
Query Languages for Data Exchange:
Beyond Unions of Conjunctive Queries

Marcelo Arenas
Dept. of Computer Science

PUC Chile
marenas@ing.puc.cl

Pablo Barceló
Dept. of Computer Science

Univ. of Chile
pbarcelo@dcc.uchile.cl

Juan Reutter
Dept. of Computer Science

PUC Chile
jlreutte@puc.cl

ABSTRACT
The class of unions of conjunctive queries (UCQ) has been shown
to be particularly well-behaved for data exchange; its certain an-
swers can be computed in polynomial time (in terms of data com-
plexity). However, this is not the only class with this property; the
certain answers to any DATALOG program can also can be com-
puted in polynomial time. The problem is that both UCQ and
DATALOG do not allow negated atoms, as adding an unrestricted
form of negation to these languages yields to intractability.

In this paper, we propose a language called DATALOGC(6=) that
extends DATALOG with a restricted form of negation, and study
some of its fundamental properties. In particular, we show that
the certain answers to a DATALOGC(6=) program can be computed
in polynomial time (in terms of data complexity), and that ev-
ery union of conjunctive queries with at most one inequality or
negated relational atom per disjunct, can be efficiently rewritten as
a DATALOGC(6=) program in the context of data exchange. Further-
more, we show that this is also the case for a syntactic restriction
of the class of unions of conjunctive queries with at most two in-
equalities per disjunct. This syntactic restriction is given by two
conditions that are optimal, in the sense that computing certain an-
swers becomes intractable if one removes any of them. Finally, we
provide a thorough analysis of the combined complexity of com-
puting certain answers to DATALOGC(6=) programs and other re-
lated query languages. In particular, we show that this problem
is EXPTIME-complete for DATALOGC(6=), even if one restricts to
conjunctive queries with single inequalities, which is a fragment
of DATALOGC(6=) by the result mentioned above. Furthermore,
we show that the combined complexity isCONEXPTIME-complete
for the case of conjunctive queries withk inequalities, for every
k ≥ 2.

1. INTRODUCTION
Data exchange is the problem of computing an instance of atarget
schema, given an instance of asourceschema and a specification of
the relationship between source and target data. Although data ex-
change is considered to be an old database problem, its theoretical
foundations have only been laid out very recently by the seminal

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
ICDT 2009, March 23–25, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-423-2/09/0003 ...$5.00

work of Fagin, Kolaitis, Miller and Popa [8]. Both the study of
data exchange and schema mappings have become an active area
of research during the last years in the database community (see
e.g. [8, 9, 4, 7, 16, 12, 17, 11]).

In formal terms, a data exchange setting is a tripleM = (S, T,
Σst), whereS is asourceschema,T is atargetschema, andΣst is
a mapping defined as a set ofsource-to-targetdependencies of the
form ∀x̄(φS(x̄) → ∃ȳψT(x̄, ȳ)), whereφS andψT are conjunc-
tions of relational atoms overS andT, respectively (some studies
have also included target constraints, but here we focus on data
exchange settings without dependencies overT). Given a source
instanceI , the goal in data exchange is to materialize a target in-
stanceJ that is asolution for I , that is,J together withI must
conform to the mappingΣst.

An important issue in data exchange is that the existing specifica-
tion languages usually do not completely determine the relation-
ship between source and target data and, thus, there may be many
solutions for a given source instance. This immediately raises the
question of which solution should be materialized. Initial work on
data exchange [8] has identified a class of “good" solutions, called
universalsolutions. In formal terms, a solution is universal if it can
be homomorphically embedded into every other solution. It was
proved in [8] that for the class of data exchange settings studied in
this paper, a particular universal solution called thecanonicaluni-
versal solution can be computed in polynomial time. It is important
to notice that in this result the complexity is measured in terms of
the size of the source instance, and the data exchange specification
Σst is assumed to be fixed. Thus, this result is stated in terms of
datacomplexity [19].

A second important issue in data exchange is query answering.
Queries in the data exchange context are posed over the target
schema, and –given that there may be many solutions for a source
instance– there is a general agreement in the literature that their se-
mantics should be defined in terms ofcertain answers [13, 1, 14,
8]. More formally, given a data exchange settingM = (S,T,Σst)
and a queryQ overT, a tuplet̄ is said to be a certain answer toQ
over I underM, if t̄ belongs to the evaluation ofQ over every
possible solutionJ for I underM.

The definition of certain answers is highly non-effective, as it in-
volves computing the intersection of (potentially) infinitely many
sets. Thus, it becomes particularly important to understand for
which classes of relevant queries, the certain answers can be com-
puted efficiently. In particular, it becomes relevant to understand
whether it is possible to compute the certain answers to any of

73

these classes by using some materialized solution. Fagin, Kolaitis,
Miller, and Popa [8] have shown that this is the case for the class
of union of conjunctive queries (UCQ); the certain answers to each
union of conjunctive queriesQ over a source instanceI can be
computed in polynomial time by directly posingQ over the canon-
ical universal solution forI . Again, it is important to notice that this
result is stated in terms of data complexity, that is, the complexity
is measured in terms of the size of the source instance, and both the
data exchange specificationΣst and the queryQ are assumed to be
fixed.

The good properties of UCQ for data exchange can be completely
explained by the fact that unions of conjunctive queries are pre-
served under homomorphisms. But this is not the only language
that satisfies this condition, as queries definable in DATALOG, the
recursive extension of UCQ, are also preserved under homomor-
phisms. Thus, DATALOG is as good as UCQ for data exchange
purposes. In particular, the certain answers to a DATALOG program
Π over a source instanceI , can be computed efficiently by first ma-
terializing the canonical universal solutionJ for I , and then evalu-
atingΠ overJ (since the data complexity of a DATALOG program
is polynomial).

Unfortunately, both UCQ and DATALOG keeps us in the realm of
the positive, while most database query languages are equipped
with negation. Thus, the first goal of this paper is to investigate
what forms of negation can be added to DATALOG while keeping
all the good properties of DATALOG, and UCQ, for data exchange.
It should be noticed that this is not a trivial problem, as there is a
trade-off between expressibility and complexity in this context. On
the one hand, one would like to have a query language expressive
enough to be able to pose interesting queries in the data exchange
context. But, on the other hand, it has been shown that adding an
unrestricted form of negation to DATALOG (or even to conjunctive
queries) yields to intractability of the problem of computing certain
answers [1, 8]. In this respect, the following are our main contribu-
tions.

• We introduce a query language called DATALOGC(6=) that
extends DATALOG with a restricted form of negation, and
that has the same good properties for data exchange as
DATALOG. In particular, we prove that the certain answers to
a DATALOGC(6=) programΠ over a source instanceI can be
computed by evaluatingΠ over the canonical universal solu-
tion for I . As a corollary, we obtain that computing certain
answers to a DATALOGC(6=) program can be done in polyno-
mial time (in terms of data complexity).

