π∅(σ1.V=2.From∧2.To=3.V ∧1.C=3.C(R×E×R))

´
.

The possible relations R represent all the functions V →
{r, g, b}, and Q simply asks whether there is such an R such
that there do not exist two adjacent nodes of the same color.

The corresponding SO sentence is

∃R φR:V→{r,g,b} ∧ ¬∃u, v, c R(u, c) ∧ E(u, v) ∧R(v, c)

where φR:V→{r,g,b} is a first-order sentence that states that
R is a relation ⊂ V × {r, g, b} that satisfies the functional
dependency R : V → {r, g, b} and for which πV (R) = V . 2

Formally, the semantics of world-set algebra is defined us-
ing a translation [[·]]AW given in Figure 1 such that for a con-
text of a set of possible worlds W and a world A ∈W , R is
a possible result of world-set algebra query Q iff R ∈ [[Q]]AW .
If a query Q is run against an uncertain database W , then
[[Q]]AW gives the result of Q seen in possible world A of W .

3.2 Derived Operations: Syntactic Sugar
We will also consider the following operations, which are

definable in the base language:

[[subset(Q)]]AW := {R′ | R′ ⊆ R ∈ [[Q]]AW }

[[choice-of ~A(Q)]]AW := {π ~A=~a(R) | R ∈ [[Q]]AW ,~a ∈ π ~A(R)}

[[certain ~A(Q)]]AW :=
˘ T ˘

R′ | B ∈W,R′ ∈ [[Q]]BW ,
π ~A(R) = π ~A(R′)

¯
| R ∈ [[Q]]AW

¯
[[possible(Q)]]AW :=

˘ S ˘
R | B ∈W,R ∈ [[Q]]BW

¯¯
[[certain(Q)]]AW :=

˘ T ˘
R | B ∈W,R ∈ [[Q]]BW

¯¯
The operation subset nondeterministically chooses an ar-

bitrary subset of its input relation. Conceptually, the oper-
ations subset and repair-key cause an exponential blowup of
the possible worlds under consideration: For instance, on a
certain database (i.e., consisting of a single possible world)
subset(R) creates the powerset of relation R as the new set
of possible worlds.2

2The subset operation is weaker than a true powerset op-
eration such as in nested relational algebra with powerset
[1]: that language has nonelementary complexity, while the
complexity of WSA will be shown in this paper to be in
PSPACE. The main difference is that in WSA, in each possi-
ble world, only one of the sets of the powerset are available,
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The operation choice-of ~A(R) nondeterministically chooses

an ~a ∈ π ~A(R) and selects those tuples ~t of R for which
~t. ~A = ~a.

The operation certain ~A is the dual of possible ~A and com-
putes those tuples common to all the worlds that agree on
π ~A.

The operations possible and certain compute the possible
respectively certain tuples across all possible worlds. Using
possible and certain, we can close the possible worlds seman-
tics and ask for possible or certain tuples. For such queries
A can be chosen arbitrarily (and the semantics function can
be considered to be of the form [[Q]]W ).

Proposition 3.2. The operations choice-of ~A, certain ~A,
and certain are definable in WSA with definitions. The op-
erations subset and possible are expressible in WSA without
definitions.

Proof Sketch. The following equivalences relate the syn-
tactic sugar to expressions of the base algebra.

choice-of ~A(Q) = let V := Q in`
V ./ repair-key∅(π ~A(V ))

´
certain ~A(Q) = let V := Q in`

V − possible ~A
`
possible ~A(V )− V

´´
subset(Q) = πsch(Q)(σA=1(repair-keysch(Q)(

Q× ρA({0, 1}))))
possible(Q) = πsch(Q)(σB=1(possibleA(ρA,B(〈1, 1〉)×Q

∪ ρA,B,sch(Q)(〈1, 0, 1, . . . , 1〉))))
certain(Q) = πsch(Q)(σB=1(certainA(ρA,B(〈1, 1〉)×Q

∪ ρA,B,sch(Q)(〈1, 0, 1, . . . , 1〉))))

Here, A and B are new column names not in sch(Q). The
correctness of the proposition can be easily verified using
the formal semantics definition given earlier in this section.

2

Remark 3.3. In [4], it was shown that the fragment ob-
tained from WSA by replacing repair-key by choice-of is
a conservative extension of first-order logic. That is, ev-
ery query of that language that maps from a single possible
world to a single possible world is equivalent to a first-order
query. It is not surprising that this is not true for full WSA.

3.3 Hypothetical Query Processing Example
The following example shows how WSA can be used for

processing what-if queries.

Example 3.4. Consider the relational database of Fig-
ure 2(a) which represents employees working in companies
and their skills. The query, a simplified decision support
problem, will be stated in four steps.

1. Suppose I choose to buy exactly one company and, as
a consequence, exactly one (key) employee leaves that
company.

U := choice ofC,E(Company Emp)

(This nondeterministically chooses a tuple from Com-
pany Emp: a company to buy and an employee that
will leave.)

and the combination of information from several possible
worlds proceeds by collecting only flat tuples and thus is
quite restricted.

2. Who are the remaining employees?

V := π1.C,2.E(U ./1.C=2.C∧1.E 6=2.E Company Emp)

3. If I acquire that company, which skills can I obtain for
certain?

W := certainC(πC,S(V ./ Emp Skills))

(This query computes the tuples of V ./ Emp Skills
that are certain assuming that the company was cho-
sen correctly – i.e., certain in the set of possible worlds
that agree with this world on the C column.)

4. Now list the possible acquisition targets if the gain of
the skill s1 shall be guaranteed by the acquisition.

possible(πC(σS=s1(W )))

Figure 2(b-d) shows the development of the uncertain
database through steps 1 to 3. The first step creates five
possible worlds corresponding to the five possible choices of
company and leaving employee from relation Company Emp.
Steps two to four further process the query, and the overall
result, which is the same in all five possible worlds, is

Result C
c1

2

3.4 Remarks on the Formal Semantics
In this subsection, three facts are stated that formalize

that the operations of WSA indeed behave as one would
expect.

The first fact is that expressions of relational algebra can
be evaluated in each possible world in parallel as claimed.

Lemma 3.5. Let Q be a relational algebra expression. Then

[[Q]]AW = [[Q]]A{A} = {QA}

where QA denotes the standard semantics of relational alge-
bra on a relational database A.

The second fact concerns composition. Let Q1◦Q2 denote
a WSA expression without definitions in which Q2 occurs
as a subexpression of Q1. Here Q1 ◦ Q3 would denote the
expression obtained by replacing Q2 in Q1 by Q3.

Lemma 3.6. [[Q1 ◦Q2]]
A
W =[ n

[[Q1 ◦R]]
(A,R)

{(B,R)|B∈W,R∈[[Q2]]B
W
} | R ∈ [[Q2]]

A
W

o
.

The final fact is that definitions in subexpressions are
unaffected by the operations (other than let-expressions)
higher up in the expression tree and can be pulled to the
top of the expression without modification:

Proposition 3.7. For WSA queries Q, θ(Q1, . . . , Qk), if
view name V occurs only in Qi,

θ(Q1, . . . , Qi−1, (let V := Q in Qi), Qi+1, . . . , Qk) =`
let V := Q in θ(Q1, . . . , Qk)

´
.

Here 0 ≤ k ≤ 2 and, for example, k = 1 for possible ~A.

