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ABSTRACT
We study the problem of incrementally maintaining an XPath
query on an XML database under updates. The updates we
consider are node insertion, node deletion, and node relabel-
ing. Our main results are that downward XPath queries can
be incrementally maintained in time O(depth(D) · poly(Q))
and conjunctive forward XPath queries in time O(depth(D)·
log(width(D))·poly(Q)), where D is the size of the database,
Q the size of the query, and depth(D) and width(D) are
the nesting depth and maximum number of siblings in the
database, respectively. The auxiliary data structures for
maintenance are linear in D and polynomial in Q in all these
cases.

1. INTRODUCTION
The XPath language, proposed by the World Wide Web

Consortium (W3C), is essentially a query language for se-
lecting nodes in an XML document. As node-selection is one
of the most basic operations on XML documents, XPath lies
at the core of most of today’s data processing languages for
XML. For example, it forms an essential component of lan-
guages such as XQuery, XSLT, XML Schema (which uses
XPath for defining keys), etc.

The most fundamental algorithmic question concerning
XPath is query evaluation. That is, given an XPath query
Q and an XML database D, return all elements that are
selected by Q in D. The query evaluation problem for vari-
ous fragments of XPath has been researched quite intensely
over the last decade (see [4] for an overview). In this paper,
we are interested in the incremental XPath evaluation prob-
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lem. That is, given an XPath query Q and XML data D, we
assume that the answer for Q on D is already known. How-
ever, when D is updated to D′, we want to be able to infer
the updated answer for Q on D′ as quickly as possible. The
idea is, of course, to maintain extra information such that
the updated answer to Q on D′ can be computed without
having to re-evaluate Q from scratch.

There are many motivations for incremental XPath evalu-
ation. An obvious motivating scenario comes from a database
system that is interested in whether a trigger condition is
satisfied in a database or not. If the precondition of the
trigger is stated by means of an XPath query, the system
may be interested in knowing very quickly after an update
whether the event of the trigger needs to be carried out.
Another scenario comes from exchanging data on the Web.
When a community exchanges data, it is often the case that
a certain user X is interested in the result of a fixed query on
the data of another user Y . The data of Y may change often,
while the interests of X remain the same. Of course, it would
be beneficial for both parties if the query does not have to
be completely recomputed every time Y ’s data changes. In
such a setting, X may herself have a representation of the
current result of her query. So, after an update of Y ’s data,
it would be relevant for Y to be able to quickly determine
the changes that X has to make to her old result, rather
than sending her the complete new result, which may be
much larger than the update.

Two Versions of the Problem.
Incrementally evaluating queries on a relational database

is an intensively researched topic in database theory. In the
literature, it is also known as incremental view maintenance
(see, e.g., [20, 10]).

From our two motivating scenarios above, we can imme-
diately infer two versions of the incremental XPath evalu-
ation problem that we believe to be important in practice.
The first is the Boolean version, and the second is the view
maintenance version. In brief, in the Boolean version, we
are simply interested in whether an XPath expression is sat-
isfied or not after performing an update on the database. In
the second version, the set of outputs of the XPath query is
maintained and, after an update of the database, we want
to compute an update to this set of outputs.

In this paper we focus mostly, but not exclusively, on the
Boolean version of the problem. It is interesting in its own
right and we also believe that it contains the core of the
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view maintenance version. The view maintenance version
is more general, but it turns out that the Boolean version
is already quite challenging. We believe that the difficulties
of the Boolean version need to be understood before view
maintenance can be properly tackled.

Our Contributions.
Our main results are summarized in Table 1. Here, |D|

and |Q| are the sizes of the XML document and the XPath
query, respectively. The results are for Boolean incremen-
tal evaluation, and the time complexities per update. That
is, we assume that a database gets an update of the form:
relabel node x, delete the subtree rooted at x, or insert a
node x in position y. Each such update can be handled by
the algorithms in the time given in Table 1. Some of the
time complexities contain a factor depth(D), i.e., the depth
of the tree representation of D, rather than the actual size
of D. We believe this to be very important for practical
purposes, as the depth of D is, in practice, extremely small
when compared to the actual size of D. The size-entries in
the table show the size of the auxiliary data structure that
is needed for query maintenance. The left column shows
the XPath fragment for which the results hold. The full
fragment “XPath Patterns” is defined in Section 2 but can
be seen as Core XPath [4] with the addition of the next-
sibling and previous-sibling axes. The other rows denote
the fragments of XPath Patterns that only allow the listed
operators and axes. Here, ↓, ⇓,→,⇒ denote the axes child,
descendant, nextsibling,1 and following-sibling, respectively.

In case (3) in the table, we can also do view maintenance
for the query, but only in a restricted form. Essentially,
we can maintain the set of the nodes where the root of the
query matches D. The good news is that all new updates to
the set of results, for one single update, can be computed in
time depth(D) ·poly(Q). On the other hand, this is because
all positions where the truth value of the root of the query
changes lie on the path from the change in D to its root.

Finally, we want to bring the incremental XPath evalua-
tion problem to the attention of the database theory com-
munity. To the best of our knowledge, this is the first theory
paper that deals with this problem, and the first paper that
provides worst-case upper bounds on the incremental eval-
uation problem for XPath.

Related work.
There are several practically oriented papers dealing with

incremental XPath evaluation [12, 14, 16, 17]. None of
these papers give any worst-case complexity bounds. The
papers [12, 17] only consider leaf deletion and insertion,
and [14] considers deletion and insertion of entire subtrees
and can thus, in worst case, not be better than re-evaluation.

Incremental XPath evaluation can be seen as a generaliza-
tion of the XPath evaluation problem on XML streams (see,
e.g., [2, 9, 18]). In streaming XPath evaluation, one reads
the XML document as a sequence of SAX-events, i.e., the
sequence of opening and closing tags in the ordering in which
they occur in the XML file. When viewing an XML docu-
ment as a tree, this ordering corresponds to the depth-first
left-to-right ordering of the tree. Streaming XPath evalua-

1Next-sibling is strictly speaking not a primitive axis
in XPath, but can be expressed using following-
sibling::∗[position() = 1].

tion can then be seen as incremental XPath evaluation in
which the only update operation is that nodes can be added
at the last position in the depth-first left-to-right ordering.

The incremental validation of XML schemas [1, 3] is closely
related to our problems. In incremental schema evaluation,
one is asked to maintain satisfaction of an XML document
by an XML schema, where the document can be updated.
Balmin et al. describe an algorithm for incrementally main-
taining whether a tree is accepted by a tree automaton [1]
which we use to infer some upper bounds in this paper.

The (non-incremental) XPath evaluation problem has been
studied quite extensively in the literature [5, 6, 7, 8]. We
refer to [4] for a more detailed overview. There is a large
amount of work on indexing on XML documents (e.g, [13]),
but indexing schemes are usually aimed towards answering a
large class of XPath queries and require time at least linear
in the database for complicated queries.

