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ABSTRACT
We report on a recently introduced family of expressive ex-
tensions of Datalog, called Datalog±, which is a new frame-
work for representing ontological axioms in form of integrity
constraints, and for query answering under such constraints.
Datalog± is derived from Datalog by allowing existentially
quantified variables in rule heads, and by enforcing suit-
able properties in rule bodies, to ensure decidable and effi-
cient query answering. We first present different languages
in the Datalog± family, providing tight complexity bounds
for all cases but one (where we have a low complexity ac0

upper bound). We then show that such languages are gen-
eral enough to capture the most common tractable ontol-
ogy languages. In particular, we show that the DL-Lite
family of description logics and F-Logic Lite are express-
ible in Datalog±. We finally show how stratified negation
can be added to Datalog± while keeping ontology querying
tractable in the data complexity. Datalog± is a natural and
very general framework that can be successfully employed
in different contexts such as data integration and exchange.
This survey mainly summarizes two recent papers.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems—
Computations on discrete structures; H.2.4 [Database
Management]: Systems—Relational databases, rule-based
databases, query processing
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Algorithms, Theory, Databases
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1. INTRODUCTION
In this paper, we survey the results of two recent works [9,

10] on a family of expressive extensions of Datalog, called
Datalog±, towards query answering over ontologies. Rules
in Datalog± are rules in Datalog that additionally admit
existentially quantified variables in the head, but on which
restrictions are enforced on the body to guarantee desir-
able decidability and tractability properties.

Ontologies are fundamental to the development of the Se-
mantic Web [7]. Ontologies are also gaining importance in
databases, since they provide the necessary expressive power
for tasks such as data modeling and data integration [31].
Among formalisms for representing ontologies, description
logics (DLs) have played a prominent role in the last decade,
especially in the Semantic Web. Currently, much research on
DLs is directed towards scalable and efficient query answer-
ing over ontologies. In particular, the DLs of the DL-Lite
family [13, 35] are the most common DLs in the Semantic
Web and databases that allow for tractable query answering.

Example 1. A DL knowledge base consists of an ABox
and a TBox. The knowledge that John is a manager can
be expressed by the axiom Manager(john) in the ABox,
while the knowledge that (i) every manager is an employee,
(ii) every manager supervises someone, (iii) employees are
not employers, and (iv) every employee is supervised by
at most one manager, can be expressed by the axioms
Manager ⊑ Employee, Manager ⊑ ∃Supervises, Employee ⊑
¬Employer, and (functSupervises−) in the TBox, respec-
tively. A Boolean conjunctive query (BCQ) asking whether
John supervises someone is ∃XSupervises(john, X).

The ABox and the TBox of DL knowledge bases are
closely related to extensional databases and intensional sets
of rules in Datalog [37, 15]. Datalog is a language with sim-
ple syntax and natural semantics, which make it easily un-
∗Alternative address: Institut für Informationssysteme,
Technische Universität Wien, Favoritenstraße 9-11, 1040
Wien, Austria; email: lukasiewicz@kr.tuwien.ac.at.
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Table 1: Summary of complexity results: variable set of TGDs.

BCQ type Linear TGDs Guarded TGDs Weakly Guarded TGDs

general pspace-complete 2exptime-complete 2exptime-complete
bounded width, fixed, and atomic pspace-complete 2exptime-complete 2exptime-complete

Table 2: Summary of complexity results: fixed set of TGDs.

BCQ type Linear TGDs Guarded TGDs Weakly Guarded TGDs

general np-complete np-complete exptime-complete
bounded width, fixed, and atomic in ac0 ptime-complete exptime-complete

derstandable and usable. It has also been successful in many
applications such as Web data extraction [25]. Furthermore,
there are several optimization techniques for Datalog, which
improve its applicability. However, not all ontological state-
ments can be expressed in plain Datalog, as discussed in [34]
and illustrated below.

Example 2. The knowledge that every manager is an em-
ployee can be expressed in Datalog as

manager(X) → employee(X).

However, we cannot express in Datalog that every manager
supervises someone, which requires an existential quantifi-
cation in the head of Datalog rules:

manager(X) → ∃Y supervises(X, Y ).

Such assertions are special tuple-generating dependencies
(TGDs), which generalize inclusion dependencies (IDs).
Similarly, we cannot express in plain Datalog that employees
are not employers, which requires a rule of the form:

employee(X), employer(X) → ⊥.

We also cannot express that every employee is supervised by
at most one manager, which requires a rule of the form:

supervises(X, Y ), supervises(X ′, Y ) → X = X ′.

Such assertions are special equality-generating dependencies
(EGDs), which generalize functional dependencies (FDs).

As the above example shows, an extension of Datalog by
TGDs, negative constraints, and EGDs allows to express
forms of ontological knowledge beyond plain Datalog. How-
ever, the interaction among TGDs and EGDs leads to un-
decidability of query answering [18, 33, 29, 16, 12]. Inter-
esting subclasses of TGDs and EGDs have been studied in
the literature, e.g., in the fundamental work [29]. All these
works make use of a technique called chase [16, 6, 29], which
amounts to “repairing” violations of TGDs and EGDs start-
ing from a database, until a fixpoint is reached. The chase
can be seen as a tableaux technique. One of the main dif-
ficulties behind all these approaches is the fact that such
a fixpoint may be infinite. Several works in the literature
consider classes of TGDs for which the chase terminates and
therefore generates a finite instance; for example, the weakly
acyclic TGDs, first introduced in [22] and extensively stud-
ied in [23].

The Datalog± family is an expressive extension of Datalog
by integrity constraints as described in the above example
towards query answering over ontologies. Datalog± deals

with certain TGDs as rules (as well as negative constraints
and EGDs) for which the chase does not terminate, but for
which query answering is nonetheless decidable in general
and tractable in many cases in the data complexity.

Datalog± is divided into the sublanguages of guarded, lin-
ear, and weakly guarded Datalog±, which have guarded, lin-
ear, and weakly guarded TGDs as rules, respectively:

• Guarded TGDs are characterized by the presence of a
guard, i.e., an atom in the body that contains all the
(universally quantified) variables in the rule body.

• Weakly guarded TGDs have instead a weak guard, i.e.,
an atom in the body that contains all the (universally
quantified) variables in the body that appear in the so-
called affected positions, where a position is identified
by the argument of an atom; informally, the affected
positions are the only ones where newly invented values
can appear during the chase process.

• Linear TGDs have exactly one atom in the body and
one in the head; they are the class which is closest
to inclusion dependencies among the three, and they
correspond to inclusion dependencies with repetition of
columns; however, we will show that they (along with
negative constraints and certain EGDs) are enough to
express the languages of the DL-Lite family.

We characterize the complexity of query answering for all
three sublanguages of Datalog±. The results are compactly
summarized in Tables 1 and 2. In detail, query answer-
ing is complete for pspace and 2exptime in the linear and
the guarded /weakly guarded case, respectively, for variable
sets of TGDs. It is complete for np and exptime in the
linear / guarded and the weakly guarded case, respectively,
for fixed sets of TGDs. Finally, query answering is in ac0

(which is the complexity of evaluating fixed first-order for-
mulas over a database or finite structure), ptime-complete,
and exptime-complete when the query is of bounded width,
fixed, or atomic in the linear, the guarded, and the weakly
guarded case, respectively, for fixed sets of TGDs.

We then further enrich Datalog± with additional features,
which serve to represent ontology languages. In particular,
we add negative constraints, which are Horn clauses with a
(not necessarily guarded) conjunction of atoms in their body
and the truth constant false, denoted ⊥, in the head. Neg-
ative constraints are easy to handle, and we actually show
that their introduction does not increase the complexity of
query answering in Datalog±. As a second extension, we
add non-conflicting keys, which are special EGDs that do
not interact with TGDs, and thus also do not increase the
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complexity of query answering in Datalog±. We deal only
with keys, since this suffices to capture the most common
tractable ontology languages in the literature. The class of
non-conflicting keys is a generalization of the one in [12].

We next show that the Datalog± family is able to ex-
press the most common tractable ontology languages. More
concretely, linear Datalog± with negative constraints and
non-conflicting keys, called Datalog±0 , can be used for query
answering in DL-LiteA in a natural and unified way. Here,
Datalog±

0 is strictly more expressive than DL-LiteA. Fur-
thermore, weakly guarded Datalog± with a single non-
conflicting key can be used for query answering in F-Logic
Lite ontologies. Other DLs of the DL-Lite family [13] (such
as DL-LiteF and DL-LiteR) can be similarly translated to
Datalog±

0 . Since DL-LiteR is able to fully capture (the DL
fragment of) RDF Schema [8], Datalog±

0 is also able to fully
capture (the DL fragment of) RDF Schema. Furthermore,
note that the F-Logic formalism [30] is able to offer the meta-
querying facility, i.e., the possibility of querying the schema
as well as the data, in a homogeneous fashion. This is con-
sidered important for service discovery and in information
integration in the Semantic Web, for example; however, the
facilities for meta-querying have been usually awkward to
the user, for example, the SQL system catalogue, or the
Java Reflection API. In F-Logic Lite [11], rules are indeed
TGDs, and our goal is to generalize the F-Logic Lite frame-
work, and to have the results of [11] as a special case of
Datalog±.

We finally describe an extension of Datalog± with strat-
ified negation. We provide a canonical model and a per-
fect model semantics, and we show that they coincide. We
thus provide a natural stratified negation for query answer-
ing over ontologies, which has been an open problem to date,
since it is in general based on several strata of infinite mod-
els. By the results of Section 7, this also provides a natural
stratified negation for the DL-Lite family.

2. PRELIMINARIES
In this section, we briefly recall some basics on databases,

queries, (tuple- and equality-generating) dependencies, and
the chase. We also provide some notions about the treewidth
of a graph and of a database instance.

2.1 Databases and Queries
We assume (i) an infinite universe of data constants ∆

(which constitute the “normal” domain of a database), (ii)
an infinite set of (labeled) nulls ∆N (used as “fresh” Skolem
terms, which are placeholders for unknown values, and can
thus be seen as variables), and (iii) an infinite set of variables
X (used in dependencies and queries). Different constants
represent different values (unique name assumption), while
different nulls may represent the same value. We assume a
lexicographic order on ∆ ∪ ∆N , with every symbol in ∆N

following all symbols in ∆. We denote by X sequences of
variables X1, . . . , Xk with k > 0.

A relational schema R is a finite set of relation names (or
predicates). A position p[i] identifies the i-th argument of a
predicate p. A term t is a constant, null, or variable. An
atomic formula (or atom) a has the form p(t1, . . . , tn), where
p is an n-ary predicate, and t1, . . . , tn are terms. We denote
by dom(a), pred(a), and vars(a) the sets of all arguments,
the predicate symbol, and the set of all variables of an atom
a, respectively. This notation naturally extends to sets of

atoms. Conjunctions of atoms are often identified with the
sets of their atoms.

A database (instance) D for R is a (possibly infinite)
set of atoms with predicates from R and arguments from
∆ ∪ ∆N . Such D is ground iff it contains only atoms with
arguments from ∆. A conjunctive query (CQ) over R has the
form q(X)= ∃YΦ(X,Y), where Φ(X,Y) is a conjunction of
atoms having as arguments variables X and Y and constants
(but no nulls). A Boolean CQ (BCQ) over R is a CQ having
head predicate q of arity 0 (i.e., no variables in X). BCQs
are often identified with the sets of their atoms. Answers
to CQs and BCQs are defined via homomorphisms, which
are mappings µ : ∆∪∆N ∪X →∆∪∆N ∪X such that (i)
c∈∆ implies µ(c)= c, (ii) c∈∆N implies µ(c) ∈ ∆∪∆N ,
and (iii) µ is naturally extended to atoms, sets of atoms,
and conjunctions of atoms. The set of all answers to a CQ
Q(X) = ∃YΦ(X,Y) over a database D, denoted Q(D), is
the set of all tuples t over ∆ for which there exists a homo-
morphism µ : X∪Y → ∆∪∆N such that µ(Φ(X,Y))⊆D
and µ(X)= t. The answer to a BCQ Q over D is Yes, de-
noted D |= Q, iff Q(D) 6= ∅.