Proof. The proof is by induction, showing that for any Q,

[[Q]]
(A,V )
W = [[Q]]AW ′ where W ′ = {A | (A, V ) ∈W} if relation
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Company Emp C E
c1 e11
c1 e12
c2 e21
c2 e22
c2 e23

Emp Skills E S
e11 s1
e12 s1
e21 s1
e21 s2
e22 s2
e23 s3

(a)

U1 C E
c1 e11

U2 C E
c1 e12

U3 C E
c2 e21

U4 C E
c2 e22

U5 C E
c2 e23

(b)

V1 C E
c1 e12

V2 C E
c1 e11

V3 C E
c2 e22
c2 e23

V4 C E
c2 e21
c2 e23

V5 C E
c2 e21
c2 e22

(c)

W1 C S
c1 s1

W2 C S
c1 s1

W3 C S
c2 s2

W4 C S
c2 s2

W5 C S
c2 s2

(d)

Figure 2: Database (a) and intermediate query results (b-d) of Example 3.4.

name V does not appear in Q. This is immediate for all
operations other than possible ~A. Let Q = possible ~A(Q′) and

let the induction hypothesis hold for Q′, i.e., [[Q′]]
(A,V )
W =

[[Q′]]AW ′ . Then

[[possible ~A(Q′)]]
(A,V )
W =n [ ˘
R′ | (B, V ′) ∈W,R′ ∈ [[Q′]]

(B,V ′)
W ,

π ~A(R) = π ~A(R′)
¯
| R ∈ [[Q′]]

(A,V )
W

o
=

n [ ˘
R′ | B ∈W ′, R′ ∈ [[Q′]]BW ′ , π ~A(R) = π ~A(R′)

¯
| R ∈ [[Q′]]AW ′

o
= [[possible ~A(Q′)]]AW ′ .

Now we apply the fact just proven to the subqueries Qj
for j 6= i. By definition,

[[let V := Q in θ(Q1, . . . , Qk)]]
A
W ′ =

{[[θ(Q1, . . . , Qk)]]
(A,V )
W | V ∈ [[Q]]AW ′}.

We distinguish between the various operations θ. For rela-
tional algebra,

[[θ(Q1, . . . , Qk)]]
(A,V )
W =n

θ(R1, . . . , Rk) |
^
j

Rj ∈ [[Qj ]]
(A,V )
W

o
=

n
θ(R1, . . . , Rk) | Ri ∈ [[Qi]]

(A,V )
W ,

^
j 6=i

Rj ∈ [[Qj ]]
A
W ′

o
because V only occurs in Qi and [[Qj ]]

(A,V )
W = [[Qj ]]

A
W ′ for

j 6= i. Thus

[[let V := Q in θ(Q1, . . . , Qk)]]
A
W ′ =n

θ(R1, . . . , Rk) | Ri ∈ [[Qi]]
(A,V )
W , V ∈ [[Q]]AW ′| {z }

Ri∈[[let V :=Q in Qi]]
A
W ′

,

^
j 6=i

Rj ∈ [[Qj ]]
A
W ′

o
= [[θ(Q1, . . . , Qi−1, (let V := Q in Qi), Qi+1, . . . , Qk)]]

A
W ′

The proof for the remaining operations proceeds similarly.
2

In other words, definitions can be considered “global”.
Without loss of generality we could assume that each WSA
query is of the form

let V1 := Q1 in (· · · (let Vk := Qk in Q) · · · )

where Q does not contain definitions.
Observe that in the case of binary relational algebra oper-

ations θ, the set of possible worlds [[Q1 θ Q2]]
A
W is obtained

by pairing relations in the results of [[Q1]]
A
W and [[Q2]]

A
W . This

is consistent with the intuition that θ is applied to possible
worlds B that contain two relations RB1 and RB2 and the
result in B is RB1 θ R

B
2 : Proposition 3.7 implies that

θ(Q1, . . . , Qk) =
`
let V1 := Q1 in ( · · ·

(let Vk := Qk in θ(V1, . . . , Vk)) · · · )
´
.

4. WSA WITH DEFINITIONS CAPTURES
SO LOGIC

In this section, it is shown that WSA with definitions has
exactly the same expressive power as second-order logic over
finite structures.
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We must first make precise how second-order logic will be
compared to WSA, since second-order logic queries are usu-
ally not “run” on uncertain databases. We will consider
WSA queries that are evaluated against a (single-world)
relational database A representing an uncertain database
(e.g., using the standard representation of Example 2.1).
We already know that arbitrary uncertain databases (that
is, nonempty finite sets of possible worlds) can be so rep-
resented: This assumption means no loss of generality. A
WSA query Q constructs the uncertain database from the
representation and is always evaluated as [[Q]]A{A}, precisely
as sketched at the end of Section 2. For our expressiveness
comparisons, we will focus on WSA expressions that close
the possible worlds semantics and return a singleton result:
Only these have strictly a correspondence with second-order
logic. However, in some cases, when it is meaningful to gen-
eralize from this, we will do so.

We will study second-order formulae which may have free
first-order variables but in which the second-order variables
are bound to input relations. We will generalize from this,
proving a more powerful result, in Section 6.

By equivalence between a WSA query Q and an SO for-
mula φ, we thus mean that

[[Q]]A{A} = {{~a ∈ Dar(Q) | A � φ[~a]}}

for all relational databases A of suitable schema.

Theorem 4.1. For every SO query, there is an equivalent
WSA query with definitions.

Proof. We may assume without loss of generality that the
SO query is a first-order query (which of course may use
first-order quantification) prefixed by a sequence of second-
order quantifiers. The theorem is shown by induction.

Induction start: FO queries can be translated to relational
algebra by a well-known translation known in the database
context as one direction of Codd’s Theorem (cf. [2]).

Induction step ∃Rk+1(⊆ Dl) φ (second-order existential
quantification): Let φ be an SO formula with free second-
order variables R1, . . . , Rk+1 and free first-order variables ~x
where Rk+1 has arity l. Let Qφ be a WSA expression equiva-
lent to φ given by the induction hypothesis. Without loss of
generality, we may assume that the relations R1, . . . , Rk, Qφ
have disjoint schemas. Let

Q := (let Rk+1 := subset(Dl) in πsch(Qφ)(Q
′))

where D is the domain relation,

Q′ = possiblesch(1R1 )...sch(1Rk
)(1R1 × · · · × 1Rk ×Qφ),

and

1Ri = Ri × {〈1〉} ∪ (Dar(Ri) −Ri)× {〈0〉}.

(Note that the relations 1Ri will play a prominent role in
later parts of this paper.) We prove that

(R1, . . . , Rk, ~x) � ∃Rk+1(⊆ Dl) φ ⇔ ~x ∈ RQ

where {RQ} = [[Q]]
(R1,...,Rk)
W . By definition of [[·]],

[[Q]]
(R1,...,Rk)
W =

˘
πsch(Qφ)([[Q

′]]
(R1,...,Rk+1)

W ′ ) | Rk+1 ⊆ Dl¯
where

W ′ = {(R1, . . . , Rk+1) | (R1, . . . , Rk) ∈W,Rk+1 ⊆ Dl}.

