
Towards a Theory of Search Queries

George H.L. Fletcher
Washington State University

Vancouver
fletcher@vancouver.wsu.edu

Jan Van den Bussche
Hasselt University and

Transnational University of Limburg
jan.vandenbussche@uhasselt.be

Dirk Van Gucht
Indiana University

vgucht@cs.indiana.edu

Stijn Vansummeren∗
Hasselt University and

Transnational University of Limburg
stijn.vansummeren@uhasselt.be

ABSTRACT
The need to manage diverse information sources has trig-
gered the rise of very loosely structured data models, known
as “dataspace models.” Such information management sys-
tems must allow querying in simple ways, mostly by a form
of searching. Motivated by these developments, we propose
a theory of search queries in a general model of dataspaces.
In this model, a dataspace is a collection of data objects,
where each data object is a collection of data items. Ba-
sic search queries are expressed using filters on data items,
following the basic model of boolean search in information
retrieval. We characterise semantically the class of queries
that can be expressed by searching. We apply our theory
to classical relational databases, where we connect search
queries to the known class of fully generic queries, and to
dataspaces where data items are formed by attribute–value
pairs. We also extend our theory to a more powerful, as-
sociative form of searching where one can ask for objects
that are similar to objects satisfying given search conditions.
Such associative search queries are shown to correspond to
a very limited kind of joins. Specifically, we show that the
basic search language extended with associative search can
define exactly the queries definable in a restricted fragment
of the semijoin algebra working on an explicit relational rep-
resentation of the dataspace.

1. INTRODUCTION
In most current information systems such as Web search

engines, e-commerce sites, or desktop search systems, as well
as in classical information retrieval systems such as library
catalogs or document repositories, users query the database
by means of a search interface. One can say that search-
ing has become the norm. Searching is expressed by means
of keywords which can be combined with boolean operators.

∗Stijn Vansummeren is a Postdoctoral Fellow of the Re-
search Foundation - Flanders (FWO).

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
ICDT 2009, March 23–25, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-423-2/09/0003 ...$5.00

Such a basic search facility is much weaker than the standard
database query languages, where select–project–join queries
are considered the minimum. Indeed, fully-fledged first-
order logic is the norm (cf. Codd’s relational algebra and
calculus), and contemporary languages such as SQL/PSM
or XQuery are even computationally complete.

Database queries are a major theme of database theory [3].
In general, queries are generic mappings from databases to
relations, where ‘generic’ refers to invariance under isomor-
phisms [4, 10]. Many classes of database queries have been
identified and characterized in terms of semantic properties;
expressibility in various query languages; or computability
under various complexity limitations. Since searching is such
a simple, natural, and important form of querying, it ap-
pears that search queries deserve to have their own chapter
in the theory of database queries. Our goal in this paper is
to propose a first draft of such a chapter. Apart from the
foundational motivation, our work is further motivated by
two important trends in data management research: data-
spaces and usability.

Dataspaces [11,12,17] are a new type of databases, charac-
terized by a very loosely structured data model and geared
towards the management of data coming from a diverse set
of sources. Dataspaces are queried by a form of searching. In
essence, the data in a dataspace is modeled as a collection of
objects, where each object is a collection of attribute–value
pairs. Dataspaces are queried by searching for conditions on
attributes or values, or by following links between objects.

Improving the usability of database systems has been an
issue pretty much since the beginning of database research,
as witnessed, for example, by the past research on univer-
sal relation interfaces (surveyed by Ullman [24, Chapter 17]).
Recently, Jagadish [18] has revived our interest in this topic;
he argues, among other things, that queries involving ex-
plicit joins or subqueries are too cumbersome to express,
and stimulates us to ask how far we can get with simpler
forms of querying such as searching, or with more implicit
or automatic ways of joining information.

So, in a nutshell, in this paper, we try to understand for-
mally the question of how much database querying can be
done using a basic search language, possibly extended with
a simple facility for following links between objects.

We should also clarify what we do not do in this pa-
per. We do not investigate how searching can be imple-
mented efficiently. Rather, we focus on expressive power.
Also, because of this focus, we ignore other important is-
sues that have been investigated in research on keyword

201

search in relational, tree-structured (XML), and semistruc-
tured (graph) databases [14, we give just one recent refer-
ence]. The two main such issues are automatically finding
connections among objects in the database that contain the
given keywords (which is a nice approach to the usability
question mentioned above), and ranking the results of a key-
word search.

Concretely, the contributions of this paper can be sum-
marized as follows:

1. We define a general formal model of dataspaces, where
a dataspace is a collection of data objects, and where
an object is a collection of data items. On these data
items, we assume a number of abstract filter predicates
to be defined. These filters naturally serve as atomic
search conditions: searching a dataspace with a filter
returns all objects containing an item satisfying the
filter. We obtain a basic search language by combining
atomic searches using the boolean set operators union,
intersection, and difference.

2. Search queries are defined in general as functions on
dataspaces that map a dataspace to one of its subsets.
The question then arises of exactly which such map-
pings are definable in the basic search language. This
question turns out to be naturally answered by requir-
ing the search queries to be invariant under a natural
indistinguishability relation on objects. The concept
of genericity (invariance) has always been a central
theme in the development of the theory of database
queries [3]; we have tried here to get at the right gener-
icity concept for search queries.

3. We apply the above semantic characterization to the
case of classical database relations. A relation can be
viewed as a dataspace by viewing the tuples as sets of
attribute–value pairs. When using as filters on such
attribute–value pairs the classical selection conditions
“attribute equals constant,” we obtain as basic search
queries precisely the class of search queries that are
“fully generic” in the sense of Beeri, Milo and Ta-Shma
[6, 7]. (We hasten to add that these authors looked at
full genericity of queries in a complex-object setting
much richer than mere search queries on flat relations.)

4. We extend the basic model to allow for so-called “as-
sociative search”, where one can search not just for all
objects satisfying some search query, but also for all
objects that are somehow linked to those objects. This
amounts to adding a link operator to the basic search
language, much in the spirit of modal logic [8,9]. Asso-
ciative search is indeed a feature of most dataspace and
keyword search query languages proposed in the liter-
ature [11,12,14,17]. Actually, in these proposals, links
between objects are often assumed to be found auto-
matically by the system. Since in this paper we are
interested in a detailed analysis of expressive power,
we focus on the case where the linking conditions are
explicitly specified in the query.

5. A question we find interesting is how search query lan-
guages relate to standard database query languages.
Those languages remain relevant in the search and
dataspace setting. For example, SPARQL [2], the stan-
dard language to query RDF graphs [1], is closely re-

lated to database queries on ternary relations [13, 16,
22]; RDF graphs can be viewed as a dataspace model.