• To show that DATALOGC(6=) can be used to express interest-
ing queries in the data exchange context, we prove that every
union of conjunctive queries with at most one inequality or
negated relational atom per disjunct, can be efficiently ex-
pressed as a DATALOGC(6=) program in the context of data
exchange.

• It follows from the previous result that the certain answers
to every union of conjunctive queries with at most one in-
equality or negated relational atom per disjunct, can be com-
puted in polynomial time (in terms of data complexity). Al-
though this corollary is not new (it is a simple extension of
a result in [8]), the use of DATALOGC(6=) in the context of
data exchange opens the possibility of finding new tractable
classes of query languages with negation. In fact, we also

use DATALOGC(6=) to find a tractable fragment of the class
of conjunctive queries with two inequalities.

It is known that for the class of conjunctive queries with
inequalities, the problem of computing certain answers is
CONP-complete [1, 8] (in terms of data complexity). In fact,
it has been shown that the intractability holds even for the
case of two inequalities [18]. However, very little is known
about tractable fragments of these classes. In this paper, we
provide a syntactic restriction for the class of unions of con-
junctive queries with at most two inequalities per disjunct,
and prove that every query conforming to it can be expressed
as a DATALOGC(6=) program in the context of data exchange.
It immediately follows that the data complexity of comput-
ing certain answers to a query conforming to this restriction
is polynomial.

The syntactic restriction mentioned above is given by two
conditions. We conclude this part of the investigation by
showing that these conditions are optimal for tractability, in
the sense that computing certain answers becomes intractable
if one removes any of them. It should be noticed that this
gives a new proof of the fact that the problem of computing
certain answer to a conjunctive query with two inequalities
is CONP-complete.

The study of the complexity of computing certain answers to
DATALOGC(6=) programs will not be complete if one does not con-
sider the notion ofcombinedcomplexity. Although the notion of
data complexity has shown to be very useful in understanding the
complexity of evaluating a query language, one should also study
the complexity of this problem when none of its parameters is con-
sidered to be fixed. This corresponds to the notion of combined
complexity introduced in [19], and it means the following in the
context of data exchange. Given a data exchange settingM, a
queryQ over the target and a source instanceI , one considersI as
well asQ andM as part of the input when computing the certain
answers toQ overI underM. In this paper, we study this problem
and establish the following results.

• We show that the combined complexity of the problem of
computing certain answers to DATALOGC(6=) programs is
EXPTIME-complete, even if one restricts to the class of con-
junctive queries with single inequalities (which is a fragment
of DATALOGC(6=) by the result mentioned above). This re-
fines a result in [12] that shows that the combined complex-
ity of the problem of computing certain answers tounionsof
conjunctive queries with at most one inequality per disjunct
is EXPTIME-complete.

• We also consider the class of conjunctive queries with an
arbitrary number of inequalities per disjunct. More specifi-
cally, we show that the combined complexity of the problem
of computing certain answers isCONEXPTIME-complete for
the case of conjunctive queries withk inequalities, for every
k ≥ 2.

• One of the reasons for the high combined complexity of the
previous problems is the fact that if data exchange settings
are not considered to be fixed, then one has to deal with
canonical universal solutions of exponential size. A natu-
ral way to reduce the size of these solutions is to focus on
the class of LAV data exchange settings [14], which are fre-
quently used in practice.

74

For the case of DATALOGC(6=) programs, the combined com-
plexity is inherently exponential, and thus focusing on LAV

settings does not reduce the complexity of computing certain
answers. However, we show in the paper that if one focus
on LAV settings, then the combined complexity is consider-
ably lower for the class of conjunctive queries with inequal-
ities. More specifically, we show that the combined com-
plexity goes down to NP-complete for the case of conjunc-
tive queries with single inequalities, and toΠp

2-complete for
the case of conjunctive queries withk inequalities, for every
k ≥ 2.

Organization of the paper. In Section 2, we introduce the termi-
nology used in the paper. In Section 3, we define the syntax and se-
mantics of DATALOGC(6=) programs. In Section 4, we study some
of the fundamental properties of DATALOGC(6=) programs concern-
ing complexity and expressiveness. In Section 5, we study a syntac-
tic restriction that leads to tractability of the problem of computing
certain answers for unions of conjunctive queries with two inequal-
ities. In Section 6, we provide a thorough analysis of the combined
complexity of computing certain answers to DATALOGC(6=) pro-
grams and other related query languages. Concluding remarks are
in Section 7.

2. BACKGROUND
A schemaR is a finite set{R1, . . . , Rk} of relation symbols, with
eachRi having a fixed arityni > 0. Let D be a countably infinite
domain. AninstanceI of R assigns to each relation symbolRi

of R a finiteni-ary relationRI
i ⊆ D

ni . Thedomaindom(I) of
instanceI is the set of all elements that occur in any of the relations
RI

i . We often define instances by simply listing the tuples attached
to the corresponding relation symbols.

We assume familiarity with first-order logic (FO) and DATALOG.
In this paper, CQ is the class of conjunctive queries and UCQ is the
class of unions of conjunctive queries. If we extend these classes
by allowing inequalities or negation (of relational atoms), then we
use superscripts6= and¬, respectively. Thus, for example, CQ6= is
the class of conjunctive queries with inequalities, and UCQ¬ is the
class of unions of conjunctive queries with negation. As usual in
the database literature, we assume that every queryQ in UCQ6=,¬

is safe: (1) if Q1 andQ2 are disjuncts ofQ, thenQ1 andQ2 have
the same free variables, (2) ifQ1 is a disjunct ofQ andx 6= y is a
conjunct ofQ1, thenx andy appear in some non-negated relational
atoms ofQ1, (3) if Q1 is a disjunct ofQ and¬R(x̄) is a conjunct
of Q1, then every variable in̄x appears in a non-negated relational
atom ofQ1.

2.1 Data exchange settings and solutions
As is customary in the data exchange literature, we consider in-
stances with two types of values: constants and nulls [8, 9]. More
precisely, letC andN be infinite and disjoint sets of constants and
nulls, respectively, and assume thatD = C ∪N. If we refer to a
schemaS as asourceschema, then we will assume that for every
instanceI of S, it holds that dom(I) ⊆ C. On the other hand, if
we refer to a schemaT as atargetschema, then for every instance
J of T, it holds that dom(J) ⊆ C ∪N. Slightly abusing notation,
we also useC to denote a built-in unary predicate such thatC(a)
holds if and only ifa is a constant, that isa ∈ C.