We may assume a nonempty domain D, so the result of
1R1×· · ·×1Rk is never empty. The mapping (R1, . . . , Rk) 7→
1R1 × · · · × 1Rk is injective. Query Q will therefore group
the possible outcomes of Qφ for the various choices of Rk+1

by R1, . . . , Rk.
Formally, by definition of [[·]],

[[Q′]]
(R1,...,Rk+1)

W ′ =n [ ˘
1R1 × · · · × 1Rk × [[Qφ]]

(R1,...,Rk,R
′
k+1)

W ′ |

(R1, . . . , Rk, R
′
k+1) ∈W ′¯ | (R1, . . . , Rk+1) ∈W ′

o
=

n
1R1 × · · · × 1Rk ×[ ˘

[[Qφ]]
(R1,...,Rk,R

′
k+1)

W ′ | R′k+1 ⊆ Dl¯o
.

Thus, in a given world (R1, . . . , Rk), Q produces exactly one
world as the result,

[[Q]]
(R1,...,Rk)
W =

n [ ˘
[[Qφ]]

(R1,...,Rk,R
′
k+1)

W ′ | R′k+1 ⊆ Dl¯o
= {RQ}

and this captures exactly second-order existential quantifi-
cation.

The WSA expression for universal second-order quanti-
fiers ∀Rk+1(⊆ Dl) φ is similar. Alternatively, ∀Rk+1 φ can
also be taken as ¬∃Rk+1 ¬φ, where complementation with
respect to D is straightforward using the difference opera-
tion. 2

Example 4.2. Σ2-QBF is the following ΣP2 -complete de-
cision problem. Given two disjoint sets of propositional vari-
ables V1 and V2 and a DNF formula φ over the variables of
V1 and V2, does there exist a truth assignment for the vari-
ables V1 such that φ is true for all truth assignments for the
variables V2?

Instances of this problem shall be represented by sets V1

and V2, a set C of ids of clauses in φ, and a ternary relation
L(C,P, S) such that 〈c, p, 1〉 ∈ L (resp., 〈c, p, 0〉 ∈ L) iff
propositional variable p occurs positively (resp., negatively)
in clause c of φ, i.e.,

φ =
_
c∈C

^
〈c,p,1〉∈L

p ∧
^

〈c,p,0〉∈L

¬p.

The QBF is true iff second-order sentence

∃P1 (P1 ⊆ V1) ∧ ∀P2 (P2 ⊆ V2) ⇒ ψ

is true, where ψ is the first-order sentence

∃c ¬∃p
`
L(c, p, 0) ∧ (P1(p) ∨ P2(p))

´
∨`

L(c, p, 1) ∧ ¬(P1(p) ∨ P2(p))
´
.

which asserts the truth of φ: that there is a clause c in φ
of which no literal is inconsistent with the truth assignment
p 7→ (p ∈ P1 ∪ P2). By Theorem 4.1, this can be expressed
as the Boolean WSA query

let P1 := subset(V1) in possible
`
{〈〉}

− let P2 := subset(V2) in possiblesch(P1)(1P1×({〈〉}−Q))
´

where

Q = π∅
`
C − πC

`
(σS=0(L) ./ (P1 ∪ P2)) ∪
(σS=1(L) ./ ((V1 ∪ V2)− (P1 ∪ P2)))

´´
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is relational algebra for ψ. 2

We now prove the converse direction of the expressiveness
result.

Theorem 4.3. For every WSA query, there is an equiv-
alent second-order logic query.

Proof Sketch. The proof revolves around the definition of
a function [[·]]so that maps each WSA expression Q to an SO

formula [[Q]]so with free second-order variables ~R and RQ
(the “query result”) and without free first-order variables
such that [[Q]]so and Q are equivalent in the sense that [[Q]]so
is true on structure (A, ~R,RQ) iff RQ is among the possi-

ble results of Q starting from possible world (A, ~R). We
can state this notion of correctness, which is the hypothesis
of the following induction along the structure of the WSA
expression, formally as

(A, ~R,RQ) � [[Q]]so ⇔ RQ ∈ [[Q]]
(A, ~R)
W

for

W =
n

(A, ~R) | (A, ~R) �
^

V in ~R

ψV
o
.

For a WSA expression Q that closes the possible world se-
mantics (i.e., [[Q]]A{A} = {RQ} is a singleton set), we can de-
fine an SO formula with free first-order variables but without
free second-order variables that computesRQ as ∃RQ [[Q]]so∧
RQ(x1, . . . , xar(Q)).

Here the free second-order variables ~R are also the names
of the views defined (using let-expressions) along the path
from the root of the parse tree of the query to the subex-
pression Q. A formula ψV is identified by the name of the
view relation V , assuming without loss of generality that
each view name is introduced only once by a let expression
across the entire query. The formulae ψV will be defined
below.

For the operations θ of relational algebra,

[[θ(Q1, . . . , Qar(θ))]]so(~R,RQ) :=

∃RQ1 · · ·RQar(θ)

“ ar(θ)^
i=1

[[Qi]]so(~R,RQi)
”

∧ ∀~x RQ(~x) ⇔ φθ(Q1,...,Qar(θ))
(~x)

where 0 ≤ ar(θ) ≤ 2, φS(~x) := S(~x), S is either a relation

from A or a second-order variable from ~R, and

φ{~t}(~x) := ~x = ~t

φQ1∪Q2(~x) := RQ1(~x) ∨RQ2(~x)

φQ1−Q2(~x) := RQ1(~x) ∧ ¬RQ2(~x)

φQ1×Q2(~x, ~y) := RQ1(~x) ∧RQ2(~y)

φσγ(Q)(~x) := RQ(~x) ∧ γ
φπ~x(Q)(~x) := ∃~y RQ(~x, ~y)

φρ~x→~y(Q)(~y) := ∃~x RQ(~x) ∧ ~x = ~y.

It is easy to verify that for any tuple ~x and relational alge-
bra operation θ, (A, RQ1 , . . . , RQar(θ)) � φθ(Q1,...,Qar(θ))

(~x)

if and only if ~x is a result tuple of relational algebra query
θ(RQ1 , . . . , RQar(θ)). Assume that the induction hypothesis

holds for the subqueries Q1, . . . , Qar(θ), i.e., (A, ~R,RQi) �

[[Qi]]so if and only if RQi ∈ [[Qi]]
(A, ~R)
W for 1 ≤ i ≤ ar(θ).

The formula [[θ(Q1, . . . , Qar(θ))]]so just states that RQ is
a relation consisting of exactly those tuples ~x that satisfy
φθ(Q1,...,Qar(θ))

(~x) for a choice of possible results RQi ∈

[[Qi]]
(A, ~R)
W of the subqueries Qi, for 1 ≤ i ≤ ar(θ). But

this is exactly the definition of [[θ(Q1, . . . , Qar(θ))]]
(A, ~R)
W .

This in particular covers the nullary operations of rela-
tional algebra ({~t} and R), which form the induction start.

The remaining operations are those special to WSA (with
definitions) and can be defined as shown in Figure 3. Here

“ ~A is a key for R” and π ~A(R) = π ~A(R′) are easily expressible
in FO.

It is straightforward to verify the correctness of [[·]]so for
subset and repair-key: The definitions of [[·]]so and [[·]] essen-
tially coincide.

Similarly, the correctness of the definition of [[·]]so for let
is easy to verify. Here we also define the formulae ψV .