2.2 Dependencies
Given a relational schema R, a tuple-generating depen-

dency (or TGD) σ is a first-order formula of the form
∀X∀Y Φ(X,Y) → ∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X,
Z) are conjunctions of atoms over R, called the body and the
head of σ, respectively. Such σ is satisfied in a database D
for R iff, whenever there exists a homomorphism h such that
h(Φ(X,Y))⊆D, there exists an extension h′ of h such that
h′(Ψ(X,Y))⊆D.

The notion of query answering under TGDs is defined as
follows. For a set of TGDs Σ on R, and a database D for
R, the set of models of D given Σ, denoted mods(Σ, D), is
the set of all databases B such that B |= D ∪ Σ. The set
of answers to a CQ Q on D given Σ, denoted ans(Q, Σ, D),
is the set of all tuples a such that a ∈ Q(B) for all B ∈
mods(Σ, D). The answer to a BCQ Q over D given Σ is
Yes, denoted D ∪ Σ |= Q, iff ans(Q, Σ, D) 6= ∅.

We recall that the two problems of CQ and BCQ evalua-
tion under TGDs are logspace-equivalent [17, 29, 23, 21].
Moreover, it is easy to see that the query output tuple
(QOT) problem (as a decision version of CQ evaluation) and
BCQ evaluation are AC0-reducible to each other. Hence-
forth, we thus focus only on the BCQ evaluation problem.
All complexity results carry over to the other problems. We
also recall that query answering under TGDs is equivalent
to query answering under TGDs with only singleton atoms
in their heads [9]. This is shown by means of a transforma-
tion from general TGDs to TGDs with single-atom heads [9].
Moreover, the transformation preserves the properties of the
classes of TGDs that we are going to consider in the rest
of the paper (weakly-guarded, guarded, and linear TGDs).
Therefore, all our results carry over to TGDs with multiple
atoms in the head. In the sequel, we thus always assume
w.l.o.g. that every TGD has a singleton atom in its head.

An equality-generating dependency (or EGD) σ is a first-
order formula of the form ∀XΦ(X)→Xi = Xj , where Φ(X),
called the body of σ, is a conjunction of atoms, and Xi and Xj

are variables from X. We call Xi = Xj the head of σ. Such σ
is satisfied in a database D for R iff, whenever there exists
a homomorphism h such that h(Φ(X,Y))⊆D, it holds that
h(Xi)= h(Xj).
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The body (resp., head) of a TGD or EGD σ is denoted
by body(σ) (resp., head(σ)). We usually omit the universal
quantifiers in TGDs and EGDs, and all sets of TGDs and
EGDs are finite here.

2.3 The Chase
The chase was introduced to enable checking implication

of dependencies [32], and later also for checking query con-
tainment [29]. It is a procedure for repairing a database
relative to a set of dependencies, so that the result of the
chase satisfies the dependencies. By “chase”, we refer both
to the chase procedure and to its output. The chase works
on a database through so-called TGD and EGD chase rules.
The TGD chase rule comes in two flavors: oblivious and re-
stricted, where the restricted one repairs TGDs only when
they are not satisfied. We focus on the oblivious one, since
it makes proofs technically simpler. The (oblivious) TGD
chase rule defined below is the building block of the chase.

TGD Chase Rule. Consider a database D for a re-
lational schema R, and a TGD σ on R of the form
Φ(X,Y)→∃ZΨ(X,Z). Then, σ is applicable to D if there
exists a homomorphism h such that h(Φ(X,Y))⊆D. Let σ
be applicable, and h1 be a homomorphism that extends h as
follows: for each Xi ∈ X, h1(Xi) = h(Xi); for each Zj ∈ Z,
h1(Zj) = zj , where zj is a “fresh”null, i.e., zj ∈ ∆N , zj does
not occur in D, and zj lexicographically follows all other
nulls already introduced. The application of σ adds to D
the atom h1(Ψ(X,Z)) if not already in D.

The notion of the (derivation) level of an atom in a TGD
chase is defined as follows. Let D be the initial database
from which the chase is constructed. Then: (1) The atoms
in D have level 0. (2) Let a TGD Φ(X,Y) → ∃ZΨ(X,Z)
be applied at some point in the construction of the chase,
and let h and h1 be as in the TGD chase rule. If the atom
with highest level among those in h1(Φ(X,Y)) has level k,
then the added atom h1(Ψ(X,Z)) has level k + 1.

Given a set of TGDs Σ and a database D, the chase al-
gorithm for Σ and D consists of an exhaustive application
of the TGD chase rule in a breadth-first (level-saturating)
fashion, which leads as result to a (possibly infinite) chase
for Σ and D. Formally, the chase of D relative to Σ, denoted
chase(Σ, D), is the database built by an iterative applica-
tion of the TGD chase rule as follows: let I1, . . . , Ik be all
possible images of bodies of TGDs in Σ relative to some ho-
momorphism, and ai be the atom with highest level in Ii;
let M be such that level(aM ) = min1≤i≤k{level(ai)}: among
the possible applications of TGDs, choose the lexicograph-
ically first among those that utilize a homomorphism from
the body of a TGD to IM . For brevity, the application of the
chase rule with a TGD σ on a database D is called applica-
tion of σ on D. The chase of level up to k > 0 for Σ and D,
denoted chasek(Σ, D), is the set of all atoms in chase(Σ, D)
of level at most k.

Example 3. Consider the two TGDs

σ1 : r(X, Y ), r(Z, X) → ∃W s(W, Z, X)
σ2 : r(X, Y ), s(Z, X, Y ) → ∃W r(W, X)

and the database D consisting of the two atoms r(a, b) and
s(c, a, b). Then, in the construction of chase({σ1, σ2}, D),
we apply first the TGD σ2 on r(a, b) and s(c, a, b), adding
r(z1, a) (where z1 is a new null), and we apply then σ1 on
r(a, b) and r(z1, a), adding s(z2, z1, a) (where z2 is a new
null).

The (possibly infinite) chase relative to a set of TGDs is a
universal model, i.e., for every B ∈mods(Σ, D), there exists
a homomorphism that maps chase(Σ, D) onto B [21, 9].

EGD Chase Rule. Consider a database D for a re-
lational schema R, and an EGD σ on R of the form
Φ(X)→Xi = Xj . Such an EGD σ is applicable to D iff
there exists a homomorphism η : Φ(X)→D such that η(Xi)
and η(Xj) are different and not both constants. If η(Xi)
and η(Xj) are different constants, then there is a hard vi-
olation of σ, and the chase fails. Otherwise, the result of
the application of σ to D is the database h(D) obtained
from D by replacing every occurrence of a non-constant el-
ement e∈{η(Xi), η(Xj)} in D by the other element e′ (if e
and e′ are both nulls, then e precedes e′ in the lexicographic
order).

The chase of a database D, in the presence of two sets
ΣT and ΣE of TGDs and EGDs, respectively, denoted
chase(ΣT ∪ΣE , D), is computed by iteratively applying (1)
a single TGD once, according to the order specified above,
and (2) the EGDs, as long as they are applicable (i.e., until
a fixpoint is reached).

2.4 Treewidth
We now come to the notions of treewidth, tree decomposi-

tion, and bounded-treewidth model property (see, e.g., [24]).
Consider a graph G = (V, E); a tree decomposition of G

consists of a tree T = (N, A) and a labeling function λ :
N → 2V with the following properties: (i) for every v ∈ V ,
there exists n ∈ N such that v ∈ λ(N); (ii) for every arc
(v1, v2) ∈ E, there exists n ∈ N such that {v1, v2} ⊆ λ(n);
(ii) for every v ∈ V , the set {n ∈ N | v ∈ λ(n)} induces a
(connected) subtree in T .

The Gaifman graph of a database D (or of any set of
atoms) is a nondirected graph defined as follows: (1) the
nodes are the symbols in dom(D) (in general, constants in
∆ and nulls in ∆N ); (ii) there exists an arc (c1, c2) between
c1 and c2 if there exist some atom in D that has both c1 and
c2 as arguments.

The width of a tree decomposition (T, λ), with T =
(N, A), of graph G = (V, E) is the integer maxn∈N |λ(n)|.
The treewidth of a graph G = (V, E), denoted tw(G), is
the minimum width among all tree decompositions. Given
a relational instance D (or any set of atoms), its treewidth
tw(D) is defined as the treewidth of its Gaifman graph.

A class C of formulas has the bounded treewidth model
property if for each φ ∈ C, whenever φ is satisfiable, then
it is possible to compute a number f(φ) such that φ has a
model of treewidth at most f(φ).

3. GUARDED DATALOG ±±±

Query answering under general TGDs is undecidable [5],
even when the schema and the TGDs are fixed [9]. In
this section, we discuss guarded TGDs, also called guarded

Datalog±, as a special class of TGDs relative to which query
answering is decidable in the general case and even tractable
in the data complexity. Queries relative to such TGDs can
be evaluated on a finite part of the chase, which is of con-
stant size when the query and the TGDs are fixed.

A TGD σ is guarded iff it contains an atom in its body
that contains all universally quantified variables of σ. The
leftmost such atom is the guard atom (or guard) of σ. The
non-guard atoms in the body of σ are the side atoms of σ.
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Example 4. The TGD r(X, Y ), s(Y, X, Z)→∃Ws(Z, X,
W ) is guarded (via the guard s(Y, X, Z)), while the TGD
r(X, Y ), r(Y, Z) → r(X, Z) is not guarded.

Note that sets of guarded TGDs (with single-atom heads)
are theories in the guarded fragment of first-order logic [2].
Guardedness is a truly fundamental class ensuring decid-
ability. As the following theorem shows, adding a single un-
guarded Datalog rule to a guarded Datalog± program may
destroy decidability. The proof of this theorem in [9] hinges
on the fact that with appropriate input facts D, using a
fixed set of TGDs comprising guarded TGDs and a single
unguarded TGD, it is possible to force an infinite grid to
appear in chase(Σu, D). By a further set of guarded rules,
one can then easily simulate the behavior of a deterministic
Turing machine (TM) M with an empty input tape. This
is done by using the infinite grid, where the i-th horizontal
line of the grid represents the tape content at instant i. For
details see [9].

Theorem 1 [9] There is a fixed set of TGDs Σu such that
all TGDs but one of Σu are guarded, such that for in-
stances D for a schema R and atomic queries Q, deter-
mining whether D ∪ Σu |= Q, or, equivalently, whether
Q ∈ chase(Σu, D), is undecidable.

In the following two subsections, we report on the com-
bined complexity and on the data complexity of query an-
swering with guarded Datalog±, respectively.

3.1 Combined Complexity
The next theorem establishes combined complexity results

for conjunctive query evaluation under guarded Datalog±.

Theorem 2 [9] Let Σ be a guarded Datalog± program (i.e.,
a set of guarded TGDs) over a schema R, and let D be an
instance for R. Let, moreover, w denote the maximum arity
of any predicate appearing in R, and let |R| denote the total
number of predicate symbols. Then:

(1) If Q is an atomic query, then checking whether
D ∪ Σ |= Q is ptime-complete in case both w and
|R| are bounded, and remains ptime-complete even in
case Σ is fixed∗. This problem is exptime-complete
if w is bounded and 2exptime-complete in general. It
remains 2exptime-complete even when |R| is bounded.

(2) If Q is a general conjunctive query, checking
whether D∪Σ |= Q is np-complete in case both w and
|R| are bounded, and thus also in case of a fixed set
Σ. Checking whether D∪Σ |= Q is exptime-complete
if w is bounded and 2exptime-complete in general. It
remains 2exptime-complete even when |R| is bounded.

(3) Query containment under guarded TGDs is np-
complete if both w and |R| are bounded, and even in
case the set of guarded TGDs Σ is fixed.

(4) Query containment under guarded TGDs is
exptime-complete if w is bounded and 2exptime-
complete in general. It remains 2exptime-complete
even when |R| is bounded.

