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ABSTRACT
The ability to flexibly compose confidence computation with
the operations of relational algebra is an important feature
of probabilistic database query languages. Computing con-
fidences is computationally hard, however, and has to be
approximated in practice. In a compositional query lan-
guage, even very small errors caused by approximation can
lead to an entirely incorrect result: A selection operation on
an approximated probability can incorrectly keep or drop a
tuple even if the probability value has been approximated
to a very narrow confidence interval.

In this paper, we study the query evaluation problem for
compositional query languages for probabilistic databases
with particular focus on providing overall result quality guar-
antees in the face of approximate intermediate results. We
present a framework for evaluating compositional queries
based on a new representation system that can capture un-
certainty about probabilities. More specifically, we consider
probability intervals instead of exact probabilities, interpret-
ing tuples obtained by selection on approximate values as
unreliable.

We study the complexity of query evaluation over our new
model. We present efficient confidence computation algo-
rithms which compute bounds that are close to tight for
important classes. For deciding a selection predicate, we
show that no efficient randomized algorithm exists unless
BPP⊃NP. Still we are able to efficiently guess robust pred-
icates with a good error bound. Putting all these pieces to-
gether in our framework, we evaluate queries using a decom-
position into a relational algebra plan and an approximation
plan. The latter allows to successively improve accuracy and
error bounds, while the relational algebra plan only has to
be executed once.

1. INTRODUCTION
In many applications of data management, uncertainty is

an inherent feature of the data. For example, large collec-
tions of uncertain data arise in sensor networks [17] because
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the measurements of sensors are inaccurate and can corre-
spond to several high-level events. Other examples include
information retrieval [7], scientific databases [6], and data
cleaning [2]. In this paper we think of uncertain data as
a finite set of possible worlds – one for each alternative of
the uncertain data – together with a probability distribu-
tion over these worlds. This model is known as probabilistic
database.
The Query Language. We consider a powerful query
language over probabilistic databases that allows to study
“what if”–scenarios and to make decisions based on a com-
parison of the probabilities of events. It consist of pos-
itive relational algebra and confidence computation. The
confidence operation computes for each tuple its probabil-
ity. Decisions can be made based on these confidence values
through selection predicates involving confidences of events.
The class of predicates that we consider is very general. It
consists of Boolean combinations of inequalities involving
arithmetic expressions over confidences and constants. To
give a very simple example one can select all tuples whose
confidence is above a certain threshold. This language was
introduced in [14].
A Motivating Example: Data Cleaning. One appli-
cation of our framework is efficient data cleaning. Given a
probabilistic database, integrity constraints can be enforced
by assigning the worlds violating the constraints a probabil-
ity of zero and normalizing the probabilities of the remain-
ing worlds. In general removing worlds violating constraints
is #P–hard. A few heuristics have been proposed [15].
Other lines of work restrict the constraints to soft key con-
straints [11] or to constraints involving aggregation over prob-
abilistic XML [5].

Our framework enables efficient enforcement of equality
generating dependencies (egds) [1, 10]. The egds are taken
into consideration when approximating confidences without
adding any overhead to the complexity of query evaluation.
Complexity. Computing the confidence of a tuple is #P–
hard [6, 8]. However, an efficient, accurate, and reliable ran-
domized approximation algorithm exists. This algorithm [13]
can output an estimate which is arbitrarily close to the true
confidence with high probability in polynomial time. We
call such an algorithm a fully polynomial time randomized
approximation scheme (FPRAS).1 If we would like to com-
pute the confidence p of a tuple we run the approximation
algorithm that outputs an estimate p̂ that is close to p with
high probability. Here, p̂ is a random variables describing

1There are also deterministic approximation algorithms,
see [18].
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the output of the algorithm. The guarantee of the algo-
rithm given δ and ǫ is that with probability at least 1 − δ
the estimate p̂ is close to the true value p, i.e.

Pr

»

p̂

1 + ǫ
≤ p ≤

p̂

1− ǫ

–

≥ 1− δ.

Also, deciding a predicate is hard. We prove that already de-
ciding simple predicates of the form “confidence op c”, where
op ∈ {<,≤,≥,>} is #P–hard. We further show that no
non-trivial predicate can be estimated with an error proba-
bility bounded by 1/3 unless BPP⊃NP, which is considered
unlikely. BPP is the class of decision problems for which a
poly–time randomized algorithm exists outputting the cor-
rect answer with probability ≥ 2/3. This negative result is
a worst case result. There are cases in which we can output
the value of a predicate correctly with high probability.
Beyond Probabilistic Databases. A major challenge
arises in the composition of randomized approximation op-
erations. The approximate results cannot be captured as a
probabilistic database any longer. This is because the se-
lection of tuples based on their approximate confidence is
unreliable. The following example illustrates this.

Example 1.1. Let us assume that we want to select all
tuples with confidence at least c. We can use a FPRAS to
compute an estimate p̂ of the confidence p of a tuple that is

fairly accurate with high probability, i.e. Pr
h

p̂
1+ǫ
≤ p ≤ p̂

1−ǫ

i

≥ 1− δ. Now, there are three possible cases:
1.If p̂

1+ǫ
≥ c then with probability at least 1−δ we should

select the tuple.
2. If p̂

1−ǫ < c then with probability at least 1−δ we should
NOT select the tuple.

3. Otherwise we cannot make a guess of whether or not
the tuple should be selected.

In the first case the probability of the tuple is between
1− δ and 1. In the second case the probability of the tuple
is between 0 and δ. In the third case we can only give the
trivial bounds on the probability which are 0 and 1. 2

We introduce a succinct representation system general-
izing the one of [3] that can capture interval probabilities
instead of exact probabilities. The semantics is that any
probability distribution consistent with the intervals is pos-
sible. Modeling uncertainty of the probabilities has been
done for probabilistic databases [16, 21] and XML [9, 22].
In all prior work the dependencies considered are so basic
that confidence computation becomes easy. In our work we
consider arbitrary dependencies.
Complexity with Interval Probabilities. Computing
the confidence exactly is #P–hard even if the probabili-
ties are known exactly, but a FPRAS is known. We show
that only knowing interval probabilities makes this problem
harder. However, we present an efficient randomized approx-
imation algorithm for the case that the interval probabilities
were introduced by the unreliability of selection predicates.
Framework. We present a framework for efficiently eval-
uating arbitrarily composed queries. None of the existing
systems [3, 6, 20] can do this. In this framework queries are
decomposed into an approximation plan and a relational al-
gebra plan. The former allows to successively improve the
accuracy and the error bounds. The latter has to be exe-
cuted only once and standard optimization techniques can
be employed.

In summary our contributions are as follows:

• We study a powerful query language over uncertain
data. This language is formally introduced in Sec-
tion 3. We design a representation system extending
the one of [3] in Section 2 such that arbitrarily com-
posed queries are transformations from one instance
to another. In our representation system we can rep-
resent uncertainty of the probability distribution over
the possible worlds by considering probability intervals
instead of exact probabilities.

• We present a framework for query processing in Sec-
tion 4 in which queries are decomposed into an ap-
proximation plan and a relational algebra plan. The
former allows to successively improve the accuracy and
the error bounds. The latter has to be executed only
once and standard optimization techniques can be em-
ployed. The latter allows to successively improve ac-
curacy and error bounds, in order to provide overall
result quality guarantees in the face of approximate
intermediate results. While the relational algebra plan
only has to be executed once.

• We show that in general confidence approximation over
our new representation system with interval probabil-
ities is hard, see Section 6. However, for evaluating
queries over probabilistic databases we develop an ef-
ficient approximation algorithm that can handle the
interval probabilities introduced through unreliable se-
lections.

• We analyze the complexity of evaluating selection pred-
icates involving probabilities in Section 6.1. We show
that it is #P–hard for a simple type of predicate. We
also show that for any non-trivial predicate, there is
no randomized algorithm with a good error bound
unless BPP⊃NP. We generalize the results in [14] to
efficiently guess robust predicates with a good error
bound in Sec. 6.2.

2. DATA MODEL
A basic model for uncertain data is a probabilistic database.

Definition 2.1. A probabilistic database with schema
Σ = (R1[ ~A1], . . . , Rk[ ~Ak]) is a finite set of possible worlds
together with a probability distribution ~p over the worlds.
Each world is associated with a relational database over the
schema Σ. 2

The intuition behind this definition is that we know that
there is only one world describing the reality, but we do not
know which one. Some worlds are more likely than others.