Finally, [[possible ~A(Q1)]]so makes reference to world-set W
and for that purpose uses the formulae ψV : Indeed, the
worlds in W are exactly those structures that satisfy all the
ψV for relations V defined by let expressions on the path
from the root of the query to the current subexpression
possible ~A(Q1). The definition [[possible ~A(Q1)]]so is again
very close to the definition of [[possible ~A(Q1)]], and its cor-
rectness is straightforward to verify. 2

Note that by eliminating the definitions ψV in the proof
of Theorem 4.3 we in general obtain an exponential-size
formula. However, the proof construction translates WSA
without definitions to SO in polynomial time.

5. WHY WE ARE NOT DONE
The proof that WSA with definitions can express any SO

query may seem to settle the expressiveness question for
our language. However, understanding WSA without def-
initions is also important, for two reasons. First, it is a
commonplace and desirable property of query algebras that
they be compositional, i.e., that the power to define views
is not needed for the expressive power, and all views can be
eliminated by composing the query. Second, if this property
does not hold, it means that in general we have to precom-
pute and materialize views. And indeed, superficially we
would expect that WSA is not compositional in that re-
spect: it supports nondeterministic operations (repair-key
and/or subset). If a view definition V contains such a non-
deterministic operation and a query uses V at least twice,
replacing each occurrence with the definition will not be
equivalent because the two copies of the definition of V will
produce different relations in some worlds. For example,
(let V := subset(U) in V ./ V ) is not at all equivalent to
subset(U) ./ subset(U).

The question remains whether for each WSA query there
is an equivalent query in WSA without definitions via a
less direct rewriting. The answer to this question is less
obvious. Our language definition has assumed repair-key to
be the base operation and subset definable using WSA with
repair-key. Indeed, in WSA with definitions, either one can
be defined using the other. However, it can be shown that
repair-key cannot be expressed using subset without using
definitions even though subset can guess subsets and appears
comparable in expressiveness to repair-key.

Consider possible worlds databases in which each relation
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[[subset(Q1)]]so(~R,RQ) := ∃RQ1 [[Q1]]so(~R,RQ1) ∧RQ ⊆ RQ1

[[repair-key ~A(Q1)]]so(~R,RQ) := ∃RQ1 [[Q1]]so(~R,RQ1) ∧RQ ⊆ RQ1

∧ ~A is a key for RQ

∧ ¬∃R′Q RQ ⊂ R′Q ⊆ RQ1 ∧ ~A is a key for R′Q

[[let V := Q1 in Q2]]so(~R,RQ) := ∃V ψV ∧ [[Q2]]so(~R, V,RQ)

and define ψV := [[Q1]]so(~R, V )

[[possible ~A(Q1)]]so(~R,RQ) := ∃RQ1 [[Q1]]so(~R,RQ1) ∧ ∀~x RQ(~x) ⇔

∃~R
““ ^

V in ~R

ψV
”
∧ ∃R′Q1 [[Q1]]so(~R,R

′
Q1)

∧ πA(RQ1) = πA(R′Q1) ∧ R′Q1(~x)
”

Figure 3: Definition of [[·]]so for operations not part of relational algebra.

[[θ]]ndef (W1, . . . ,War(θ)) := {θ(R1, . . . , Rar(θ)) | R1 ∈W1, . . . , Rar(θ) ∈War(θ)}
. . . where θ is an operation of relational algebra

[[repair-key ~A]]ndef (W ) := {R | R ⊆ R′ ∈W,πA(R) = πA(R′), ~A is a key for R}

[[subset]]ndef (W ) := {R | R ⊆ R′ ∈W}

[[possible ~A]]ndef (W ) :=
n [

{R′ ∈W | π ~A(R) = π ~A(R′)} | R ∈W
o

Figure 4: Definition of [[·]]ndef .

is independent from the other relations, i.e., the world set is
of the form

{(R1, . . . , Rk) | R1 ∈W1, . . . , Rk ∈Wk}.

WSA without definitions on such relation-independent data-
bases gives rise to a much simpler and more intuitive seman-
tics definition than the one of Section 3, via the function
[[·]]ndef defined in Figure 4.

The correctness of this alternative semantics definition,
stated next, is easy to verify.

Proposition 5.1. For relation-independent databases and
WSA without definitions, [[·]]ndef is equivalent to [[·]] in the
sense that for any operation θ,

{[[θ(Q1, . . . , Qar(θ))]]
A
W | A ∈W} = [[θ]]ndef (W1, . . . ,War(θ))

where Wi =
S
{[[Qi]]AW | A ∈W} for all 1 ≤ i ≤ ar(θ).

The following result asserts that adding subset to rela-
tional algebra yields little expressive power. By the exis-
tence of a supremum of a set of worlds W , we assert the
existence of an element (

S
W ) ∈ W , denoted sup(W ). An

infimum is a set inf(W ) := (
T
W ) ∈W .

Theorem 5.2. On relation-independent databases, any
world-set computable using relational algebra extended by the
operation subset has a supremum and an infimum.

Proof. The nullary relational algebra expressions ({~t} and
R) yield just a singleton world-set, and the single world is
both the supremum and the infimum. Given a world-set W ,

sup([[subset]]ndef (W )) := sup(W ), inf([[subset]]ndef (W )) :=
∅. For a positive relational algebra expression θ, sup([[θ]]ndef (
W1, . . . ,Wk)) := θ(sup(W1), . . . , sup(Wk)) and inf([[θ]]ndef (
W1, . . . ,Wk)) := θ(inf(W1), . . . , inf(Wk)). For relational dif-
ference, it can be verified that sup([[−]]ndef (W1,W2)) :=
sup(W1) − inf(W2) and inf([[−]]ndef (W1,W2)) := inf(W1) −
sup(W2). It is easy to verify the correctness of these defini-
tions, and together they yield the theorem. 2

Thus, not even repair-key∅({0, 1}) =
˘
{0}, {1}

¯
can be

defined.

Corollary 5.3. The set of worlds
˘
{0}, {1}

¯
is not de-

finable in relational algebra extended by subset.

In contrast, repair-keysch(U)(U ×{0, 1}) can be defined as
follows in the language fragment of relational algebra plus
subset if definitions are available:

let R := subset(U) in (R× {〈1〉} ∪ (U −R)× {〈0〉}).

Thus, removing definitions seems to cause a substantial
reduction of expressive power. In the remainder of this pa-
per, we study whether possible ~A and repair-key can offset
this.

Before we move on, another simple result shall be stated
that gives an intuition for the apparent weakness of WSA
without definitions. If a view is defined by a query that
involves one of the nondeterministic operations (possible ~A
or repair-key), then this view can only be used at one place
in the query if the query is to be composed with the view.
However, subsequent relational algebra operations will be
monotonic with respect to that view.
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To be precise, by monotonicity of a query Q in one input
relation R, we will, throughout this paper, mean that Q
satisfies one of the following two properties:

1. For all instances A,B, if RA ⊆ RB, then [[Q]]A· ⊆ [[Q]]B· .

2. For all instances A,B, if RA ⊆ RB, then [[Q]]A· ⊇ [[Q]]B· .

Proposition 5.4. Let Q be a nonmonotonic relational
algebra query that is built using a relation R and constant
relations. Then R occurs at least twice in Q.