Under the natural assumption that linking between
two objects is done in terms of a set of similarity rela-
tions among the items in these objects, we can indeed
relate associative search to standard database query
languages. Specifically, we observe that associative
search queries are definable in the semijoin algebra:
the version of the relational algebra where the join op-
erator is replaced by the semijoin [20,21,23]. Here, the
semijoin algebra works on the natural representation
of a dataspace as a binary relation; abstract filters are
used as selection conditions, and abstract similarity
predicates are used as join conditions.

Conversely, however, not every semijoin query is an
associative search query. We actually identify three
kinds of constructions that are definable in the semi-
join algebra but not in our associative search language,
and prove that the fragment of the semijoin algebra
in which these three constructions are disallowed fully
characterizes our associative search queries.

6. Finally, we show that our general theory is workable
by applying it to the most common dataspace setting,
where data items are attribute–value pairs. Unlike
the application to classical relations mentioned ear-
lier, here, there is no fixed schema and objects can
have multiple values for the same attribute. We con-
sider a natural repertoire of filters that can test if
the attribute, and the value, equals, or is different
from, a finite number of possibilities. In this setting,
the semantic characterization of basic search queries
can be rephrased in a very intuitive manner, as we
will show. We will also instantiate the semijoin al-
gebra characterization of associative search queries to
the attribute–value setting. Associative search queries
over attribute–value dataspaces are thus characterized
as the queries expressible in a simple and attractive
fragment of the semijoin algebra; this time, dataspaces
are represented by ternary relations with schema (Oid,
Att, Val), selection conditions are constant equalities
(on attributes as well as on values; remember that
there is no dataspace schema), and all semijoins are
simple equijoins.

This paper is organized as follows. Section 2 presents the
abstract model of search queries on dataspaces; Section 3
presents the application to classical database relations; Sec-
tion 4 extends the abstract model with associative search;
Section 5 gives the semijoin algebra characterization; and
Section 6 presents the application to attribute–value data-
spaces.

2. BASIC MODEL
We assume given a set I of abstract data elements called

items.

Definition 1. An object over I is a finite, nonempty set of
items. An abstract dataspace over I is a finite set of objects
over I.

For instance:

202

• Items could be words over some alphabet. Objects
then correspond to documents in the classical boolean
model of information retrieval [5, chapter 4.2.3], and
dataspaces correspond to collections of such documents.
Figure 2(a) illustrates such a dataspace, consisting of
two documents concerning events in St. Petersburg.

• Items could be pairs (a, v) of attributes a and values
v. Objects, being finite sets of such pairs, then intu-
itively describe the attributes of a real-world entity.
(Note that there can be multiple values for the same
attribute.) A dataspace is just a collection of such de-
scriptions. Figure 1, for example, depicts an attribute-
value dataspace describing researchers, beers, and pa-
pers.

Under this concrete interpretation of I, an abstract
dataspace corresponds to the usual definition of a data-
space in the literature [11, 12, 17]. Indeed, while those
definitions normally also include links (binary relation-
ships) between objects, we can always represent such
links using additional attributes. For example, to make
a link authored by between a paper and an author,
add an id attribute to the author, and add an at-
tribute authored by to the paper with the id of the au-
thor as value (multiple authors are no problem because
objects in dataspaces can contain multiple attribute–
value pairs for the same attribute).

• Staying with attribute–value pairs, we could consider
those dataspaces whose objects contain only attributes
from a fixed relation schema, and contain a single value
for each such attribute. Such dataspaces are classical
database relations.

We now define BSL: a basic boolean search language to
query dataspaces. Formally, we assume a set K of predicate
names called abstract keywords, and a K-structure (I,M)
on I in which every abstract keyword k is interpreted as
a unary predicate M(k) on I, or, equivalently, a subset
M(k) ⊆ I. The intuition for an item i to be in M(k) is
that i “matches” k. For example, in the boolean informa-
tion retrieval model, keywords could be predicates on words
that test whether the word contains some fixed string as
a substring. On attribute–value pairs, keywords could be
predicates on pairs (a, v) that test whether a is some fixed
attribute and v is some fixed value.

Definition 2. The expressions of BSL are given by the
grammar

e ::= k | e and e | e or e | e except e,

where k ranges over the keywords in K.
The semantics of these expressions is the following. An

expression e can be applied to a dataspace D, resulting in a
subset e(D) of D defined as follows:

k(D) := {o ∈ D | ∃i ∈ o : i ∈M(k)}
(e1 and e2)(D) := e1(D) ∩ e2(D)

(e1 or e2)(D) := e1(D) ∪ e2(D)

(e1 except e2)(D) := e1(D)− e2(D).

Note that the language is a bit redundant as e1 and e2 is
equivalent to e1 except (e1 except e2).

It is important to appreciate the existential nature of the
above-defined semantics. Thus, the expression k1 except k2

does not return all objects that contain an item that matches
k1 but not k2; rather, it returns all objects that contain
an item that matches k1, but do not contain an item that
matches k2. Henceforth, for an object o and a keyword k,
we will write o |=M k to denote that there exists i ∈ o such
that i ∈M(k).

As just defined, every BSL expression defines a search
query :

Definition 3. A search query is a mapping q from data-
spaces to dataspaces such that q(D) ⊆ D for each D. A
search query is definable in BSL if there exists an expres-
sion e such that e(D) = q(D) for every dataspace D.

Of course not all search queries are definable in BSL.
Which ones are? We can answer this question by identifying
three typical properties of BSL queries: additivity, K-safety,
andK-distinguishing. We define these three properties next.

Definition 4. Let q be a search query and let K ⊂ K be a
finite set of keywords.

• We say that q is additive if

q(D) =
[

o∈D

q({o})

for any dataspace D.

• We say that q is K-safe if for any dataspace D and
any o ∈ q(D), we have that o |=M k for at least one
k ∈ K.

• Two objects o1 and o2 are called K-equivalent if for all
k ∈ K we have o1 |=M k iff o2 |=M k. We denote this
by o1 'K o2. (Clearly, 'K is an equivalence relation.)
We then say that q is K-distinguishing if for any two
dataspaces D1 and D2 and objects o1 ∈ D1 and o2 ∈
D2 that are K-equivalent, we have o1 ∈ q(D1) iff o2 ∈
q(D2).

The above three properties represent three distinctive fea-
tures of BSL queries. Additivity simply states that the query
can be processed one object at a time. K-safety states that
we cannot retrieve arbitrary objects from the dataspace, but
only objects that satisfy at least one of the specified key-
words. This is also the case in all real-life search engines
and information retrieval systems. Finally, K-distinguishing
naturally states that the query can only distinguish between
objects based on their satisfaction of specified keywords.