2.1 Representation System
In Example 1.1 we saw that a selection of tuples based

on their approximate confidences results in a probabilistic
database, in which the probability distribution is not known
exactly. We introduce a representation system in which one
can represent uncertainty of the probability distribution. We
extend the system of U–DBs [3]. This representation system
corresponds to a probabilistic version of conditional tables
with variables that range over finite domains and with a
global condition that is always true. A valuation of the vari-
ables corresponds to a possible world containing all tuples
whose conditions evaluate to true.
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A B D

a1 b1 X1 ∧X2

a1 b1 ¬X3

a2 b1 ¬X1 ∧ ¬X3

a1 b2 ¬X1 ∧ ¬X3

a1 b2 X2

a1 b2 X3

Vars Prmin Prmax

X1 0.8 1
X2 0 0.1
X3 0.5 0.5

(a) U–relation (b) RUPD

Figure 1: U–DB.

Definition 2.2. Given a set of binary random variables,
a RUPD (short for Representation of an Unreliable Prob-
ability Distribution) describes for each variable X a lower
bound Prmin[X = 1] and an upper bound Prmax[X = 1] on
an unknown probability Pr[X = 1]. A U–relation Ui is a

table with schema Σ = Ui[ ~Ai, Di], where the attribute Di
contains a clause over the variables in the RUPD. An (un-
reliable) U–DB consists of a set of binary random variables,
a RUPD, and U–relations U1, . . . , Uk. 2

Fig. 1 shows an example of a U–DB. Note that a tuple can
occur multiple times with different clauses. Conceptually,
for each tuple over ~Ai we have a DNF which is the disjunc-
tion of all clauses in Di associated with that tuple. While
such a table in which tuples have DNF conditions is not
strictly a U-relation according to the original definition in
[?], we will sometimes refer to this generalized notion as
U-relation too.

Remark 1. The RUPD does not determine exactly the
probability of a variable X being true. It gives bounds on
the probability of a variable. These bounds imply bounds
for the probability of X being false.

Pr[X = 0] ≥ Pr
min

[X = 0] = 1− Pr
max

[X = 1]

Pr[X = 0] ≤ Pr
max

[X = 0] = 1− Pr
min

[X = 1]

Conventions. We call a U–relation certain if the condi-
tions of all variables are always true. In this case we omit
the column Di. For brevity we will denote Pr[X = 1] by
Pr[X] and Pr[X = 0] by Pr[¬X]. We refer to variables X
where the exact probability is unknown, i.e. Prmin[X = 1] 6=
Prmax[X = 1], as unreliable variables.

We next explain the semantics of a U–DB. Each variable
can have any probability within its bounds.

Definition 2.3. A RRPD W ∗ (short for Representation
of a Reliable Probability Distribution) describes for each
binary variable X a probability PrW∗ [X].

We say a RRPD W ∗ is an instantiation of a RUPD if for
all variables X: Prmin[X] ≤ PrW∗ [X] ≤ Prmax[X]. 2

Conceptually, one of the instantiations of a given RUPD is
the correct one, but it is unknown which one. Having defined
the RRPD instantiations of the RUPD, we next show that
each RRPD corresponds to a probabilistic database.

A total valuation θ from all variables to values in {0, 1} de-
termines a possible world. In each U–relation all tuples are
contained in that world, whose clause evaluates to true un-
der θ. Note that two different total valuations can describe
the same databases. A DNF ψ describes a set of possible
worlds. This set contains all possible worlds described by a

valuation θ under which ψ evaluates to true. We denote this
set by ω(ψ).

Every RRPD W ∗ induces a probability distribution over
the possible worlds. The probability of a world described by
the total valuation θ, denoted by pW∗(θ), is

pW∗(θ) =
Y

X

Pr
W∗

[X = θ(X)].

This means that the variables are independent. As we will
see later, despite this independence assumption we can rep-
resent every probabilistic database as a U–DB. The proba-
bility that a DNF ψ is true is

pW∗(ψ) =
X

θ∈ω(ψ)

pW∗(θ).

We can also calculate the probability that a tuple t is con-
tained in a world randomly drawn according to the prob-
ability distribution induced by a W ∗. This probability is
referred to as the confidence of the tuple, pW∗(t). Let ψt be
the DNF of the tuple t which is the disjunction of all clauses
associated with t. Now, pW∗(t) = pW∗(ψt).

Example 2.1. Fig. 1(a) depicts a U–DB. Note that only
variable X3 is reliable.

Consider the following instantiation RRPD W ∗ of the
RUPD: PrW∗ [X1] = 0.9, PrW∗ [X2] = 0.1, PrW∗ [X3] = 0.5.
Indeed, these probabilities fall into the bounds of the RUPD
in Fig. 1(b). Consider the total valuation θ: θ(X1) = 1,
θ(X2) = 1, θ(X3) = 0. The corresponding world con-
tains tuples 〈a1, b1〉 and 〈a1, b2〉. The probability of θ is
pW∗(θ) = 0.9 · 0.1 · 0.5 = 0.045. We can also calculate the
confidence of the tuple 〈a1, b2〉, which is the confidence of the
DNF (¬X1∧¬X3)∨X2∨X3: pW∗(〈a1, b2〉) = 1−pW∗(X1∧
¬X2 ∧ ¬X3) = 1− 0.405 = 0.595.

Note that the U–relation is equivalent to a U–relation in
which 〈a1, b2〉 occurs only once with condition (¬X1∧¬X3)∨
X2 ∨X3. 2

Remark 2. When we analyze the efficiency of operations over
U–DBs we do this with respect to the number of variables.

Our representation system of U–DBs has two desirable
properties:

Proposition 2.1 (Expressiveness). Every probabilis-
tic database can be represented as a U–DB.

This result was known for U–DBs containing variables of
finite domains [3]. We show that binary variables are suffi-
cient to represent every probabilistic database.

Proof. Given a probabilistic database with probability
distribution ~p over n possible worlds. We construct a U–
DB as follows. For world i and every tuple in that world
we insert this tuple in the U–relation with condition X1 =
0 ∧ · · · ∧ Xi−1 = 0 ∧ Xi = 1. In the RUPD we assign a
variable Xi the probability Prmin[Xi = 1] = Prmax[Xi =

1] = p(i)

1−
Pi−1
j=1 p

(j)
. Thus this RUPD has a unique RRPD

instantiation W ∗.
We claim that the set of possible worlds described by the

U–DB is the same as in the probabilistic database. A total
valuation θ for which Xi is the first variable that is set to
one by θ (i.e., θ(Xi) = 1 and ∀j < i : θ(Xj) = 0) selects
exactly those tuples of world i.
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We need to make sure that the possible worlds have the
same probabilities, i.e., that RRPD W ∗ induces a proba-
bility distribution over the possible worlds that is equal to
~p.

Pr[ithworld] =
X

θ:θ(Xi)=1∧

∀j<i:θ(Xj)=0

pW∗(θ)

=
X

θ:θ(Xi)=1∧

∀j<i:θ(Xj)=0

Y

k

Pr
W∗

[Xk = θ(Xk)]

= Pr
W∗

[Xi = 1]
Y

j<i

Pr
W∗

[Xj = 0]

=
p(i)

1−
Pi−1
k=1 p

(k)

Y

j<i

 

1−
p(j)

1−
Pj−1
k=1 p

(k)

!

=
p(i)

1−
Pi−1
k=1 p

(k)

Y

j<i

1−
Pj
k=1 p

(k)

1−
Pj−1
k=1 p

(k)
= p(i)

The transformation from a probabilistic database into a U–
DB requires as many variables as there are possible worlds.
Often there are more succinct ways to represent a proba-
bilistic database as a U–DB.

Proposition 2.2 (Succinctness [3]). U–DBs are suc-
cinct. The number of worlds represented by a U–DB can be
exponential in the size of the U–DB.

As we will see in the next section, our model is expres-
sive enough to capture the unreliable result of a selection
if the predicates are evaluated on approximate confidences.
We can view queries as transformations from one U–DB to
another.

3. QUERY LANGUAGE

3.1 Syntax
Our query language consists of the following operators:

selection σ, projection π, product ×, union ∪, and confi-
dence computation bp. As selection predicates φ(t) we allow
Boolean combinations of inequalities involving arithmetic
expressions over confidences and constants. The inequali-
ties compare an arithmetic expression with zero using the
relations {=, 6=,>,<,≤,≥}. The arithmetic expressions are
of the form g(t, p(ψ1(t)), . . . , p(ψk(t))), where ψi(t) is a DNF
(such as ψt) and g(·) is an arithmetic expression constructed
using the variables, constants, and the operations +,−, ·, /.