For unguarded Datalog±, and, in particular, for plain Dat-
alog, even when we fix both, the width w and the number
∗This is just a mild extension of the data complexity case
presented in Section 3.2, where also Q is fixed.

of predicates |R| that are allowed to occur in a program,
we can still formulate an infinity of mutually non-equivalent
programs. In contrast to this, it is not hard to see that in
case both w and |R| are bounded, there are – up to isomor-
phism – only constantly many guarded Datalog± programs.
It is thus not very astonishing that conjunctive query an-
swering on the basis of such drastically limited programs is
not harder than the standard task of evaluating a query over
an extensional database. The exptime and 2exptime up-
per bounds of Theorem 2 can be established via alternating
computations in a similar way as those for the more general
weakly guarded Datalog± programs, which will be dealt with
in Section 5. The exptime-hardness results of the above the-
orem are achieved via simulations of an alternating pspace

Turing machine, and an alternating expspace Turing ma-
chine, respectively. Simulating an alternating pspace Tur-
ing machine is not difficult. The (polynomially many) rules
that simulate such a machine can contain explicit symbols
for each of the polynomially many worktape cell positions.
Simulating an expspace Turing machine via guarded rules
is much harder. Here the problem is that to this aim we
can can no longer explicitly address each worktape cell i, or
each pair of cells i, j, given that there is now an exponen-
tial number of worktape cells. The idea is thus to encode
tape cell indexes as vectors of variables (v1, . . . , vk) where
the value of each vi ranges over 0 and 1. We can then define
a successor relation succ(v1, . . . , vk, w1, . . . , wk) with a poly-
nomial number of Datalog rules. However, there is a further
difficulty. We now have two different types of variables, the
vi, wj variables representing the bits in the above-described
bit vectors, and other variables say, x, y, z, for denoting con-
figurations. A major difficulty is to ensure that we do not
violate guardedness, when using both types of variables in a
rule body. In our proof in the full version of [10], we employ
sophisticated tricks in order to achieve this.

The next result, which tightens parts of Theorem 2, shows
that the above exptime and 2exptime-completeness results
hold even in case of a fixed input database.

Theorem 3 [9] Let Σ be a guarded Datalog± program over
a schema R. Let w denote the maximum arity of any pred-
icate appearing in R, and let |R| denote the total number
of predicate symbols. Then, for fixed databases D and for
both fixed atomic and variable queries Q, checking whether
chase(Σ, D) |= Q is exptime-complete if w is bounded,
and 2exptime-complete in general. This problem remains
2exptime-complete even when |R| is bounded.

From the above 2exptime-completeness result, it follows
that the satisfiability problem for very simple guarded the-
ories is already at the same complexity level as decidability
for the entire guarded fragment GFO of first order logic, for
which Grädel [27] has shown 2exptime-completeness. In
fact, atomic queries and their (universally quantified) nega-
tion are guarded. If Σ is a guarded Datalog± program, i.e.,
a set of guarded TGDs with single right hand sides, and
Q an (existentially quantified) atomic Boolean conjunctive
query, then D ∧ Σ ∧ ¬Q is a guarded FO theory of a par-
ticularly simple form. It is clear that chase(Σ, D) |= Q iff
D ∪ Σ |= Q iff D ∧ Σ ∧ ¬Q is satisfiable. It is quite as-
tonishing that the satisfiability of theories in such simple
disjunction-free subfragments of GFO is as hard to decide
as deciding whether an arbitrary GFO theory is satisfiable.
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On the other hand, it is less surprising that deciding the
satisfiability of guarded Π2-theories, i.e., guarded universal-
existential first-order theories, is 2exptime hard. In fact,
Grädel [27] has shown a Π2 normal form for satisfiability
in the guarded fragment. Note, however, that this normal
form is not disjunction-free.

3.2 Data Complexity
We next focus on the data complexity of evaluating BCQs

relative to guarded TGDs, which turns out to be polynomial
in general and linear in the case of atomic queries. In the
sequel, let R be a relational schema, D be a database for R,
and Σ be a set of guarded TGDs on R. We first give some
preliminary definitions.

The chase graph for Σ and D is the directed graph consist-
ing of chase(Σ, D) as the set of nodes and having an arrow
from a to b iff b is obtained from a and possibly other atoms
by a one-step application of a TGD σ ∈Σ. Here, we mark
a as guard iff a is the guard of σ. The guarded chase forest
for Σ and D is the restriction of the chase graph for Σ and
D to all atoms marked as guards and their children. The
subtree of an atom a in this forest, denoted subtree(a), is
the restriction of the forest to all successors of a. The type
of an atom a, denoted type(a), is the set of all atoms b in
chase(Σ, D) that have only constants and nulls from a as
arguments. Informally, the type of a is the set of all atoms
that determine the subtree of a in the guarded chase forest.

Example 5. Consider the two TGDs

σ1 : r1(X, Y ), r2(Y ) → ∃Z r1(Z, X),
σ2 : r1(X, Y ) → r2(X),

applied on an instance D = {r1(a, b), r2(b)}. The first part
of the (infinite) guarded chase forest for {σ1, σ2} and D is
shown in Fig. 1, where every arrow is labeled with the ap-
plied TGD.

r2(z1)r1(z2, z1)

r2(z2). . .

r1(z1, a) r2(a)

r1(a, b) r2(b)

σ1

σ1

σ1 σ2

σ2

σ2

Figure 1: Guarded chase forest for Example 5.

Given a finite set S ⊆∆∪∆N , two sets of atoms A1 and
A2 are S-isomorphic (or isomorphic if S = ∅) iff there exists
a bijection β : A1 ∪ dom(A1)→A2 ∪ dom(A2) such that (i)
β and β−1 are homomorphisms, and (ii) β(c) = c = β−1(c)
for all c ∈ S. Two atoms a1 and a2 are S-isomorphic (or
isomorphic if S = ∅) iff {a1} and {a2} are S-isomorphic.
The notion of S-isomorphism (or isomorphism if S = ∅)
is naturally extended to more complex structures, such as
pairs of two subtrees (V1, E1) and (V2, E2) of the guarded
chase forest, and two pairs (b1, S1) and (b2, S2), where b1

and b2 are atoms, and S1 and S2 are sets of atoms.

The following key lemma shows that for each set of
guarded TGDs Σ, there exists a constant k such that for ev-
ery database D and every atom a generated at some depth
level d while chasing D with Σ, such that whenever the same
chase generates an atom b whose arguments are among those
of a, then b must be generated at depth at most d+k. Here,
the (guarded) depth of an atom a in the guarded chase for-
est for Σ and D, denoted depth(a), is the length of the path
from D to a in the forest. Note that this is generally different
from the derivation level. The main idea behind the proof
is that the subtree of an atom a depends only on a and the
type of a, and the number of non-dom(c)-isomorphic pairs
consisting of an atom and its type is bounded by a constant,
depending only on R.

Lemma 4 [10] Let R be a relational schema, D be a
database for R, and Σ be a set of guarded TGDs on R. Let a
be a guard in the chase graph for Σ and D, and b∈ type(a).
Then, depth(b) 6 depth(a)+k, where k depends only on R.

The next lemma shows that query evaluation can be done
on only a finite, initial portion of the guarded chase for-
est, whose size is determined by the query Q and R only.
Here, the guarded chase of level up to k > 0 for Σ and
D, denoted g-chasek(Σ, D), is the set of all atoms in the
forest of depth at most k. The result is proved similarly
to Lemma 4, showing that any path of a certain minimal
length (depending on Q and R) from D to (the image of)
a query atom in the guarded chase forest has two atoms
with dom(c)-isomorphic subtrees (since two atoms and their
types are dom(c)-isomorphic), and thus Q can also be eval-
uated “closer” to D.

Lemma 5 [10] Let R be a relational schema, D be a
database for R, Σ be a set of guarded TGDs on R, and
Q be a BCQ over R. If there is a homomorphism µ that
maps Q into chase(Σ, D), then there is a homomorphism λ
that maps Q into g-chasek(Σ, D), where k depends only on
Q and R.

The above lemma says that (homomorphic images of) the
query atoms are contained in a finite, initial portion of the
guarded chase forest, whose size is determined only by the
query and R. But it does not yet assure that also the whole
derivation of the query atoms are contained in such a portion
of the guarded chase forest. This slightly stronger property
is captured by the following definition.

Definition 1. We say Σ has the bounded guard-depth prop-
erty (BGDP) iff, for each database D for R and for each
BCQ Q, whenever there is a homomorphism µ that maps Q
into chase(Σ, D), then there is a homomorphism λ of this
kind such that all ancestors of λ(Q) in the chase graph for Σ
and D are contained in g-chaseγg (Σ, D), where γg depends
only on Q and R.

In fact, the following result shows that guarded TGDs
have also this stronger bounded guard-depth property. The
proof of this result is based on Lemmas 4 and 5, where the
former now also assures that all side atoms that are neces-
sary in the derivation of the query atoms are contained in a
finite, initial portion of the guarded chase forest, whose size
is determined only by the query and R (which is slightly
larger than the one for the query atoms only).

19



Theorem 6 [10] Guarded TGDs enjoy the BGDP.

By this result, deciding BCQs in the guarded case is in P
in the data complexity (where all but the database is fixed)
[9]. It is also hard for P, as can be proved by reduction from
propositional logic programming [10]. This is expressed by
the following theorem.

Theorem 7 [9, 10] Let R be a relational schema, D be a
database for R, Σ be a set of guarded TGDs on R, and Q be
a BCQ over R. Then, deciding D∪Σ |= Q is P-complete in
the data complexity.

Deciding atomic BCQs in the guarded case can even be
done in linear time in the data complexity, as the next result
shows, which can be proved by reduction to propositional
logic programming.

Theorem 8 [10] Let R be a relational schema, D be a data-
base for R, Σ be a finite set of guarded TGDs on R, and Q be
a Boolean atomic query over R. Then, deciding D ∪Σ |= Q
can be done in linear time in the data complexity.

4. LINEAR DATALOG ±±±

Linear Datalog± is a variant of guarded Datalog±, where
query answering is even FO-rewritable in the data complex-
ity. Nonetheless, linear Datalog± is still expressive enough
for representing ontologies, as we will show in Section 7.
A TGD is linear iff it contains only a singleton body atom.
Notice that linear Datalog± generalizes the well-known class
of inclusion dependencies.

Note that linear TGDs are more expressive than inclusion
dependencies. For example, the following linear TGD, not
expressible with inclusion dependencies, asserts that every-
one supervising him/herself is a manager:

supervises(X, X) → manager(X).

4.1 Combined Complexity
Query answering with linear Datalog± is pspace-complete

when the Datalog± program is not fixed, which can be seen
by results in [29, 38, 14, 26].

Theorem 9 [29, 38, 14, 26] Let R be a relational schema,
Σ be a set of linear TGDs over R, D be a database for R,
and Q be a BCQ over R. Then, deciding D ∪ Σ |= Q is
pspace-complete. It remains pspace-complete when Q is
fixed.

4.2 Data Complexity
We start from some preliminary definitions. We say that

a class C of TGDs is first-order rewritable (or FO-rewritable)
iff for every set of TGDs Σ in C, and for every BCQ Q, there
exists a first-order query QΣ such that, for every database
instance D, it holds D∪Σ |= Q iff D |= QΣ. Since answering
first-order queries is in the class ac0 in the data complex-
ity [39], it immediately follows that for FO-rewritable TGDs,
BCQ answering is in ac0 in the data complexity.

We next define the bounded derivation-depth property,
which is strictly stronger than the bounded guard-depth
property. Informally, this property says that (homomor-
phic images of) the query atoms along with their deriva-
tions are contained in a finite, initial portion of the chase

graph (rather than the guarded chase forest), whose size is
determined only by the query and R.

Definition 2. A set of TGDs Σ has the bounded deriva-
tion-depth property (BDDP) iff, for every database D for R
and for every BCQ Q over R, whenever D ∪ Σ |= Q, then
chaseγd(Σ, D) |= Q, where γd depends only on Q and R.