As a matter of fact, additivity already follows from K-
distinguishing, since the latter property implies o ∈ q(D)
iff o ∈ q({o}) which readily implies additivity. We stated
the property of additivity separately because we will need it
later independently of K-distinguishing.

We establish the following semantic characterization:

Theorem 5. A search query q is definable in BSL if and
only if q is K-safe and K-distinguishing, for some finite set
K ⊂ K.

Proof. The only-if direction is straightforward; for K we
take the set of keywords occurring in the BSL expression.
The properties of safety and distinguishing are then veri-
fied by structural induction (details omitted). For the if-
direction, we first observe that each 'K equivalence class C
is definable in BSL in the sense that we have an expression

203

name Bill
email bill@gmail.com
email bill@yahoo.com
phone 555-128486
likes Duvel

o1

name John
email j@gmail.com
address 15 East st. NY
likes Duvel
likes Heineken

o2

title On the power . . .
author Bill
author John
abstract We investigate . . .
content . . .
published in ICDT 2009

o3

beer name Duvel
type blond
origin Belgium
rated very good

o4

beer name Heineken
type blond
origin Netherlands

o5

conference ICDT 2009
venue St. Petersburg, RU
year 2009

o6

Figure 1: An example attribute-value dataspace.

eC such that o ∈ C iff o ∈ eC({o}). The only exception is
the equivalence class of objects that do not satisfy any key-
word in K; but since q is K-safe that equivalence class can
be ignored. Since q is K-distinguishing, q can then be de-
fined as the union of all expressions eC over all C for which
o ∈ q({o}) for o ∈ C. We omit the details.

We point out that in the presence of a wildcard keyword,
the issue of K-safety becomes moot:

Corollary 6. If K includes a keyword ? that matches any
item (i.e., M(?) = I), then a search query is definable in
BSL iff it is K-distinguishing for some finite K.

We conclude this section by giving two illustrations of how
one can show that certain queries are not definable in BSL.

Example 7. One may wonder if negations of keywords can
be expressed: can we retrieve all objects containing an item
that does not match some keyword k? The answer in general
is no. In proof, suppose that K consists just of a single
keyword k, with at least one matching item i and at least
one nonmatching item j. In addition, we can also use the
wildcard. Then the query “¬k”, asking for all objects with
an item that does not match k, is not {k}-distinguishing.1

Indeed, {i} '{k} {i, j}, but {i, j} satisfies the query whereas
{i} does not. Hence, “¬k” is not definable in BSL.

Of course, one can add negated keywords directly to K
and M to express such queries. One may then wonder
whether that is enough to allow already all boolean com-
binations of keywords to be expressed. For example, can
we now retrieve all objects containing an item that matches
neither k1 nor k2? The answer is still no. In proof, sup-
pose that K contains, besides the wildcard, two keywords
k1 and k2 and their negations, with items i1, i2, j0, and j,
such that i1 matches k1 but not k2; i2 matches k2 but not
k1; j0 matches neither k1 nor k2; and j matches both k1

and k2. Then the query “¬k1 ∧¬k2” is not K-distinguishing
with K = {k1, k2,¬k1,¬k2} and thus not definable in BSL.
Indeed, {i1, i2} 'K {j0, j}, but {j0, j} satisfies the query
whereas {i1, i2} does not.

1The attentive reader is assured that {k, ?}-distinguishing
with ? as in Corollary 6 is the same as {k}-distinguishing.

3. APPLICATION TO CLASSICAL
RELATIONS

Note that the theory presented in Section 2 holds for any
concrete interpretation of I, K, andM. As an illustration of
how this general theory can be applied, let us fix an infinite
domain V of values and a relation schema Σ, i.e., a finite set
of attributes. We can use the set of attribute–value pairs Σ×
V as our set I of items. Then a tuple t : Σ → V is an object
over I, and a finite relation R over Σ is a dataspace over
I. Note that conversely, not all objects over I are proper
tuples, because in a proper tuple every attribute occurs, with
only one value. Hence, not all dataspaces in this setting are
proper relations. Let us denote the subclass of dataspaces
over I that are finite relations over Σ by R.

As keywords we fix K = (Σ×V)∪{?}, where each (a, v) ∈
(Σ × V) is a literal keyword that matches only itself (i.e.,
M(a, v) = {(a, v)}), and ? is the wildcard keyword that
matches all items (i.e., M(?) = I). Note that such a lit-
eral keyword (a, v) corresponds to the relational selection
operator σa=v. Indeed, for all D ∈ R Definition 2 special-
izes to

(a, v)(D) = {t ∈ D | t(a) = v}

since D consists only of tuples over Σ. So, in this setting, the
language BSL evaluated over relations in R corresponds to
the fragment of the relational algebra consisting of just the
three operators of constant selection, union, and difference.

It now turns out that in this setting there is a connection
between K-distinguishing search queries and fully C-generic
queries. Fully generic queries without constants have been
investigated (in a much richer setting than mere selection
queries) by Beeri, Milo and Ta-Shma [6,7]; here we consider
the version with constants. Thus, let C ⊂ V be a finite set
of constants. A C-epimorphism is a mapping f : V → V
such that both f |C and f−1|C are the identity on C. We
extend f : V → V to items, objects, and dataspaces in the
canonical, pointwise manner:

f(a, v) := (a, f(v)),

f(o) := {f(a, v) | (a, v) ∈ o},
f(D) := {f(o) | o ∈ D}.

Now a search query q is said to be fully C-generic (on the
class R) if for any relation R over Σ and any C-epimorphism
f , we have q(f(R)) = f(q(R)). We establish:

204

Proposition 8. Let C be a finite set of constants, and let
K = {(a, v) | a ∈ Σ, v ∈ C}. Then a search query q is
K-distinguishing on the class R if and only if q is additive
and fully C-generic on R.

Proof. The only-if direction is based on the fact that for any
tuple t and any C-epimorphism f , we have t 'K f(t). For
the if-direction, assume t 'K t′. We can find a tuple u and
C-epimorphisms f and f ′ such that f(u) = t and f ′(u) = t′.
We then have

t ∈ q(R) ⇔ t ∈ q({t})
⇔ f(u) ∈ q({f(u)})
⇔ u ∈ q({u})
⇔ f ′(u) ∈ q({f ′(u)})
⇔ t′ ∈ q({t′})
⇔ t′ ∈ q(R′).

From the above proposition and Corollary 6 we then ob-
tain:

Corollary 9. A search query q on relations over Σ is defin-
able in the relational algebra using only the operators con-
stant selection, union, and difference, if and only if q is ad-
ditive and fully C-generic for some finite set C of constants.