2. PRELIMINARIES
By Σ we always denote a fixed but infinite set of labels.

We abstract away from actual XML documents by view-
ing them as rooted, ordered, finite, labeled, unranked trees,
which are directed from the root downwards. That is, we
consider trees with a finite number of nodes and in which
nodes can have arbitrarily many children. We view an XML
document D as a relational structure over a finite number
of unary labeling relations a(·), where each a ∈ Σ, and bi-
nary relations child(·, ·) and next-sibling(·, ·). Here, a(u)
expresses that u is a node with label a, and child(u, v) (re-
spectively, next-sibling(u, v)) expresses that v is a child (re-
spectively, next sibling) of u. We also use the notations
descendant(u, v) and following-sibling(u, v) for the respec-
tive transitive closures of the above relations. The label of a
node u must be unique and is denoted by lab(u). We write
Nodes(D) and Edges(D) for the sets of nodes and edges of
a tree (document) D. As usual, Edges(D) is the set of pairs
(u, v) such that child(u, v) holds in D. The root of D is de-
noted by root(D). We define the size of D, denoted by |D|,
as the number of nodes of D.

Notice that we have an infinite set of labels from which
our (finite) trees can choose. This reflects how trees occur
in an XML-context: an XML tree is a finite structure, but
there is no restriction on how it should be labeled (if no
schema is provided).

2.1 XPath Patterns
We assume that the reader is familiar with XPath. Instead

of working directly on XPath queries, we will usually use
XPath Patterns, which are a more convenient technical tool
for our algorithms. XPath Patterns allow us to reason about
nodes and edges in the pattern. Our XPath Patterns will
make use of axes. The XPath axes in this paper are fairly
standard: self, child (↓), descendant (⇓), descendant-or-self
(↓∗), parent (↑), ancestor (⇑), ancestor-or-self (↑∗), next-sib-
ling (→), following-sibling (⇒), previous-sibling (←), prece-
ding-sibling (⇐). We note that the remaining XPath axes
(i.e., following and preceding) can be expressed by these axes
using only a linear blow-up.

XPath Patterns are defined as follows.

Definition 2.1. An XPath Pattern is a rooted, unordered,
finite, labeled tree in which the nodes and edges bear types.
The type of a node u, denoted by type(u) can either be label
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Fragment Complexity Section

(1) XPath Time: O(polylog(|D|)) · 2O(|Q|) Section 3

Patterns Size: O(|D|) · 2O(|Q|)

(2) XPath Time: O(depth(D) · log(width(D))) · 2O(|Q|) Section 3

Patterns Size: O(|D|) · 2O(|Q|)

(3) ↓,⇓,∧,∨,¬ Time: O(depth(D) · |Q|) Section 4
Size: O(|D| · |Q|)

(4) →,⇒,∧ Time: O(log(|D|) · poly(|Q|)) Section 5
Size: O(|D| · |Q|3)

(5) ↓,⇓,→,⇒,∧ Time O(depth(D) · log(width(D)) · poly(|Q|)) Section 6
Size: O(|D| · |Q|3)

Table 1: Overview of results. The size complexities refer to the size of the auxiliary datastructure that has to be maintained.

or syntax. When the type of a node is label then the label
must be in Σ ] {∗}. When the type of a node is syntax, the
label must be one of ∧,∨,¬. The type of an edge e, denoted
by type(e), can be syntax, or any XPath axis.

We assume that XPath Patterns are well-formed, that is,
(i) all incoming edges to nodes typed syntax must also be
typed syntax ; (ii) no other edges are typed syntax ; (iii) a
syntax node labeled ¬ has only one child. For a set X of
axes and boolean operators, we denote by XPath(X) the set
of XPath Patterns using only the operators and axes from
X.

Throughout the paper, we will use the letter D to denote
the XML document, and Q to denote the XPath Pattern.
The semantics of XPath Patterns are defined inductively
on the structure of the pattern. Given a document D, a
node u ∈ Nodes(D) and an XPath Pattern Q, we will, for
each node i and each edge e in Q, define the two notions
D |=u Q[i] and D |=u Q[e]. Loosely speaking they will
express that the subpattern (i.e., subtree) of Q that starts
in node i (edge e, resp.) is satisfied in the document D
starting at node u.

We say that D |=u Q[i] iff one of the following conditions
holds:

• i is of type label, its label coincides with the label of u
(where ∗ is considered to coincide with any label) and
for all edges e = (i, j) it holds that D |=u Q[e],

• label(i) = ∧ and for all edges e = (i, j) it holds that
D |=u Q[e],

• label(i) = ∨ and there exists an edge e = (i, j) such
that D |=u Q[e] or

• label(i) = ¬ and, for the unique edge e = (i, j), we
have that D 2u Q[e].

Moreover, for each edge e = (i, j) in Q, D |=u Q[e] iff

• type(e) = syntax or type(e) = self, and D |=u Q[j] or

• type(e) =↓ (resp., ⇓, ↓∗, ↑, ⇑, ↑∗, →, ⇒, ←, ⇐) and
there exists a child v of u (resp., descendant, descendant-
or-self, parent, ancestor, ancestor-or-self, next sibling,
following sibling, previous sibling, preceding sibling v
of u) such that D |=v Q[j].

Finally we say that the document D models the XPath Pat-
tern Q (D |= Q) iff D |=root(D) Q[root(Q)]. We also abbre-
viate D |=u Q[root(Q)] with D |=u Q. If D |= Q we also
sometimes write that D satisfies Q.

Figure 1(a) illustrates an example of an XPath Pattern
that is satisfied in the same set of trees as the XPath query
/a[.//b or (not(./c))]/ ∗ //d. Figure 1(b) shows a document
tree modeling the XPath Pattern from Figure 1(a).

When consideing only XPath PatternsQ without negation
or disjunction, D |= Q iff there exists a homomorphic map-
ping φ : Nodes(Q) → Nodes(D) (we say Q can be matched
onto D) such that Q’s root is matched onto D’s root and
for all edges e = (i, j) ∈ Q we have

• type(i) = syntax or type(e) = self implies φ(i) = φ(j),

• type(e) =↓ (resp., ⇓, ↓∗, ↑, ⇑, ↑∗,→,⇒,←,⇐) implies
that φ(j) is a child (resp., descendant, descendant-or-
self, parent, ancestor, ancestor-or-self, next sibling, fol-
lowing sibling, previous sibling, preceding sibling) of
φ(i).

We say that φ is a root matching for Q onto D. When we
don’t require that φ maps root(Q) onto root(D), we say that
φ is a matching. By L(Q) we denote the set of documents
that model Q.

Remark 2.2. XPath and Core XPath also allow the use
of the (binary) union operator, but, in the XPath 1.0 specifi-
cation, this operator can only be used at the highest level in
the parse tree of the query. That is, in our setting one would
be allowed to take the union of several XPath Patterns, but
not use the union operator in the patterns themselves. We
chose not to add union explicitly as, in our boolean setting,
this restricted union operator can simply be simulated by the
∨ operator without blow-up.

2.2 The Incremental Evaluation Problem
We treat the incremental evaluation problem for XPath

Patterns similarly as Balmin, Papakonstantinou, and Vianu
treated the incremental validation problem for XML schemas [1].

We consider the Boolean incremental XPath evaluation
problem. That is, given an XPath Pattern Q, a tree D such
that D |= Q, and an update to D yielding another tree D′,
we wish to efficiently check if D′ |= Q. In particular, the
cost should be less than evaluating Q on D′ from scratch.
The individual updates are the following:

(a) replace the current label of a specified node by another
label,

(b) insert a new leaf node as the next sibling of a specified
node,
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b ¬
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(a) XPath Pattern for the query
/a[.//b or (not(./c))]/ ∗ //d.

a

a e

b d

(b) Document modeling the XPath
Pattern of Figure 1(a).