Queries are arbitrary compositions of the operators. They
are executed on a U–DB and the result is another U–DB.

3.2 Semantics
We define the semantics of a compositional query on a U–

DB inductively, by defining the semantics of each operation
on an intermediate result of a query Q. Our U–DB consists
of a RUPD and U–relations U1[ ~A1, D1], . . . , Uk[ ~Ak, Dk]. An
operation gets as input one or two U–relations. The output
is a new U–relation that will be added to the existing ones.
All operations have access to the RUPD and can update it.
Updates are restricted to the insertion of new variables and
their probabilities.

[[π~B(Q)]] = {〈t, c〉 | ∃s〈s, c〉∈ [[Q]] ∧ π~B(s)= t}
[[σφ(Q)]] = {〈t, c〉 | 〈t, c〉 ∈ [[Q]] ∧ φ(t) = 1}
[[Q1 ∪Q2]] = {〈t, c〉 | 〈t, c〉 ∈ [[Q1]] ∨ 〈t, c〉 ∈ [[Q2]]}
[[Q1 ×Q2]] = {〈s, t, (c1 ∧ c2)〉 | 〈s, c1〉 ∈ [[Q1]],

〈t, c2〉 ∈ [[Q2]], c1 ∧ c2 satisfiable}

Figure 2: Semantics of operations in positive rela-

tional algebra over an unreliable U–relation.

Positive Relational Algebra. In this paragraph we con-
sider the operations σ, π, ×, ∪. We restrict ourselves to se-
lection predicates that do not involve any confidences. The
general selection will be discussed later.2

We define the semantics [[·]] of these operations inductively
as listed in Fig. 2. Here Q,Q1, Q2 denote U–relations, which
are the results of queries executed on our U–DB. For exam-
ple, the semantics of a selection σφ(Q) corresponds to the
following intuition: Q is the result of a query over our U–
DB. We compute all possible worlds of Q, execute the se-
lection in every single world, and add the result as another
table in that world. If we then represent this probabilistic
database as a U–DB again, we obtain exactly the one defined
through [[σφ(Q)]]. Based on the definition of the semantics
it is straightforward to evaluate the operations efficiently by
re–writing them as positive relational algebra expressions
over the U–relations.

Remark. We do not consider the difference operation, be-
cause one would have to transform ¬ψ back into a DNF
which takes exponential time in the number of variables.
Confidence Approximation. The randomized operation
bp(Q, ǫ, δ) estimates for each tuple t its confidence with ac-
curacy ǫ and error bound δ according to the RUPD. For the
case that all probabilities are certain, the operation bp(Q, ǫ, δ)
is a FPRAS. We naturally extend the definition of a FPRAS
to cases in which the probability distribution is not known
exactly.

The operation bp(Q, ǫ, δ) estimates a lower bound bpmin(t)
and an upper bound bpmax(t). We require that (1) the bounds
are correct with high probability and (2) the bounds are
almost tight.

(1) Low Error. For any probability distribution induced
by an RRPD instantiationW ∗ of the RUPD the bounds
are valid with high probability, i.e.

Pr

»

pW∗ ∈

»

bpmin

1 + ǫ
,
bpmax

1− ǫ

––

≥ 1− δ. (1)

(2) High Accuracy. There are instantiations Wmin and
Wmax of the RUPD such that the bounds are ǫ–tight
with high probability, i.e.

Pr

»

bpmin

1− ǫ
≥ pWmin

–

≥ 1− δ (2)

Pr

»

bpmax

1 + ǫ
≤ pWmax

–

≥ 1− δ (3)

The reader might want to object that requirement (1) is too
strong because it is sufficient to obtain bounds on the con-

2Given a query we can determine whether a selection pred-
icate involves confidences using typed attributes. An at-
tribute has type “uncertain” if it is the result of a confidence
computation and it has type “certain” otherwise.
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fidence with respect to the true RRPD instantiation of the
RUPD. However, this RRPD is unknown. That is why the
bounds have to hold with respect to all RRPD instantiations
of the RUPD.

The result is stored in a certain database of the schema
Σ = (R[Q. ~A, bpmin, bpmax, ǫ, δ]) that is added to the U–DB.

Next we discuss how to select tuples based on the confi-
dences of events in our query language.
Selection Based on Confidence. The randomized op-
eration σ̂φ(Q) guesses for each tuple t whether it satisfies
the condition φ (e.g. whether its confidence is above 0.8).

We denote by φ̂(t) ∈ {0, 1,“Don’t Know”} the guess of φ(t).
The guarantee is that the guess is correct with probability
at least 1 − δ for all RRPDs W ∗ that are instantiations of
the RUPD. The result of this operation is a tuple indepen-
dent unreliable probabilistic database. Tuple independence
means that the conditions of the tuples contain disjoint set
of variables. This result can be represented as a U–relation
with schema Σ = (R[Q. ~A,D]). The condition of a tuple t
is Zt = 1, where Zt is a new variable. Those variables are
added to the RUPD with the following probabilities:

Pr
min

[Zt] =

8

>

<

>

:

1− δ, if φ̂(t) = 1, error bound = δ

0, if φ̂(t) = 0, error bound = δ

0, if “Don’t Know”

Pr
max

[Zt] =

8

>

<

>

:

1, if φ̂(t) = 1, error bound = δ

δ, if φ̂(t) = 0, error bound = δ

1, if “Don’t Know”

3.3 Conditioning with Constraints
In our motivating example in the introduction we claimed

that in our framework the enforcement of equality gener-
ating dependencies (egds) can be done in an efficient way.
We consider egds of the form ∀t1, t2 : ξ1 → ξ2, where ξ1
and ξ2 are Boolean combinations of predicates comparing
tuples and constants using (in–) equalities (=, >,≤, 6=, . . . ).
The conditional functional dependencies [4] that allow to re-
strict the validity of a dependency to a certain class of tuples
fall into our class of constraints.

The egds are taken into consideration when approximat-
ing tuple confidences and evaluating the selection predicates
based on them. The complexity of these operations remains
the same when imposing egds on the data. The confidence
of a tuple t under the constraint ξ for any RRPD W ∗ is

pW∗(t|ξ) =
pW∗(ψt)− pW∗(ψt∧¬ξ)

1− pW∗(ψ¬ξ)
, (4)

where ψt is the disjunction of the clauses associated with
tuple t in the U–relation that describes the worlds in which
tuple t is contained, ψ¬ξ is a DNF that describes the worlds
in which the constraint ξ is violated, and ψt∧¬ξ is a DNF
that describes the worlds in which tuple t is contained and
the constraint ξ is violated.

We can estimate p(t|ξ) by estimating the confidences of
equation(4). We use the operations bp(ψt, ǫ, δ), bp(ψt∧¬ξ, ǫ, δ)
and bp(ψ¬ξ, ǫ, δ) to obtain bounds that are ǫ–tight with prob-
ability at least 1− δ.

We compute bounds on p(t|ξ) as follows

bpmin(t|ξ) =

bpmin(ψt)
1+ǫ

−
bpmax(ψt∧¬ξ)

1−ǫ

1−
bpmin(ψ¬ξ)

1+ǫ

(5)

bpmax(t|ξ) =

bpmax(ψt)
1−ǫ −

bpmin(ψt∧¬ξ)

1+ǫ

1−
bpmax(ψ¬ξ)

1−ǫ

(6)

The next proposition says that these bounds are correct with
probability at least 1− 3δ.

Proposition 3.1. Computing the confidence according to
Equation (5) and (6) with approximate confidences yields the
following guarantee

Pr [p(t|ξ) ∈ [bpmin(t|ξ), bpmax(t|ξ)]] ≥ 1− 3δ.

The proof follows from the fact that if the bounds for p(t|ξ)
are wrong then at least one of the bounds for p(ψt), p(ψt∧¬ξ)
or p(ψ¬ξ) is wrong. But such a failure occurs with at most
probability δ.

Next we explain how to rewrite the confidence computa-
tion with constraints p(U |ξ) as a query involving only pos-
itive relational algebra and confidence computation. Let
us start by describing how to compute the DNFs ψt, ψ¬ξ

and ψt∧¬ξ. For each tuple t its condition ψt is the disjunc-
tion of the clauses recorded in the column D for t. Let
α describe the predicate that evaluates to true if the con-
junction of the clauses of two tuples is satisfiable. Given
a set of constraints ξ = {. . . , eqi, . . . } with egds eqi of the
form ∀t1, t2 : ξ1 → ξ2, where ξ1 and ξ2 are Boolean combi-
nations of predicates comparing tuples and constants using
(in–) equalities (=, >,≤, 6=, . . . ). We can compute ψ¬ξ by
computing the cross product between U and U and selecting
tuples violating one of the constraints in ξ. A projection to
an empty set of attributes yields ψ¬ξ, i.e.