The main purpose of this modest theorem is to illustrate
that our general theory can be effectively applied and con-
nected to earlier work.

4. ASSOCIATIVE SEARCH
Since BSL queries are additive, BSL cannot define queries

that relate objects to other objects; BSL cannot do joins.
For example, in the boolean information retrieval setting
(where I is a set of words and objects correspond to docu-
ments), the search query

“retrieve all documents that share a word with a
document in which ICDT 2009 occurs”

is not additive, and therefore not definable in BSL. In data-
space systems, however, we want to be able to retrieve not
just all objects that satisfy some query, but also all objects
that are related to those objects [11,12].

To this end, we extend our theory by further assuming a
set L of abstract link conditions and extending our structure
M to interpret these conditions as binary relationships be-
tween objects. So, for each λ ∈ L, we have M(λ) ⊆ O ×O,
where O is the set of all objects.

We now define our associative search language ASL as an
extension of the basic search language BSL with an operator
for retrieving related objects:

Definition 10. The expressions of ASL are given by the
grammar

e ::= k | e and e | e or e | e except e | link〈λ〉 e,

where λ ranges over L. The semantics of the new construct
is given by

(link〈λ〉 e)(D) := {o ∈ D | ∃o′ ∈ e(D) : (o, o′) ∈M(λ)}.

Example 11. For example, in the boolean information re-
trieval setting, we might have a link condition relevant, in-
terpreted as the relationship “document o1 is relevant to
document o2” (computed according to some IR algorithm).
Then the expression

link〈relevant〉(‘ICDT’ or ‘St.Petersburg’)

retrieves all documents that are relevant to documents con-
taining the keywords ‘ICDT’ or ‘St.Petersburg’.

There is an obvious connection between ASL and modal
logic; indeed, ASL is a modal logic. We can make this con-
nection precise by defining a bisimulation notion appropriate
for ASL.

Definition 12. A pointed dataspace is a pair (D, o) with
D a dataspace and o an object in D. Let K ⊆ K and
L ⊆ L be sets of keywords and link conditions, respec-
tively. Two pointed dataspaces (D, o) and (D′, o′) are n-
bisimilar, or n-bisimulation equivalent, under K and L, de-
noted (D, o) �K,L

n (D′, o′), if o 'K o′ and the following
conditions hold for n > 0:

Forth: For any λ ∈ L, if (o, p) ∈M(λ) for some p ∈ D, then
there is some p′ ∈ D′ such that (o′, p′) ∈ M(λ) and

(D, p) �K,L
n−1 (D′, p′).

Back: For any λ ∈ L, if (o′, p′) ∈ M(λ) for some p′ ∈ D′,
then there is some p ∈ D such that (o, p) ∈M(λ) and

(D, p) �K,L
n−1 (D′, p′).

We then obtain the following lemma known from the model
theory of modal logic [15, Theorem 32]:

Lemma 13. Let K be a finite nonempty set of keywords
and let L be a finite nonempty set of link conditions. Let
ASL[K,L] denote the set of ASL expressions using keywords
in K and link conditions in L. Then the following are equiv-
alent for any search query q and any class D of dataspaces:

1. q is definable on D in ASL[K,L] by an expression e
with nesting depth of link operators at most n. (That
is, e(D) = q(D) for all D ∈ D.)

2. q is �K,L
n -invariant on D, i.e., if (D, o) �K,L

n (D′, o′)
with D and D′ in D, then o ∈ q(D) iff o′ ∈ q(D′).

We will put this lemma to good use later; now, we discuss
the more pressing issue of how link conditions should actu-
ally be defined. After all, a flexible search query language
should allow the link conditions to be expressed within the
language itself. In section 6 we will look at how this can
be done for the concrete case of attribute–value dataspaces,
but here we will look at an intermediate level where link
conditions are expressed on the level of, still abstract, rela-
tionships between items rather than objects.

So, assume now a set S of similarity relation names, or
simrels for short. Each simrel ∼ is interpreted as a binary
relation M(∼) ⊆ I × I on items. We now define the fol-
lowing basic class of link conditions, based on simrels and
keyword search:

Definition 14. Let k and l be keywords and let ∼ be a
simrel. Then the expression k ∼ l is called a simlink and
can be used as a link condition with the following semantics:

M(k ∼ l) = {(o, o′) ∈ O ×O | ∃i ∈ o : ∃j ∈ o′ :

i ∈M(k) and j ∈M(l) and i ∼ j}

205

ICDT 2009
held in
St. Petersburg

o1

weather
forecast
St. Petersburg
7 ◦C

o2

(a) Dataspace D

id item

o1 ICDT 2009
o1 held in
o1 St. Petersburg
o2 weather
o2 forecast
o2 St. Petersburg
o2 7 ◦C

(b) Binary relation rep(D)

Figure 2: A dataspace and its relational representa-
tion.

The intuition behind simlinks is very natural. We search
object o on keyword k; we search object o′ on keyword l; we
compare the two search results and require that they contain
a pair of similar items.

Example 15. For a simple example, in the boolean in-
formation retrieval setting, we might have a simrel soviet
between words such that w1 soviet w2 if w1 is a location
name (city name, street name) from the Soviet era, and
w2 is the corresponding post-Soviet name. For example,
Leningrad soviet St. Petersburg. Then the expression

link〈? soviet ?〉(‘ICDT’)

retrieves all documents containing Soviet versions of loca-
tions names mentioned in documents about ICDT. In Sec-
tion 6 we will see more examples of simlinks.

For the remainder of this paper, we will always use the
language ASL with simlinks as link conditions.

5. SEMIJOIN ALGEBRA
Acknowledging that search queries are a special kind of

database queries, it is natural to ask how the language ASL
(with simlinks) compares to more standard query languages.
Observing that the link operator is a kind of semijoin, a
comparison with the semijoin algebra seems a good approach
to this question. The semijoin algebra is the version of the
relation algebra where the join operator is replaced by the
semijoin operator [20,21].

Since the relational algebra works on relations, we need a
relational representation of a dataspace:

Definition 16. For each dataspace D let rep(D) be the
binary relation {(o, i) | o ∈ D and i ∈ o} over the relation
schema {id, item}.

The objects in the id-column of this relation are regarded
as object identifiers; the relational algebra is not able to peek
inside the objects in any other way than working with the
item column. An example is shown in Figure 2.