Figure 1

(c) insert a new leaf node as the first child of a specified
node, and

(d) delete a specified node; if the node is an internal one,
the subtree rooted at the node is also deleted.

It should be noted that in other work it is sometimes also
allowed to insert entire subtrees into the document, instead
of single nodes. However, as the above updates allow to
insert nodes at any position in the tree, this can be accomo-
dated in our framework by inserting the nodes of the subtree
one by one.

We allow some cost-free one-time pre-processing, such as
computing an automaton representation of a pattern. We
will also initialize and then maintain an auxiliary structure
A(D) to help in the validation. The cost of the incremental
validation algorithm is evaluated w.r.t.:

(a) the time needed to test whether D′ |= Q using D and
A(D), as a function of |D| and |Q|,

(b) the time needed to compute A(D′) from D and A(D),
as a function of |D| and |Q|,

(c) the size of the auxiliary structure A(D) as a function of
|D| and |Q|.

The complexity results are summarized in Table 1. When we
state only one time bound, it holds for both (a) and (b). We
assume a RAM-model that can store, e.g., counter values of
size O(|D|+ |Q|) in constant space (1 register).

3. FULL XPATH PATTERNS
We start with an approach to incremental evaluation for

full XPath Patterns. It builds heavily on well-known tech-
niques for translating XPath into finite-state tree automata
(see, e.g., [19, 21]). The following lemma, makes this con-
nection explicit. For an automaton A let L(A) denote the
set of trees accepted by A.

Lemma 3.1. Let Q be an XPath Pattern. A non-deter-
ministic unranked tree automaton A with L(A) = L(Q) can

be constructed in time 2O(|Q|).

Here, an unranked tree automaton is a tree automaton work-
ing directly on unranked trees. Lemma 3.1 was indepen-
dently discovered (in terms of single-run query automata) by
Libkin and Sirangelo [11]. It was already known that stan-

dard constructions allowed to constructA in time 2O(poly(|Q|)).
The emphasis of Lemma 3.1 is that 2O(|Q|) suffices.

Balmin et al. [1] have shown that given an unranked tree
automaton A one can incrementally decide membership of
an XML document D in L(A) in time2 either O(log2(|D|) ·
poly(|A|) or O(depth(D) · log(width(D)) · poly(A)). This
immediately implies the following.

Theorem 3.2. Boolean incremental evaluation for an XPath
Pattern Q and an XML document D can be performed in

(1) time O(log2(|D|) · 2O(|Q|)) per update; or

(2) time O(depth(D) · log(width(D)) · 2O(|Q|)) per update;

both with an auxiliary data structure of size |D| · 2O(|Q|).

4. DOWNWARD XPATH
As seen in the previous section, an automata-theoretic

approach combined with the results from [1] easily yields a
maintenance algorithm that is polylogarithmic in the docu-
ment and exponential in the query size, with auxiliary data
which is linear in the document and exponential in the query.
This may work as long as the query is very small, but for
larger queries, the complexity becomes prohibitive.

One might think that the following approach could work:
compute a 2-way alternating tree-automaton for the query,
and try to maintain accepting runs of this automaton di-
rectly, rather than first translating to a non-deterministic
automaton. Unfortunately, each run of the alternating au-
tomaton is a tree, and we would have to maintain sets of
cuts of such trees, i.e., sets of sets of states. Actually, main-
taining acceptance of the alternating automaton more or
less amounts to the same as maintaining acceptance for its
nondeterministic counterpart. This would again make both
running time and auxiliary data exponential in the query.

In the remainder of the paper we present direct mainte-
nance algorithms for two important XPath fragments: down-
ward XPath and conjunctive forward XPath. These algo-
rithms do not involve translations into automata.

In this section, we provide an algorithm for incrementally
maintaining a downward XPath pattern, i.e., an XPath(↓,
⇓,∧,∨,¬)-pattern. We show the following result:

Theorem 4.1. Boolean incremental evaluation for an
XPath(↓,⇓,∧,∨,¬) pattern Q and XML document D can be
performed in time O(depth(D) · |Q|) per update. The size of
the auxiliary data structure is O(|D| · |Q|).
2Actually, they state a complexity bound of O(depth(D) ·
log(D)·poly(A)), but a slightly more detailed analysis shows
that the complexity is also O(depth(D) · log(width(D)) ·
poly(A))
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The algorithm works as follows. For each node u in D, with
children u1, . . . , uk, we store a record Ru consisting of

• the set of query nodes Su = {q ∈ Nodes(Q) | D |=u

Q[q]},

• for every query node q, the cardinality countSu(q) of
the set {ui | q ∈ Sui},

• the set of query nodesDu = {q | ∃u′.descendant(u, u′)∧
D |=u′

Q[q]}, and

• for every query node q, the cardinality countDu(q) of
the set {ui | q ∈ Dui}.

Then, D satisfies Q iff root(Q) is in Sroot(D). So, once the
auxiliary data structure is computed, testing whether D |=
Q is trivial. The size of each record Ru is O(|Q|), so the size
of the entire auxiliary data structure is O(|D| · |Q|).

It now suffices to show that we can incrementally update
the auxiliary data structure in time O(depth(D) · |Q|). No-
tice that, for each of the updates of a node u in D (label
change, node insertion, and node deletion), only the data
records Rv for nodes v on the path from u to the root of D
change. We recompute these data records in a bottom-up
fashion.

Let u be the next node for which the record must be
updated, let v be its parent node, and u1, . . . , uk its chil-
dren. When visiting u we assume that the updated values
countSu

new and countDu
new, and Sui

new and Dui
new, for all i ∈

{1, . . . , k} are given, and compute Su
new, Du

new, countSv
new,

and countDv
new. If u is a leaf, we have countSu

new(q) =
countDu

new(q) = 0 for all q. The recomputation works as
follows:

(1) Su
new: We compute the set Su

new by inspecting Q in a
bottom-up fashion.

In Q, we have syntax and label nodes, and for the latter
we distinguish child and descendant nodes depending
on whether the incoming edge is a child or descendant
edge. We say that a node q of Q is satisfied (w.r.t. node
u in D) if (a) q is a syntax node and q ∈ Su

new, (b) q is a
child node and countSu

new(q) > 0, or (c) q is a descendant
node and countSu

new(q) > 0 or countDu
new(q) > 0.

Now, let q be a query node with children q1, . . . , q`.
Then, q ∈ Su

new if (a) q is a label node, the label of
q matches the label of u, and all children q1, . . . , q` are
satisfied w.r.t. u; (b) q is a syntax node labeled ∧ and
all q1, . . . , q` are satisfied w.r.t. u; (c) q is a syntax node
labeled ∨ and at least one of q1, . . . , q` is satisfied w.r.t.
u; or (d) q is a syntax node labeled ¬ and its (unique)
child is not satisfied w.r.t. u.

(2) countSv
new: For all q,

countSv
new(q) =

8><>:
countSv(q) + 1 if q ∈ Su

new and q /∈ Su

countSv(q)− 1 if q /∈ Su
new and q ∈ Su

countSv(q) otherwise.

(3) Du
new:

Du
new = {q | countSu

new(q) > 0}∪{q | countDu
new(q) > 0}

c a c a c a c b

a c a c

Figure 2: XPath(→,⇒,∧) query.