A data exchange settingis a tupleM = (S,T,Σst), whereS

is a source schema,T is a target schema,S andT do not have

predicate symbols in common andΣst is a set of FO-dependencies
overS ∪ T (in [8] and [9] a more general class of data exchange
settings is presented, that also includestarget dependencies). As
usual in the data exchange literature (e.g., [8, 9]), we restrict the
study to data exchange settings in whichΣst consists of a set of
source-to-target tuple-generatingdependencies. A source-to-target
tuple-generating dependency (st-tgd) is an FO-sentence of the form
∀x̄ (φ(x̄)→ ∃ȳ ψ(x̄, ȳ)), whereφ(x̄) is a conjunction of relational
atoms overS andψ(x̄, ȳ) is a conjunction of relational atoms over
T. A source(resp. target) instanceK forM is an instance ofS
(resp.T). We usually denote source instances byI, I ′, I1, . . . , and
target instances byJ, J ′, J1,

The class of data exchange settings considered in this paper is usu-
ally called GLAV (global-&-local-as-view) in the database litera-
ture [14]. One of the restricted forms of this class that has been
extensively studied for data integration and exchange is the class of
LAV settings. Formally, a LAV setting (local-as-view) [14] is a data
exchange settingM = (S,T,Σst), in which every st-tgd inΣst is
of the form∀x̄ (S(x̄)→ ψ(x̄)), for someS ∈ S.

An instanceJ of T is said to be asolutionfor an instanceI under
M = (S,T,Σst), if the instanceK = (I, J) of S ∪ T satisfies
Σst, whereSK = SI for everyS ∈ S andTK = T J for every
T ∈ T. If M is clear from the context, we shall say thatJ is a
solution forI .

EXAMPLE 2.1. LetM = (S,T,Σst) be a data exchange setting.
Assume thatS consists of one binary relation symbolP , andT

consists of two binary relation symbolsQ andR. Further, assume
that Σst consists of st-tgdsP (x, y) → Q(x, y) andP (x, y) →
∃zR(x, z). ThenM is also a LAV setting.

Let I = {P (a, b), P (a, c)} be a source instance. Then
J1 = {Q(a, b), Q(a, c), R(a, b)} andJ2 = {Q(a, b), Q(a, c),
R(a, n)}, wheren ∈ N, are solutions forI . In fact, I has in-
finitely many solutions. 2

2.2 Universal solutions and canonical univer-
sal solution

It has been argued in [8] that the preferred solutions in data ex-
change are theuniversalsolutions. In order to define this notion, we
first have to revise the concept ofhomomorphismin data exchange.
LetK1 andK2 be instances of the same schemaR. A homomor-
phismh fromK1 toK2 is a functionh : dom(K1) → dom(K2)
such that: (1)h(c) = c for everyc ∈ C ∩ dom(K1), and (2) for
everyR ∈ R and every tuplēa = (a1, . . . , ak) ∈ RK1 , it holds
thath(ā) = (h(a1), . . . , h(ak)) ∈ RK2 . Notice that this defini-
tion of homomorphism slightly differs from the usual one, as the
additional constraint that homomorphisms are the identity on the
constants is imposed.

LetM be a data exchange setting,I a source instance andJ a so-
lution for I underM. ThenJ is auniversal solutionfor I under
M, if for every solutionJ ′ for I underM, there exists a homo-
morphism fromJ to J ′.

EXAMPLE 2.2 (EXAMPLE 2.1 CONTINUED). Solution J2 is a
universal solution forI , while J1 is not since there is no homo-
morphism fromJ1 to J2. 2

75

It follows from [8] that for the class of data exchange settingsstud-
ied in this paper, every source instance has universal solutions. In
particular, one of these solutions - called thecanonical universal
solution - can be constructed in polynomial time from the given
source instance (assuming the setting to be fixed), using thechase
procedure [5]. We shall define canonical universal solutions di-
rectly as in [4, 16].

In the following, we show how to compute the canonical uni-
versal solution of a source instanceI in a data exchange setting
(S,T,Σst). For each st-tgd inΣst of the form:

φ(x̄, ȳ) → ∃w̄ (T1(x̄1, w̄1) ∧ · · · ∧ Tk(x̄k, w̄k)),

wherex̄ = x̄1 ∪ · · · ∪ x̄k andw̄ = w̄1 ∪ · · · ∪ w̄k, and for each
tuple ā from dom(I) of length|x̄|, find all tuples̄b1, . . . , b̄m such
thatI |= φ(ā, b̄i), i ∈ [1, m]. Then choosem tuplesn̄1, . . . , n̄m

of length |w̄| of fresh distinct null values overN. RelationTi

(i ∈ [1, k]) in the canonical universal solution forI contains tuples
(πx̄i

(ā), πw̄i
(n̄j)), for eachj ∈ [1, m], whereπx̄i

(ā) refers to the
components of̄a that occur in the positions of̄xi. Furthermore,
relationTi in the canonical universal solution forI only contains
tuples that are obtained by applying this algorithm.

This definition differs from the one given in [8], where a canoni-
cal universal solution is obtained by using the classical chase pro-
cedure. Since the result of the chase used in [8] is not necessar-
ily unique (it depends on the order in which the chase steps are
applied), there may be multiple non-isomorphic canonical univer-
sal solutions. Clearly, under our definition, the canonical univer-
sal solution is unique up to isomorphism and can be computed
in polynomial time fromI . For a fixed data exchange setting
M = (S,T,Σst), we denote by CAN the transformation from
source instances to target instances, such that CAN(I) is the canon-
ical universal solution forI underM.

2.3 Certain answers
Queries in a data exchange settingM = (S,T,Σst) are posed
over the target schemaT. Given that there may be (even infinitely)
many solutions for a given source instanceI with respect toM,
the standard approach in the data exchange literature is to define
the semantics of the query based on the notion of certain answers
[13, 1, 14, 8].

Let I be a source instance. For a queryQ of arity n ≥ 0, in
any of our logical formalisms, we denote bycertainM(Q, I) the
set of certain answersof Q over I underM, that is, the set of
n-tuples t̄ such thatt̄ ∈ Q(J), for every J that is a solution
for I underM. If n = 0, then we say thatQ is Boolean, and
certainM(Q, I) = true iff Q holds for everyJ that is a solution
for I underM. We writecertainM(Q, I) = false if it is not the
case thatcertainM(Q, I) = true.

LetM = (S,T,Σst) be a data exchange setting andQ a query
overT. The main problem studied in this paper is:

PROBLEM : CERTAIN-ANSWERS(M,Q).
INPUT : A source instanceI and a tuplēt of con-

stants fromI .
QUESTION : Is t̄ ∈ certainM(Q, I)?