Clearly, in the case of linear TGDs, for every a∈ chase(Σ,
D), the subtree of a is now determined only by a itself, while
in the case of guarded TGDs it depends on type(a). There-
fore, for a single atom, its depth coincides with the number
of applications of the TGD chase rule that are necessary to
generate it. That is, the guarded chase forest coincides with
the chase graph. By this observation, as an immediate con-
sequence of Theorem 6, we obtain that linear TGDs have
the bounded derivation-depth property.

Corollary 10 [10] Linear TGDs enjoy the BDDP.

The next result shows that BCQs Q relative to TGDs
Σ with the bounded derivation-depth property are FO-
rewritable. The main ideas behind its proof are infor-
mally summarized as follows. Since the derivation depth
and the number of body atoms in TGDs in Σ is bounded,
the number of all database ancestors of query atoms is also
bounded. Thus, the number of all non-isomorphic sets of
potential database ancestors with variables as arguments is
also bounded. Take the existentially quantified conjunction
of every such ancestor set where the query Q is answered
positively. Then, the FO-rewriting of Q is the disjunction
of all these formulas.

Theorem 11 [10] Let R be a relational schema, Σ be a set
of TGDs over R, D be a database for R, and Q be a BCQ
over R. If Σ enjoys the BDDP, then Q is FO-rewritable.

As an immediate consequence of Corollary 10 and Theo-
rem 11, BCQs are FO-rewritable in the linear case.

Corollary 12 [10] Let R be a relational schema, Σ be a set
of linear TGDs over R, D be a database for R, and Q be a
BCQ over R. Then, Q is FO-rewritable.

5. WEAKLY GUARDED DATALOG ±±±

In this section, we introduce weakly-guarded Datalog±, or
weakly guarded TGDs (WGTGDs), which is a generalization
of guarded Datalog±.

We first give the notion of affected position of a relational
schema, given a set of TGDs Σ, as follows. (a) If an exis-
tentially quantified variable appears in π in some TGD in
Σ, then π is affected wrt Σ. (b) If, for some σ ∈ Σ, the
same universally quantified variable appears both in π in
head(σ), and only in affected positions in body(σ), then π is
affected wrt Σ. It is not difficult to see that affected posi-
tions are the only ones where a null can appear, during the
chase construction.

Example 6. Consider the following set of TGDs:

σ1 : p1(X.Y ), p2(X, Y ) → ∃Z p2(Y, Z),
σ2 : p2(X.Y ), p2(W, X) → p1(Y, X).
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Notice that p2[2] is affected since Z in σ1 is existentially
quantified in σ1. Considering again σ1, the variable Y ap-
pears in p2[2] but also in p1[2], therefore it does not make
the position p2[1] affected. In σ2, X appears in the affected
position p2[2] but also in p2[1], which is not affected; there-
fore, it does not make the position p1[2] affected. On the
contrary, in σ2, Y appears in p2[2] and nowhere else, thus
causing p1[1] to be affected.

A TGD is weakly-guarded wrt a set Σ of TGDs if there is
an atom in its body that contains all the universally quanti-
fied variables that appear only in positions that are affected
wrt Σ.

Example 7. Consider the two TGDs in Example 6. In σ1

both atoms are guards (and obviously weak guards), since
they contain all universally quantified variables in the TGD.
In σ2, the only variable that appears only in affected posi-
tions is Y ; therefore, the first atom is a weak guard.

We now give some preliminary definitions, which serve for
the subsequent complexity analysis.

Let D be a possibly infinite relational instance for a
schema R, and let S be a set of symbols. An S-join for-
est of D is an undirected labeled forest T = (V, E, λ), with
labeling function λ : V → D such that: (i) D ⊆ λ(V ), and
(ii) T is S-connected, i.e., for each c ∈ dom(D) − S, the set
{v ∈ V | c occurs in λ(v)} induces a connected subtree in
T . We say that D is S-acyclic iff D has an S-join forest. This
generalizes the classical notion of hypergraph acyclicity [4]
of an instance (or, equivalently, of a query). In fact, an in-
stance or a query (seen as an instance) is hypergraph-acyclic
iff it is ∅-acyclic.

From the definitions of S-acyclicity, we straightforwardly
get that, if an instance D for a schema R is S-acyclic, then
tw(D) 6 |S| + w, where w is the maximum arity of any
predicate symbol in R.

Notice that chase(Σ, D) can be partitioned into two sets:
chase⊥(Σ, D), the set of the atoms in chase(Σ, D) that have
only values in dom(D) as arguments, and chase+(Σ, D), the
rest of the atoms. An important fact is that chase+(Σ, D)
is dom(D)-acyclic.

The proof of the following lemma is easily derived from
the above results.

Lemma 13 [9] If Σ is a set of WGTGDs and D an instance
of a schema R, then tw(chase(Σ, D)) ≤ |D| + w, where w
is the maximum arity of a predicate in R.

We now come to the decidability of query answering un-
der WGTGDs. From [19] (see also [24, 27]) we have that
if a set of first-order formulas has the bounded-treewidth
model property, then checking satisfiability for such formu-
las is decidable. Observing that both chase(Σ, D) ∧ Q and
chase(Σ, D)∧¬Q have a (possibly infinite) model of bounded
treewidth, when they are satisfiable, we get the following re-
sult.

Theorem 14 [9] Query answering under WGTGDs is de-
cidable.

This theorem establishes decidability of query answering
under WGTGDs; however, nothing is said about the com-
plexity. This will be the subject of the following sections.

5.1 Combined Complexity
We now tackle the complexity of query answering under

WGTGDs. We start from determining the lower bound.

Theorem 15 [9] Query answering under WGTGDs is
2exptime-hard. The same problem is exptime-hard in case
the arity of predicates in the schema is fixed. The same com-
plexity bound holds in the case of atomic queries and even
fixed queries.

Note that this result was already shown for the more re-
stricted class of guarded TGDs (see Theorems 2 and 3).

Now, we come to the upper bound for query answering un-
der WGTGDs. We start by defining notion of squid decom-
position, and prove a lemma called “Squid Lemma” which
will be a useful tool for proving the upper complexity bound
of the query answering problem.

We first define the notion of R-cover. Given a BCQ Q
on a schema R having n body atoms, an R-cover of Q is
a Boolean conjunctive query Q+ on R that contains in its
body all atoms of Q and that may, in addition, contain at
most n further R-atoms whose variables can be either from
vars(Q) or new.

For example, consider the schema R =
{r/2, s/3, t/3}, and let Q be the Boolean conjunc-
tive query r(X, Y ), r(Y, Z), t(Z, X, X). The fol-
lowing query Q+ is an R-cover of Q: Q+ =
{r(X, Y ), r(Y, Z), t(Z, X, X), t(Y, Z, Z), s(Z, U, U)}.

It is possible to show, given an instance (finite or infinite)
D for a schema R and a BCQ Q, that D |= Q iff there exists
an R-cover Q+ of Q such that D |= Q+. We refer the reader
to [9] for the proof of this result.

The following definition amends and replaces the one
in [9], which was correct for relational schemas with binary
predicates only; the present definition and the subsequent
results are general and can deal with predicates of arbitrary
arity.

Definition 3. Let Q be a BCQ over a schema R. A
squid decomposition δ = (Q+, h, H, T ) of Q consists of an
R-cover Q+ of Q, a mapping h : vars(Q+) → vars(Q+),
and a decomposition of h(Q+) into two sets H and T , with
T = h(Q+) − H, such that: (i) there exists Vδ ⊆ vars(Q+)
such that H = {a ∈ h(Q+) | vars(a) ⊆ Vδ}; (ii) T is Vδ-
acyclic. We refer to H as the head of δ, and to T as the
tentacles of δ. The set of all squid decompositions of Q is
referred to as squidd(Q).

One may imagine the set H in a squid decomposition as
the head of a squid, and the set T as a forest of tentacles
attached to that head. Note that a squid decomposition
δ = (Q+, h, H, T ) of Q does not not necessarily define a
query folding [17, 36] of Q+, because h does not need to be
an endomorphism of Q+: in other terms, we do not require
that h(Q+) ⊆ Q+. Of course, h is a homomorphism.

Example 8. Consider the following Boolean conjunctive
query (the schema is omitted for brevity):

Q = {r(X, Y ), r(X, Z), r(Y, Z),
r(Z, V1), r(V1, V2), r(V2, V3), r(V3, V4), r(V4, V5),
r(V1, V6), r(V6, V5), r(V5, V7), r(Z, U1), s(U1, U2, U3),
r(U3, U4), r(U3, U5), r(U4, U5)}
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Let Q+ be the Boolean query where we add the atom
s(U3, U4, U5) to the body. A possible squid decomposition
(Q+, h, H, T ) can be based on the homomorphism h, where
h(V6) = V2, h(V4) = h(V5) = h(V7) = V3, and where
h(ξ) = ξ for each other variable ξ. The result of the de-
composition with Vδ = {X, Y, Z} is the query shown in
Fig. 2, where its join graph is depicted, in order to bet-
ter distinguish the (cyclic) head from the (acyclic) tentacles.
Note that if we eliminated the additional atom s(U3, U4, U5),
the original atoms r(U3, U4), r(U3, U5), r(U4, U5) would form
an uncovered cycle, and could therefore not simultaneously
be part of the tentacles, as T would then no longer be Vδ-
acyclic.

tentacles

head

r(X, Z)

r(X, Y )

r(Y, Z)

r(Z, U1)

s(U1, U2, U3)

s(U3, U4, U5)

r(Z, V1)

r(V1, V2)

r(V2, V3)

r(V3, V3) r(U3, U4) r(U3, U5) r(U4, U5)

Figure 2: Squid decomposition from Example 8

The following lemma serves as a main tool in the com-
plexity analysis of the problem of query answering under
WGTGDs.

Lemma 16 (Squid Lemma) Let Σ be a set of WGTGDs
on a schema R, D a ground database instance for R, and
Q a conjunctive query, then chase(Σ, D) |= Q iff there is a
squid decomposition δ = (Q+, h, H, T ) ∈ squidd(Q), and
a homomorphism θ : dom(h(Q+)) → dom(chase(Σ, D))
such that: (i) θ(H) ⊆ chase⊥(Σ, D), and (ii) θ(T ) ⊆
chase+(Σ, D).

We now come to our main result.

Theorem 17 [9] Query answering under WGTGDs is de-
cidable in 2exptime. The same problem is decidable in ex-

ptime in case the arity of the predicates in the schema is
bounded.

The above result is proved by exhibiting an alternating al-
gorithm that decides the query answering problem. We pre-
liminarily define the notion of cloud of an atom in the chase:
cloud(Σ, D, a) is the set of atoms in chase(Σ, D) that have
as arguments symbols from dom(a) ∪ dom(D). Notice that
the notion of cloud is similar to the one of type, with the
difference that cloud(Σ, D, a) can have as arguments sym-
bols in dom(D) that do not occur in a. First of all, given
a BCQ Q, the algorithm can guess a path in the guarded
chase forest from some atom in D to an atom b which is a
homomorphic image of some atom in Q. For each atom a in
such a path, a subset S of cloud(Σ, D, a) and a configuration
are generated, where the configuration is basically an order-
ing on the atoms of S; by guessing that the atoms in S until

the i-th are derived, and the others are yet to be derived in
the chase, the algorithm checks whether the set S is actually
in the chase. Now, given a query Q, the alternating algo-
rithm guesses a squid decomposition of it such that the head
maps onto chase⊥(Σ, D) via a homomorphism θ0. Then, the
algorithm tries to find an extension θ of θ0 that maps the
tentacles of the squid decomposition to chase+(Σ, D). By
using a technique similar to the one described above, that
checks whether the image of some atom is in the chase, the
algorithm is then able, based on Lemma 16, to check whether
θ exists.

By combining Theorems 15 and 17 we get the following
complexity characterization for reasoning under WGTGDs.

Theorem 18 [9] Query answering under WGTGDs is 2-
exptime complete. It is exptime complete in case of
bounded predicate arities, and even in case the WGTGDs
are fixed.