(4) countDv
new: For all q,

countDv
new(q) =

8><>:
countDv(q) + 1 if q ∈ Du

new and q /∈ Du

countDv(q)− 1 if q /∈ Du
new and q ∈ Du

countDv(q) otherwise.

This algorithm requires time O(depth(D) · |Q|). Indeed,
we only have to update depth(D) records, each of which
can easily be done in time O(|Q|). Furthermore, as the
membership of nodes in the set {u ∈ Nodes(D) | D |=u Q}
only changes for nodes on the path from the update to D’s
root, it is also easy to output the changes to this set in time
O(depth(D) · |Q|).

5. XPath(→,⇒,∧) ON STRINGS
In the previous section, we presented an algorithm to ef-

ficiently maintain downward navigational queries. Our goal
in the rest of the paper will be to extend this fragment by
adding the next-sibling and following-sibling axes. This will,
however, prove to be non-trivial and will come at the cost
of dropping negation and disjunction in the queries.

In this section, we present an algorithm for incrementally
evaluating XPath(→,⇒,∧) on strings. This algorithm will
then be used in Section 6 to extend the algorithm of the pre-
vious section to also handle the next- and following-sibling
axes. More specifically, this section is devoted to proving
the following result.

Theorem 5.1. Boolean incremental evaluation for an
XPath(→,⇒,∧) pattern Q and a string D can be performed
in time O(log(|D|) · poly(|Q|)) per update with an auxiliary
data structure of size O(|D| · |Q|3).

This is the most technically difficult result of the paper, and
a reader willing to assume the above theorem could skip
ahead to Section 6 and return to this point later. Moreover,
the present paper does not provide the correctness proof for
the algorithm presented in this section.

A slight change in presentation.
In order to simplify the presentation, we will in the present

section slightly modify the query that is the input of our
problem. The query Q will be adapted to a new query Q′

by adding a new root, labeled ∗, which has an outgoing edge
to the old root of the query. This edge is a child edge if we
are looking for a root matching and a descendant edge if we
are looking for any matching. Similarly, every old leaf of the
query will have an outgoing descendant edge to a new leaf
labeled ∗. So, from now on, we assume that Q is always a
pattern with a unique edge leaving the root. The query in
Figure 3(a) (without the numbers 1–7), for example, is an
adapted version of the query in Figure 2.

5.1 Evaluating an NFA on Strings
First of all, we explain the intuition behind incrementally

evaluating a non-deterministic finite automaton (NFA) on
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strings, and the challenges that arise when trying to adapt
this algorithm for incrementally evaluating XPath(→,⇒,∧)
on strings. The following technique was first described by
Patnaik and Immerman [15] and worked out in more de-
tail by Balmin et al. [1]. Let N = (States(N),Alpha(N),
Rules(N), init(N),Final(N)) be an NFA and assume that
we have a string w = a1 · · · an for which we incrementally
want to maintain whether w ∈ L(N).

We first describe the auxiliary data structure we will main-
tain to do this efficiently. For each i, j, 1 ≤ i < j ≤ n, let Tij

be the transition relation {(p, q) | p, q ∈ States(N), p
ai···aj→

q}, where p
ai···aj→ q denotes that N can reach state q when

it starts in state p and reads ai · · · aj . Note that Tij =
Tik ◦ T(k+1)j , i < k < j, where ◦ denotes composition of
binary relations.

For simplicity, assume first that n is a power of 2, say n =
2k. The main idea is to keep as auxiliary information just
the Tij for intervals [i, j] obtained by recursively splitting
[1, n] into halves, until i = j. More precisely, consider the
transition relation tree Tn whose nodes are sets Tij , defined
inductively as follows:

• the root is T1n;

• each node Tij for which j − i > 0 has children Tik and
T(k+1)j where k = i− 1 + j−i+1

2
; and

• the Tii are the leaves, for all 1 ≤ i ≤ n.

Note that Tn has n+ (n/2) + · · ·+ 2 + 1 = 2n− 1 nodes and
has depth log n. Thus, the size of the auxiliary structure is
O(n|States(N)|2).

First, notice that given Tn it is easy to decide whether
w ∈ L(N). Indeed, w ∈ L(N) iff (q, f) ∈ T1n for some
q ∈ init(N) and f ∈ Final(N). Therefore, we only have
to show that this auxiliary data structure can efficiently be
updated.

For simplicity, consider the case when one update occurs,
changing the label of the symbol at position k of w to b.
That is, the new string is w = a1 · · · ak−1bak+1 · · · an. Note
that the relations Tij ∈ Tn that are affected by the updates
are those lying on the path from the leaf Tkk to the root
of Tn. Denote the set of these relations by I and notice
that it contains at most log n relations. The tree Tn can
now be updated by recomputing the Tij ’s in I bottom-up
as follows: First, the leaf relation Tii is set according to
Rules(N) and b. Then each Tij ∈ I with children T ′ and
T ′′, of which one has been recomputed, is replaced by T ′◦T ′′.
Thus, at most logn relations have been recomputed, each in
time O(|States(N)|2 log |States(N)|), yielding a total time of
O(|States(N)|2 log |States(N)| logn).

The above approach can easily be adapted to strings whose
length is not a power of 2. Further, the auxiliary data struc-
ture has size O(n · |States(N)|2). Finally, handling updates
in which elements are inserted or deleted is also done in [1],
but then some precautions have to be taken in order to make
sure that the tree Tn remains properly balanced.

5.2 From NFAs to XPath(→,⇒,∧)

We now extend this approach to evaluate XPath patterns
on strings. The most straightforward approach would be
to translate the XPath query into a finite automaton and
apply similar ideas as above. However, to do this transla-
tion efficiently, an alternating automaton would be required.

Indeed, the branching in the pattern should be handled by
universal states, whereas the ⇒ axis requires guessing and
hence existential states. As already mentioned, incremen-
tally maintaining an alternating automaton seems to require
space exponential in the automaton, and is thus not feasible.
Therefore, we describe a more direct algorithm below.

In this section, we are only concerned with matching query
patterns on strings. Therefore, if a query node u has two
children v1 and v2, and type((u, v1)) = type((u, v2)) =→,
then any matching of the pattern on a string must match
v1 and v2 to the same string position. This means that we
might as well merge v1 and v2 into a single query node v (if
v1 and v2 have conflicting labels, we simply conclude that
there is no string onto which the pattern can be matched).
For this reason we assume in the rest of this section, that
no query node has two outgoing edges with type “→”.

Essentially the incremental algorithm for an NFA remem-
bers, for each relation Tij , a function mapping each state p
onto a set P , where P = {q | (p, q) ∈ Tij} (but it stores this
function directly as a binary relation). We will remember
something similar for XPath(→,⇒,∧), which we first illus-
trate by means of an example. For an edge e = (x, y) we
refer to x as the source and y as the target of e.

Example 5.2. Consider the query Q in Figure 3(a) and
the string D = cacac. Intuitively, D should be seen as a
substring of a much larger string, for which we want to com-
pute the information for Ti,j . Intuitively, we will remember
all pairs (e1, e2) ∈ Edges(Q)× Edges(Q) such that the part
of the query from the target of e1 to the source of e2 can
be matched inside D, much like in the NFA case. We talk
about edges here because when combining a matching of a
part of a query on a part of the string with another matching
for a consecutive part of the string, what really interests us
is which query edges lead from one string part to the next.