Since in the above definition both the setting and the query are
fixed, it corresponds (in terms of Vardi’s taxonomy [19]) to thedata

complexity of the problem of computing certain answers. Later, in
Section 6, we also study thecombinedcomplexity of this problem.

3. EXTENDING QUERY LANGUAGES
FOR DATA EXCHANGE: DATALOGC(6=)

PROGRAMS
The class of unions of conjunctive queries is particularly well-
behaved for data exchange; the certain answers of each union of
conjunctive queriesQ can be computed by directly posingQ over
an arbitrary universal solution [8]. More formally, given a data ex-
change settingM, a source instanceI , a universal solutionJ for
I underM, and a tuplēt of constants,̄t ∈ certainM(Q, I) if and
only if t̄ ∈ Q(J). This implies that for each data exchange set-
tingM, the problem CERTAIN-ANSWERS(M, Q) can be solved
in polynomial time ifQ is a union of conjunctive queries (because
the canonical universal solution forI can be computed in polyno-
mial time andQ has polynomial time data complexity).

The fact that the certain answers of a union of conjunctive queries
Q can be computed by posingQ over a universal solution, can be
fully explained by the fact thatQ is preservedunder homomor-
phisms, that is, for every pair of instancesJ, J ′, homomorphism
h from J to J ′, and tupleā of elements inJ , if ā ∈ Q(J), then
h(ā) ∈ Q(J ′). But UCQ is not the only class of queries that
is preserved under homomorphisms; also DATALOG, therecursive
extension of the class UCQ, has this property. Since DATALOG

has polynomial time data complexity, we have that the certain an-
swers of each DATALOG queryQ can be obtained efficiently by
first computing a universal solutionJ , and then evaluatingQ over
J . Thus, DATALOG preserves all the good properties of UCQ for
data exchange.

Unfortunately, both UCQ and DATALOG keep us in the realm of the
positive (i.e. negated atoms are not allowed in queries), while most
database query languages are equipped with negation. It seems
then natural to extend UCQ (or DATALOG) in the context of data
exchange with some form of negation. Indeed, query languages
with different forms of negation have been considered in the data
exchange context [3, 6], as they can be used to express interesting
queries. Next, we show an example of this fact.

EXAMPLE 3.1. Consider a data exchange setting withS =
{E(·, ·), A(·), B(·)}, T = {G(·, ·), P (·), R(·)} and Σst =
{E(x, y) → G(x, y), A(x) → P (x),B(x) → R(x)}. Notice
that if I is a source instance, then the canonical universal solution
CAN(I) for I is such thatEI = GCAN(I), AI = P CAN(I) and
BI = RCAN(I).

Let Q(x) be the following UCQ¬ query overT: ∃x∃y (P (x) ∧
R(y) ∧ G(x, y)) ∨ ∃x∃y∃z (G(x, z) ∧ G(z, y) ∧ ¬G(x, y)).
It is not hard to prove that for every source instanceI ,
certainM(Q, I) = true iff there exist elementsa, b ∈

dom(CAN(I)) such thata belongs toP CAN(I), b belongs toRCAN(I)

and(a, b) belongs to the transitive closure of the relationGCAN(I).
That is,certainM(Q, I) = true iff there exist elementsa, b ∈
dom(I) such thata belongs toAI , b belongs toBI and(a, b) be-
longs to the transitive closure of the relationEI . 2

It is well-known (see e.g. [15]) that there is no union of conjunctive
queries (indeed, not even an FO-query) that defines the transitive

76

closure of a graph. Thus, ifQ andM are as in the previous ex-
ample, then there is no union of conjunctive queriesQ′ such that
Q′(CAN(I)) = certainM(Q′, I) = certainM(Q, I), for every
source instanceI . It immediately follows that negated relational
atoms add expressive power to the class UCQ in the context of
data exchange (see also [4]). And not only that, it follows from [8]
that inequalities also add expressive power to UCQ in the context
of data exchange.

In this section, we propose a language that can be used to pose
queries with negation, and that has all the good properties of UCQ
for data exchange.

3.1 DATALOGC(6=) programs
Unfortunately, adding an unrestricted form of negation to
DATALOG (or even to CQ) not only destroys preservation under
homomorphisms, but also easily yields to intractability of the prob-
lem of computing certain answers [1, 8]. More precisely, there
is a settingM and a queryQ in UCQ6= such that the problem
CERTAIN-ANSWERS(M, Q) cannot be solved in polynomial time
(unless PTIME = NP). In particular, the set of certain answers
of Q cannot be computed by evaluatingQ over a polynomial-time
computable universal solution. Next we show that there is a natural
way of adding negation to DATALOG while keeping all of the good
properties of this language for data exchange. In Section 4, we
show that such a restricted form of negation can be used to express
many relevant queries (some including negation) for data exchange.

DEFINITION 3.2 (DATALOGC(6=) PROGRAMS). A constant-
inequality Datalog ruleis a rule of the form:

S(x̄) ← S1(x̄1), . . . , S`(x̄`),C(y1), . . . ,

C(ym), u1 6= v1, . . . , un 6= vn, (1)

where

(a) S, S1, . . ., S` are (non necessarily distinct) predicate sym-
bols,

(b) every variable in̄x is mentioned in some tuplēxi (i ∈ [1, `]),

(c) every variableyj (j ∈ [1, m]) is mentioned in some tuplēxi

(i ∈ [1, `]), and

(d) every variableuj (j ∈ [1, n]), and every variablevj , is
equal to some variableyi (i ∈ [1, m]).

Moreover, aconstant-inequality Datalog program(DATALOGC(6=)

program) Π is a finite set of constant-inequality Datalog rules.

For example, the following is a constant-inequality Datalog pro-
gram:

R(x, y) ← T (x, z), S(z, y),C(x),C(z), x 6= z

S(x) ← U(x, u, v, w),C(x),C(u),

C(v),C(w), u 6= v, u 6= w

For a rule of the form (1), we say thatS(x̄) is its head. The set of
predicates of a DATALOGC(6=) programΠ, denoted byPred(Π),
is the set of predicate symbols mentioned inΠ, while the set of
intensional predicates ofΠ, denoted byIPred(Π), is the set of
predicates symbolsR ∈ Pred(Π) such thatR(x̄) appears as the
head of some rule ofΠ.