5.2 Data Complexity
We now give some results regarding data complexity.

With a reduction from a pspace alternating Turing Machine

Theorem 19 [9] Query answering under WGTGDs is
exptime-hard in the data complexity.

Note that this result is quite surprising, in the light of the
fact that the data complexity of query answering under
guarded TGDs is polynomial. The proof of the above the-
orem needs to (ab)use the constants from dom(D) in order
to simulate tape cell positions.

By adapting the algorithm of Theorem 17, we can show
the following result on the upper complexity bound.

Theorem 20 [9] Query answering under WGTGDs is in
exptime in the data complexity.

6. EXTENSIONS
In this section, we extend Datalog± by negative con-

straints and EGDs, which are both important when rep-
resenting ontologies.

Example 9. If the unary predicates c and c′ represent two
classes, we may use the constraint c(X), c′(X)→⊥ to assert
that the two classes have no common instances. Similarly, if
additionally the binary predicate r represents a relationship,
we may use c(X), r(X, Y )→⊥ to enforce that no member
of the class c participates to r. In a similar way, we may
use the EGD r(X, Y ), r(X, Y ′) → Y = Y ′ to express that
the second argument of the binary predicate r functionally
depends on the first argument of r.

However, while adding negative constraints is effortless
from a computational perspective, adding EGDs is more
problematic: The interaction of TGDs and EGDs leads to
undecidability of query answering even in simple cases, such
that of functional and inclusion dependencies [18], or keys
and inclusion dependencies (see, e.g., [12], where the proof of
undecidability is done in the style of Vardi as in [29]). It can
even be seen that a fixed set of EGDs and guarded TGDs
can simulate a universal Turing machine, and thus query
answering and even propositional ground atom inference is
undecidable with such fixed sets of dependencies.
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For this reason, after dealing with negative constraints, we
consider a restricted class of EGDs, namely, non-conflicting
key dependencies (or NC keys), which show a controlled in-
teraction with TGDs (and negative constraints), such that
they do not increase the complexity of answering BCQs.
Nonetheless, this class is sufficient for modeling ontologies.

6.1 Negative Constraints
A negative constraint (or constraint) is a first-order for-

mula of the form ∀XΦ(X)→⊥, where Φ(X) is a (not nec-
essarily guarded or weakly guarded) conjunction of atoms.
It is often also written as ∀XΦ′(X)→¬p(X), where Φ′(X)
is obtained from Φ(X) by removing the atom p(X). We
usually omit the universal quantifiers.

Query answering on a database D under TGDs ΣT and
constraints ΣC can be done effortless by additionally check-
ing that every constraint σ = Φ(X)→⊥∈ΣC is satisfied in
D given ΣT , each of which can be done by checking that the
BCQ Qσ =Φ(X) evaluates to false in D given ΣT . We write
D ∪ ΣT |= ΣC iff every σ ∈ΣC is false in D given ΣT . We
thus obtain immediately the following result. Here, a BCQ
Q is true in D given ΣT and ΣC , denoted D∪ΣT ∪ΣC |= Q,
iff (i) D ∪ ΣT |= Q or (ii) D ∪ ΣT 6|= ΣC (as usual in DLs).

Theorem 21 [10] Let R be a relational schema, ΣT and
ΣC be sets of TGDs and constraints on R, respectively, D
be a database for R, and Q be a BCQ on R. Then, D ∪
ΣT ∪ ΣC |= Q iff (i) D ∪ ΣT |= Q or (ii) D ∪ ΣT |= Qσ for
some σ ∈ΣC .

The next theorem shows that constraints do not increase
the data and combined complexity of answering BCQs in
the guarded, linear, and weakly guarded case. It follows
from Theorem 21, by which the additional effort of de-
ciding D∪ΣT |= ΣC can be done by answering |ΣC | BCQs
Qσ without constraints, where each query Qσ has a size of
‖σ‖6 ‖ΣC‖, and in the data complexity, |ΣC | and ‖σ‖ are
constants. Here, |ΣC | denotes the cardinality of ΣC , while
‖ΣC‖ denotes the input size of ΣC . This additional effort
does not increase the complexity of answering BCQs with-
out constraints. For the data complexity in the guarded and
linear case, the result is known from [10].

Theorem 22 [10] Let R be a relational schema, ΣT and
ΣC be sets of TGDs and constraints on R, respectively, D be
a database for R, and Q be a BCQ. Then, deciding D∪ΣT ∪
ΣC |= Q in the guarded (resp., linear, weakly guarded) case
has the same data complexity and also the same combined
complexity as deciding D ∪ ΣT |= Q in the guarded (resp.,
linear, weakly guarded) case.

6.2 Non-Conflicting Keys
We now first concentrate on the semantic notion of sepa-

rability for EGDs, which formulates a controlled interaction
between EGDs and TGDs (and negative constraints), such
that the EGDs do not increase the complexity of answer-
ing BCQs. We then provide a sufficient syntactic condi-
tion for the separability of EGDs, where we transfer a result
by [12] about non-key-conflicting inclusion dependencies to
the more general setting of Datalog±. In the context of de-
scription logics, general EGDs cannot be formulated, but
only keys. Therefore, we mainly focus on keys here.

Definition 4. [10] Let R be a relational schema, and ΣT

and ΣE be sets of TGDs and EGDs on R, respectively.
Then, ΣE is separable from ΣT iff for every database D
for R, the following conditions (i) and (ii) are both satis-
fied:

(i) If there is a hard violation of an EGD in chase(ΣT ∪
ΣE , D), then there is also a hard violation of some
EGD of ΣE , when this EGD is directly applied to D.

(ii) If there is no chase failure, then for every BCQ Q,
chase(ΣT ∪ ΣE , D) |= Q iff chase(ΣT , D) |= Q.

The following result shows that adding separable EGDs to
TGDs and constraints does not increase the data and com-
bined complexity of answering BCQs in the guarded, linear,
and weakly guarded case. It follows immediately from the
fact that the separability implies that chase failure can be
directly evaluated on D. For fixed (resp., variable) ΣE , this
can be done by evaluating a first-order formula on D (resp.,
in polynomial time in the size of D and ΣE), which clearly
does not increase the data (resp., combined) complexity of
answering BCQs in the three cases. For the data complexity
in the guarded and linear case, the result is known from [10].

Theorem 23 [10] Let R be a relational schema, ΣT and
ΣC be sets of TGDs and constraints on R, respectively, and
D be a database for R. Let ΣE be a set of EGDs that is
separable from ΣT , and Q be a BCQ. Then, deciding D ∪
ΣT ∪ ΣC ∪ ΣE |= Q in the guarded (resp., linear, weakly
guarded) case has the same data complexity and also the
same combined complexity as deciding D ∪ ΣT |= Q in the
guarded (resp., linear, weakly guarded) case.

We next provide a sufficient syntactic condition for the
separability of EGDs. We assume that the reader is familiar
with the notions of functional dependency (FD) and key [1].
Clearly, FDs are special types of EGDs. A key κ of a relation
r can be written as a set of FDs that specify that κ deter-
mines each other attribute of r. Thus, keys can be identified
with sets of EGDs. It will be clear from the context when we
regard a key as a set of attribute positions, and when as a
set of EGDs. The following definition generalizes the notion
of “non-key-conflicting”dependency relative to a set of keys,
introduced in [12], to the context of arbitrary TGDs.

Definition 5. [10] Let κ be a key, and σ be a TGD of
the form Φ(X,Y)→∃Z r(X,Z). Then, κ is non-conflicting
(NC) with σ iff either (i) the relational predicate on which
κ is defined is different from r, or (ii) the positions of κ in r
are not a proper subset of the X-positions in r in the head
of σ, and every variable in Z appears only once in the head
of σ. We say κ is non-conflicting (NC) with a set of TGDs
ΣT iff κ is NC with every σ ∈ΣT . We say a set of keys
ΣK is non-conflicting (NC) with ΣT iff every κ∈ΣK is NC
with ΣT .

Example 10. Consider the four keys κ1, κ2, κ3, and κ4

defined by the key attribute sets K1 = {r[1], r[2]}, K2 =
{r[1], r[3]}, K3 = {r[3]}, and K4 = {r[1]}, respectively, and
the TGD σ = p(X, Y ) → ∃Z r(X, Y, Z). Then, the head
predicate of σ is r, and the set of positions in r with univer-
sally quantified variables is H = {r[1], r[2]}. Observe that
all keys but κ4 are NC with σ, since only K4 ⊂H. Roughly,
every atom added in a chase by applying σ would have a
fresh null in some position in K1, K2, and K3, thus never
firing κ1, κ2, and κ3, respectively.
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The following theorem shows that the property of being
NC between keys and TGDs implies their separability. This
generalizes a useful result of [12] on inclusion dependencies
to the much larger class of all TGDs. The main idea be-
hind the proof can be roughly described as follows. The NC
condition between a key κ and a TGD σ assures that ei-
ther (a) the application of σ in the chase generates an atom
with a fresh null in a position of κ, and so the fact does not
violate κ (see also Example 10), or (b) the X-positions in
the predicate r in the head of σ coincide with the key po-
sitions of κ in r, and thus any newly generated atom must
have fresh distinct nulls in all but the key position, and may
eventually be eliminated without violation. It then follows
that the full chase does not fail. Since the new nulls are all
distinct, it also contains a homomorphic image of the TGD
chase. Therefore, the full chase is in fact homomorphically
equivalent to the TGD chase.

Theorem 24 [10] Let R be a relational schema, ΣT and
ΣK be sets of TGDs and keys, respectively, such that ΣK is
NC with ΣT . Then, ΣK is separable from ΣT .

We conclude this section by stating that in the NC case,
keys do not increase the data and the combined complex-
ity of answering BCQs under guarded (resp., linear, weakly
guarded) TGDs and constraints. This result follows imme-
diately from Theorems 24 and 23. For the data complexity
in the guarded and linear case, this result is known from
[10].

Corollary 25 Let R be a relational schema, ΣT and ΣC be
sets of TGDs and constraints on R, respectively, and D be a
database for R. Let ΣE be a set of EGDs that is NC with ΣT ,
and Q be a BCQ. Then, deciding D∪ΣT ∪ΣC ∪ΣE |= Q in
the guarded (resp., linear, weakly guarded) case has the same
data complexity and also the same combined complexity as
deciding D ∪ ΣT |= Q in the guarded (resp., linear, weakly
guarded) case.

7. ONTOLOGY QUERYING
In this section, we show how Datalog± can be used for

query answering in DL-LiteA and F-Logic Lite ontologies.

7.1 DL-LiteA

We now describe how the DL DL-LiteA [35] can be trans-
lated to linear Datalog± with (negative) constraints and NC
keys, called Datalog±0 , and that the former is strictly less
expressive than the latter. We first recall the syntax and
the semantics of DL-LiteA. We then define the transla-
tion and provide the expressivity result.

Note that other DLs of the DL-Lite family [13] can be
similarly translated to Datalog±

0 . In particular, the transla-
tion for DL-LiteF and DL-LiteR is given in [10]. Note also
that DL-LiteR is able to fully capture (the DL fragment of)
RDF Schema [8], the vocabulary description language for
RDF; see [20]. Consequently, Datalog±

0 is also able to fully
capture (the DL fragment of) RDF Schema.

Intuitively, DLs model a domain of interest in terms of
concepts and roles, which represent classes of individuals
and binary relations on classes of individuals, respectively.
A DL knowledge base (or ontology) encodes in particular
subset relationships between concepts, subset relationships
between roles, the membership of individuals to concepts,

the membership of pairs of individuals to roles, and func-
tional dependencies on roles. Important additional ingredi-
ents of DL-LiteA are datatypes and attributes, which are
collections of data values and binary relations between in-
dividuals and data values, respectively, along with the pos-
sibility to encode subset relationships between datatypes,
subset relationships between attributes, the membership of
individual-value pairs to attributes, and functional depen-
dencies on attributes.