For D = cacac, we remember the pairs (1, 2), (1, 3), (1, 4),
(1, 5), (1, 6), (1, 7). The intuition is that, if we read D from
left to right and we start matching in, e.g., edge3 1, then
pair (1, 4) tells us that we can match until edge 4 at the end
of D, ignoring all paths in Q that branch away from the path
from 1 to 4. So we essentially treat each path in Q as an
NFA, where the edges are its states. The difference from the
NFA approach is that single pairs do not do not tell us the
whole story. For instance, the pair (1, 4) doesn’t tell us what
happens with the path that branches away, the one from
edge 5 to edge 7. Thus we have to combine pairs in order
to get matchings that span more than one path in Q. For
example, (1, 4) and (1, 6) can be combined to form a partial
matching of Q in the following way. Let Q′ be obtained from
Q by cutting off everything left of 1 and everything right of
4 and 6 (see Figure 3(b)). We can now match Q′ into D such
that the target of 1 is matched precisely onto the leftmost
symbol and the sources of 4 and 6 onto the rightmost symbol,
so the matching could continue to the right ofD. Notice that
we do not care (yet) about the target labels of 4 and 6.

Note, however, that we cannot combine pairs arbitrarily:
(1, 3) and (1, 7) cannot be combined into a correct partial
matching. When combining matchings for (1, 3) and (1, 7)
naively, the descendant requirement (edge 5) will not be sat-
isfied. To solve this problem, note that we have to be careful

3For the sake of the argument, the reader can assume that
the source node of edge 1 is already matched one position
before the first position of D.
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(a) The query Q of Example 5.2.

∗ c a c a c a

a c a

1 2 3 4

6

5

(b) The query Q′ of Example 5.2.

Figure 3

about which information to store. A naive generalization of
the NFA approach would store pairs (p, P ) such that p is a
start edge and P is a set of edges which, together, describe
a good partial matching (for example, the pair (1, {4, 6})).
But as there can be exponentially many good partial match-
ings on a string in general,4 maintaining this information
would require exponential space and time. Therefore, we
have to adopt a smarter approach.

Towards the Incremental Algorithm.
The rough outline of the algorithm for incrementally eval-

uating an XPath(→,⇒,∧) pattern can now be described. It
works quite similar to the algorithm for NFAs described in
Section 5.1, with the three crucial differences that

• the relations Tij store different information;

• the algorithm for joining two relations Tik and T(k+1)j

into Tij is completely different; and

• the test for acceptance that needs to be performed at
T1,n is different.

Here, we describe what information will be stored in Tij .
Section 5.3 treats the problem of joining the information.
To this end, we need some terminology.

A path in a pattern Q is a sequence ρ = (x1, y1) · · · (xk, yk)
of edges of Q such that yi = xi+1 for all i ∈ {1, . . . , k − 1}.
If x1 is the root and yk is a leaf, we say that ρ is a maximal
path. A cut of a pattern Q is a subset C of Edges(Q) such
that every maximal path in Q has exactly one edge in C.

Let C be a cut and e = (x, y) be an edge of Q such that e is
not below any edge in C. The induced subquery of Q w.r.t.
e and C, denoted subQ(Q, e, C), is the pattern obtained
from Q by considering only descendants of e, and removing
everything below C. More formally, subQ(Q, e, C) is the
query Q′ where

• Nodes(Q′) is {x, y} ] {z | descendant(y, z) in Q and
@(u, v) ∈ C such that descendant(v, z)};

• the edges in Q′ are the same as in Q; and

• all edges and nodes in Q′ inherit their types from Q.

To simplify notation further on, we use subQ(Q,>, C) to
denote subQ(Q, e, C) where e is the unique edge leaving
root(Q), and subQ(Q, e,⊥) to denote subQ(Q, e, C) where
C is the cut consisting of all edges entering the leaves of Q.

As we assumed in the beginning of this section that Q
contains a new root node, above its old root, we have the
following property for all queries and subqueries:
4Take a query that has only wildcards, has depth k on each
path from root to leaf and the root edge has k outgoing
“⇒”-edges.

Remark 5.3. In this section, all queries and induced sub-
queries of Q have a unique edge leaving their root.

We now define the notion of a partial matching of a sub-
query into a string D. Our terminology will be slightly more
refined — we use full and top matchings. Intuitively, a full
matching φ of a query Q will map all the nodes of Q into
D, except for its root node. A top matching of Q will be a
partial matching that only matches some upper part of Q
into D, also excluding the root node.

Definition 5.4 (Top matching, full matching). Let
x be the root node of Q, and e = (x, y) the unique edge leav-
ing x. Let C be a cut of Q and Clow = {c1, . . . , cn} = {v |
∃u.(u, v) ∈ C}. Let inner(Q,C) be all nodes of Q that are
descendants of x and have a descendant in Clow .

Then φ : inner(Q,C) → Nodes(D) is a top matching of
Q if the following hold:

• φ is a matching from inner(Q,C) to D;

• if e is a “→”-edge, then φ(y) is the first position in D;
and

• for each j = 1, . . . , n, if there is a u such that (u, cj) ∈
C is a “→”-edge, then φ(u) is the last position in D.

We say that C is a witness for φ and, for any C′ ⊆ C, we
also say that φ is a top matching w.r.t. C′. We say that φ
is a full matching of Q on D, if Clow is the set of leaves of
Q. Hence, every full matching is also a top matching.

The Incremental Algorithm.
Recall that, in the incremental evaluation algorithm, Tij

denotes the auxiliary data record for the string ai · · · aj . Ex-
ample 5.2 suggests that a naive generalization of the algo-
rithm for NFAs could be to store all pairs (e, C) in Tij , where
e is an edge and C a cut, such that there is a full matching of
subQ(Q, e, C) on ai · · · aj . Unfortunately, in general, there
are exponentially many such sets C.

Intuitively, our algorithm stores a ternary relation over
edges in each Tij . This relation is a combination of the
binary relation shown in Example 5.2, which contains pairs
of edges (e1, e2) such that there exists a top matching of
subQ(Q, e1,⊥) w.r.t. {e2}, and a co-matchability constraint,
which allows us to infer which such pairs can be combined
to form a consistent matching. We formalize this in terms of
matching triples, for which we first introduce some notation.

Definition 5.5. An edge e = (x, y) in Q is direct if ei-
ther

• e is a →-edge; or
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• e is a ⇒-edge and all other edges (x, z) are also ⇒-
edges.

All other edges in Q are called bridge edges. A path in
Q that consists only of direct edges is a direct path. Let
e1e2 · · · ek be a path in Q. Then the bridge distance of ek

from e1, denoted ‖e1, ek‖ is the number of bridge edges (i.e.,
non-direct edges) in {e2, . . . , ek} (i.e., we count ek, but not
e1). If ‖e1, ek‖ = 0, we also say that ek is a direct descen-
dant of e1. The set of all bridge edges on the path from e1
to ek will be denoted as Bridges(e1, ek).

Notice that each bridge edge is a ⇒-edge and that ‖e1, e2‖
is only defined if e2 is a descendant of e1 in Q.

Definition 5.6 (Matching triple). Let etop, ebot, e be
query edges of Q such that e is a descendant and ebot a di-
rect descendant of etop. Then (etop, ebot, e) is a matching
triple for D if there is a top matching w.r.t. {ebot, e} for
subQ(Q, etop,⊥) on D. We denote the set of matching triples
of D by T (D).