Assume thatΠ is a DATALOGC(6=) program andI is a database in-
stance of the relational schemaPred(Π). ThenT (I) is an instance
of Pred(Π) such that for everyR ∈ Pred(Π) and every tuplēt,
it holds thatt̄ ∈ RT (I) if and only if there exists a ruleR(x̄) ←
R1(x̄1), . . . , R`(x̄`),C(y1), . . . ,C(ym), u1 6= v1, . . . , un 6= vn

in Π and a variable assignmentσ such that (a)σ(x̄) = t̄, (b)
σ(x̄i) ∈ R

I
i , for everyi ∈ [1, `], (c) σ(yi) is a constant, for every

i ∈ [1,m], and (d)σ(ui) 6= σ(vi), for everyi ∈ [1, n]. Operator
T is used to define the semantics of constant-inequality Datalog
programs. More precisely, defineT 0

Π(I) to beI andT n+1
Π (I) to

beT (T n
Π (I))∪ T n

Π (I), for everyn ≥ 0. Then the evaluation ofΠ
overI is defined asT ∞

Π (I) =
S

n≥0 T
n
Π (I).

A constant-inequality Datalog programΠ is said to be defined
over a relational schemaR if R = Pred(Π) r IPred(Π) and
ANSWER∈ IPred(Π). Given an instanceI of R and a tuplēt in
dom(I)n, wheren is the arity of ANSWER, we say that̄t ∈ Π(I)

if t̄ ∈ ANSWERT
∞

Π
(I0), whereI0 is an extension ofI defined as:

RI0 = RI for R ∈ R andRI0 = ∅ for R ∈ IPred(Π).

As we mentioned before, the homomorphisms in data exchange are
not arbitrary; they are the identity on the constants. Thus, given
that inequalities are witnessed by constants in DATALOGC(6=) pro-
grams, we have that these programs are preserved under homo-
morphisms. From this we conclude that the certain answers to a
DATALOGC(6=) programΠ can be computed by directly evaluating
Π over a universal solution.

PROPOSITION 3.3. LetM = (S,T,Σst) be a data exchange set-
ting, I a source instance,J a universal solution forI underM,
andΠ a DATALOGC(6=) program overT. Then for every tuplēt of
constants,̄t ∈ certainM(Π, I) iff t̄ ∈ Π(J).

This proposition will be used in Section 4 to show that
DATALOGC(6=) programs preserve the good properties of conjunc-
tive queries for data exchange.

4. ON THE COMPLEXITY AND EX-
PRESSIVENESS OF DATALOGC(6=) PRO-
GRAMS

We start this section by studying the expressive power of
DATALOGC(6=) programs. In particular, we show that these pro-
grams are expressive enough to capture the class of unions of con-
junctive queries with at most one negated atom per disjunct. This
class has proved to be relevant for data exchange, as its restriction
with inequalities not only can express relevant queries but also is
one of the few known extensions of the class UCQ for which the
problem of computing certain answers is tractable [8].

THEOREM 4.1. LetQ be aUCQ query over a schemaT, with at
most one inequality or negated relational atom per disjunct. Then
there exists aDATALOGC(6=) program ΠQ over T such that for
every data exchange settingM = (S,T,Σst) and instanceI of
S, certainM(Q, I) = certainM(ΠQ, I). Moreover,ΠQ can be
effectively constructed fromQ in polynomial time.

In the following example, we sketch the proof of Theorem 4.1.

77

EXAMPLE 4.2. LetM be a data exchange setting such thatS =
{E(·, ·), A(·)}, T = {G(·, ·), P (·)} and

Σst = {E(x, y)→ ∃z(G(x, z) ∧G(z, y)), A(x)→ P (x)}.

Also, letQ(x) be the following query in UCQ6=,¬:

(P (x) ∧G(x, x)) ∨ ∃y (G(x, y) ∧ x 6= y)

∨ ∃y∃z (G(x, z) ∧G(z, y) ∧ ¬G(x, y)).

We construct a DATALOGC(6=) program ΠQ such that
certainM(Q, I) = certainM(ΠQ, I). The set of intensional
predicates of the DATALOGC(6=) program ΠQ is {U1(·, ·, ·),
U2(·, ·), dom(·), EQUAL(·, ·, ·), ANSWER(·)}. The programΠQ

overT is defined as follows.

• First, the program collects in dom(x) all the elements that
belong to the active domain of the instance ofT whereΠQ

is evaluated:

dom(x) ← G(x, z) (2)

dom(x) ← G(z, x) (3)

dom(x) ← P (x) (4)

• Second, the programΠQ includes the following rules that
formalize the idea that EQUAL(x, y, z) holds if x andy are
the same elements:

EQUAL(x, x, z)← dom(x),dom(z) (5)

EQUAL(x, y, z)← EQUAL(y, x, z) (6)

EQUAL(x, y, z)← EQUAL(x,w, z),EQUAL(w, y, z) (7)

Predicate EQUAL includes an extra argument that keeps track
of the elementz where the query is being evaluated. Notice
that we cannot simply use the rule EQUAL(x, x, z) ← to
say that EQUAL is reflexive, as DATALOGC(6=) programs are
safe, i.e. every variable that appears in the head of a rule also
has to appear in its body.

• Third, ΠQ includes the rules:

U1(x, y, z) ← G(x, y), dom(z) (8)

U2(x, z) ← P (x), dom(z) (9)

U1(x, y, z) ← U1(u, v, z),EQUAL(u, x, z),

EQUAL(v, y, z) (10)

U2(x, z) ← U2(u, z),EQUAL(u, x, z) (11)

Intuitively, the first two rules create inU1 andU2 a copy of
G andP , respectively, but again with an extra argument for
keeping track of the element whereΠQ is being evaluated.
The last two rules allow to replace equal elements in the in-
terpretation ofU1 andU2.

• Fourth,ΠQ includes the following rule for the third disjunct
of Q(x):

U1(x, y, x) ← U1(x, z, x), U1(z, y, x) (12)

Intuitively, this rule expresses that ifa is an element that does
not belong to the set of certain answers toQ(x), then for ev-
ery pair of elementsb andc such that(a, b) and(b, c) belong
to the interpretation ofG, it must be the case that(a, c) also
belongs to it.

• Fifth, ΠQ includes the following rule for the second disjunct
of Q(x):

EQUAL(x, y, x) ← U1(x, y, x) (13)

Intuitively, this rule expresses that ifa is an element that does
not belong to the set of certain answers toQ(x), then for ev-
ery elementb such that the pair(a, b) belongs to the inter-
pretation ofG, it must be the case thata = b.

• Finally, ΠQ includes two rules for collecting the certain an-
swers toQ(x):

ANSWER(x)← U2(x, x), U1(x, x, x),C(x) (14)

ANSWER(x)← EQUAL(y, z, x),C(y),C(z), y 6= z (15)

Intuitively, rule (14) says that if a constanta belongs to the
interpretation ofP and (a, a) belongs to the interpretation
of G, thena belongs to the set of certain answers toQ(x).
Indeed, this means that ifJ is an arbitrary solution where the
program is being evaluated, thena belongs to the evaluation
of the first disjunct ofQ(x) overJ .