Syntax. We first describe the elementary ingredients of DL-
LiteA. We assume a finite set D of atomic datatypes d, which
are associated with pairwise disjoint sets of data values Vd.
We also assume pairwise disjoint sets A, RA, RD, and I of
atomic concepts, atomic roles, atomic attributes, and indi-
viduals, respectively. We denote by V the union of all Vd

with d∈D.
These elementary ingredients are used to construct roles,

concepts, attributes, and datatypes, which are defined as
follows:

• A basic role Q is either an atomic role P ∈RA or its
inverse P−. A (general) role R is either a basic role Q
or the negation of a basic role ¬Q.

• A basic concept B is either an atomic concept A∈A,
or an existential restriction on a basic role Q, denoted
∃Q, or the domain of an atomic attribute U , denoted
δ(U). A (general) concept C is either the universal
concept ⊤C , or a basic concept B, or the negation of
a basic concept ¬B, or an existential restriction on a
basic role Q of the form ∃Q.C, where C is a concept.

• A (general) attribute V is either an atomic attribute U
or the negation of an atomic attribute ¬U .

• A basic datatype E is the range of an atomic attribute
U , denoted ρ(U). A (general) datatype F is either the
universal datatype ⊤D or an atomic datatype.

Statements about roles, concepts, attributes, and
datatypes are expressed via axioms, which have the follow-
ing forms: (1) B ⊑C (concept inclusion axiom), where B is
a basic concept, and C is a concept; (2) Q⊑R (role inclu-
sion axiom), where Q is a basic role, and R is a role; (3)
U ⊑V (attribute inclusion axiom), where U is an atomic at-
tribute, and V is an attribute; (4) E ⊑F (datatype inclusion
axiom), where E is a basic datatype, and F is a datatype;
(5) (funct Q) (role functionality axiom), where Q is a basic
role; (6) (funct U) (attribute functionality axiom), where U is
an atomic attribute; (7) A(a) (concept membership axiom),
where A is an atomic concept and a∈ I, (8) P (a, b) (role
membership axiom), where P is an atomic role and a, b∈ I;
(9) U(a, v) (attribute membership axiom), where U is an
atomic attribute, a∈ I, and v ∈V.

We next define knowledge bases, which consist of a re-
stricted finite set of inclusion and functionality axioms,
called TBox, and a finite set of membership axioms, called
ABox. We also describe CQs and BCQs to such knowledge
bases.

We first define the restriction on inclusion and function-
ality axioms. A basic role Q (resp., atomic attribute U) is
an identifying property in a set of axioms S iff S contains a
functionality axiom (funct Q) (resp., (funct U)). Given an
inclusion axiom α of the form X ⊑Y (resp., X ⊑¬Y ), a ba-
sic role (resp., atomic attribute) Y appears positively (resp.,
negatively) in the right-hand side of α. A basic role (resp.,
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atomic attribute) is primitive in S iff it does not appear pos-
itively in the right-hand side of an inclusion axiom in S and
it does not appear in an expression of the form ∃Q.C in S.

We can now define knowledge bases. A TBox is a finite
set T of inclusion and functionality axioms such that every
identifying property in T is primitive. Intuitively, identify-
ing properties cannot be specialized in T , i.e., they cannot
appear positively in the right-hand side of inclusion axioms
in T . An ABox A is a finite set of membership axioms.
A knowledge base KB =(T ,A) consists of a TBox T and
an ABox A. Conjunctive queries (CQs) and Boolean CQs
(BCQs) are defined as usual, where concept, role, and at-
tribute membership axioms (over variables, individuals, and
values as arguments) are used as atoms .

Example 11. We use a knowledge base KB =(T ,A) in
DL-LiteA to specify some simple information about scien-
tists and their publications. Consider the following sets of
atomic concepts, atomic roles, atomic attributes, individu-
als, and data values:

A = {Scientist,Article,ConferencePaper, JournalPaper},
RA = {hasAuthor, isAuthorOf, hasFirstAuthor},
RD = {name, title, yearOfPublication},
I = {i1, i2},
V = {“mary”, “Semantic Web search”, 2008}.

The TBox T contains the subsequent axioms, which infor-
mally express that (i) conference and journal papers are ar-
ticles, (ii) conference papers are not journal papers, (iii) ev-
ery scientist has at least one publication, (iv) isAuthorOf
relates scientists and articles, (v) isAuthorOf is the inverse
of hasAuthor, and (vi) hasFirstAuthor is a functional binary
relationship:

ConferencePaper⊑Article,
JournalPaper⊑Article,
ConferencePaper⊑¬JournalPaper,
Scientist⊑∃isAuthorOf,
∃isAuthorOf⊑Scientist,
∃isAuthorOf− ⊑Article,
isAuthorOf− ⊑ hasAuthor,
hasAuthor− ⊑ isAuthorOf,
(funct hasFirstAuthor).

The ABox A contains the following axioms, which express
that the individual i1 is a scientist whose name is “mary”
and who is the author of article i2, which is entitled“Seman-
tic Web search” and has been published in the year 2008:

Scientist(i1), name(i1, “mary”), isAuthorOf(i1, i2),
Article(i2), title(i2, “Semantic Web search”),
yearOfPublication(i2, 2008).

Querying for all scientists who published an article in 2008
can be expressed by the following CQ:

Q(x)= ∃y (Scientist(x) ∧ isAuthorOf(x, y)∧
Article(y) ∧ yearOfPublication(y, 2008)).

Semantics. The semantics of DL-LiteA is defined in terms
of standard first-order interpretations as usual. An inter-
pretation I = (∆I , ·I) consists of (i) a nonempty domain
∆I =(∆I

O, ∆I
V ), which is the disjoint union of the domain

of objects ∆I
O and the domain of values ∆I

V =
S

d∈D
∆I

d ,

where the ∆I
d ’s are pairwise disjoint domains of values for

the datatypes d∈D, and (ii) a mapping ·I that assigns
to each datatype d∈D its domain of values ∆I

d , to each
data value v ∈Vd an element of ∆I

d (such that v 6= w im-
plies vI 6= wI), to each atomic concept A∈A a subset of
∆I

O, to each atomic role P ∈RA a subset of ∆I
O ×∆I

O, to
each atomic attribute P ∈RD a subset of ∆I

O ×∆I
V , to each

individual a∈ I an element of ∆I
O (such that a 6= b implies

aI 6= bI). Note that different data values (resp., individuals)
are associated with different elements of ∆I

V (resp., ∆I
O)

(unique name assumption). The extension of ·I to all con-
cepts, roles, attributes, and datatypes, and the satisfaction
of an axiom α in I = (∆I , ·I), denoted I |= α, are defined
by:

• (⊤D)I = ∆I
V and (⊤C)I = ∆I

O;
• (¬U)I = (∆I

O ×∆I
V ) − UI ;

• (¬Q)I = (∆I
O ×∆I

O) − QI ;
• (ρ(U))I = {v ∈∆I

V | ∃o : (o, v)∈UI};
• (δ(U))I = {o∈∆I

O | ∃v : (o, v)∈UI};
• (P−)I = {(o, o′)∈∆I

O ×∆I
O | (o′, o)∈P I};

• (∃Q)I = {o∈∆I
O | ∃o′ : (o, o′)∈QI};

• (∃Q.C)I = {o∈∆I
O | ∃o′ : (o, o′)∈QI , o′ ∈CI};

• (¬B)I = ∆I
O \BI .

The satisfaction of an axiom α in the interpretation I =
(∆I , ·I), denoted I |= α, is defined as follows: (1) I |= B ⊑ C
iff BI ⊆CI , (2) I |= Q⊑R iff QI ⊆RI , (3) I |= E ⊑F iff
EI ⊆F I , (4) I |= U ⊑V iff UI ⊆V I , (5) I |=(funct Q)
iff (o, q), (o, q′)∈QI implies q = q′, (6) I |= (funct U) iff
(o, v), (o, v′)∈UI implies v = v′, (7) I |= A(a) iff aI ∈AI ,
(8) I |= P (a, b) iff (aI , bI) ∈ P I , (9) I |= U(a, v) iff (aI ,
vI) ∈ UI . The interpretation I satisfies the axiom α, or
I is a model of α, iff I |= α. We say I satisfies a knowledge
base KB =(T ,A), or I is a model of KB , denoted I |=KB ,
iff I |= α for all α∈T ∪A. We say KB is satisfiable (resp.,
unsatisfiable) iff KB has a (resp., no) model. The semantics
of CQs and BCQs is as usual in first-order logic.

Example 12. The knowledge base KB =(T ,A) of Exam-
ple 11 is satisfiable, and the answer to the CQ Q(x) of Ex-
ample 11 contains the tuple (i1). Informally, mary published
an article in 2008.

Translation into Datalog±. The translation τ from the el-
ementary ingredients and axioms of DL-LiteA into Datalog±

with (negative) constraints and EGDs is defined as follows:

(1) Every data value v has a constant τ(v)= cv ∈ ∆ such
that the τ(Vd)’s for all datatypes d∈D are pairwise
disjoint. Every datatype d∈D has under τ a predicate
τ(d)= pd along with the constraint pd(X) ∧ pd′(X) →
⊥ for all pairwise distinct d, d′ ∈D. Every atomic
concept A∈A has a unary predicate τ(A)= pA ∈R,
every abstract role P ∈RA has a binary predicate
τ(P )= pP ∈R, every attribute U ∈RD has a binary
predicate τ(U)= pU ∈R, and every individual i∈ I has
a constant τ(i) = ci ∈∆ −

S

d∈D
τ(Vd).

(2) Every concept inclusion axiom B ⊑C is translated to
the TGD or constraint τ(B ⊑C)= τ ′(B) → τ ′′(C),
where

(i) τ ′(B) is defined as pA(X), pP (X, Y ), pP (Y, X),
and pU (X, Y ), if B is of the form A, ∃P , ∃P−,
and δ(U), respectively, and
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(ii) τ ′′(C) is defined as pA(X), ∃ZpP (X, Z),
∃ZpP (Z, X), ∃ZpU (X, Z), ¬pA(X), ¬pP (X, Y ),
¬pP (Y, X),¬pU (X,Y ), ∃ZpP (X, Z)∧ pA(Z), and
∃ZpP (Z, X)∧pA(Z), if C is of form A, ∃P , ∃P−,
δ(U), ¬A, ¬∃P , ¬∃P−, ¬δ(U), ∃P.A, and ∃P−.A,
respectively.

Note that concept inclusion axioms B ⊑⊤C can be
safely ignored, and concept inclusion axioms B ⊑∃Q.C
can be expressed by the two concept inclusion axioms
B ⊑∃Q.A and A⊑C, where A is a fresh atomic con-
cept. Note also that the TGDs with two atoms in
their heads abbreviate their equivalent sets of TGDs
with singleton atoms in the heads.

(3) The functionality axioms (funct P ) and (funct P−)
are under τ translated to the EGDs pP (X, Y ) ∧
pP (X, Y ′) → Y = Y ′ and pP (X, Y ) ∧ pP (X ′, Y ) →
X = X ′, respectively. The functionality axiom
(funct U) is under τ translated to the EGD pU (X, Y )∧
pU (X, Y ′) → Y = Y ′.

(4) Every concept membership axiom A(a) is under τ
translated to the database atom pA(ca). Every role
membership axiom P (a, b) is under τ translated to the
database atom pP (ca, cb). Every attribute membership
axiom U(a, v) is under τ translated to the database
atom pU (ca, cv).

(5) Every role inclusion axiom Q⊑R is translated to the
TGD or constraint τ(Q⊑R)= τ ′(Q) → τ ′′(R), where

(i) τ ′(Q) is defined as pP (X, Y ) and pP (Y, X), if Q
is of the form P and P−, respectively, and

(ii) τ ′′(R) is defined as pP (X, Y ), pP (Y, X),
¬pP (X, Y ), and ¬pP (Y, X), if R is of the form
P , P−, ¬P , and ¬P−, respectively.

(6) Attribute inclusion axioms U ⊑U ′ and U ⊑¬U ′ are
under τ translated to the TGD pU (X, Y ) → pU′(X, Y )
and the constraint pU (X, Y ) → ¬pU′(X, Y ), respec-
tively.