Proof. Assume a relational algebra query tree exists that
expresses Q and in which R only occurs as a single leaf.
Then the path from that leaf towards the root operation
consists of unary operations and operations Q1 θ Q2 where
Q1 contains R and Q2 has only constant relations as leaves:
Q2 is constant. So Q1 θ Q2 can be thought of as a unary
operation. But all unary operations θ are monotonic, i.e.,
if X ⊆ Y , then θ(X) ⊇ θ(Y ) for the family of operations
(C −X)C const.,sch(C)=sch(X) and θ(X) ⊆ θ(Y ) for all other
operations. It follows that Q, a sequence of such operations,
is also monotonic. 2

6. EXPRESSIVE POWER OF WSA WITH-
OUT DEFINITIONS

As the main technical result of the paper, we now show
that WSA without definitions (but using repair-key as in
our language definition), captures all of SO. It follows that
definitions, despite our nondeterministic operations, do not
add power to the language. This is surprising given Theo-
rem 5.2.

The difficulty lies with the nondeterministic repair-key op-
eration. If this operation occurs in a definition which is used
more than once in the query, we cannot simply eliminate it
by substitution, since multiple copies of a nondeterministic
operation may produce different results. A definition evalu-
ates to only a single result in each world – just like a (to be
unambiguous, materialized) view.

We start by formalizing indicator relations, which will be
an essential tool for rewriting queries to make sure that no
view definition (or any other relation other than the domain
relation) is used at more than one place in the query.

6.1 Indicator Relations
Let U be a nonempty relation (the universe) and let R ⊆

U . Then the indicator function 1R : U → {0, 1} is defined
as

1R : x 7→


1 . . . x ∈ R
0 . . . x 6∈ R

The corresponding indicator relation is just the relation

{〈x, 1R(x)〉 | x ∈ U}

which, obviously, has functional dependency U → {0, 1}.
Subsequently, we will always use indicator relations rather
than indicator functions and will denote them by 1R as well.
By our assumption that U 6= ∅, indicator relations are al-
ways nonempty.

Given relations R and U with R ⊆ U 6= ∅, the indicator
relation 1R w.r.t. universe U can be constructed in relational
algebra as

ind(R,U) := (R× {〈1〉}) ∪ ((U −R)× {〈0〉}).

The expression repair-keysch(U)(U × {0, 1}) is equivalent
to

let R := subset(U) in ind(R,U)

and yields an indicator relation in each possible world.
Indicator relations have the nice property that their com-

plement can be computed using a conjunctive query (with
an inequality),

1U−R = (U×{0, 1})−1R := π1,2(σ1=3∧26=4(U×{0, 1}×1R)).

Let R denote the complement of relation R and let Ui =
Ri ∪Ri, called the universe of Ri. Note that

R1 × · · · ×Rk =

k[
i=1

U1 × · · · ×Ui−1 ×Ri ×Ui+1 × · · · ×Uk.

The complement of a product ~1 := 1R1 ×· · ·× 1Rk can be
obtained as

complU1,...,Uk
(~1) = (U1 × {0, 1} × · · · × Uk × {0, 1})−~1

= πA1,B1,...,Ak,Bk (σW
i(Ai=A

′
i∧Bi 6=B′i)

(

ρA′1B′1...A′kB
′
k
(~1) × ρA1B1...AkBk (

U1 × {0, 1} × · · · × Uk × {0, 1}))).

if, for each 1 ≤ i ≤ k, Ui is the universe of Ri. Moreover,

Lemma 6.1. The k-times product of 1R, denoted by

(1R)kU :=

k timesz }| {
1R × · · · × 1R,

can be expressed as a relational algebra expression in which
1R only occurs once.

Proof. Let U be the universe of R.

(1R)kU = ρA1B1...AkBk ((U × {0, 1})k)− complUk (1kR)

= ρA1B1...AkBk ((U × {0, 1})k)
− πA1,B1,...,Ak,Bk (σW

1≤i≤k(Ai=A′∧Bi 6=B′)(

ρA1B1...AkBk ((U × {0, 1})k)× ρA′B′(1R))).

2

As a convention, let S0 = {〈〉} for nonempty relations S.
In particular, (1R)0U = {〈〉}.

6.2 The Quantifier-Free Case
By quantifier-free formulae we will denote formulae of

predicate logic that have neither first- nor second-order quan-
tifiers. An inequality (atom) is an atomic formula of the
form t1 θ t2 where t1 and t2 are variables or constants and θ
is =, 6=, <, or ≤.

Lemma 6.2. Let φ be a negation- and quantifier-free for-
mula with relations ~R. Then φ can be translated in linear
time into a formula ∃~x α ∧ β, where α is a Boolean com-
bination of inequalities and β is a conjunction of relational
literals, which is equivalent to φ on structures in which each
relation of ~R is nonempty.

Proof. LetR1, . . . , Rs the set of distinct predicates (relation
names) occurring in φ. Apply the following translation of φ
inductively bottom-up.
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Induction start: The translation is the identity on inequal-
ity atoms. Rewrite atomic formulae Rj(~t) into ∃~vj1 ~vj1 =
~t∧Rj(~vj1). The free variables of these formulae are the vari-
ables occurring in ~t. The variables ~vj1 are new and do not
overlap with those of ~t.

Induction step: A subformula ψ1∨ψ2 (resp., ψ1∧ψ2) with

ψi = ∃~v ~w αi ∧
ŝ

j=1

nij^
k=1

Rj(~vjk).

is turned into

∃~v ~w α ∧
ŝ

j=1

mj^
k=1

Rj(~vjk)

where mj = max(n1j , n2j) and α = α1 ∨ α2 (resp., mj =
n1j + n2j , α = α1 ∧ α′2, and α′2 is obtained from α2 by
replacing each occurrence of variable vj,k,l everywhere in α′2
by vj,k+n1j ,l).

For the equivalence of the rewritten formula to φ, it is
only necessary to point out that since, by assumption of the
lemma, all the relations Rj are nonempty, ψi is equivalent
to

∃~v ~w αi ∧
ŝ

j=1

mj^
k=1

Rj(~vjk).

It is not hard to verify that the translation can indeed be
implemented to run in linear time and that the rewritten
formula is of the form claimed in the lemma. 2

Theorem 6.3. For any quantifier-free formula there is
an equivalent positive relational algebra expression over uni-
verse relations and indicator relations in which each indica-
tor relation only occurs once.

Proof Sketch. Assume R1, . . . , Rs are all the predicates
(or equivalently, second-order variables) occurring in the
formula, and ~x are all the free first-order variables of the
formula.

First push negations in the formula down to the atomic
formulae using De Morgan’s laws and the elimination of dou-
ble negation. Then replace each relational literal ¬Rj(~t)
by the equivalent atom 1Rj (~t, 0), and replace each remain-

ing relational atom Rj(~t) by the equivalent atom 1Rj (~t, 1).
Moreover, we replace each inequality literal ¬(t θ t′) by t θ′ t′,
where θ′ is the complement of θ (e.g., 6= for =).