For the incremental update algorithm, we maintain a similar
tree Tn as in Section 5.1, but it is computed differently:

(A) For each position i in the string, compute Tii, i.e., the
set of all matching triples for ai.

(B) For each Tij in the data structure, compute Tij from
Tik and T(k+1)j , where k = i−1+ j−i+1

2
, by adding, for

each pair of edges etop, ebot in Q such that ebot is a di-
rect descendant of etop, the triples (etop, ebot, e) that are
computed by Join(Q,Tik,T(k+1)j ,etop,ebot). The Join-
procedure, which is the main technical difficulty in this
paper, is explained in Section 5.3. For the time being,
it is only important to know that it runs in polynomial
time in Q and that it computes the matching triples for
Tij correctly.

At the root T1,n of the data structure we have that D |= Q
if and only if there exists a direct descendant e1 of etop such
that for all leaf edges e2 of Q we have (etop, e1, e2) ∈ T1,n,
where etop is the unique root edge of Q (Lemma 5.7 below).
Clearly, this can be tested in polynomial time. The size of
the auxiliary data structure Tn is O(n · |Q|3) = O(|D| · |Q|3).

Lemma 5.7. Let Leaf(Q) be the set of edges entering a
leaf of Q. Let etop be the root edge of Q, and ebot ∈ Leaf(Q)
be a direct descendant of etop. Then, there is a full matching
of Q on D, iff for all e ∈ Leaf(Q), (etop, ebot, e) ∈ T (D).

When a position of D is updated, the incremental update
mechanism is exactly the same as in Section 5.1, with the
only difference that the updates in Tn follow the rules (A)
and (B) above for recomputing the Tij ’s on the path from
a leaf to the root. Such an update takes poly(Q) time for
(A), and O(log(D) · poly(Q)) time for the iteration in (B).
Finally, testing if the root condition is fulfilled again takes
time polynomial in Q. Addressing node insertions and node
deletions can be taken care of by keeping Tn balanced, which
can be done similarly as in the paper by Balmin et al. [1].

5.3 Joining the Data for Two Substrings
In this section we will present the join algorithm (Algo-

rithm 1). Before we can state the algorithm, we first have
to give some additional definitions.

Definition 5.8 (Bridge width). Let r be the unique
edge leaving the root of Q. For a query Q, the bridge width
of Q, denoted ‖Q‖bw, is the maximal bridge distance in Q,
i.e., ‖Q‖bw = max {‖e1, e2‖ | e1, e2 ∈ Edges(Q)}. The sub-
query of Q with bridge width i, denoted bwi(Q), is the query
obtained from Q by removing all edges e such that ‖r, e‖ > i,
and removing all nodes thus disconnected from r.

By D1 · D2 we denote the concatenation of strings D1

and D2. Finally, for C ⊆ Edges(Q), let low(C) be the set
obtained by removing all edges from C which have a descen-
dant in C.

The core problem for the join algorithm is the following:
Given strings D1 and D2, the sets of matching triples T (D1)
and T (D2), the query Q, and edges etop and ebot from Q
such that ebot is a direct descendant of etop, compute all
triples (etop, ebot, e) that belong to T (D1 ·D2). We can then
compute the set of all possible matching triples by iterating
over all choices of etop and ebot. A procedure for the core
problem is given as Algorithm 1. To get a feel for what the
algorithm must do, we consider an example.

Example 5.9. Consider the query pattern Q in Figure 4.
Each double line denotes a⇒-edge, and a single line denotes
a sequence of→-edges. Notice that we depicted Q sideways,
so all edges are directed from left to right. We now assume
that we already have the matching triples T (D1) and T (D2)
for strings D1 and D2 and we want to compute T (D), where
D = D1 ·D2. For our example, the matching triples for D1

and D2 are the ones given in Figure 4(b).
Strictly speaking, T (D1) and T (D2) would contain many

more matching triples, such as (etop, etop, etop), but we limit
ourselves to an interesting subset here. We cross out a
few triples because we want to explicitly assume that they
are not matching triples. (Notice that it is possible that
(e, c1, c3) is a matching triple, while (e, c1, c4) is not.) We
depict the triples in T (D2) with dotted lines in Figure 4.

The algorithm takes the two sets of matching triples as
input, together with the edges etop and ebot. It will infer
every edge e such that (etop, ebot, e) is a matching triple. The
algorithm iterates over edges with increasing bridge distance
from etop. In the figure, the edges on the path from etop to
ebot have bridge distance 0, the e-edge, together with the
edges on the middle line have bridge distance 1, and all
other edges have bridge distance 2.

Initially, on lines (3)–(8) of the algorithm, we join (etop, c
′, c′)

with (c′, ebot, ebot) into (etop, ebot, ebot), which is our first
triple in T (D). During the computation we iteratively con-
struct a set C of edges (x, y) in Q that contains edges for
which we matched the source x in D1 and the target y in
D2, and which forms a cut through Q. Essentially, C should
be a “greedy cut”, i.e., we remember the edges that are as
low in Q as possible. Therefore, on line 5, we set C = {c′}
which forms a cut through the part of Q only containing the
edges at distance 0.

We then proceed to the loop that begins on line 12. In the
first iteration, when j = 0, we should consider all edges e
with distance 0 from etop. However, in our example, all such
edges lie on the path from etop to ebot. We can never have
a matching triple (etop, ebot, e) where e 6= ebot lies on the
same path as ebot, since only one of them can be matched
at the end of D. Thus we already covered this case by adding
(etop, ebot, ebot) to T (D).

Therefore, we proceed to the second iteration of the while
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Algorithm 1 Join algorithm. The algorithm takes a query Q, two sets of matching triples T (D1) and T (D2) and two
edges etop, ebot as input. It is assumed that ebot is a direct descendant of etop. The algorithm computes all matching triples
(etop, ebot, e) of D = D1 ·D2, where e is a descendant of etop.

Join(Query Q, Triples T (D1), Triples T (D2), Edge etop, Edge ebot)
2: P ← subQ(Q, etop,⊥)

if ∃c′ : (etop, c
′, c′) ∈ T (D1) ∧ (c′, ebot, ebot) ∈ T (D2) then

4: c′ ← the lowermost such edge
C ← {c′}

6: T0(D)← {(etop, ebot, ebot)}
else

8: return ∅
end if

10: j ← 0
T1(D)← · · · ← T‖P‖bw(D)← ∅

12: while j ≤ ‖P‖bw do
C′ ← ∅

14: for all e ∈ Edges(P ) s.t. ‖etop, e‖ = j do
if (c′, ebot, e) ∈ T (D2) then

16: Tj(D)← Tj(D) ∪ {(etop, ebot, e)}
else if ∃e′ ∈ C \ {c′} ∃e′′ : (e′, e′′, e) ∈ T (D2) then

18: Tj(D)← Tj(D) ∪ {(etop, ebot, e)}
else if ∃e′ : (etop, c

′, e′) ∈ T (D1) ∧(e′, e, e) ∈ T (D2) ∧∀e′′ ∈ Bridges(etop, e
′) : ‖etop, e′′‖ < j

20: → ∃c′′ ∈ C : (e′′, c′′, e′) ∈ T (D1) then
e′ ← the lowermost such edge

22: C′ ← C′ ∪ {e′}
Tj(D)← Tj(D) ∪ {(etop, ebot, e)}

24: end if
end for

26: C ← C ∪ low(C′)
j ← j + 1

28: end while
return ∪‖P‖bw

j=0 Tj(D)

loop in which all edges at distance 1 are considered. Here,
the if-statement on lines 19-20 applies, and we can combine

• (etop, c
′, c1) ∈ T (D1) with (c1, e1, e1) ∈ T (D2) into

(etop, ebot, e1).