Rule (15) says that if in the process of evaluatingΠQ with
parametera, two distinct constantsb andc are declared to
be equal (EQUAL(b, c, a) holds), thena belongs to the set
of certain answers toQ(x). We show the application of this
rule with an example. LetI be a source instance, and assume
that(a, n) and(n, b) belong toG in the canonical universal
solution forI , wheren is a null value. By applying rule (2),
we have that dom(a) holds in CAN(I). Thus, we conclude
by applying rule (8) thatU1(a, n, a) andU1(n, b, a) hold
in CAN(I) and, therefore, we obtain by using rule (13) that
EQUAL(a, n, a) holds in CAN(I). Notice that this rule is
trying to prove thata is not in the certain answers toQ(x)
and, hence, it forcesn to be equal toa. Now by using rule
(6), we obtain that EQUAL(n, a, a) holds in CAN(I). But we
also have that EQUAL(b, b, a) holds in CAN(I) (by applying
rules (3) and (5)). Thus, by applying rule (10), we obtain that
U1(a, b, a) holds in CAN(I). Therefore, by applying rule
(13) again, we obtain that EQUAL(a, b, a) holds in CAN(I).
This time, rule (13) tries to prove thata is not in the certain
answers toQ(x) by forcing constantsa andb to be the same
value. But this cannot be the case sincea andb are distinct
constants and, thus, rule (15) is used to conclude thata is in
the certain answers toQ(x). It is important to notice that this
conclusion is correct. IfJ is an arbitrary solution forI , then
we have that there exists a homomorphismh : CAN(I) →
J . Given thata and b are distinct constants, we have that
a 6= h(n) or b 6= h(n). It follows that there is an element
c in J such thata 6= c and the pair(a, c) belongs to the
interpretation ofG. Thus, we conclude thata belongs to the
evaluation of the second disjunct ofQ(x) overJ .

It is now an easy exercise to show that the set of certain answers
toQ(x) coincide with the set of certain answers toΠQ, for every
source instanceI . 2

At this point, a natural question about DATALOGC(6=) programs
is whether the different components of this language are really
needed, that is, whether inequalities and recursion are essential for
this language. Next, we show that this is indeed the case and, in
particular, we conclude that both inequalities and recursion are es-
sential for Theorem 4.1.

78

It was shown in [8] that there exist a data exchange settingM and
a conjunctive queryQ with one inequality for which there is no
first-order queryQ? such thatcertainM(Q, I) = Q?(CAN(I))
holds, for every source instanceI . Thus, given that a non-recursive
DATALOGC(6=) program is equivalent to a first-order query, we con-
clude from Proposition 3.3 that recursion is necessary for capturing
the class of unions of conjunctive queries with at most one negated
atom per disjunct.

PROPOSITION4.3 ([8]). There exist a data exchange settingM
and a Boolean conjunctive queryQ with a single inequality such
that for every non-recursiveDATALOGC(6=) program Π, it holds
that certainM(Q, I) 6= certainM(Π, I) for some source instance
I .

In the following proposition, we show that the use of inequalities
is also necessary for capturing the class of unions of conjunctive
queries with at most one negated atom per disjunct. We note that
this cannot be obtained from the result in [8] mentioned above,
as there are DATALOGC(6=) programs without inequalities that are
not expressible in first-order logic. The proof of this proposition
follows from the fact that DATALOGC(6=) programs without in-
equalities are preserved under homomorphisms, while conjunctive
queries with inequalities are only preserved under one-to-one ho-
momorphisms.

PROPOSITION 4.4. There exist a data exchange settingM and
a Boolean conjunctive queryQ with a single inequality such
that for every DATALOGC(6=) program Π without inequalities,
certainM(Q, I) 6= certainM(Π, I) for some source instanceI .

Notice that as a corollary of Proposition 4.4 and Theorem 4.1, we
obtain that DATALOGC(6=) programs are strictly more expressive
than DATALOGC(6=) programs without inequalities.

We conclude this section by studying the complexity of the prob-
lem of computing certain answers to DATALOGC(6=) programs.
It was shown in Proposition 3.3 that the certain answers of a
DATALOGC(6=) programΠ can be computed by directly posingΠ
over CAN(I). This implies that for each data exchange settingM,
the problem CERTAIN-ANSWERS(M,Π) can be solved in poly-
nomial time ifΠ is a DATALOGC(6=) program (since CAN(I) can
be computed in polynomial time andΠ has polynomial time data
complexity).

PROPOSITION 4.5. The problem CERTAIN-ANSWERS(M,Π)
can be solved in polynomial time, for every data exchange setting
M andDATALOGC(6=) programΠ.

From the previous proposition and Theorem 4.1, we conclude that
the certain answers to a union of conjunctive queries with at most
one negated atom per disjunct can also be computed in polynomial
time. We note that this slightly generalizes one of the polynomial
time results in [8], which is stated for the class of unions of con-
junctive queries with at most one inequality per disjunct. The proof
of the result in [8] uses different techniques, based on the chase
procedure. In Section 5, we show that DATALOGC(6=) programs
can also be used to express (some) unions of conjunctive queries
with two inequalities per disjunct.

A natural question at this point is whether the problem
CERTAIN-ANSWERS(M,Π) is PTIME-complete for some data ex-
change settingM and DATALOGC(6=) programΠ. It is easy to see
that this is the case given that the data complexity of the evaluation
problem for DATALOG programs is PTIME-complete. But more
interestingly, from Theorem 4.1 we have that this result is also a
corollary of a stronger result for UCQ6= queries, namely that there
exist a data exchange settingM and a conjunctive queryQ with
one inequality such that the problem CERTAIN-ANSWERS(M, Q)
is PTIME-complete.

PROPOSITION 4.6. There exist aLAV data exchange settingM
and a Boolean conjunctive queryQ with one inequality such that
CERTAIN-ANSWERS(M, Q) is PTIME-complete.

It is worth mentioning that it follows from Proposition 3.1 in [12]
that there exist a data exchange settingM containing sometarget
dependencies and a conjunctive queryQ with one inequality such
that CERTAIN-ANSWERS(M,Q) is PTIME-complete. Proposition
4.6 shows that this result holds even when no target dependencies
are provided.

5. CONJUNCTIVE QUERIES WITH TWO
INEQUALITIES

As we mentioned before, computing certain answers to conjunc-
tive queries with more than just one inequality is an intractable
problem. Indeed, there is a LAV settingM and a Boolean con-
junctive queryQ with two inequalities such that the problem
CERTAIN-ANSWERS(M, Q) is CONP-complete [18]. Therefore,
unless PTIME = NP, Theorem 4.1 is no longer valid if we remove
the restriction that every disjunct ofQ must contain at most one
inequality.