ψ¬ξ =
[

i

π∅

„

U ⊲⊳eqi violated∧α U

«

.

We can compute ψt∧¬ξ for each t ∈ U by computing the
conjunction of the ψt and ψ¬ξ. Using α as a join predicate
between U and ψ¬ξ, we filter out those tuples that are never
in conflict with the constraints ξ.

Putting these computations together we can issue a sin-
gle query (involving renaming operations explained below)
computing bounds on the conditional confidence:

bp(U |ξ)

= πφ4

„

ρφ1

„

bp(U, ǫ, δ)

«

⊲⊳α ρφ2

„

bp

„

[

i

π∅

„

U ⊲⊳eqi violated∧α U

«

ǫ, δ

««

⊲⊳α ρφ3

„

bp

„

U ⊲⊳α
[

i

π∅

„

U ⊲⊳eqi violated∧α U

«

, ǫ, δ
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We define renaming operations as follows:

φ1 : bpmin → bpmin(ψt),

bpmax → bpmax(ψt),

δ → δt,

φ2 : bpmin → bpmin(ψ¬ξ),

bpmax → bpmax(ψ¬ξ),

δ → δ¬ξ,

φ3 : bpmin → bpmin(ψ¬ξ∧t),

bpmax → bpmin(ψ¬ξ∧t),

δ → δ¬ξ∧t,

φ4 : ~A,
bpmin(ψt)

1+ǫ
−

bpmax(ψt∧¬ξ)

1−ǫ

1−
bpmin(ψ¬ξ)

1+ǫ

→ bpmin,

bpmax(ψt)
1−ǫ

−
bpmin(ψt∧¬ξ)

1+ǫ

1−
bpmax(ψ¬ξ)

1−ǫ

→ bpmax,

δ¬ξ + δt + δt∧¬ξ → δ.

An arrow name1 → name2 means that name1 is renamed to
name2.

Sec. 5 and Sec. 6 will be concerned with efficient evalua-
tion of the randomized operations. Before that we outline
our compositional framework for query evaluation under the
assumption that we can efficiently evaluate all operations.

4. COMPOSITIONAL FRAMEWORK FOR
QUERY EVALUATION

In our framework for approximate query evaluation we can
separate the handling of the data from the approximation of
the confidences. The data handling is done as follows: given
a query that involves confidence computations, these are not
carried out immediately, instead the values for the attributes
bpmin, bpmax, ǫ, δ are left empty for each tuple. For a selection
σ̂ we select all tuples, create a new variable Xt for each tuple
t and put Xt = 1 as condition in the U–relation. We add
all these variables to the RUPD and leave their probability
bounds empty. The operations in relational algebra can be
carried out as they are not affected by the approximation of
confidences.

A provenance tree of the approximations is created as fol-
lows: We successively contract edges in the query plan be-
tween a relational algebra operation and an approximation
operation, i.e. we merge the nodes to one node whose label
is the one of the approximation operation and we keep all
adjacent edges. With this provenance tree we can carry out
the approximations in a bottom up way and fill in the re-
sults at the positions left open by execution of the relational
algebra plan.

Example 4.1. A search engine wants to make all books
searchable. Towards that goal it uses optical character recog-
nition (OCR) techniques to produce candidate words for a
given piece of scanned text. The result is a table OCR =
(Image, Word, D1). Furthermore, human feedback is pro-
vided and represented in a certain table FEEDBACK = (ID,
Image, Word). Another table captures the trustworthiness
of the humans. Error probabilities have been recorded based
on some test. Those are represented in the table TRUST =
(ID, D2).

The search engine combines these sources to compute prob-
ability distributions over words for each image as depicted
in Fig. 3. First, the set of candidates for each image in the
OCR are restricted by selecting only those that have a prob-
ability above 0.2. The result is joined with the FEEDBACK
and with the TRUST. The result is a table (Image, Word,
ID, D2) where D2 represents the error probability. On this
table the integrity constraint ξ is enforced which assures
that Image is a key. Thus all possible worlds that contain
two different words for an image are assigned a probability
of zero. The probabilities of the remaining worlds are nor-
malized. We can compute the probability for each tuple to
obtain new probability distributions over the words for each
image.

Fig. 3 shows that given a query we can extract a rela-
tional algebra query plan and an approximation provenance
tree. We can resort to standard optimization techniques for
the relational algebra query plan and we can successively
improve the accuracy and the error probability of the ran-
domized operations.

Improving the Error Bound. Suppose the approxima-
tions have been carried out in a bottom up fashion accord-
ing to the provenance tree. Imagine the quality of the result
is unsatisfactory, for example the accuracy of a confidence
computation is too low or the error bound δ is not small
enough. In order to improve the quality of the result we can
either improve the quality of the last approximation that
yielded the result, or we can go further down in the prove-
nance tree to improve the quality of descendant approxima-
tions which improve the approximation of the root in the
provenance tree (which created the result). For example,
an unsatisfactory quality of the confidence approximation
in Fig. 3 might be caused by a large error bound of the child
in the provenance tree. In general, if we decide to improve
some descendant approximation then all ancestors of this
node in the provenance tree have to be re-computed from
scratch, because the RUPD has been updated. However,
we do not need to evaluate the relation algebra query plan
again.

5. APPROXIMATING THE CONFIDENCE
We propose algorithms for approximating the confidence

of a DNF formula ψ given a RUPD. Our goal is given ǫ
and δ to compute bounds bpmin(ψ), bpmax(ψ) such that with
probability at least 1 − δ the bounds are correct for any
RRPD instantiationW ∗ of the RUPD, see Equation(1). The
confidence pW∗(ψ) is the probability that the DNF evaluates
to true under a random assignment of variables to values in
{0, 1} according to W ∗.

Ideally, these bounds are close to the optimal bounds, i.e.
we would like that with high probability the lower bound
is only a (1− ǫ) factor away from the optimal lower bound
and the upper bound is only a (1 + ǫ) factor away from
the optimal upper bound. The optimal upper bound is the
maximum of p(ψ) taken over all RRPD instantiations of
the RUPD. The optimal lower bound is the minimum of
p(ψ) taken over all RRPD instantiations of the RUPD. See
Equations (2) and (3).
Notational Conventions. Given a RUPD, that records
for each variable X a lower bound Prmin[X] and an upper
bound Prmax[X] on the probability of X being true. We
refer to a RRPD that is an instantiation of the RUPD as
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Figure 3: Extracting a relational algebra query plan and an approximation provenance tree from a query.

W ∗ – it records for each variable X a value PrW∗ [X] in
[Prmin[X],Prmax[X]]. We denote by pW∗(ψ) the probability
of ψ given the RRPD W ∗. We refer to a RRPD under
which the probability of each variable X is either Prmin[X]
or Prmax[X] as W ′. We denote by pW ′(ψ) the probability
of ψ given the RRPD W ′.

In Sec 5.1 we briefly review the Karp–Luby algorithm that
approximates confidences for RRPDs. We show how to in-
voke the Karp–Luby algorithm an exponential number of
times to obtain bounds that are correct and tight with high
probability, see Sec. 5.2. We show that there only know-
ing interval probabilities instead of exact probabilities make
this approximation problem NP–hard, see Sec. 5.2.2. How-
ever, we design efficient approximation algorithms for cer-
tain classes of DNFs and RUPDs in Sec. 5.2.3. Most no-
tably, if the uncertainty of the probabilities is introduced
through selections then the confidence computation remains
efficient. Furthermore, we show how to efficiently compute
(not so tight) bounds for the general case in Sec. 5.2.4.

5.1 Reliable U–DBs
This section reviews how to approximate the confidence of

a DNF ψ if all variables involved are reliable (i.e. Prmin[X] =
Prmax[X], ∀X). The exact probabilities of the variables are
recorded in a RRPD W ∗. The techniques presented in this
section are standard and have already been used in a similar
form in [6, 14]. Since our solutions for the general case of
unreliable variables build on these techniques, we will briefly
discuss them.