In the version of the semijoin algebra we are using, key-
words on items are used as selection conditions, and simrels
on items and equality on objects (viewed as id’s) are used
as semijoin conditions. The relation symbol T (for ‘Table’)
stands for the binary representation of the input dataspace.
Every expression has an output schema that is either empty,
the schema {id, item} itself, or one of the unary schemas {id}
or {item} (we do not have renaming). Expressions must be

T : {id, item}
E : Σ item ∈ Σ k ∈ K

σk(E) : Σ

E : Σ ∆ ⊆ Σ

π∆(E) : ∆

E1 : Σ E2 : Σ

E1 ∪ E2 : Σ

E1 : Σ E2 : Σ

E1 − E2 : Σ

E1 : Σ1 E2 : Σ2 Σ1 ∩ Σ2 = {id}
E1 nE2 : Σ1

E1 : Σ1 E2 : Σ2 Σ1 ∩ Σ2 = {item} ∼ ∈ S
E1 n

∼
E2 : Σ1

E1 : {id, item} E2 : {id, item} ∼ ∈ S
E1 n

=,∼
E2 : {id, item}

Figure 3: Syntax of SA.

well-typed, e.g., we only allow the union of two relations
over the same schema. The full syntax of semijoin algebra
(abbreviated SA) expressions, together with the derivation
of their output schemas, is now given in Figure 3. The nota-
tion E : Σ denotes that E is a legal expression with output
schema Σ.

The semantics of projection π, union ∪ and difference −
is well known; the semantics of the semijoin operators is as
follows:

σk(R) := {t ∈ R | t(item) ∈M(k)}
R1 nR2 := {t1 ∈ R1 | ∃t2 ∈ R2 : t2(id) = t1(id)}
R1 n

∼
R2 := {t1 ∈ R1 | ∃t2 ∈ R2 :

(t1(item), t2(item)) ∈M(∼)}
R1 n

=,∼
R2 := {(o, i) ∈ R1 | ∃j :

(o, j) ∈ R2 and (i, j) ∈M(∼)}

So, n is a normal natural semijoin on the common id at-
tribute; n∼ is a ∼-semijoin on the common item attribute;
and n=,∼ is a combination of the two.

Definition 17. A search query q is definable in SA if there
exists an SA expression E : Σ with id ∈ Σ such that q(D) =
πid(E)(rep(D)), for all dataspaces D. We also say that E
defines q in this case.

The following is now expected:

Proposition 18. Each search query definable in ASL(with
simlinks) is definable in SA.

Proof. Here is a straight syntactic translation:

SA[k] := σk(T)

SA[e1 or e2] := πidSA[e1] ∪ πidSA[e2]

SA[e1 except e2] := πidSA[e1]− πidSA[e2]

SA[link〈k ∼ l〉 e] := πid(SA[k] n∼ πitem(SA[l] n πidSA[e]))

Is the converse true as well? The answer is no, and we will
perform a thorough analysis of the situation, with the goal of

206

arriving at a well-defined fragment of SA that is equivalent
to ASL.

The first observation is that SA can express boolean com-
binations of keywords. For example, the SA expression
πid(T − σk(T)) defines the negated keyword ¬k, i.e., the
query q(D) = {o ∈ D | ∃i ∈ o : i /∈M(k)}. We have already
seen in Example 7 that negated keywords, and more gener-
ally, boolean combinations of keywords, are not definable in
ASL. This is easily repaired by closing the keywords under
the boolean operators. Syntactically, we move from K to
K∗ which is the smallest set of keywords containing K and
closed under the syntactic operators ¬ and ∨; semantically,
we extend the interpretation M of K to an interpretation
M∗ of K∗ in the natural way. Note that K∗ necessarily in-
cludes a wildcard keyword ? that matches all items. We can
then revise Proposition 18 as follows:

Proposition 18 revised. Every search query definable in
ASL over M∗ can be defined in SA over M.

Proof. The syntactic translation from the proof of Propo-
sition 18 can be extended as follows: (ϕ and ψ stand for
boolean combinations of keywords)

SA[k] := σk(T)

SA[¬ϕ] := T − SA[ϕ]

SA[ϕ ∨ ψ] := SA[ϕ] ∪ SA[ψ]

Note that a boolean closed set of keywords automatically
includes a wildcard keyword, in the form of k ∨ ¬k.

The next proposition points at a number of distinct query
constructions definable in SA but not in ASL:

Proposition 19. Each of the following SA queries is not
definable in ASL, even over the boolean closure of keywords:

E1 := πid(σk(T) n
=,∼

σl(T))

E2 := πid(T − T n
∼
πitemσk(T))

E3 := πid(σk(T) n
∼
πitem(σl(T) n

∼
πitemσm(T)))

E4 := πid(T n
∼

(πitem(T)− πitem(T nπidσk(T))))

More precisely, for each of these queries there exists a simple
interpretation M of the keywords k, l and m and the simrel
∼ such that the query is not definable in ASL over M∗.

Note that, referring to the items i ∈M(k) as k-items, the
above four expressions define the following queries:

1. Retrieve all objects containing a k-item i and an l-item
j such that i ∼ j.

2. Retrieve all objects containing an item that is not ∼
to any k-item in the dataspace.

3. Retrieve all objects containing a k-item that is ∼ to
some l-item j in the dataspace, and j itself is ∼ to
some m-item in the dataspace.

4. Retrieve all objects containing an item i that is ∼ to
an item that is not present in any object containing a
k-item.

These queries are shown to be undefinable in ASL by show-
ing that they are not bisimulation invariant, then invoking
Lemma 13.

Proof of Proposition 19. For the query q1 expressed by E1,
we put M(k) = {a1, a2} and M(l) = {b1, b2}, with a1 ∼ b1
and a2 ∼ b2. Now consider D = {o} and D′ = {o1, o2}
with o = {a1, b1}; o1 = {a1, b2}; and o2 = {a2, b1}. Then
(D, o) and (D′, o1) are bisimilar (n-bisimilar for any n). Yet,
o ∈ q1(D) whereas o1 /∈ q1(D′).

For the query q2 expressed by E2, we use items a, a′, and
b with M(k) = {b} and a′ ∼ b. Now consider D = {o1, o2}
and D′ = {o′1, o2} with o1 = {a, a′}; o2 = {b}; and o′1 =
{a′}. Then (D, o1) is bisimilar to (D′, o′1), but o1 ∈ q2(D)
whereas o′1 /∈ q2(D′).

For the query q3 expressed by E3, we put M(k) = {a};
M(l) = {b, b1, b2}; and M(m) = {c}, with a ∼ b, b ∼ c,
a ∼ b1, and b2 ∼ c. Now consider D = {o1, o2} and D′ =
{o1, o2} with o1 = {a}; o2 = {b, c}; and o′2 = {b1, b2, c}.
Then (D, o1) is bisimilar to (D′, o1), but o1 ∈ q3(D) whereas
o1 /∈ q3(D′).