By doing so, we add c1 to C′ on line 22. This is the set
of candidate edges to be added to the cut C. As at the
end of the while loop, we still have C′ = {c1}, we obtain
C = {c′, c1} after the second iteration. Notice that {c′, c1}
indeed forms a cut of bw1(Q), the part of Q only containing
the edges with distance at most 1.

The third iteration of the while loop is the first one that
becomes interesting, as now we have to consider a combi-
nation of three paths in the query, while our triples only
store information about pairs of paths. First, we discuss
how naive joins may go wrong. One may be tempted to
conclude from (etop, c

′, c4) ∈ T (D1), (c′, ebot, ebot) ∈ T (D2),
and (c4, e4, e4) ∈ T (D2) that (etop, ebot, e4) is a matching
triple for D. However, it is not! And, indeed, there is no
rule in the algorithm which would add (etop, ebot, e4) to the
set of matching triples. Essentially, the reasons are that
(i) we could match up to c2 in D1 (since (etop, c

′, c2) ∈
T (D1)), but we could not continue this matching in D2

(since (c2, e1, e1) 6∈ T (D2)) and (ii) (e, c1, c4) /∈ T (D1). In
other words, we cannot achieve a matching that is consis-
tent with the lowest possible cut C = {c′, c1} that we have
computed thus far. This is the point where we need to make
use of C to make the correct combinations, and decide which

matching can be combined and which cannot. Therefore, by
applying lines 19-20 we combine, among others,

• (etop, c
′, c3) and (e, c1, c3) from T (D1) with (c3, e3, e3)

from T (D2) into (etop, ebot, e3).

After iteration three, we will, for this query, have computed
all the matching triples and a cut C = {c′, c1, c3}. Should
the query be larger, C would be used to witness further
matchings. This concludes Example 5.9.

We now present some more general ideas behind Algo-
rithm 1. We already explained in the example that the algo-
rithm investigates triples (etop, ebot, e) in order of increasing
bridge distance between etop and e, and that C is a greedy
cut containing edges (x, y) for which x is matched in D1 and
y in D2. We assume that the algorithm has computed all
the triples with ‖etop, e‖ < j and that C is the lowermost set
of edges with bridge distance smaller than j such that there
is a top matching of P = subQ(Q, etop,⊥) with respect to C
on D1. Now, consider what the algorithm does for an edge
e with ‖etop, e‖ = j. This edge is submitted to three tests:
the if-statements on lines 15, 17, and 19-20. The situations
the tests look for are depicted in Figure 5. Each double line
denotes a ⇒-edge, and a single line denotes a sequence of
→-edges. All edges are directed from left to right.

The first test, on line 15, looks for the situation depicted
in Figure 5(a), i.e., when the path from etop to e branches
of from the path from etop to ebot after the edge c′. If
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∗
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etop ebot

e c1 c2 e1

c3 c4 e3 e4

(a) Abstract query.

T (D1) T (D2)
(etop, c

′, c′) (etop, c
′, c1) (etop, c

′, c2) (etop, c
′, c3) (etop, c

′, c4) (c′, ebot, ebot) (c1, e1, e1) �����(c2, e1, e1)
(e, c1, c3) (e, c2, c3) (e, c2, c4) ����

(e, c1, c4) . . . (c3, e3, e3) (c4, e4, e4) . . .

(b) Matching triples for D1 and D2.

Figure 4: Abstract query and matching triples for Example 5.9.

this is the case, the algorithm only has to check whether
(c′, ebot, e) ∈ T (D2).

The second test, on line 17, looks for the situation in Fig-
ure 5(b). Here, there is an edge e′, different from c′, that lies
on the path from etop to e and already belongs to C (which
implies ‖etop, e′‖ < j). The algorithm now only needs to test
whether, for some e′′ the triple (e′, e′′, e) belongs to T (D2).

The third test, on lines 19-20, is the most complicated. It
looks for the situation in Figure 5(c). Here, no edge on the
path from etop to e yet belongs to C. This means that the
algorithm has to verify that the edge e′ that is on the path
from etop to e and goes from D1 into D2 in the intended
matching, is also consistent with the cut C constructed thus
far.

By applying Algorithm 1 for all possible edges ebot and
etop we obtain the following.

Lemma 5.10. Given the query Q and the sets T (D1) and
T (D2) of matching triples for Q on strings D1 and D2, the
set T (D) of matching triples for Q on D = D1 ·D2 can be
computed in time polynomial in |Q|.

Proof. We first analyze the running time of Algorithm 1.
Its first part (lines 3-9) takes time linear in |Q|. (We can
assume constant time lookup in the sets T (D1) and T (D2),
which can be implemented, e.g., as tree-dimensional matri-
ces.) In the second part (lines 10-28) all edges that are
descendants of etop, in order of increasing bridge distance,
are considered. The for-loop that starts on line 14 makes
one iteration per such edge. Within the loop, three cases
are distinguished by the if-statements on lines 15, 17 and
19-20. The most complicated of these is the third, lines 19-
20, which looks at cubically many triples, and thus runs in
cubic time. All in all, Algorithm 1 runs in time O(|Q|4).

To compute all matching triples in T (D) we have to call
the join algorithm for all pairs (etop, ebot), i.e., a quadratic
number of times, so the total running time is O(|Q|6).

The auxiliary data structure needed for incremental eval-
uation over a string D has a number of tree nodes that is
linear in |D|. Each tree node contains a set of matching
triples, and thus needs space O(|Q|3). In total, the size of
the auxiliary data structure is O(|D| · |Q|3). Together with
Lemma 5.10, this gives us Theorem 5.1.

6. CONJUNCTIVE FORWARD XPATH
After the preparatory work in the previous section, we

are now ready to extend the algorithm of Section 4 to also
handle the next-sibling (→) and following-sibling (⇒) axes.
However, in order to do this we disallow disjunction (∨) and
negation (¬) in the pattern, leaving us with the fragment
XPath(↓,⇓,→,⇒,∧), which we refer to as conjunctive for-
ward XPath. All such queries can be thought of as tree
pattern queries with only label nodes, so we don’t need to
consider syntax nodes. Every branching in the pattern im-
plicitly denotes a conjunction. We will show the following.

Theorem 6.1. Boolean incremental evaluation for an
XPath(↓,⇓,→,⇒,∧) pattern Q and an XML document D
runs in time O(depth(D) · log(width(D)) · poly(|Q|)) per up-
date, with an auxiliary data structure of size O(|D| · |Q|3).

For a node q of Q, let the subpattern without siblings of
q, denoted subtreeNoSibling(q), be the subtree of Q rooted
at q from which all outgoing sibling edges (and correspond-
ing subtrees) leaving q are removed. Here, by sibling edge,
we mean both “→”- and “⇒”-edges. Notice that we only
removed sibling edges that are directly attached to q, so
subtreeNoSibling(q) can still contain sibling edges deeper in
the pattern.