Since 1Rj 6= ∅ and our formula is now negation-free, we
can use Lemma 6.2 to rewrite the formula into a formula of
syntax

∃~v ~w α ∧
ŝ

j=1

mj^
k=1

1Rj (~vjk)

where α does not contain relational atoms.
The relational algebra expression is π~x(σα(B1×· · ·×Bs))

with Bj := ρ~vj1...~vjmj

`
(1Rj )

mj

Uj

´
. Each Bj computes an mj-

times product of 1Rj using the technique of Lemma 6.1
which just uses one occurrence of 1Rj . All the relations
1Rj only occur once. This proves the theorem. 2

Example 6.4. Consider an alternative encoding of 3-co-
lorability in WSA which is based on guessing a subset of re-
lation U = V ×ρC({r, g, b}). Then 3-colorability is the prob-
lem of deciding the SO sentence ∃C(⊆ U) ¬∃v, w, c, c′ φ1 ∨

φ2∨φ3 with φ1 = E(v, w)∧C(v, c)∧C(w, c), φ2 = C(v, c)∧
C(v, c′)∧c 6= c′, and φ3 = ¬C(v, r)∧¬C(v, g)∧¬C(v, b), i.e.,
φ1 asserts that two neighboring nodes have the same color,
φ2 that a node has simultaneously two colors, and φ3 that a
node has not been assigned any color at all. If neither is the
case, we have a 3-coloring of the graph. Using Theorem 6.3,
φ1 ∨ φ2 ∨ φ3 becomes

π = ∃t1 . . . t4 (ψ1∨ψ2∨ψ3)∧1C(u1, c1, t1)∧1C(u2, c2, t2) ∧
1C(u3, c3, t3) ∧ 1E(v, w, t4)

where

ψ1 = u1 = v ∧ u2 = w ∧ c1 = c2 ∧ t1 = t2 = t4 = 1

ψ2 = u1 = u2 ∧ c1 6= c2 ∧ t1 = t2 = 1

ψ3 = u1 = u2 = u3 ∧ c1 = r ∧ c2 = g ∧ c3 = b

∧ t1 = t2 = t3 = 0;

This is a slight simplification of the translation result we
would obtain following the proof of Lemma 6.2: We do not
define copies of the free variables just to quantify them away
again.

Following Theorem 6.3, formula π can be turned into re-
lational algebra as

Qπ := πu1c1u2c2u3c3vw(σψ1∨ψ2∨ψ3(

ρu1c1t1u2c2t2u3c3t3((1C)3V×{r,g,b})× ρvwt4(E)))

where (1C)3V×{r,g,b} denotes the relational algebra expres-
sion for 1C × 1C × 1C from Lemma 6.1.

The complete SO sentence can be stated as

∃1C (1C : V × {r, g, b} → {0, 1}) ∧ ¬∃u1c1u2c2u3c3vw π.

If 1C in Qπ is replaced by repair-keyV,C(V × ρC({r, g, b})×
ρT ({0, 1})), this sentence can be turned into WSA without
definitions as possible({〈〉} − π∅(Qπ)). 2

6.3 Quantification and Alternation
Conceptually, in SO, there is no difference in the treat-

ment of second-order variables and relations coming from
the input structure; an existential second-order quantifier
extends the structure over which the formula is evaluated.
In our algebra, however, we have to construct the possible
alternative relations for a second-order variable R at the be-
ginning of the bottom-up evaluation of the algebra expres-
sion using repair-key and have to later test the existential
quantifier ∃R using the possible operation grouping the pos-
sible worlds that agree on R. For that we have to keep R
around during the evaluation of the algebra expression. Se-
lections also must not actually remove tuples because this
would mean that the information about which world the
tuple is missing from would be lost. For example, the al-
gebra expression corresponding to a Boolean formula must
not return false, but in some form must compute the pair
〈R, false〉.

Let φ be an SO formula with free second-order variables
R1, . . . , Rk and l free first-order variables x1, . . . , xl. Con-
ceptually, our proofs will produce a WSA expression for φ
that computes, in each possible world identified by choices
of relations R1, . . . , Rk for the free second-order variables,
the relation

R1 × · · · ×Rk ×Θ
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where Θ is a representation of a mapping

~a 7→ truth value of (R1, . . . , Rk) � φ[~x replaced by ~a].

Truth and falsity cannot be just represented by 1 and 0,
respectively, because an existential first-order quantifier will
effect a projection on Θ whose result may contain both truth
values 1 and 0 for a variable assignment ~a. Thus, projection
may map environments for which φ is true together with
environments for which φ is false. In that case we would
like to remove the tuples for which the truth value encoding
is 0. Unfortunately, the function

F :

8<: {0} 7→ {0}
{1} 7→ {1}
{0, 1} 7→ {1}

is nonmonotonic, and by Proposition 5.4 cannot be expressed
in relational algebra if the input relation is to occur in the
query only once. Fortunately, we do not need such a func-
tion F .

Definition 6.5. A PBIT (protected bit) is either {⊥}
(denoting 0) or {⊥, 1} (denoting 1).

Given a Boolean query Q (i.e., Q returns either {〈〉} or
∅),

PBIT (Q) := (Q× {1}) ∪ {⊥}.

The negation of PBIT B is obtained by {⊥, 1} − (B ∩ {1}).
The set union on PBITs effects a logical OR, thus a rela-
tion ⊆ R × PBIT for which 〈~a, 1〉 ∈ R implies 〈~a,⊥〉 ∈ R
guarantees that projecting away a column other than the
rightmost corresponds to existential quantification.

Definition 6.6 (Protected truth-table semantics).
Under the protected truth-table semantics, a second-order
formula φ with free second-order variables R1, . . . , Rk and
free first-order variables x1, . . . , xl, computes on input rela-
tional database A the relation

[[φ]]Att(R1, . . . , Rk) := 1R1 × · · · × 1Rk ×Θ

such that

Θ = ρ~D,T ((Dl × {⊥}) ∪ {〈~a, 1〉 | ~a ∈ Dl,

(A, R1, . . . , Rk) � φ[~x replaced by ~a] is true})

and D is a domain relation containing the possible values
for the first-order variables.

A relation Θ can therefore be thought of as a mapping
Dl → PBIT . The complement of such a relation Θ is

complDl(Θ) := Dl × {⊥, 1} − σT=1(Θ).

Example 6.7. LetR = {〈0, 1〉, 〈1, 0〉} with schemaR(AB)
and let φ = R(x, 1). Then

[[φ]]
()
tt(R) =

1R A B (∈ R)
0 0 0
0 1 1
1 0 1
1 1 0

×

Θ x T
0 1
0 ⊥
1 ⊥

because PBIT (R � φ[0]) = {1,⊥} and PBIT (R � φ[1]) =
{⊥}. 2

We will define WSA expressions that correspond to SO
formulae under the protected truth-table semantics.

Next we obtain an auxiliary construction for complement-
ing a Θ relation while passing on the values of the second-
order variables. This will be the essential tool for alterna-
tion.

Lemma 6.8. Let P = 1R1 × · · · × 1Rk × Θ where Θ ⊆
D1 × · · · ×Dl ×PBIT . There is a WSA expression without
definitions for

complU1,...,Uk;~D,T (P ) := 1R1 × · · · × 1Rk × compl(Θ)

in which P only occurs once.

Proof. Let sch(Ui) = Ai and sch(1Ri) = AiBi. We write ~1

for 1R1×· · ·×1Rk and ~U+ for U1×· · ·×Uk×ρB1...Bk ({0, 1}k).
An encoding of complU1,...,Uk

(~1) in relational algebra was
given in Section 6.1.
complU1,...,Uk;~D,T (~1×Θ) =

~1× (Dl × {⊥, 1} − σT=1(Θ))

= (~U+ ×Dl × ρT ({⊥, 1}))
−complU1,...,Uk

(~1)×Dl × ρT ({⊥, 1})

−~U+ × σT=1(Θ)

= (~U+ ×Dl × ρT ({⊥, 1}))
−πA1,B1,...,Ak,Bk,T (σW

i(Ai=A
′
i∧Bi 6=B′i)∨T

′=T=1(

~U+ × ρA′1B′1...A′kB
′
k
T ′(~1×Θ| {z }

P

)× ρT ({⊥, 1}))).