(7) Every datatype inclusion axiom ρ(U)⊑ d is under τ
translated to the TGD pU (Y, X) → pd(X). Note that
datatype inclusion axioms ρ(U)⊑⊤D can be safely ig-
nored.

Example 13. The concept inclusion axioms of Example 11
are translated to the following TGDs and constraints (where
we identify atomic concepts and roles with their predicates):

ConferencePaper(X)→Article(X),
JournalPaper(X)→Article(X),
ConferencePaper(X)→¬JournalPaper(X),
Scientist(X)→∃Z isAuthorOf(X, Z),

The role inclusion and functionality axioms of Example 11
are translated to the following TGDs and EGDs:

isAuthorOf(X, Y )→Scientist(X),
isAuthorOf(Y, X)→Article(X),
isAuthorOf(Y, X)→ hasAuthor(X, Y ),
hasAuthor(Y, X)→ isAuthorOf(X, Y ),
hasFirstAuthor(X, Y ), hasFirstAuthor(X, Y ′)→Y = Y ′.

The concept, role, and attribute membership axioms of Ex-
ample 11 are translated to the following database atoms

(where we also identify individuals and values with their
constants):

Scientist(i1), name(i1, “mary”), isAuthorOf(i1, i2),
Article(i2), title(i2, “Semantic Web search”),
yearOfPublication(i2, 2008).

Every knowledge base KB in DL-LiteA is then translated
into a database DKB , set of TGDs ΣKB , and set of queries
QKB as follows: (i) DKB is the set of all τ(φ) such that φ
is a membership axiom in KB along with “type declara-
tions” pd(v) for all their data values; (ii) ΣKB is the set of all
TGDs resulting from τ(φ) such that φ is an inclusion axiom
in KB ; and (iii) QKB is the set of all queries resulting from
datatype constraints and from constraints and EGDs τ(φ)
such that φ is an inclusion or functionality axiom in KB .

The following lemma shows that the TGDs and the EGDs
that are generated via τ from a DL-LiteA knowledge base
are in fact linear TGDs and NC keys, respectively.

Lemma 26 [10] Let KB be a knowledge base in DL-LiteA,
and ΣK be the set of EGDs encoded in QKB . Then, (a)
every TGD in ΣKB is linear, (b) every EGD in ΣK is a key,
and (c) ΣK is NC with ΣKB .

Proof. (a) The generated TGDs are clearly linear. (b),
(c) Observe first that basic roles and atomic attributes in
inclusion axioms and expressions of the form ∃Q.C never
interact with role and attribute functionality axioms, since
such functionality axioms can be expressed only on primitive
basic roles and atomic attributes. Hence, it only remains to
consider TGDs that are derived from axioms of the types (i)
B ⊑∃P or B ⊑∃P−, when a functionality axiom (funct P ) or
(funct P−) is in KB , and (ii) B ⊑ δ(U), when a functionality
axiom (funct U) is in KB . W.l.o.g. consider the case (i) and
suppose that (funct P ) is in KB . The TGDs generated via τ
then have a head of the form ∃Y pP (X, Y ) or ∃Y pP (Y, X),
and a key of the form P (X, Y ), P (X, Y )→Y = Y ′ (the key
consists of the position pP [1]). In both cases, the key is
clearly non-conflicting with the above TGDs (and also with
all the others in ΣKB ).

The next result shows that BCQs to knowledge bases in
DL-LiteA can be reduced to BCQs in Datalog±

0 . This result
follows immediately from the above lemma and Theorem 24.

Theorem 27 [10] Let KB be a knowledge base in DL-
LiteA, and let Q be a BCQ for KB. Then, Q is true in KB
iff (i) DKB ∪ΣKB |= Q, or (ii) DKB ∪ ΣKB |= Qc for some
Qc ∈QKB .

As an immediate consequence, the satisfiability of knowl-
edge bases in DL-LiteA can also be reduced to BCQs in
Datalog±

0 .

Corollary 28 [10] A knowledge base KB in DL-LiteA is
unsatisfiable iff DKB ∪ ΣKB |= Qc for some Qc ∈QKB .

The following important result shows that Datalog±
0 is

strictly more expressive than DL-LiteA.

Theorem 29 [10] Datalog±0 is strictly more expressive than
DL-LiteA.
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Proof. As shown in [10], the TGD p(X)→ q(X, X) can
neither be expressed in DL-LiteA, since the TGDs of con-
cept and role inclusion axioms can only project away argu-
ments, introduce new nulls as arguments, and change the
order of arguments in the predicates for atomic concepts
and abstract roles, and the EGDs for functionality axioms
can only produce an atom of form q(c, c) from q(n, c) and/or
q(c, n), where n is a null, if q(c, c) was already there before.

7.2 F-Logic Lite
In this section, we briefly present a formalism for object-

oriented schemas called F-Logic Lite, and we then show that
it is a special case of weakly-guarded Datalog±. We will
also show, with a different proof, the same result appearing
in [11], i.e., that query answering under F-Logic Lite rules
is np-complete.

F-Logic Lite is a smaller but still expressive version of
F-logic [30], a well-known formalism introduced for object-
oriented deductive databases. We refer the reader to [11] for
details about F-Logic Lite. Roughly speaking, with respect
to F-Logic, F-Logic Lite excludes negation and default in-
heritance, and allows only for a limited form of cardinality
constraints.

We now show that F-Logic Lite can be expressed by us-
ing weakly-guarded Datalog± rules and a single EGD. We
denote the Datalog± that we obtain in this translation with
ΣFLL, with ΣFLL = {ρi}1≤i≤12. The rules are shown below.

(1) type(O, A, T ), data(O, A, V ) → member(V, T ).
(2) sub(C1, C3), sub(C3, C2) → sub(C1, C2).
(3) member(O, C), sub(C, C1) → member(O, C1).
(4) data(O, A, V ), data(O, A, W ), funct(A, O) → V = W .

Note that this is the only EGD in this axiomatization.
(5) mandatory(A, O) → ∃V data(O, A, V ).

Note that this is a TGD with an existential variable in
the head (variable V ).

(6) member(O, C), type(C, A, T ) → type(O, A, T ).
(7) sub(C, C1), type(C1, A, T ) → type(C, A, T ).
(8) type(C, A, T1), sub(T1, T ) → type(C, A, T ).
(9) sub(C, C1), mandatory(A, C1) → mandatory(A, C).

(10) member(O, C), mandatory(A, C).
→ mandatory(A, O)

(11) sub(C, C1), funct(A, C1) → funct(A, C).
(12) member(O, C), funct(A, C) → funct(A, O).

Now, we present a set Σ′
FLL of TGDs and EGDs that

is equivalent to ΣFLL, but enjoys the desirable property
that the single EGD in it is a key dependency. The set
of rules Σ′

FLL is obtained from ΣFLL by: (1) adding to
R the ternary predicate data′, thus obtaining R′; (2) re-
placing ρ4 with the rule data′(O, A, V ), data′(O, A, W ) →
V = W , that we denote with ρ′

4; (3) adding the rule
mandatory(A, O), funct(A, O) → ∃V data′(O, A, V ), that we
denote with ρ13. It can be straightforwardly shown that: (1)
all TGDs in Σ′

FLL are weakly-guarded; (2) the single EGD ρ′
4

in Σ′
FLL is a key dependency; (3) ρ′

4 is non-conflicting with
all the other TGDs in Σ′

FLL. Moreover, it is not difficult to
prove that, for every query Q expressed on R′ but without
the predicate data′ (i.e., with predicates in R only), and for
every instance D, we have D∪ΣFLL |= Q iff D∪Σ′

FLL |= Q.
By the above considerations, and by Theorem 24, we can
restrict our attention solely on the TGDs in ΣFLL.

By a polynomial reduction from the 3-colorability

problem, we can show the following complexity result.

Theorem 30 [11, 9] Query answering under F-Logic Lite
rules is np-hard.

F-Logic Lite rules have also some interesting proper-
ties, which are formalized as Polynomial Clouds Criterion
in [9]. First, for every instance D, the number of clouds in
chase(ΣFLL, D) that are pairwise non-D-isomorphic is poly-
nomial in the size |D| of D. Second, for every atom a, the
set cloud(ΣFLL, D, a) can be computed in time polynomial
in |D| from a and cloud(Σ, D,b) (whenever b exists), where
b is the predecessor of a in the chase forest. Starting from
the above considerations, it is possible to get the following
result.

Theorem 31 [11, 9] Conjunctive query answering under
F-Logic Lite rules is in np.

From Theorems 30 and 31, we immediately get:

Corollary 32 Conjunctive query answering under F-Logic
Lite rules is np-complete.

8. STRATIFIED NEGATION
In this section, we describe an extension of Datalog± with

stratified negation. After adding negation to TGD bodies
and queries, we define a semantics based on canonical mod-
els. Finally, we present a perfect model semantics and we
show that it coincides with the previous one. We thus pro-
vide a natural stratified negation for query answering over
ontologies, which has been an open problem to date, since it
is in general based on several strata of infinite models. Note
that by the results of Section 7, this also provides a natural
stratified negation for the DL-Lite family.

8.1 Normal TGDs
We now define normal TGDs, which are informally TGDs

that may also have negated atoms in their bodies. A normal
TGD (NTGD) has the form ∀X∀YΦ(X,Y) → ∃ZΨ(X,Z),
where Φ(X,Y) is a conjunction of atoms and negated atoms
over R, and Ψ(X,Z) is a conjunction of atoms over R. It is
also abbreviated as Φ(X,Y) → ∃ZΨ(X,Z). As in the case
of standard TGDs, we can assume that Ψ(X,Z) is a single-
ton atom. We denote by head(σ) the atom in the head of σ,
and by body+(σ) and body−(σ) the sets of all positive and
negative atoms (without “¬”) in the body of σ, respectively.
We say that σ is guarded iff it contains a positive atom in its
body that contains all universally quantified variables of σ.
We say that σ is linear iff σ is guarded and has exactly
one positive atom in its body.

We extend BCQs by negation as follows. A normal Bool-
ean conjunctive query (NBCQ) Q is an existentially closed
conjunction of atoms and negated atoms

∃X p1(X) ∧ · · · ∧ pm(X) ∧ ¬pm+1(X) ∧ · · · ∧ ¬pm+n(X),

where m, n > 1. We denote by Q+ and Q− the positive resp.
negative atoms (without“¬”) of Q. We say Q is safe iff every
variable in a negative atom also occurs in a positive atom.

Example 14. Consider the following set of guarded nor-
mal TGDs Σ, expressing that (1) if a driver has a non-valid
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license and drives, then he violates a traffic law, and (2) a
license that is not suspended is valid:

σ : hasLic(D, L), drives(D),¬valid(L) → ∃Iviol(D, I) ;

σ′ : hasLic(D, L),¬susp(L) → valid(L) .

Then, asking whether John commits a traffic violation and
whether there exist traffic violations without driving can
be expressed by the safe BCQs Q1 = ∃X viol(john, X) and
Q2 = ∃D, I viol(D, I) ∧ ¬drives(D), respectively.

8.2 Canonical Models
We now define the concept of a stratification of normal

TGDs and their canonical model semantics via iterative uni-
versal models along a stratification. We then define the se-
mantics of safe NBCQs via such canonical models. We fi-
nally show how answering safe NBCQs can be done via an
iterative chase procedure, which is tractable in the data com-
plexity.

We define a stratification of a set of normal TGDs Σ as a
mapping µ : R → {0, 1, . . . , k} such that for each σ ∈ Σ:

(i) µ(pred(head(σ))) > µ(pred(a)) for all a∈ body+(σ);
(ii) µ(pred(head(σ))) > µ(pred(a)) for all a∈ body−(σ).

We call k > 0 the length of µ. For every i ∈ {0, . . . , k},
we then define Σi = {σ ∈ Σ | µ(pred(head(σ))) = i} and
Σ⋆

i = {σ ∈ Σ | µ(pred(head(σ))) 6 i}. We say Σ is strat-
ified iff it has a stratification µ of some length k > 0. Note
that the above notion of stratification generalizes the clas-
sical notion of stratification for Datalog with negation but
without existentially quantified variables [3].