First we define an estimator in Alg. 1 that in expectation
calculates the confidence of a DNF divided by the sum of
probabilities of the clauses P . This estimator is based on the
one in [13] that computes the number of solutions of a DNF
formula. In essence the solutions are weighted according to
their probability.

Proposition 5.1. In expectation Estimator(ψ,W ∗) out-

puts
pW∗ (ψ)

P
, where P =

P

clause c∈ψ pW∗(c).

Proof. Given a DNF ψ. Let X denote the random vari-
able of the output of the Estimator. Let Xc,θ be the in-
dicator variable that is 1 if and only if c is the first clause

Algorithm 1: Estimator (DNF ψ, RRPD W ∗)

Fix an order of the clauses in ψ.1

Let P =
P

clause c∈ψ pW∗(c).2

Choose c from ψ with probability pW∗(c)/P .3

Choose a total valuation θ ∈ ω(c) with probability4

pW∗(θ)/pW∗(c). That is for each variable Y whose
truth value is not determined by c sample a value
according to W ∗.
if c is the clause in ψ with the smallest order that5

evaluates to true under θ then return 1
else return 06

satisfied by θ. We have:

E[X] =
X

c∈ψ

pW∗(c)

P

X

θ∈ω(c)

pW∗(θ)

pW∗ (c)
Xc,θ

=
X

c∈ψ

X

θ∈ω(c)

pW∗(θ)

P
Xc,θ

=
X

θ

pW∗(θ)

P

X

c:θ∈ω(c)

Xc,θ

=
X

θ:∃c∈ψ:θ∈ω(c)

pW∗(θ)

P

=
pW∗(ψ)

P

Algorithm 1 gives rise to a fully-polynomial-time random-
ized approximation scheme (FPRAS). All we need to do is
to average the results of multiple samples from the Esti-
mator multiplied by P , see Algorithm 2. The number of
samples is polynomial in all parameters.

Proposition 5.2. Karp-Luby(ψ, ǫ, δ,W ∗) outputs an es-
timate p̂W∗(ψ) of pW∗(ψ). The guarantee is that

Pr

»

p̂W∗(ψ)

1 + ǫ
≤ pW∗(ψ) ≤

p̂W∗(ψ)

1− ǫ

–

≥ 1− δ.
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Algorithm 2: Karp-Luby(DNF ψ, ǫ, δ, RRPD W ∗)

Let M =
l

3|ψ| ln 2
δ

ǫ2

m

.
1

Let S = 0.2

Let P =
P

clause c∈ψ pW∗(c).3

for 1 ≤ i ≤M do4

Xi ← Estimator (ψ, W ∗)5

S ← S +Xi6

return P · S/M7

The algorithm only needs
l

3|ψ| ln 2
δ

ǫ2

m

samples from the Es-

timator, where |ψ| is the number of clauses in the DNF
ψ.

Proof. Let Xi be a random variable denoting the result
of the Estimator in round i of the for loop 5. Hence, let
S denote the random variable summing up all Xis: S =
PM
i=1Xi. By linearity of expectation and Prop. 5.2 we have

that E[S] = M · p(ψ)/P . The Chernoff bound guarantees
that

Pr[|S − E[S]| ≥ ǫE[S]] ≤ 2e−ǫ
2E[S]/3.

For us this means

Pr

»

˛

˛

˛

˛

M
p̂W∗(ψ)

P
−M

pW∗(ψ)

P

˛

˛

˛

˛

≥ ǫ
MpW∗(ψ)

P

–

≤2e−
ǫ2MpW∗ (ψ)

3P

which is equivalent to

Pr[|p̂W∗(ψ)− p(ψ)| ≥ ǫ · pW∗(ψ)] ≤ 2e−
ǫ2MpW∗ (ψ)

3P .

We can re-write the upper bound using the fact that for
all c ∈ ψ : pW∗(c) ≤ pW∗(ψ), which implies that P =
P

c∈ψ pW∗(c) ≤ |ψ|pW∗ (ψ). Hence, pW∗(ψ)/P ≥ 1/|ψ|.

Pr[|p̂W∗ (ψ)− pW∗(ψ)| ≥ ǫpW∗(ψ)] ≤ 2e
− ǫ2M

3|ψ|

Since M =
l

3|ψ| ln 2
δ

ǫ2

m

the claim follows.

This proposition states that Karp-Luby outputs correct
bounds with high probability, i.e. Equation (1) holds. It
also follows from this proposition that bpW∗(ψ) is ǫ–tight
with high probability.

5.2 Unreliable U–DBs
Above we have seen an algorithm for approximating the

tuple confidence if we know the exact probabilities of all
variables. However in our general framework we might only
have bounds on the probabilities recorded in the RUPD and
hence we cannot apply this algorithm.

Our goal is to compute bounds bpmin(ψ), bpmax(ψ) such that
for all instantiations RRPDW ∗ of the RUPD the bounds are
correct with high probability, i.e. Equation (1) holds. The
bounds should be close to optimal, i.e., there are instanti-
ations Wmin and Wmax of the RUPD such that the bounds
are ǫ–tight with high probability, i.e. Equations (2) and (3)
hold.

5.2.1 An Accurate Approximation Algorithm
Given a RUPD and a DNF ψ whose probability we want to

estimate, Algorithm 3 proceeds as follows: For each RRPD

Algorithm 3: Conf (DNF ψ,RUPD W, ǫ, δ)

Let min–est = 1, max–est = 0.1

Let S = 0.2

for any RRPD instantiation W ′ of the RUPD s.t.3

PrW ′ [X] ∈ {Prmin[X],Prmax[X]} do

Let p̂ =Karp-Luby (ψ,W ′, ǫ, δ).4

min–est ← min( p̂
1+ǫ

,min–est)5

max–est ← max( p̂
1−ǫ

,max–est)6

return min–est, max–est, error bound δ7

W ′ in which each variable X has a probability of either
Prmin[X] or Prmax[X], it uses the Karp-Luby algorithm to
obtain an estimate of the confidence. It outputs the max-
imum and the minimum bound. This yields an algorithm
with a running time exponential in the number of variables.

The next proposition states that Algorithm 3 is correct,
i.e. that it is in fact sufficient to focus only on RRPDs in
which the probabilities of the variables take on either the
maximum value or the minimum value (but nothing in be-
tween). In particular there is a RRPD W ′

max in which each
variable X has a probability of either Prmin[X] or Prmax[X]
that maximizes the confidence of ψ and there is a RRPD
W ′

min in which each variable X has a probability of either
Prmin[X] or Prmax[X] that minimizes the confidence of ψ
among all instantiations of the RUPD. Hence, if we want
to compute bounds on the confidence it is not necessary to
check all RRPD instantiations W ∗ of the RUPD.

Proposition 5.3. For any RRPD instantiation W ∗ of
the RUPD the probability of a DNF ψ is bounded by

min
W ′

pW ′(ψ) ≤ pW∗(ψ) ≤ max
W ′

pW ′(ψ),

where the minimum and the maximum are taken over all
RRPDs W ′ such that PrW ′ [X] ∈ {Prmin[X],Prmax[X]}.

Proof. Assume for contradiction that there is a DNF ψ,
a RUPD, and an instantiation RRPD W ∗ of the RUPD such
that the probability of ψ is greater than the probability of
ψ under any RRPD W ′. (The case where the probability
of ψ is smaller than the probability of ψ under any W ′ is
analogous.) We use a hybrid argument to show that start-
ing from the RRPD W ∗ with each step we can change the
probability of one variable X to Prmin[X] or Prmax[X], such
that we only increase the probability of the DNF ψ. We end
up with an RRPD W ′ in which each variable X has a proba-
bility of either Prmin[X] or Prmax[X], s.t. pW ′(ψ) ≥ pW∗(ψ)
contradicting our assumption.

We start with hybrid H0 = W ∗. The ith hybrid replaces
the probabilities of the first i variables with either Prmin or
Prmax. Hence the nth hybrid is the desired W ′. We prove
that there is a way to create Hi+1, such that pHi+1(ψ) ≥
pHi(ψ).

Let X be the ith variable. We can rewrite ψ = X ∧ ψ1 ∨
¬X ∧ ψ2, such that X is neither contained in ψ1 nor in ψ2.
Hence, pHi(ψ) = PrW∗ [X]pHi(ψ1)+ (1−PrW∗ [X])pHi(ψ2).
If pHi(ψ1) > pHi(ψ2), then replacing PrW∗ [X] by Prmax[X]
can only increase the probability of ψ. Similarly, if pHi(ψ1) ≤
pHi(ψ2), then replacing PrW∗ [X] by Prmin[X] can only in-
crease the probability of ψ. In both cases we obtain Hi+1

such that pHi+1(ψ) ≥ pHi(ψ).
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Together with Proposition 5.2 it follows that Algorithm 3
returns correct bounds with probability at least 1− δ. Fur-
thermore, the bounds are ǫ–tight with high probability.