For the query q4 expressed by E4, we use items a, b and
c, with M(k) = {a}, and ∼ is interpreted as equality. Now
consider D = {o1, o2} and D′ = {o′1, o2} with o1 = {b, c};
o2 = {a, b}; and o′1 = {b}. Then (D, o1) is bisimilar to
(D′, o′1), but o1 ∈ q4(D) whereas o′1 /∈ q4(D′).

The above proposition can inspire us to restrict SA so as
to obtain a fragment equivalent to ASL. E1 suggests that
we should banish the combined semijoin n=,∼. E2 suggests
that we should not allow unrestricted use of the result of a
n∼ semijoin; we should project the result. But E3 shows we
should not project on {item}, so we conclude we must always
project the result of n∼ on {id}. Moreover, E4 suggests that
we should not allow projection on {item} altogether, except
of course to allow for a semijoin n∼ to be applied. We thus
arrive at the following fragment of SA, which we denote by
SAsearch:

Definition 20. The fragment SAsearch of SA is defined by
the following rules:

• The operators n=,∼, π{item} and π∅ are disallowed.

• The rule for n∼ is changed as follows:

E1 : {id, item} E2 : {id, item} ∼ ∈ S
π{id}(E1 n

∼
π{item}E2) : {id}

We now establish the connection between associative search
and the semijoin algebra:

Theorem 21. A search query is definable in SAsearch over
M if and only if it is definable in ASL (with simlinks) over
M∗.

Proof. The if-direction follows from the observation that the
translation from ASL to SA given in the proof of Proposi-
tion 18 stays within the fragment SAsearch.

The only-if direction is also proven by a translation, but a
complication here is the translation of subexpressions with
output schema {id, item}, as such intermediate results are
not directly representable by the result of a search query
(which can only return id’s).

Formally, for each SAsearch expression E we construct a
finite set χE of pairs (e, k), with e an ASL expression and
k ∈ K∗, such that for all D:

207

• if the output schema of E is {id, item}, then E(rep(D))
equals [

(e,k)∈χE

{(o, i) | o ∈ e(D), i ∈ o, i ∈M(k)};

• if the output schema of E is {id}, then E(rep(D))
equals [

(e,k)∈χE

{o ∈ e(D) | o |=M∗ k}.

Of course the global SA expression E expressing the search
query q has output schema Σ with {id} ⊆ Σ ⊆ {id, item},
and thus we can define q in ASL as (e1 andk1)or . . .or(en and
kn) where χE = {(e1, k1), . . . , (en, kn)}.

We construct χE by induction as follows:

χT := {(?, ?)}
χσl(E) := {(e, k ∧ l) | (e, k) ∈ χE}
χπid(E) := {(e and k, ?) | (e, k) ∈ χE}
χE1∪E2 := χE1 ∪ χE2

χE1−E2 := {(e1 except e2, k1), (e1, k1 ∧ ¬k2) |
(e1, k1) ∈ χE1 , (e2, k2) ∈ χE2}

χπid(E1 n∼ πitemE2) := {(e1 and link〈k1 ∼ k2〉 e2, ?) |
(e1, k1) ∈ χE1 , (e2, k2) ∈ χE2}

χE1 n E2 := {(e1 and e2 and k2, k1) |
(e1, k1) ∈ χE1 , (e2, k2) ∈ χE2}

We conclude this section with a remark concerning con-
junctions in join conditions. We have defined simlinks as
link conditions involving just a single condition k ∼ l. But
link conditions involving a conjunction of two or more such
conditions are also very natural. For example, the query
link〈(k1 ∼1 l1) ∧ (k2 ∼2 l2)〉(e), applied to a dataspace D,
would return those objects o ∈ D for which there exists
an object o′ in e(D) such that there exists a k1-item i ∈ o
and an l1-item j ∈ o′ such that i ∼1 j, and there also exists
a k2-item i ∈ o (not necessarily the same i) and an l2-item
j ∈ o′ (not necessarily the same j) such that i ∼2 j. We can
show (proof omitted) that such conjunctive join conditions
bring us outside the semijoin algebra. Nevertheless, it is still
possible to define a fragment of the relational algebra and
prove a characterization along the lines of Theorem 21. We
omit the details.

6. ATTRIBUTE–VALUE DATASPACES
Let us now apply our abstract theory to the concrete set-

ting of dataspaces as they have been investigated in the lit-
erature [11,12,17]. In this setting, items are attribute–value
pairs as in the relational setting of Section 3, so I = Σ×V.
The important difference, however, is that the universe of
attributes Σ can now be infinite; there is no longer a fixed
finite relation schema. Of course each dataspace is finite,
so in each dataspace just a finite number of attributes will
occur, but these attributes can vary from dataspace to data-
space and even from object to object. Moreover, attributes

can appear multiple times in the same object, with different
values. So, an object really is just a nonempty finite set of
items, without any restriction.

The dataspace models in the literature [11,12,17] give each
object an id, and naturally represent a dataspace D as a set
of triples {(o, a, v) | o ∈ D and (a, v) ∈ o}. We argue that
our view of a dataspace as just a set of objects is equivalent.
Indeed, we just showed how to go from our representation to
the set of triples; if one wants to go in the converse direction,
the only difficulty one may encounter is that there might be
two object id’s in the triple set with exactly the same set of
associated (a, v) pairs. In that case we can add an explicit
id attribute to the objects, so that the sets become distinct.
Having explicit id attributes is also necessary when we need
to represent links between objects based on ids. We will see
an example of such linking later (Example 27).

The next question is what would be an interesting universe
K of keywords. Surely we already want all literal keywords
(a, v) to be present (as in the classical relational case), so
that we can formulate basic queries like ‘retrieve all persons
who live in Belgium, like the beer Duvel, but do not like the
beer Heineken’:2

((country : Belgium) and (likes : Duvel))

except (likes : Heineken)

We also want negation separately on attributes and values:
for example, likes : ¬Heineken retrieves objects containing a
value for attribute likes that is different from Heineken, and
¬likes : Heineken retrieves objects containing Heineken as the
value of an attribute different from likes. Note that, since
the set of attributes is not fixed, we cannot express the last
example by a disjunction using all possible attributes other
than likes. Similarly, we need wildcards on values as well
as on attributes, so (? : Belgium) retrieves all objects with
value Belgium for some attribute. Finally, we need disjunc-
tions such as (likes : ¬(Heineken∨Budweiser)). (We only need
negated disjunctions; positive disjunctions can already be
expressed in BSL using or.)