The final WSA expression is in the desired form. 2

Now we are ready to prove the main result of this section.

Theorem 6.9. Given a second-order formula φ, a WSA
expression without definitions which is equivalent to φ under
the protected truth-table semantics can be computed in linear
time in the size of φ.

Proof Sketch. The proof is by bottom-up induction in the
formula. We will construct for each SO formula φ with free
second-order variablesR1, . . . , Rk on input structureA (that
is, the input relations from A are separate from R1, . . . , Rk)
a WSA expression P such that

[[P ]]A{A} = {[[φ]]Att(R1, . . . , Rk) | R1 ⊆ U1, . . . , Rk ⊆ Uk}.

Induction start: Assume that φ is quantifier-free with free
second-order variables R1, . . . , Rk (k ≥ k0) and free first-
order variables ~x. Consider the quantifier-free formula

ψ(~y, ~x, t) :=
“ ^

1≤j≤k

1Rj (~yj)
”
∧

`
(φ ∧ t = 1) ∨ t = ⊥

´
,

where the variables ~y and t are new and do not occur in φ. It
is easy to verify that ψ defines the relation [[φ]]Att(R1, . . . , Rk)
in the sense that

(R1, . . . , Rk) � ψ[~t] ⇔ ~t ∈ [[φ]]Att(R1, . . . , Rk).

Specifically, the projection down to columns ~yj represents
the free second-order variable Rj , the projection down to
columns ~x specifies all the possible assignments to the first-
order variables, and t is a PBIT for the truth value of φ for
a given assignment to the first- and second-order variables.
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The corresponding WSA expression without definitions P
is obtained as follows. We first translate ψ into a relational
algebra expression using Theorem 6.3. In this expression,
each relation 1Rj occurs at most once. Apart from that,
it uses only universe relations Uj (which can be thought
of as ar(Rj)-times products of D). In this expression, we
replace each indicator relation 1Rj as follows. For input
relations Rj (j ≤ k0), we replace 1Rj by the algebra expres-
sion ind(Rj , Uj). For second-order variables Rj (j > k0), we
replace 1Rj by repair-keysch(Uj)(Uj × {0, 1}). The claim of

the induction hypothesis follows immediately.
Induction step (φ has quantifiers): We assume that uni-

versal quantifiers ∀· have been replaced by ¬∃ · ¬.

• First-order existential quantification: φ = ∃xl+1 ψ,
where the free first-order variables of ψ are x1, . . . , xl+1.
By the induction hypothesis, there is a WSA expres-
sion P which computes [[ψ]]Att(R1, . . . , Rk). The cor-
responding WSA expression is πsch(P )−xl+1(P ). It is
easy to verify that the projection has exactly the effect
of existential first-order quantification,

[[∃xl+1 ψ]]Att(R1, . . . , Rk) =

πsch(P )−xl+1([[ψ]]Att(R1, . . . , Rk)).

The semantics of WSA ensures that this projection is
performed in parallel in all possible worlds (i.e., for
any interpretation of the free second-order variables
we may choose), without interference (see Lemma 3.5
and Lemma 3.6).

• Second-order existential quantification: φ = ∃Rk+1 ψ.
By the induction hypothesis, there is a WSA expres-
sion P which computes [[ψ]]Att(R1, . . . , Rk+1). We may
assume w.l.o.g. that the relations R1, . . . , Rk+1 have
disjoint schemas. The WSA expression for φ is

Q = πsch(P )−sch(Rk+1)(possiblesch(R1),...,sch(Rk)(P )).

The correctness is established as follows.

[[Q]]A{A} :=n
πsch(P )−sch(Rk+1)

“ [
{S ∈ [[P ]]A{A}

| πsch(R1),...,sch(Rk)(S) = 1R1 × · · · × 1Rk}
”

| ~R ⊆ ~U
o

=
n
πsch(P )−sch(Rk+1)

“
[

Rk+1⊆Uk+1

[[ψ]]Att(R1, . . . , Rk+1)
”
| ~R ⊆ ~U

o
=

˘
[[∃Rk+1 ψ]]Att(R1, . . . , Rk) | ~R ⊆ ~U

¯
where ~R ⊆ ~U is a shortcut for R1 ⊆ U1, . . . , Rk ⊆ Uk.

• Negation: φ = ¬ψ. The WSA expression for φ is
complU1...Uk;~D,T (P ). By Lemma 6.8,

[[¬ψ]]Att(R1, . . . , Rk) =

complU1...Uk;~D,T ([[ψ]]Att(R1, . . . , Rk)).

The correctness follows from the fact that the opera-
tions of complU1...Uk;~D,T (·) are relational algebra, which
is evaluated in WSA in each world in parallel.

For an SO formula φ without free second-order-variables,
the WSA expression P computes a singleton relation

[[P ]]A{A} = {[[φ]]Att()},

that is, there is a single possible world as result. 2

Remark 6.10. From protected truth-table to standard se-
mantics of SO: Let φ be an SO formula without free second-
order variables (but possibly with input relations) and let P
be the corresponding WSA expression given by Theorem 6.9.
The relation defined by the free first-order variables of φ,
{~a ∈ Dl | A � φ[~a]}, is obtained as πsch(P )−{T}(σT=1(P )).

Note that the proof construction of Theorem 6.9 is stron-
ger: If φ has free second-order variables, then the corre-
sponding WSA expression computes, for each possible in-
terpretation of the free second-order variables, a possible
world with the relation defined by the first-order variables
and the values taken by the second-order variables all en-
coded in a single unambiguous relation according to [[·]]tt.

2

Example 6.11. We continue Example 4.2. Let

φ =
`
L(c, p, 0) ∧ (P1(p) ∨ P2(p))

´
∨`

L(c, p, 1) ∧ ¬(P1(p) ∨ P2(p))
´
.

Then Σ2-QBF can be expressed by the SO sentence

∃P1(⊆ V1) ¬∃P2(⊆ V2) ¬∃c(∈ C) ¬∃p φ.

We can turn
`
φ ∨ t = ⊥

´
∧ P1(p12) ∧ P2(p22) into WSA

over indicator relations as

Q = σψ
`
ρcpstL(1L)× ρp11t11p12t12((1P1)

2
V1) ×

ρp21t21p22t22((1P2)
2
V2)× ρt({〈⊥〉} ∪ {〈1〉})

´
where ψ =

`
t = ⊥ ∨ (tL = 1 ∧ p = p11 = p21 ∧ ((s =

0∧ (t11 = 1∨ t21 = 1))∨ (s = 1∧ t11 6= 1∧ t21 6= 1)))
´
. Note

that we have simplified the expression of the proof somewhat
by inlining the auxiliary variables ~v and ~w.

The complete WSA expression for the SO sentence is

PBIT to boolz }| {
π∅ ◦ σt=1 ◦

∃P1z }| {
πt ◦ possible∅ ◦

¬z }| {
complV1;T ◦

πp12t12t ◦ possiblep12t12| {z }
∃P2

◦ complV1,V2;T| {z }
¬

◦πp12t12p22t22t| {z }
∃c

◦

complV1,V2;C,T| {z }
¬

◦πp12t12p22t22ct| {z }
∃p

( Q|{z}
φ

).

We replace 1L by ind(L, ·) and 1Pi by repair-keyp(ρpt(Vi ×
{0, 1})). 2

The composition of Theorems 4.3 and 6.9 yields a trans-
lation3 from WSA with definitions to WSA without. Thus,
definitions add no power to WSA.