5.2.2 Hardness
We would like to further reduce the search space and find

a RRPD W ′
max that maximizes the probability of ψ and

we would like to find a RRPD W ′
min that minimizes the

probability of ψ efficiently. Then we would only have to run
Karp-Luby twice to obtain efficient approximations of the
optimal bounds.

Unfortunately, this is not possible. Even deciding whether
there is a RRPD W ′ such that pW ′(ψ) is below some thresh-
old τ is NP–hard.

Proposition 5.4. Given a RUPD, a DNF ψ, and a thresh-
old τ . Deciding whether there is a RRPD W ′ in which each
variable X has a probability of either Prmin[X] or Prmax[X]
such that pW ′(ψ) < τ is NP–hard.

Proof. We reduce SAT to our problem. Let χ be a CNF
for which we want to determine whether there is a satisfying
assignment.

We construct a RUPD over all variables X in χ with prob-
abilities of Prmin[X] = 0 and Prmax[X] = 1. Let ψ = ¬χ.

We claim that there is an assignment that satisfies χ
if and only if there is a RRPD instantiation W ′ of the
RUPD recording for each variable X a probability of either
Prmin[X] or Prmax[X] such that pW ′(ψ) < τ .

We show both directions. If χ is satisfiable then there is a
total valuation θ′ : Vars → {0, 1} such that χ evaluates to
true. Consider the RRPD W ′: PrW ′(X) = θ′(X). Indeed,
W ′ is an instantiation of the RUPD and each variable X has
a probability of either Prmin[X] or Prmax[X]. Only one total
valuation from variables to {0, 1} has non-zero probability
with respect to W ′. This is θ′ which has a probability of 1
and ψ evaluates to false under θ′. Hence,

pW ′(ψ) =
X

θ: Vars →{0,1}
ψ evaluates to true under θ

pW ′(θ)

= pW ′(θ′) = 0 < τ.

If χ is not satisfiable then for all assignments θ : Vars →
{0, 1} the CNF χ evaluates to false. Hence, under all total
valuations θ the DNF ψ evaluates to true. For any RRPD
W ′, in which each variable has a probability of either Prmin

or Prmax exactly one total valuation θ has non-zero proba-
bility. This is the valuation that assigns the truth value 1
to a variable if and only if the probability under W ′ that
the variable takes on value 1 is 1. This total valuation has
probability 1 and under this total valuation ψ evaluates to
true. Hence, for any RRPD W ′

pW ′(ψ) =
X

θ: Vars →{0,1}
ψ evaluates to true under θ

pW ′(θ) = 1 ≥ τ

The hardness of deciding whether there is a RRPD W ′ such
that pW ′(ψ) < τ is not caused by the difficulty of computing
pW ′(ψ). In our reduction these confidences are efficiently
computable. Instead the hardness is caused by the number
of possible instantiations W ′. This shows that relaxing the
model of probabilistic databases to allow for uncertainty of

the probability distribution over the possible worlds makes
the problem of approximating confidences harder.

The hardness of reducing of the search space is a worst
case result. Next, we describe how we exploit structural
properties of a DNF ψ and easy RUPDs in order to reduce
the search space.

5.2.3 Improvements
Given a RUPD and a DNF ψ, we are looking for an RRPD

W ′
max in which each variable X has a probability of either

Prmin[X] or Prmax[X] that maximizes the probability of ψ.
(The minimization problem is analogous.)

For n variables there are 2n possible RRPDs W ′ record-
ing for each variable a probability of either Prmin[X] or
Prmax[X]. We seek to reduce this search space. More pre-
cisely, we want to find variables X for which we can effi-
ciently determine whether PrW ′

max
[X] = Prmin[X] or whether

PrW ′
max

[X] = Prmax[X].
We describe situations in which we can efficiently deter-

mine PrW ′
max

[X]. In these situations we use the following
rewriting ψ = X ∧ ψ1 ∨ ¬X ∧ ψ2, such that X is neither
contained in ψ1 nor in ψ2.

1. If variableX only occurs positively in the DNF ψ, then
PrW ′

max
[X] = Prmax[X].

Here is an argument why this is correct: Since variable
X occurs only as X = 1 in the clauses, all clauses in ψ2

are also contained in ψ1. Hence, p(ψ) = Pr[X]p(ψ1) +
(1− Pr[X])p(ψ2) increases as Pr[X] increases. There-
fore, p(ψ) is maximized if PrW ′

max
= Pr[X].

2. We can analyze the pW ′(ψ1) and pW ′(ψ2) in a worst
case fashion. If according to any RRPD instantia-
tion W ∗ of the RUPD, pW∗(ψ1) > pW∗(ψ2), then
we can conclude that PrW ′

max
[X] = Prmax[X]. Sim-

ilarly, if according to any RRPD instantiation W ∗ of
the RUPD, pW∗(ψ1) < pW∗(ψ2), then we can conclude
that PrW ′

max
[X] = Prmin[X].

From the following inequalities that hold for all RRPDs
W ′ and for all ψ we can derive sufficient conditions for
the cases above that we can check efficiently:

pW ′(ψ1) ≤
X

clause c∈ψ1

Y

Y ∈c

Pr
max

[Y ]
Y

¬Y∈c

(1− Pr
min

[Y ])

pW ′(ψ1) ≥ max
clause c∈ψ1

 

Y

Y ∈c

Pr
min

[Y ]
Y

¬Y ∈c

(1− Pr
max

[Y ])

!

3. We can determine PrW ′
max

[X] iteratively. If we were
able to determine PrW ′

max
[Y ] for all variables Y in

ψ1 and ψ2, then we can use the (ǫ, δ)–approximation
scheme Karp-Luby to estimate pW ′

max
(ψ1) and also

pW ′
max

(ψ2). If

bpW ′
max

(ψ1)

1 + ǫ
>
bpW ′

max
(ψ2)

1− ǫ
,

then we can conclude that with probability ≥ 1 − δ
PrW ′

max
[X] = Prmax[X]. Similarly, if

bpW ′
max

(ψ1)

1− ǫ
<
bpW ′

max
(ψ2)

1 + ǫ
,

then we can conclude that PrW ′
max

[X] = Prmin[X] with
probability ≥ 1− δ.
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Algorithm 4: Conf (DNF ψ, RUPD , ǫ, δ)

Let W ∗: PrW∗ [X] = Prmin[X] + Prmax[X]−Prmin[X]
2

1

Let p̂ =Karp-Luby (ψ,W ∗, ǫ, δ)2

return3

lower bound p̂
1+ǫ
−
P

X
Prmax[X]−Prmin[X]

2
,

upper bound p̂
1−ǫ

+
P

X
Prmax[X]−Prmin[X]

2
,

and error bound δ

Whether we are able to determine PrW ′
max

[X] for a given
variable X depends on the structure of the DNF that influ-
ences how far the iterative reasoning works and the proba-
bilities recorded by the RUPD that can make a worst case
analysis possible.

We suggest to determine PrW ′
max

[X] when possible and
then apply Algorithm 3 discussed in the previous section. If
we were able to determine PrW ′

max
[X] for k out of n vari-

ables, then the complexity of the algorithm goes down from
2n to 2n−k. However, whenever the iterative reasoning was
applied to determine the value PrW ′

max
[X] for a variable,

then the overall error probability increases by at most δ.
Consider the special case where the unreliability is in-

duced by selection predicates. That is, we consider queries
bp(Q), where the input of Q is a reliable U–DB, in which
Prmin[X] = Prmax[X]. Recall, that we refer to variables X
with Prmin[X] 6= Prmax[X] as unreliable variables.

Observation 5.1. Given a U–DB with reliable variables
only. Let Q be an arbitrary query in our query language.
Then in the result of Q all unreliable variables X occur only
positively in the DNFs of the tuples.

A select operation involving confidences introduces uncer-
tain variables, but only assigns them the value 1 in the
clauses of the tuples. All other operations do not change
the assignments.

Using our improvement 1. for all these variable PrW ′
max

[X] =
Prmax[X] (and similarly, PrW ′

min
[X] = Prmin[X]). Hence, in

Algorithm 3 we only need to estimate the confidence of the
DNF under W ′

max and W ′
min in order to obtain valid and

almost tight bounds of the confidence under the RUPD.