To sum up, we propose the following system of keywords
for attribute–value (AV) pairs.

Definition 22. An AV keyword is a pair of one of the fol-
lowing forms:

(a : v) | (a : ¬V) | (¬A : v) | (¬A : ¬V),

where a ∈ Σ, v ∈ V, and A ⊆ Σ, V ⊆ V are finite. AV
keywords are interpreted as follows:

M(a : v) := {(a, v)}
M(a : ¬V) := {(a, v) | v ∈ V − V }
M(¬A : v) := {(a, v) | a ∈ Σ−A}

M(¬A : ¬V) := {(a, v) | a ∈ Σ−A, v ∈ V − V }.
Note that ¬∅ plays the role of a wildcard ? on attributes

or values, and then (? : ?) plays the role of the wildcard on
pairs.

A first indication of the flexibility of this keyword system
is that we do not need to add boolean combinations:

Proposition 23. BSL over AV keywords is equivalent to
BSL over the boolean closure of AV keywords.
2To improve readability, we will write attribute–value
pairs (a, v) as (a : v), conforming more to a programming
language-like syntax.

208

Proof. It is readily verified that every boolean combination
of AV keywords amounts to a disjunction of AV keywords.
Such a disjunction can be expressed in BSL using or.

Since we have the wildcard, Corollary 6 applies, so we
know that in the AV setting, BSL defines exactly all search
queries that are K-distinguishing for some finite set K of AV
keywords. Recall that a search query q is K-distinguishing if
it is invariant under the equivalence 'K on objects (Defini-
tion 4). In the AV setting, we can formulate a more intuitive
alternative to this equivalence relation, directly in terms of
attributes and values, rather than AV keywords. The idea,
similar to full genericity, is that only a finite set of attributes
and values can be distinguished.

Definition 24. Let W be a finite set of attributes and val-
ues. Let � be a “blank value”, that is an arbitrary element
not in W . For an attribute or value x, define

blankW (x) :=

(
x if x ∈W
� otherwise.

We extend blankW to AV pairs, objects, and dataspaces in
the canonical, pointwise manner:

blankW (a, v) := (blankW (a), blankw(v)),

blankW (o) := {blankW (a, v) | (a, v) ∈ o},
blankW (D) := {blankW (o) | o ∈ D}.

Two objects o1 and o2 are calledW -equivalent if blankW (o1)
= blankW (o2). We denote this by o1 'W o2. We now say
that a search query q is W -distinguishing if for any two
dataspaces D1 and D2 and objects o1 ∈ D1 and o2 ∈ D2

that are W -equivalent, we have o1 ∈ q(D1) iff o2 ∈ q(D2).

Proposition 25. A search query is K-distinguishing for
a finite set of AV keywords K if, and only if, it is W -
distinguishing for a finite set of attributes and values W .

Proof. The crux of the matter is that if two objects are K-
equivalent, for some finite set of AV keywords K, then they
are W -equivalent, where W is the finite set of attributes
and values explicitly mentioned in the keywords in K. Con-
versely, if two objects areW -equivalent, for some finite set of
attributes and values W , then they are K-equivalent, where
K is the finite set of all AV keywords that can be constructed
using the elements in W .

Let us now turn to associative search in the AV context.
What are the simrels needed to join objects in an AV data-
space? Focusing on equijoins, there are three natural possi-
bilities: two AV pairs can be compared on their values, on
their attributes, or on both together. So, for the set S of sim-
rels in the AV setting, we will use the set {eq, eq-attr, eq-val}
defined as follows:

Definition 26. An eqrel (short for equality relation) is one
of the three following simrels on AV pairs:

(a, v) eq (b, w) ⇔ a = b and v = w,

(a, v) eq-attr (b, w) ⇔ a = b,

(a, v) eq-val (b, w) ⇔ v = w.

Example 27. For example, the following is an expression
in the associative search language ASL over AV keywords
and eqrel simlinks:

link〈(name : ?) eq-val (author : ?)〉
(published in : ICDT 2009)

It defines the query that retrieves all authors of objects pub-
lished in ICDT 2009. More precisely, it retrieves all objects
with a value for attribute name that equals a value for at-
tribute author in an object containing the item (published in,
ICDT 2009).

In other dataspace models based on attribute–value pairs
[11, 12], objects are not joined using eqrel simlinks, but
through explicit named links (edges) between objects. So
there, a dataspace is not merely a set of objects, but a graph
of objects. Using eqrel simlinks as we do, an explicit graph
model is redundant. Indeed, as just illustrated in Exam-
ple 27, named edges (for instance linking papers to their
authors) can easily be represented using id attributes for
objects and “pointer” attributes (name and author) having
these ids as values.

We next show that the abstract bisimulation Lemma 13
can well be applied in the present AV setting as an aid to
understand the limits of expressive power of ASL. For ex-
ample, consider the generic equality selection query qa=b, for
two attributes a and b, defined as follows:

qa=b(D) = {o ∈ D | ∃v : (a, v) ∈ o and (b, v) ∈ o}

It is not immediately clear whether or not this query is de-
finable in ASL in the AV setting; it turns out it is not:

Proposition 28. qa=b is not definable in ASL over eqrel
simlinks and AV keywords.

In a nutshell, the proof of Proposition 28 consist of show-
ing that qa=b is not bisimulation invariant relative to any
finite set of AV keywords and eqrel simlinks, and then in-
voking Lemma 13.

We conclude this section by returning to the equivalence
between ASL and the semijoin algebra. Recall that in Sec-
tion 5, we have defined the semijoin algebra to work on ab-
stract dataspaces represented as binary relations over the
schema {id, item}. While the equivalence of ASL and SAsearch

(Theorem 21) can be directly applied to the AV setting, it is
not so natural to store AV pairs in a single item column. It
is more natural to represent AV dataspaces as sets of triples,
i.e., as ternary relations over the schema {id, attr, val}. Also
the RDF query language SPARQL works over such ternary
relations [2, 16, 22]; RDF graphs can also be viewed as a
dataspace model [12].

So, it is worthwhile to define an alternative to SAsearch

working on ternary relations. An added simplification is
that, since we are working with eqrel simlinks rather than
simlinks based on general abstract simrels, we will no longer
need the ∼-semijoin operator and will have enough with the
standard natural semijoin.

Definition 29. The fragment SAAV of the semijoin alge-
bra, defined on relations T : {id, attr, val}, is defined by the
following grammar:

E ::= T | σattr=c(E) | σval=c(E) | E ∪ E | E − E |
π{id}(E) | π{id}(Enπα(E))

209

where c ranges over attribute and value constants, and α is
either {attr}, {val}, or {attr, val}.