The intractability for conjunctive queries with two inequalities is
tightly related with the use of null values when joining relations
and checking inequalities. In this section, we investigate this rela-
tionship, and provide a syntactic condition on the type of joins and
inequalities allowed in queries. This restriction leads to tractability
of the problem of computing certain answers. Indeed, this tractabil-
ity is a corollary of a stronger result, namely that for every con-
junctive queryQ with two inequalities, ifQ satisfies the syntactic
condition, then one can construct a DATALOGC(6=) programΠQ

such thatcertainM(Q, I) = certainM(ΠQ, I) for every source
instanceI . It should be noticed that in this case DATALOGC(6=)

programs are used as a tool for finding a tractable class of queries
for the problem of computing certain answers.

To define the syntactic restriction mentioned above, we need to in-
troduce some terminology. LetM = (S,T,Σst) be a data ex-
change setting. Then for everyn-ary relation symbolT in T, we
say that thei-th attribute ofT (1 ≤ i ≤ n) can be nullifiedunder
M, if there is an st-tgdα in Σst such that thei-th attribute ofT
is existentially quantified in the right hand side ofα. Notice that
for each settingM and source instanceI , if the i-th attribute ofT
cannot be nullified underM, then for every tuple(c1, . . . , cn) that
belongs toT in the canonical universal solution forI , it holds that
ci is a constant. Moreover, ifQ is a UCQ6= query overT andx
is a variable inQ, then we say thatx can be nullifiedunderQ and
M, if x appears inQ as thei-th attribute of a target relationT , and
thei-th attribute ofT can be nullified underM.

Let M be a data exchange setting andQ a conjunctive query

79

with two inequalities, and assume that ifx appears as a vari-
able in the inequalities ofQ, then x cannot be nullified un-
der Q andM. In this case, it is straightforward to prove that
CERTAIN-ANSWERS(M, Q) is tractable. Indeed, the previous
condition implies that for every source instanceI , if Q holds in
CAN(I), then all the witnesses forQ in CAN(I) make compar-
isons of the formc 6= c′, wherec andc′ are constants. Thus, we
have thatcertainM(Q, I) can be computed by simply evaluating
Q over CAN(I). Here we are interested in finding less obvious
conditions that lead to tractability. In particular, we would like to
find queries that do not restrict the use of null values in such a strict
way.

Let Q be a conjunctive query with two inequalities over a target
schemaT. Assume that the quantifier free part ofQ is of the form
φ(x1, . . . , xm) ∧ u1 6= v1 ∧ u2 6= v2, whereφ is a conjunction of
relational atoms overT andu1, v1, u2 andv2 are all mentioned in
the set of variablesx1, . . ., xm (Q is a safe query [2]). We are now
ready to define the two components of the syntactic restriction that
leads to tractability of the problem of computing certain answers.
We say thatQ hasalmost constant inequalitiesunderM, if u1 or
v1 cannot be nullified underQ andM, andu2 or v2 cannot be
nullified underQ andM. Intuitively, this means that to satisfyQ
in the canonical universal solution of a source instance, one can
only make comparisons of the formc 6= ⊥ and c 6= c′, where
c, c′ are constants and⊥ is a null value. Moreover, we say thatQ
hasconstant joinsunderM, if for every variablex that appears at
least twice inφ, x cannot be nullified underQ andM. Intuitively,
this means that to satisfyQ in the canonical universal solution of
a source instance, one can only use constant values when joining
relations.

EXAMPLE 5.1. LetM be a data exchange setting specified by st-
tgds:

P (x, y) → T (x, y),

P (x, y) → ∃z U(x, z).

The first and second attribute ofT , as well as the first attribute of
U , cannot be nullified underM. On the other hand, the second
attribute ofU can be nullified underM.

Let Q(x) be query∃y∃z(T (y,x) ∧ U(z, x) ∧ x 6= y ∧ x 6= z).
Then we have thatQ has almost constant inequalities underM
because variablesy andz cannot be nullified underQ andM, but
Q does not have constant joins because variablex appears twice
in T (y, x) ∧ U(z, x) and it can be nullified underQ andM. On
the other hand, queryU(x, y) ∧ U(x, z) ∧ x 6= z ∧ y 6= z has
constant joins but does not have almost constant inequalities, and
queryU(x, y) ∧ T (x, z) ∧ x 6= z ∧ y 6= z has both constant joins
and almost constant inequalities. 2

Although the notions of constant joins and almost constant inequal-
ities were defined for CQ6= queries with two inequalities, they can
be easily extended to the case of conjunctive queries with an arbi-
trary number of inequalities. In fact, the notion of constant joins
does not change in the case of an arbitrary number of inequali-
ties, while to define the notion of almost constant inequalities in
the general case, one has to say that each inequalityx 6= y in a
query satisfies the condition thatx or y cannot be nullified. With
this extension, we have all the necessary ingredients for the main
result of this section.

THEOREM 5.2. LetM = (S,T,Σst) be a data exchange setting
andQ a UCQ6= query overT such that each disjunct ofQ either
(1) has at most one inequality and constant joins underM, or (2)
has two inequalities, constant joins and almost constant inequal-
ities underM. Then there exists aDATALOGC(6=) programΠQ

over T such that for every instanceI of S, certainM(Q, I) =
certainM(ΠQ, I). Moreover,ΠQ can be effectively constructed
fromQ andM in polynomial time.

It immediately follows from Proposition 4.5 that if a data exchange
settingM and a UCQ6= queryQ satisfy the conditions mentioned
in Theorem 5.2, then CERTAIN-ANSWERS(M, Q) is in PTIME.
Furthermore, it can also be shown that the properties of having
constant joins and almost constant inequalities are helpful in re-
ducing the complexity of computing certain answers to unions of
conjunctive queries with at most one inequality per disjunct.

PROPOSITION 5.3. Let Q be a UCQ6= query with at most one
inequality per disjunct. If every disjunct ofQ has constant
joins under a settingM, thenCERTAIN-ANSWERS(M, Q) is in
NLOGSPACE, and if in addition every disjunct ofQ has almost
constant inequalities underM, thenCERTAIN-ANSWERS(M, Q)
is in LOGSPACE.

An obvious question at this point is how natural the conditions used
in Theorem 5.2 are. Although we cannot settle this subjective ques-
tion, we are at least able to show that these conditions are optimal
in the sense that removing any of them leads to intractability for the
class of UCQ6= queries with two inequalities.

THEOREM 5.4.