Corollary 6.12. WSA without definitions captures WSA.

3This translation is inefficient, however: It may produce
WSA expressions that are exponentially larger than the in-
put, and may introduce additional difference operations.
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7. COMPLEXITY OF WSA
The data complexity of a query language refers to the

problem of evaluating queries on databases assuming the
queries fixed and only the database part of the input, while
combined complexity assumes that both the query and the
database are part of the input [19].

By [18], a generalization of Fagin’s Theorem [8] (see also
[15]), the data complexity of SO logic corresponds exactly
to the polynomial hierarchy (PHIER) in the following way:
The data complexity of each SO sentence is in one of the
classes of the polynomial hierarchy, and for each such class
there is an SO sentence whose data complexity is complete
for it. (The verbose definition is necessary because no indi-
vidual problem is complete for PHIER unless the hierarchy
collapses.) SO logic is also PSPACE-complete with respect
to combined complexity.

By the interreducibility between SO and WSA, which is
efficient for the reduction from SO to WSA without defi-
nitions (Theorem 6.9, which implies PSPACE-hardness of
WSA with or without definitions) and the reduction from
WSA without definitions to SO (Theorem 4.3, which implies
PSPACE-membership of WSA without definitions), the fol-
lowing complexity results follow for WSA.

Corollary 7.1. 1. WSA with or without definitions
corresponds exactly to PHIER with respect to data com-
plexity,

2. WSA with definitions is PSPACE-hard with respect to
combined complexity, and

3. WSA without definitions is PSPACE-complete with re-
spect to combined complexity.

We cannot directly conclude an upper bound on the com-
bined complexity of WSA with definitions from the reduc-
tion of Theorem 4.3 because it takes exponential time: In
the case that WSA definitions are used, several copies of
formulae ψV may be used in the SO formula constructed
in the proof. By inductively expanding the formula, elimi-
nating definitions, we cause an exponential blow-up of for-
mula size. However, we can think of the proof construc-
tion as a linear-time mapping from WSA with definitions to
second-order logic with definitions. The standard PSPACE
algorithm for second-order logic extends directly to second-
order logic with definitions: Of the formula, we only have to
maintain a current path in its parse tree, which is clearly of
polynomial size. It follows that

Proposition 7.2. WSA with definitions is PSPACE-com-
plete with respect to combined complexity.

8. RELATED WORK
In an early piece of related work, Libkin and Wong [16]

define a query algebra for handling both nested data types
and uncertainty. Their notion of uncertainty called or-sets
(as a generalization of the or-sets of [11]) is treated as a spe-
cial collection type that can syntactically be thought of as
a set of data and is only interpreted as uncertainty on an
additional “conceptual level”. The result is a very elegant
and clean algebra that nicely combines complex objects with
uncertainty. While their language is stronger and can man-
age nested data, there is nevertheless a close connection to
WSA, which can be thought of as a flat relational version

of their language. Indeed, the or-set language contains an
operator α that is essentially equivalent to the repair-key
operator of WSA.

TriQL, the query language of the Trio project [20], sub-
sumes the power of relational algebra and supports an op-
eration “groupalts” which expresses the repair-key opera-
tion of WSA applied to a certain relation. There are many
more operations in TriQL, but it is hard to tell whether
possible ~A is expressible in TriQL since no formal semantics
of the language is available. Moreover, explicitly process-
ing and modifying the Trio representation system is cen-
tral to TriQL’s design philosophy. As a consequence, TriQL
contains a number of representation-dependent (non-generic
[2]) operations which may return semantically different re-
sults for different semantically equivalent representations of
a probabilistic database. This makes TriQL hard to study
and compare with WSA. However, it seems that WSA is a
good candidate for a generic core to TriQL, and the results
of the present paper provide additional evidence that TriQL
is highly expressive.

The probabilistic databases definable using repair-key from
certain relations are also a large fragment of the block in-
dependent-disjoint (BID) tables of Ré and Suciu: Using
repair-key and selection, all the BID tables can be defined.
In their paper [17], they study related representability prob-
lems for BID tables. BID tables are known to be more pow-
erful than tuple-independent tables, which correspond to un-
certain tables definable using the subset operation. This is
in line with observations made in Section 5 of the present
paper.

In [7], Dalvi and Suciu characterize a class of conjunctive
queries that are #P-hard with self-joins and in polynomial
time without, namely the hierarchical queries with an inver-
sion that does not have an eraser (for a definition of that
class, see [7]). The present paper shows that self-joins in
relational algebra can be essentially eliminated at the cost
of introducing difference operations. This directly yields a
#P-hardness result for a very restrictive class of queries with
difference on probabilistic databases.

The algebra defined in our earlier work [4] is exactly the
one described in the present paper, modulo the following de-
tails. Most importantly, while repair-key is introduced there
as part of the algebra, most of the paper focuses on the frag-
ment that is obtained by replacing repair-key by choice-of.
Moreover, the syntax of possible ~A allows for the grouping
of worlds by a query Q that can be given as a parame-
ter; the syntax is possibleQ(Q′). An operation possible ~A in
the syntax of the present paper corresponds to an operation
possibleπ ~A

in the syntax of [4]. The results of this paper

imply that allowing general queries Q for grouping adds no
power, so we are indeed studying the same language. The
paper [4] also gives an SQL-like syntax for WSA, in which
the intuition of possible ~A is made explicit by the syntax “se-
lect possible . . . group worlds by . . . ”.

In recent work [3, 14, 12], efficient techniques for process-
ing a large part of WSA have been developed. The only
operations that currently defy good solutions are possible ~A
(i.e., with world grouping) and, to a lesser extent, rela-
tional difference. Indeed, the repair-key operator on the
standard representations described in Example 2.1 can be
implemented efficiently, even though semantically it gener-
ally causes an exponential blowup in the size of the set of
possible worlds. Thus, it is natural to ask for the expressive
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power of WSA with possible ~A replaced by possible. The
construction of the proof of Theorem 4.1 can map any SO
formula of the form ∃R φ or ∀R φ, where φ is FO, to WSA.
It is not hard to see that despite the restriction to a single
second-order quantifier, this fragment of WSA (with defini-
tions) can express all of NP ∪ co-NP. For an upper bound, it
seems that all such restricted WSA queries have data com-
plexity in ∆P

2 (i.e., PNP).

9. CONCLUSIONS
The main contribution of this paper is to give the ap-

parently first compositional algebra that exactly captures
second-order logic over finite structures, a logic of wide in-
terest.

Second-order logic is a natural yardstick for the expres-
siveness of query languages for uncertain databases. It is
an elegant and well-studied formalism that naturally cap-
tures what-if queries. It can be argued that second-order
logic takes the same role in uncertain databases that first-
order logic and relational algebra take in classical relational
databases. In that sense, the expressiveness result of this
paper, WSA = SO, is an uncertain databases analog of
Codd’s Theorem.

Finding the right query algebra for uncertain databases is
important because efficient query processing techniques are
easier to obtain for algebraic languages without variables
or quantifiers, and algebraic operators are natural building
blocks for database query plans. Of course, the expressive-
ness result of this paper also implies that WSA has high
complexity and thus this paper can only be an initial call
for the search for more efficiently processible fragments of
WSA that retain some of its flavor of simplicity and clean-
liness.
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