Example 15. The mapping µ where µ(susp)= µ(has-
Lic)= µ(drives)= 0, µ(valid)= 1, and µ(viol)= 2 is a strati-
fication of the set of guarded normal TGDs Σ in Example 14.

We next define the notion of indefinite grounding, which
extends the standard grounding (where rules are replaced by
all their possible instances over constants) towards existen-
tially quantified variables. The set of nulls ∆N is partitioned
into infinite sets of nulls ∆σ,X (which can be seen as Skolem
terms by which X can be replaced), one for every TGD
σ ∈Σ and every existentially quantified variable X in σ. An
indefinite instance of an NTGD σ is obtained from σ by re-
placing every universally quantified variable by an element
from ∆ ∪ ∆N and every existentially quantified variable X
by an element from ∆σ,X . The indefinite grounding of Σ,
denoted ground(Σ), is the set of all its indefinite instances.
We denote by HBΣ the set of all atoms built from predicate
symbols from Σ and arguments from ∆ ∪ ∆N .

We are now ready to define canonical models.

Definition 6. Given a database D under a set of guarded
normal TGDs Σ, we define the sets Si along a stratifica-
tion µ : R → {0, 1, . . . , k} of Σ as follows:

(i) S0 is a universal model of D given Σ0;
(ii) if i > 0, then Si is a universal model of Si−1 given

Σ
Si−1

i , where Σ
Si−1

i is obtained from ground(Σi) by
(i) deleting all σ such that body−(σ)∩Si−1 6= ∅ and (ii)
removing the negative body from the remaining σ’s.

Then, Sk is a canonical model of D given Σ.

Example 16. Consider again the guarded normal TGDs Σ
of Example 14 and the database D = {susp(l), drives(john,
c), hasLic(john, l)}. Then, Σ0 = ∅, Σ1 = {σ′}, and Σ2 = {σ},
and we obtain S0 = S1 = D, and S2 is homomorphically
equivalent to D ∪ {viol(john, i)}, where i is a null.

Canonical models of D given Σ are in fact also models
of D given Σ. In general, there are several canonical models,
which are all homomorphically equivalent. This shows that
all canonical models of D given Σ are universal relative to all
canonical models. Note that they are generally not universal
relative to all models of D given Σ.

We finally define the semantics of safe NBCQs via canon-
ical models. A BCQ Q evaluates to true in D given a set
of guarded normal TGDs Σ, denoted D∪Σ |=strat Q, iff
there exists a homomorphism that maps Q into a canonical
model Sk of D given Σ. A safe NBCQ Q evaluates to true
in D given Σ, denoted D∪Σ |=strat Q, iff there exists a ho-
momorphism from Q+ to a canonical model of D given Σ,
which cannot be extended to a homomorphism from some
Q+ ∪{a}, where a∈Q−, to a canonical model of D given Σ.

Example 17. Consider again the guarded normal TGDs Σ
of Example 14 and the database D of Example 16. By the
canonical model shown in Example 16, the BCQs Q1 and
Q2 are answered positively and negatively, respectively.

A canonical model can be determined via iterative chases,
where every chase may be infinite. We next show that for
answering NBCQs, it is sufficient to consider finite parts of
these chases. We first give some preliminary definitions.

Given a set of atoms S, we denote by chaseS(Σ, D) a
slightly modified oblivious chase where the TGD chase rule
is applicable on an NTGD σ iff the homomorphism h maps
every atom in body−(σ) to an atom not from S, and in that
case, the TGD chase rule is applied on the TGD obtained
from σ by removing the negative body of σ. Then, we denote
by g-chaseℓ,S(Σ, D) the set of all atoms of depth at most ℓ
in the guarded chase forest.

The next result shows that safe NBCQs Q can be evalu-
ated on finite parts of iterative chases, namely, on iterative
guarded chase forests of depths depending only on Q and R.

Theorem 33 [10] Let R be a relational schema, Σ be a
set of stratified guarded NTGDs over R, D be a database
for R, and Q be a safe NBCQ over R. Then, there ex-
ists some ℓ > 0, which depends only on Q and R, such that
D∪Σ |=strat Q implies that Q can be evaluated on Sk, where
the sets Si, i∈{0, . . . , k}, are defined as follows:

(i) S0 = g-chaseℓ(Σ0, D);
(ii) if i > 0, then Si = g-chaseℓ,Si−1(Σi, Si−1).

The following result shows that answering safe NBCQs in
guarded Datalog± with stratified negation is data tractable.

Theorem 34 [10] Let R be a relational schema, Σ a set
of stratified guarded NTGDs over R, D a database for R,
and Q a safe NBCQ over R. Then, deciding D∪Σ |=strat Q
can be done in polynomial time in the data complexity.

The next result shows that answering safe NBCQs in lin-
ear Datalog± with stratified negation is FO-rewritable.
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Theorem 35 [10] Let R be a relational schema, Σ be a set
of stratified linear NTGDs over R, D be a database for R,
and Q be a safe NBCQ over R. Then, Q is FO-rewritable.

8.3 Perfect Models
We now introduce the perfect model semantics of guarded

Datalog± with stratified negation, and show that it coincides
with the canonical model semantics, which gives evidence
that the semantics is quite natural.

We first define the strict and reflexive relations ≺ and 4 as
follows. Given a database D under a set of guarded normal
TGDs Σ, the relations ≺ and 4 on the set of all indefinite
atoms are the smallest relations that satisfy (i) to (iv):

(i) µ(head(σ)) 4 µ(a) for every σ ∈ ground(Σ) and every
a∈ body+(σ),

(ii) µ(head(σ)) ≺ µ(a) for every σ ∈ ground(Σ) and every
a∈ body−(σ),

(iii) ≺ and 4 are transitively closed, and
(iv) ≺ is a subset of 4.

We are now ready to define perfect models.

Definition 7. Let D be a database under a set of guarded
normal TGDs Σ. For sets M, N ⊆HBΣ, we say M is prefer-
able to N , denoted M 6 N , iff some homomorphism h ex-
ists such that for every a∈h(M) − N , there exists some
b∈N − h(M) such that a ≺ b. We say M is a perfect model
of D given Σ iff M 6 N for all models N of D given Σ.

It is possible to show [10] that the perfect model semantics
coincides with the canonical model semantics. Since the no-
tion of perfect model is independent of a concrete stratifica-
tion, this also implies the important result that the canonical
model semantics is independent of a concrete stratification.

9. CONCLUSION
In this paper, we have surveyed recent results about

Datalog±, a family of expressive extensions of Datalog that
allow for a general and natural formalization of ontologies.
We have presented the different languages in the Datalog±

family along with tight complexity bounds for all cases. We
have then shown that the Datalog± family is capable of ex-
pressing the most common tractable ontology languages that
are currently adopted in the Semantic Web and databases,
namely, the DL-Lite family of DLs and F-Logic Lite. We
have finally shown how stratified negation can be added to
Datalog± while keeping ontology querying tractable in the
data complexity.

Datalog± is a natural and very general framework that
closes the gap between query answering in databases, on
the one hand, and ontology querying in DLs and the Se-
mantic Web, on the other hand. It is an exciting family
of languages for ontology querying, which are important in
their own right and well worth being studied more deeply.
Datalog± allows to naturally satisfy the emerging need of
incorporating ontologies in the database area. Furthermore,
it paves the way for applying standard database technol-
ogy in the areas of DLs and the Semantic Web, as it has
been shown in this paper for stratified negation, but which
is also highly interesting for areas such as data integration
and exchange [23]. In particular, such a transfer of database
technology may help to satisfy the current need of DLs and
the Semantic Web for scalable and efficient techniques.

In future research, we aim especially at making Datalog±

even more powerful, without destroying its nice compu-
tational properties, so to also allow for embedding fur-
ther, more expressive ontology languages, especially further
tractable ontology languages, such as e.g. Horn-SHIQ [28],
but also those involving disjunctive knowledge. Further-
more, we work on generalizations of the class of non-
conflicting keys, which does not interact with TGDs. We
also intend to find a syntactic criterion to restrict the class
of weakly guarded TGDs and to lower its complexity. A se-
mantic criterion is found in [9], which ensures that there
are polynomially many clouds relative to the size of the
database. Finally, we plan to investigate relevant first-order
fragments, and get for them precise time bounds for Cour-
celle’s theorem.
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[2] H. Andréka, I. Németi, and J. van Benthem. Modal
languages and bounded fragments of predicate logic.
J. Philos. Logic, 27(3):217–274, 1998.

[3] K. Apt, H. Blair, and A. Walker. Towards a theory of
declarative knowledge. In J. Minker, editor,
Foundations of Deductive Databases and Logic
Programming, pages 89–148. Morgan Kaufmann, 1988.

[4] C. Beeri, R. Fagin, D. Maier, A. O. Mendelzon, J. D.
Ullman, and M. Yannakakis. Properties of acyclic
database schemes. In Proc. of STOC 1981, pages
355–362. ACM Press, 1981.

[5] C. Beeri and M. Y. Vardi. The implication problem
for data dependencies. In Proc. of ICALP 1981,
volume 115 of LNCS, pages 73–85. Springer, 1981.

[6] C. Beeri and M. Y. Vardi. A proof procedure for data
dependencies. J. ACM, 31(4):718–741, 1984.

[7] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American, 284:34–43, 2001.

[8] D. Brickley and R. V. Guha. RDF vocabulary
description language 1.0: RDF Schema, 2004. W3C
Recommendation.

[9] A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the infinite
chase: Query answering under expressive relational
constraints. Unpublished technical report, 2008.
Available from the authors or at http://benner.
dbai.tuwien.ac.at/staff/gottlob/CGK.pdf.
This is the full and revised version of a preliminary
short version which has appeared in Proc. of KR 2008,
pages 70–80. AAAI Press, 2008.

[10] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general
Datalog-based framework for tractable query

29



answering over ontologies. In Proc. of PODS 2009.
ACM Press, 2009. To appear.

[11] A. Cal̀ı and M. Kifer. Containment of conjunctive
object meta-queries. In Proc. of VLDB 2006, pages
942–952. ACM Press, 2006.

[12] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability
and complexity of query answering over inconsistent
and incomplete databases. In Proc. of PODS 2003,
pages 260–271. ACM Press, 2003.

[13] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. Tractable reasoning and
efficient query answering in description logics: The
DL-Lite family. J. Autom. Reasoning, 39(3):385–429,
2007.

[14] M. A. Casanova, R. Fagin, and C. H. Papadimitriou.
Inclusion dependencies and their interaction with
functional dependencies. Journal of Computer and
System Sciences, 28:29–59, 1984.

[15] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming
and Databases. Springer, New York, NY, 1990.

[16] A. K. Chandra, H. R. Lewis, and J. A. Makowsky.
Embedded implicational dependencies and their
inference problem. In Proc. of STOC 1981, pages
342–354. ACM Press, 1981.

[17] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. In Proc. of STOC 1977, pages 77–90.
ACM Press, 1977.

[18] A. K. Chandra and M. Y. Vardi. The implication
problem for functional and inclusion dependencies is
undecidable. SIAM J. Comput., 14:671–677, 1985.

[19] B. Courcelle. The monadic second-order logic of
graphs. I. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990.

[20] J. de Bruijn and S. Heymans. Logical foundations of
(e)RDF(S): Complexity and reasoning. In Proc. of
ISWC 2007, volume 4825 of LNCS, pages 86–99.
Springer, 2007.

[21] A. Deutsch, A. Nash, and J. B. Remmel. The chase
revisited. In Proc. of PODS 2008, pages 149–158.
ACM Press, 2008.

[22] A. Deutsch and V. Tannen. Reformulation of XML
queries and constraints. In Proc. of ICDT 2003,
volume 2572 of LNCS, pages 225–241. Springer, 2003.

[23] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: Semantics and query answering.
Theor. Comput. Sci., 336(1):89–124, 2005.

[24] M. E. Goncalves and E. Grädel. Decidability issues for
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