Further, for a node q of Q, the subpattern with only sib-
lings of q, denoted subtreeOnlySibling(q), is the subtree of Q
rooted at q and containing all nodes reachable from q by fol-
lowing only sibling edges. Notice that subtreeOnlySibling(q)
only contains sibling edges, and is thus a query in the frag-
ment XPath(→,⇒,∧) treated in the previous section.

Let downNodes(Q) be the subset of Nodes(Q) such that
for each q ∈ downNodes(Q), the unique incoming edge to q
in Q has type ↓ or ⇓.

The algorithm works as follows. For each node u in D we
store a record Ru consisting of:

• the set of query nodes
Su = {q ∈ Nodes(Q) | D |=u subtreeNoSibling(q)},

• the set of query nodes

Cu = {q ∈ downNodes(Q) | ∃u′.child(u, u′) ∧ D |=u′

Q[q]},

• the set of query nodes
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Figure 5: Illustrations of the situations identified by the if-statements in the for-loop of Algorithm 1.

Du = {q ∈ Nodes(Q) | ∃u′.descendant(u, u′) ∧D |=u′

Q[q]},

• for each query node q the integer countDu(q) =

|{u′ | child(u, u′) ∧ ∃u′′ descendant(u′, u′′) ∧ D |=u′′

Q[q]}|.

Without loss of generality, we assume that the root node
of Q does not have outgoing sibling edges. Indeed, if it
has, it can never be mapped to the root of D. Therefore, it
suffices to check whether Sroot(D) contains root(Q) to decide
whether D |= Q.

However, to maintain the above records, we still need to
store some additional information. For each node u of D
and each query node q ∈ downNodes(Q) we also store the
data structures needed to incrementally maintain the mem-
bership of a string w in subtreeOnlySibling(q). Here, w is
a string formed by relabeled versions of the children of u in
D, and the data structures are these maintained by the al-
gorithm in Section 5. The concrete details about the string
w are given below.

We now show how the records Ru can be updated. As
in Section 4, it suffices to recompute this information for
all nodes on the path of the updated node to the root. Let
u be the next node to be updated, v be its parent, and
u1, . . . , uk its children. We use Su

new, Cu
new, etc. to refer to

the record values after the update. We assume that Cu
new,

Du
new, and countDu

new(q) are given and show how to compute
Su

new, Cv
new, Dv

new, and countDv
new(q). If u is a leaf node, we

have Cu = Du = ∅ and countDu = 0, for all query nodes q.

• Su
new: For a child q′ of q, we say that q′ is a ↓-child

(resp., ⇓-child), if type((q, q′)) =↓ (resp., ⇓). A ↓-
child q′ is satisfied if q′ ∈ Cu

new, and a ⇓-child q′ if
q′ ∈ Cu

new ∪Du
new. Then, q ∈ Su

new if q’s label matches
the label of u and all its ↓- and ⇓-children are satisfied.

• Cv
new: To know whether D |=u′

Q[q] for some child u′

of v, we have to consider all query nodes which are
reachable from q by following edges typed with sibling
axes, i.e., all nodes in subtreeOnlySibling(q). Indeed,
q ∈ Cv should hold if these reachable query nodes can
be matched to children of v in such a manner that

the matching is (1) consistent with the sibling edges of
the query and (2) every query node q′ that is reachable
from q by sibling edges is matched to such a child node
u′ such that Du′ |= subtreeNoSibling(q′), where Du′ is

the subtree of D rooted at u′, i.e., q′ ∈ Su′
.

The existence of such a matching can efficiently be
decided (and maintained) as follows. First, consider
the string w = v1 · · ·u · · · vn, corresponding to the se-
quence v1 · · ·u · · · vn of children of v where the vi = Svi

(and u = Su
new), i.e., the label is formed by the set

of query nodes whose subpattern without siblings can
be matched here. Second, consider the query Qsib =
subtreeOnlySibling(q). Then, we say that a query
node q′ of Qsib matches a string symbol vi = Svi iff
q′ ∈ Svi . Now, q ∈ Cv iff there exists a matching of
Qsib on w. This matching does not need to be a root
matching, but can be any matching. Furthermore, no-
tice that at most one label, namely the one for u, in
w changes when an update occurs. Therefore, we can
use the algorithm presented in Section 5 to incremen-
tally maintain tree pattern queries over strings, in this
slightly altered semantics, to efficiently decide whether
q ∈ Cv

new.

• countDv
new: For all q, countDv

new(q)

=

8><>:
countDv(q) + 1 if q ∈ Du

new and q /∈ Du
old

countDv(q)− 1 if q /∈ Du
new and q ∈ Du

old

countDv(q) otherwise

• Dv
new : Dv

new = Cv
new ∪ {q | countDv

new(q) > 0}.

We argue that the algorithm works in time O(depth(D) ·
log(width(D))·poly(|Q|)). We have to update at most depth(D)
nodes, so it suffices to argue that handling one node can be
done in time O(log(width(D)) · poly(|Q|)). All sets except
Cv can easily be updated in timeO(|Q|). Further, for updat-
ing Cv, we have to apply the incremental maintenance algo-
rithm for strings, which has complexityO(log(w)·poly(|P |)),
where w ≤ width(D) (see Theorem 5.1) and P is the query
to be maintained. This algorithm has to be run for all
query nodes q ∈ downNodes(Q) and corresponding queries
subtreeOnlySibling(Q). These subpatterns are all disjoint,
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and therefore the sum of their sizes is at most |Q|. Fur-
thermore, the slightly altered semantics of the matching re-
lation (that a query node matches a document node if the
label of the query node is in the set defined by the doc-
ument node) also does not increase the complexity of the
algorithm in Section 5 beyond O(log(w) · poly(|P |)). This
all together means that the update of Cv can be done in
time O(width(D) · poly(|Q|)).

Finally, we show that the data structure can be stored in
space O(|D| · |Q|3). As in Section 4, the node records can
be stored in space O(|D| · |Q|). However, this is dominated
by the space needed to store the auxiliary data structures
for the incremental maintenance algorithm for strings. Ac-
cording to Theorem 5.1 these data structures can be stored
in space O(|w| · |P |3), where w is the string and P the query
to be evaluated. Then, as all subpatterns we use for incre-
mental string maintenance are disjoint, and every document
node has only one parent, it follows that all information can
be stored in space O(|D| · |Q|3).

7. CONCLUSIONS AND FURTHER DIREC-
TIONS

We have shown that incremental evaluation of XPath queries
can be performed significantly more efficiently than re-evaluation,
for several practically interesting fragments of XPath.

Of course, our study is far from complete and this work
should be seen as an initial theoretical step in this line of
work. We hope that we were able to show that, incremen-
tal evaluation for some seemingly very innocent fragments
of XPath (essentially the tree pattern fragment) is already
quite non-trivial, even if the XML data is structured as a
string instead of a tree (Section 5). These are the most
important directions we want to investigate in the future:

• Extending the algorithm/complexity result from Sec-
tion 5 to trees.

• More expressive fragments of XPath, for an algorithm
that is more efficient than the one in Section 3 (e.g.,
w.r.t. negation and 2-way navigation).

• Investigate adding data values to XPath fragments.

• Strengthen the view maintenance approach. Ideally,
we would like to be able to maintain a set of desig-
nated output nodes in XPath Patterns, that produce a
relation as output of the query.

• Investigate whether the approach in Section 3 can be
strengthened by using Simon’s theorem, which has al-
ready proved to be useful for XPath evaluation (see [5]).
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