Remark 5.1. Given a U–DB with reliable variables only.
Let Q be an arbitrary query in our query language. Then
Algorithm 3 only needs to invoke the Karp–Luby algorithm
twice. Once for the instantiation W ′

max : PrW ′
max

[X] =

Prmax[X] and once for the instantiation W ′
min : PrW ′

min
[X] =

Prmin[X]. This yields an efficient approximation algorithm
that outputs correct and tight bounds with high probability.

5.2.4 An Efficient Randomized Algorithm
The approach above tries to calculate bounds that are

close to the optimal bounds on the confidence. In order
to obtain an efficient algorithm for confidence computation
given any DNF and any RUPD we relax this requirement.

We propose Algorithm 4, which chooses for each variable
X a probability at the center of the interval

[Pr
min

[X], Pr
max

[X]],

runs the Karp-Luby algorithm, and then adjusts the re-
turned bounds.

Proposition 5.1. Algorithm 4 is correct, that is, with
probability ≥ 1 − δ for all instantiations RRPD W ∗ of the
RUPD, pW∗(ψ) is within the returned bounds. Its running
time is polynomial in all parameters. However, the bounds
are not tight.

6. A RANDOMIZED ALGORITHM FOR
EVALUATING PREDICATES

Given an approximate selection query bσφ(U). The predi-
cate φ(t) is a Boolean combination of inequalities involving
arithmetic expressions over the confidences of DNFs such as
p(ψ1)/p(ψ2) ≥ 2 ∧ p(ψ3) < 0.3.

Before we present our algorithm we carry out an analysis
of the hardness of this problem. The hardness holds even if
the probabilities of all variables are known exactly.

6.1 Hardness of Evaluating Predicates
Let us start by analyzing the hardness of simple predicates

of the form p(ψ) op c, where op ∈ {>,≥, <,≤} and 0 < c <
1.

We show that evaluating such a predicate is #P–hard.

Theorem 6.1. Evaluating any predicate of the form

p(ψ) op c

for op ∈ {>,≥, <,≤} is #P–hard.

Proof. In order to show that a problem A is #P–hard,
we need to find an efficient Turing reduction from another
#P–hard problem B [19]. In this reduction we are given an
instantiation of B and we are granted access to an oracle
that solves A. If we manage to solve the problem for the
instantiation efficiently, then problem A is also #P–hard.

Our reduction is from counting the number of satisfying
assignments of a DNF formula which is #P–complete [19].

Given a DNF ψ whose number of satisfying assignments
we want to compute. Let n be the number of variables in
ψ. We execute binary search on [0, 2n], in order to find the
number of satisfying assignments to ψ. If we can efficiently
decide whether the number of satisfying assignments is op a
certain threshold then we can find the number of satisfying
assignments efficiently because the binary search needs at
most O(n) iterations.

We can use our oracle for p(ψ) op c in order to decide
whether the number of satisfying assignments is op m as
follows. We consider the case op is ≥. The other cases
are similar. We construct a RRPD W ∗ over all n variables
in ψ with a probability of 1/2. Here the confidence of ψ
is equal to the number of satisfying assignments divided by
2n. Furthermore, RRPD W ∗ records a probability for a new
variable X.

We consider two cases. If c < m
2n

, then the new variable

X has a probability of c·2n

m
. We have that the number of

satisfying assignments of ψ is ≥ m if and only if p(ψ) ≥ m
2n

,
which is equivalent to p(ψ ∧X) ≥ m

2n
· Pr[X] = c.

If c ≥ m
2n

, then the new variable X has a probability of
c− m

2n

1− m
2n

. We have that the number of satisfying assignments

of ψ is ≥ m if and only if p(ψ) ≥ m
2n

, which is equivalent to
p(ψ ∨X) ≥ m

2n
(1− Pr[X]) + Pr[X] = c.

This completes the reduction.

Problems in #P are in the strict sense counting problems.
A more relaxed notion of #P equivalence [12] also includes
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other functional problems. One can show that that the con-
fidence computation is #P–equivalent for probabilities in
Q [8, 11]. Along the same lines, one can show that deciding
a predicate is in #P. Together with Theorem 6.1 we have
the following corollary.

Corollary 6.2. Evaluating any predicate of the form

p(ψ) op c

for op ∈ {>,≥, <,≤} is #P–equivalent.

Next we show that evaluating any non-trivial predicate is
hard.

Theorem 6.3. Evaluating any non-trivial predicate is ei-
ther NP–hard or coNP–hard. Thus unless P=NP or P=coNP
there is no efficient algorithm evaluating predicates.

Proof. Let φ be some non-trivial predicate over the con-
fidence of the DNF formulas ψ1, . . . , ψk.

Before we describe the reduction showing that evaluat-
ing φ is as least as hard as deciding SAT we make pre-
liminary observations about the predicate φ. The predicate
φ(ψ1, . . . , ψk) is a Boolean combination of inequalities of the
form g(p(ψ1), . . . , p(ψk)) op 0, where op ∈ {<,≤,=, 6=≥, >}
and g(·) is an arithmetic expression.

Since φ is non-trivial there are confidence values p1, . . . , pk
such that varying pi changes the value of the predicate. We
claim that the value of the predicate cannot change infinitely
often if we fix all variables but pi and we vary pi from 0 to
1.

The functions g can be rewritten as rational functions over
the variable pi. Now how often the value of the inequality
g(p(ψ1), . . . , p(ψk)) op 0 changes is bounded by the sum of
the degrees of the polynomials in the numerator and denom-
inator. Given two predicates, how often the AND or the OR
of the two predicates changes the truth value is bounded by
the sum of how often each predicate changes its truth value.

Consider our predicate φ again. By pushing down nega-
tions of the Boolean combination (> becomes ≤,= becomes
6=, etc.) and inductively analyzing the ANDs and ORs we
get that the truth value cannot change infinitely often if we
vary pi from 0 to 1.

Hence, if we fix p1, . . . , pk and vary pi then either (a)
there is a value τ ∈ (0, 1] and there is a Boolean value b
such that: for pi ∈ [0, τ ) the predicate φ evaluates to b and
for pi = τ the predicate φ evaluates to ¬b or (b) there is a
value τ ∈ [0, 1] and there is a Boolean value b such that: for
pi ∈ [0, τ ] the predicate φ evaluates to b and there is a value
ǫ such that for pi ∈ (τ, τ + ǫ] the predicate φ evaluates to
¬b.

Case (a): Let χ be a CNF formula over variables Y1, . . . Yn′

for which we want to determine whether it is satisfiable. We
create a RUPD over all variables of ψ each with a proba-
bility of 1/2 and over a new variable X with a probabil-
ity of τ . Furthermore, the RUPD records probabilities for
k − 1 new variables X1, . . . ,Xi−1, Xi+1, . . . ,Xk with values
p1, . . . , pi−1, pi+1, . . . , pk. Let ψ = ¬χ∧X, which we can ef-
ficiently represent as a DNF. By construction we have that
p(ψ) ∈ [0, τ ]. Hence, the following statements are equivalent

1. φ(X1, . . . ,Xi−1, ψ,Xi+1, . . . ,Xk) = b

2. p(ψ) < τ

3. p(¬χ) < 1

4. χ is satisfiable

Case (b): Let χ be a CNF formula over variables Y1, . . . Yn′

for which we want to determine whether it is satisfiable. We
create a RUPD over all variables of ψ each with a proba-
bility of 1/2 and over a new variable X with a probability

of τ
1−ǫ′ , where ǫ′ = min(ǫ, 1 − τ, 2−n′

, 1 − τ
τ+ǫ

). Further-
more, the RUPD records probabilities for k−1 new variables
X1, . . . ,Xi−1,Xi+1, . . . , Xk with values p1, . . . , pi−1, pi+1,
. . . , pk. Let ψ = ¬χ ∧ X. By construction we have that
p(ψ) ∈ [0, τ + ǫ].

We claim that φ(X1, . . . , Xi−1, ψ, Xi+1, . . . ,Xk) evaluates
to b if and only if χ is satisfiable.

If χ is satisfiable then p(¬χ) < 1. Since all variables of χ

have a probability 1/2 this implies p(¬χ) ≤ 1−2−n′

≤ 1−ǫ′.
Hence p(ψ) = p(¬χ ∧ X) ≤ (1 − ǫ′)( τ

1−ǫ′ ) = τ . Thus, the
predicate evaluates to b.