The semantics of n is the standard natural semijoin on
equality of common attributes.

We have the following analog of Theorem 21:

Theorem 30. A search query is definable in ASL over AV
keywords and eqrel simlinks, if and only if it is definable in
SAAV, where we regard a dataspace D as a ternary relation
{(o, a, v) | o ∈ D and (a, v) ∈ o}.

Proof. The only-if direction is similar to the proof of The-
orem 21. AV keywords are expressed using combinations
of constant selections using union and difference. Simlinks
based on eq-attr, eq-val, or eq are expressed using semijoin
with projection on the right (the set α in the syntax defini-
tion) equal to {attr}, {val}, or {attr, val}, respectively.

The if-direction is also similar, but we have the added
complication that boolean combinations of keywords are not
directly available in the AV setting. Yet, because of Propo-
sition 23, we can simulate them in the language. Propo-
sition 23 is only formulated for BSL, but the same argu-
ment holds for ASL, because link distributes over a disjunc-
tion of keywords used in a simlink: link〈(ϕ1 ∨ ϕ2) ∼ ψ〉(e) =
link〈ϕ1 ∼ ψ〉(e) or link〈ϕ2 ∼ ψ〉(e). Semijoins are translated
to simlinks using an eqrel depending on α: if α = {attr} we
use eq-attr, if α = {val} we use eq-val, and if α = {attr, val}
we use eq.

7. DISCUSSION
Our goal has been to provide the beginnings of a theo-

retical foundation for search and associative search queries,
motivated by the ubiquity of such queries in everyday in-
formation systems. Our approach has been to investigate
search queries as restricted kinds of database queries, and
to use the tools and the concepts already developed in the
theory of database queries. (One of us has studied unre-
stricted, i.e., relationally complete querying of dataspace-
like databases earlier [19].)

We have first presented a general abstract theory, then ap-
plied it to the concrete setting of attribute–value dataspaces.
It would be interesting to conduct a similar application to
the XML data model, for example, with XPath playing the
role of relational algebra.

Mainly inspired by dataspaces [12], we have focused on
selection queries, i.e., queries that always return a subset of
the original objects. Current approaches to keyword search
on structured databases [14, we give just one recent refer-
ence] return tuples of objects that are related by patterns.
In the semijoin algebra one can express such patterns as long
as they are not cyclic, but the patterns themselves cannot
be returned. It remains to be investigated if and how our
theory should be extended so that patterns can be returned.
Of course, one can simply move to the full relational algebra,
but then there is less news to discover.

It would also be interesting to look at a similar theory
of search queries on RDF graphs, given their close simi-
larity to AV dataspaces. It might be possible to special-
ize our semijoin algebra fragment SAAV into a fragment of
SPARQL, which is some kind of specialized relational alge-
bra for ternary relations (RDF triples) [13,16,22].

Acknowledgments. The authors thank the ICDT 2009 re-
viewers for their constructive comments that helped improve
the presentation of this article.

8. REFERENCES
[1] RDF primer. W3C Recommendation, February 2004.

[2] SPARQL query language for RDF. W3C
Recommendation, January 2008.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[4] A.V. Aho and J.D. Ullman. Universality of data
retrieval languages. In Conference Record, 6th ACM
Symposium on Principles of Programming Languages,
pages 110–120, 1979.

[5] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison-Wesley, 1999.

[6] C. Beeri, T. Milo, and P. Ta-Shma. On genericity and
parametricity. In Proceedings 15th ACM Symposium
on Principles of Database Systems, pages 104–116,
1996.

[7] C. Beeri, T. Milo, and P. Ta-Shma. Towards a
languages for the fully generic queries. In S. Cluet and
R. Hull, editors, Database Programming Languages,
Lecture Notes in Computer Science, pages 239–259.
Springer, 1997.

[8] P. Blackburn, M. de Rijke, and Y. Venema. Modal
Logic. Cambridge University Press, 2001.

[9] P. Blackburn, J. van Benthem, and F. Wolter, editors.
Handbook of Modal Logic. Elsevier, 2007.

[10] A. Chandra and D. Harel. Computable queries for
relational data bases. Journal of Computer and
System Sciences, 21(2):156–178, 1980.

[11] J.-P. Dittrich and M.A. Vaz Salles. iDM: A unified
and versatile data model for personal dataspace
management. In Proceedings 32nd International
Conference on Very Large Data Bases, pages 367–378,
2006.

[12] X. Dong and A. Halevy. Indexing dataspaces. In
Proceedings ACM SIGMOD International Conference
on Management of Data, pages 43–54, 2007.

[13] G.H.L. Fletcher. An algebra for basic graph patterns.
Presented at the workshop on Logic in Databases,
Rome, Italy, May 2008.

[14] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword
proximity search in complex data graphs. In
Proceedings ACM SIGMOD International Conference
on Management of Data, pages 927–940, 2008.

[15] V. Goranko and M. Otto. Model theory of modal
logic. In Blackburn et al. [9], chapter 5.

[16] C. Gutierrez, C. Hurtado, and A. Mendelzon.
Foundations of semantic web databases. In
Proceedings 23rd ACM Symposium on Principles of
Database Systems, pages 95–106, 2004.

[17] A. Halevy, M. Franklin, and D. Maier. Principles of
dataspace systems. In Proceedings 25th ACM
Symposium on Principles of Database Systems, pages
1–9, 2006.

[18] H.V. Jagadish et al. Making database systems usable.
In Proceedings ACM SIGMOD International
Conference on Management of Data, pages 13–24,
2007.

210

[19] M. Jain, A. Mendhekar, and D. Van Gucht. A uniform
data model for relational data and meta-data query
processing. In Advances in Data Management ’95,
pages 146–165. Tata McGraw-Hill, 1995.

[20] D. Leinders, M. Marx, J. Tyszkiewicz, and J. Van den
Bussche. The semijoin algebra and the guarded
fragment. Journal of Logic, Language and
Information, 14:331–343, 2005.

[21] D. Leinders and J. Van den Bussche. On the
complexity of division and set joins in the relational
algebra. Journal of Computer and System Sciences,
73(4):538–549, 2007.

[22] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. In The Semantic Web:
Proceedings ISWC, volume 4273 of Lecture Notes in
Computer Science, pages 30–43. Springer, 2006.

[23] K.A. Ross and A. Janevski. Querying faceted
databases. In Proceedings 2nd International Workshop
on Semantic Web and Databases, volume 3372 of
Lecture Notes in Computer Science, pages 199–218.
Springer, 2005.

[24] J.D. Ullman. Principles of Database and
Knowledge-Base Systems, volume II. Computer
Science Press, 1989.

211