If χ is not satisfiable then p(¬χ) = 1. Hence p(¬χ∧X) =
p(X) = τ

1−ǫ′ ≤
τ

1−(1− τ
τ+ǫ

)
≤ τ + ǫ. Furthermore, p(ψ) =

τ
1−ǫ′ > τ . Thus, the predicate evaluates to ¬b.

For both cases (a) and (b) we conclude that if b = 1 then
evaluating φ is NP-hard. If b = 0 then evaluating φ is coNP-
hard.

Despite this negative result we could ask ourselves whether
there is an efficient randomized algorithm if we are willing
to accept errors. Before we answer this question, let us in-
troduce the complexity class BPP.

Definition 6.4. The class of decision problems for which
a PTIME randomized algorithm exists which outputs the
correct answer with probability ≥ 2/3 is called BPP. 2

In fact, the constant 2/3 is arbitrary, it could be any con-
stant greater than 1/2. (Note, that any algorithm with er-
ror probability ≥ 1/2 is useless, because we can simply flip
a coin.) As an immediate consequence of Theorem 6.3 we
have the following corollary.

Corollary 6.5. There is no efficient algorithm that eval-
uates a non-trivial predicate correctly with probability ≥ 2/3
unless BPP⊃NP.

It is considered unlikely that BPP ⊃ NP [8]. Since BPP
= coBPP it is also considered unlikely that BPP ⊃ coNP.

We established that deciding simple predicates of the form
p(ψ) op c is at least as hard as any enumeration problem in
#P. Furthermore, there is no efficient randomized algorithm
deciding any non-trivial predicate unless BPP⊃NP.

6.2 Efficiently Evaluating Predicates
The results in this section generalize the results of [14] to

unreliable U–DBs. We cannot hope to efficiently evaluate
all predicates with bounded error. Instead we will present
an efficient algorithm that refuses to output a guess for some
inputs, but for other inputs outputs a guess of the predicate
that is correct with high probability 1− δ.

We want to guess the value of a predicate that is based on
confidences of DNFs ψ1, . . . , ψk given a tuple t. Our guess,
φ̂(t) has to be correct with probability at least 1 − δ. To
do so, for all i we approximate the confidence of ψi running
the confidence computation for Mi rounds of sampling. The
result is p̂imin, p̂

i
max. The guarantee is that for all ǫ and for

159



Algorithm 5: Predicate Approximation
(φ,ψ1, . . . , ψk, RUPD, δ, bound on running time
lmax, update rate r )

for i ∈ [k] do Mi = 0,M ′
i = r|ψi|1

Let the number of rounds be l = 02

while l ≤ lmax do3

for i ∈ [k] do4

p̂imin, p̂
i
max ← Improve-Conf (ψi,M

′
i)5

Maximize ǫ // Using binary search6

subject to ∃φ̂∀~x ∈ {
p̂1min
1+ǫ

,
p̂1max
1−ǫ } ×...×{

p̂kmin
1+ǫ

,
p̂kmax
1−ǫ } :

φ(~x) = φ̂

if ǫ 6= ⊥ ∧ ǫ > 0 ∧ 2keǫ
2·l·r/3 ≤ δ then7

return guess φ̂8

l ← l + 19

for i ∈ [k] do Mi ←Mi +M ′
i10

return “Don’t know”11

all δ ≥ 2e
Mi·ǫ

2

3|ψi| :

Pr

»

p(ψi) ∈

»

p̂imin

1 + ǫ
,
p̂imax

1− ǫ

––

≥ 1− δ

Note that this guarantee holds for the basic Algorithm 2
of Sec. 5.1 that computes the average of Mi calls to the
Estimator. This guarantee also holds for the general algo-
rithm of Sec. 5.2 that computes up to 2n of these averages
each over Mi calls to the Estimator. This guarantee holds
for the algorithm sketched in Sec. 5.2.3 that computes 2
averages each over Mi calls to the Estimator. We refer
to any of these algorithms as Conf(ψi,Mi). They all have
the nice property that successive improvements are possible.
Let us assume the algorithms keep track of the averages and
the number of samples. Then we can request an Improve-
Conf(ψi, RUPD,M ′

i) which runs Conf for M ′
i more rounds

and outputs p̂imax, p̂
i
max as the result of Mi + M ′

i rounds of
sampling.

The next lemma upper bounds the error probability if we
decide the predicate based on these estimates.

Lemma 6.6. [14] Let φ be a predicate over confidences of
the DNFs ψ1, . . . , ψk. Let p̂imin, p̂

i
max be the result of calling

Conf(ψi,Mi).
If for some ǫ the member points in the axis–parallel ortho-

tope:
„

p̂1
min

1 + ǫ
,
p̂1
max

1− ǫ

«

× · · · ×

„

p̂kmin

1 + ǫ
,
p̂kmax

1− ǫ

«

all agree on a value φ̂ for φ, then

Pr[φ̂ 6= φ(t)] ≤

k
X

i=1

2e
Mi·ǫ

2

3|ψi|

In [14] it is remarked that one only has to check the corner
points of the orthotope.

Algorithm 5 successively improves the estimates until the

error bound
Pk
i=1 2e

Mi·ǫ
2

3|ψi| is at most the desired bound δ. In
practice, one would try to figure out a trade–off between the
overhead of checking whether the error-bound δ is achieved
and the possible overhead of computing too many rounds
and set the parameter r accordingly.

Proposition 6.1. Algorithm 5 is correct.

Proof Sketch. By Lemma 6.6 and the correctness of
Conf and Improve-Conf for all DNFs the true confidence

p(ψi) is between
p̂imin
1+ǫ

and
p̂imax
1−ǫ

with probability at least 1−

2e
Mi·ǫ

2

3 . Furthermore, if all confidences p(ψi) are in fact in

that interval then the predicate evaluates to φ̂. Hence, if the
algorithm returns a guess φ̂ then this guess is correct with

probability at least 1−
Pk
i=1 2e

Mi·ǫ
2

3 = 1−
Pk
i=1 2e

l·r·ǫ2

3 =

1− 2keǫ
2·l·r/3 which is at least 1− δ (see line 7).

The Limits of Predicate Approximation.
As we have seen in Sec. 6.1, evaluating predicates is hard.

Thus, we cannot assume that it is always possible to achieve
a given error bound δ. Predicate Approximation has
an upper bound on the number of improvements lmax. If
after lmax calls to Improve-Conf for each DNF it was not
possible to achieve an error bound of ≤ δ then the algorithm
outputs“Don’t know”. Let us look at an example illustrating
the impossibility of predicate approximation. Consider the
predicate φ(ψ) = p(ψ) > 0.5. Suppose that p(ψ) = 0.5. In
this case, it is necessary to precisely compute the confidence
instead of using an approximation. Also it can be impossible
to come up with a good guess for this predicate if ψ involves
unreliable variables and the lower bound is smaller than 0.5
and the upper bound is greater than 0.5. Here the variables
are too unreliable to compute the predicate at all. Those
difficult predicates are not robust.

Definition 6.7. Given a predicate φ(ψ1, . . . , ψk) and an
RUPD. φ is called ǫ0–robust if, for all RRPD instantiations
W ∗ of the RUPD and for all points (p̂1, . . . , p̂k) in the ǫ0–
neighborhood of the confidence values,

φ(pW∗(ψ1), . . . , pW∗(ψk)) = φ(p̂1, . . . , p̂k)

where the ǫ0–neighborhood of a point p1, . . . , pk contains all
points (p̂1, . . . , p̂k) such that for all i: pi(1 − ǫ0) ≤ p̂i ≤
pi(1 + ǫ0). 2

We cannot determine the level of robustness of a predicate
without computing the exact bounds on the confidences.
Therefore, to keep our approximation algorithm efficient,
we need to bound the running time. In particular, Algo-

rithm 5 outputs guesses for 3 ln(δ/2k)
lmaxr

–robust predicates with
high probability.

Proposition 6.1. Let φ̂ be the guess returned by Predi-
cate Approximation ( φ, ψ1, . . . , ψk, RUPD, δ, lmax) after
l executions of the while loop. Then with probability ≥ 1− δ

the predicate is not 3 ln(δ/2k)
(l−1)r

–robust.

If the algorithm returns “Don’t know” then with probability

≥ 1− δ the predicate is not 3 ln(δ/2k)
(lmax)r

–robust.

This proposition justifies the running time of our algo-
rithm. Because of the level of robustness the algorithm can-
not terminate earlier.
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