(1) There exist aLAV data exchange settingM and a queryQ
such thatQ is the union of a Boolean conjunctive query and
a Boolean conjunctive query with two inequalities that has
both constant joins and almost constant inequalities under
M, and such thatCERTAIN-ANSWERS(M, Q) is CONP-
complete.

(2) There exist aLAV data exchange settingM and a Boolean
conjunctive queryQ with two inequalities, such thatQ has
constant joins underM, Q does not have almost constant
inequalities underM and CERTAIN-ANSWERS(M, Q) is
CONP-complete.

(3) There exist aLAV data exchange settingM and a Boolean
conjunctive queryQ with two inequalities, such thatQ has
almost constant inequalities underM,Q does not have con-
stant joins underM and CERTAIN-ANSWERS(M, Q) is
CONP-complete.

It is important to notice that although the problem of computing
certain answers to UCQ6= queries has been considered in the lit-
erature, none of the results of Theorem 5.4 directly follows from
any of the known results for this problem. In particular, Fagin
at al. showed in [8] a similar result to (1), namely that the prob-
lem of computing certain answers isCONP-complete even for the
union of two queries, the first of which is a conjunctive query and
the second of which is a conjunctive query with two inequalities.
The difficulty in our case is that the second query is restricted to

80

have constant joins and almost constant inequalities, while Fagin
et al. considered a query that does not satisfy any of these con-
ditions. Moreover, Ma̧dry proved in [18] a similar result to (2)
and (3), namely that the problem of computing certain answers is
CONP-complete for conjunctive queries with two inequalities. The
difficulty in our case is that we consider a query that has constant
joins in (2) and a query that has almost constant inequalities in (3),
while Ma̧dry considered a query that does not satisfy any of these
conditions. In fact, we provide in (2) and (3) two new proofs of the
fact that the problem of computing certain answer to a conjunctive
query with two inequalities isCONP-complete.

We conclude this section with a remark about the possibility of us-
ing the conditions defined in this section to obtain tractability for
UCQ6=. As we mentioned above, the notions of constant joins and
almost constant inequalities can be extended to UCQ6= queries with
an arbitrary number of inequalities. Thus, one may wonder whether
these conditions lead to tractability in this general scenario. Unfor-
tunately, the following proposition shows that this is not the case,
even for the class of UCQ6= queries with three inequalities.

PROPOSITION 5.5. There exist aLAV data exchange settingM
and a Boolean conjunctive queryQ with three inequalities, such
that Q has both constant joins and almost constant inequalities
underM, but the problemCERTAIN-ANSWERS(M,Q) is CONP-
complete.

6. THE COMBINED COMPLEXITY OF
QUERY ANSWERING

Beyond the usual data complexity analysis, it is natural to ask for
the combined complexity of the problem of computing certain an-
swers: What is the complexity if data exchange settings and queries
are not considered to be fixed? To state this problem, we shall ex-
tend the notation defined in Section 2. LetDE be a class of data
exchange settings andC a class of queries. In this section, we study
the following problem:

PROBLEM: CERTAIN-ANSWERS(DE , C).
INPUT: A data exchange settingM = (S, T,

Σst) ∈ DE , a source instanceI , a query
Q ∈ C and a tuplēt of constants fromI .

QUESTION: Is t̄ ∈ certainM(Q, I)?

It is worth mentioning that a related study appeared in [12]. Even
though the focus of that paper was the combined complexity of the
existence of solutions problem, some of the results in [12] can be
extended to the certain answers problem. In particular, some com-
plexity bounds for unions of conjunctive queries with inequalities
can be proved by using these results. Nevertheless, in this section
we prove stronger lower bounds that consider single conjunctive
queries with inequalities, and which cannot be directly proved by
using the results of [12].

We start by stating the complexity for the case of DATALOGC(6=)

queries. The study continues by considering some restrictions
of DATALOGC(6=) that lead to lower combined complexity, and
which are expressed in the form of conjunctive queries with sin-
gle inequalities. We conclude this study by examining unrestricted
CQ6= queries, which are not rewritable in DATALOGC(6=) (unless
PTIME = NP). The results of this section are summarized in Table

1, where we letk-CQ6= be the class of CQ6= queries with at most
k inequalities.

6.1 Combined complexity of DATALOGC(6=)

queries
We showed in Proposition 3.3 that the certain answers of a
DATALOGC(6=) program can be computed by directly posing the
query over the canonical universal solution. It can be shown
that such an approach can compute the certain answers to a
DATALOGC(6=) program in exponential time, although canonical
universal solutions can be of exponential size if data exchange set-
tings are not considered to be fixed. And not only that, it can be
proved that this is a tight bound.

THEOREM 6.1. CERTAIN-ANSWERS(GLAV ,DATALOGC(6=)) is
EXPTIME-complete.

Note that the above problem has to deal with canonical universal
solutions of exponential size. Then restricting these solutions to be
of polynomial size would be a natural approach to reduce the com-
plexity of the problem. There are at least two ways to do this. The
obvious one would be to fix the data exchange settings, and leave
only queries and source instances as input. The less obvious but
more interesting case is to restrict the class of data exchange set-
tings to be LAV settings. However, for the case of DATALOGC(6=)

programs, the combined complexity is inherently exponential, and
thus reducing the size of canonical universal solutions does not help
in improving the upper bound.

PROPOSITION 6.2. CERTAIN-ANSWERS(LAV ,DATALOGC(6=))
is EXPTIME-complete.

It was shown in Theorem 4.1 that every conjunctive query with
one inequality can be efficiently translated into a DATALOGC(6=)

program. Hence, the class of 1-CQ6= queries form a subclass of the
class of DATALOGC(6=) programs. Thus, it is natural to ask whether
the EXPTIME lower bound carries over this class, and whether the
LAV restriction could be useful in this case. These are the motivat-
ing questions for the next section.

6.2 Combined complexity of CQ6=

We leave the DATALOGC(6=) queries to concentrate on the analysis
of CQ6= queries in data exchange. We first study the class1-CQ6=,
that is, the class of conjunctive queries with only one inequality.
It is worth mentioning that an EXPTIME lower bound can be ob-
tained from [12] for the case of unions of 1-CQ6= queries. We re-
fine this result to the case of 1-CQ6= queries, and therefore present
a stronger lower bound:

THEOREM 6.3. CERTAIN-ANSWERS(GLAV , 1-CQ6=) is
EXPTIME-complete.

It is natural to ask what happens in the case of unrestricted queries
and, more specifically, for queries with two inequalities. It was
noted that the data complexity becomes higher when dealing with
two inequalities, and a similar behavior should be expected for the
combined complexity. Indeed, we have that:

81

Query GLAV setting LAV setting

DATALOGC(6=) EXPTIME-complete EXPTIME-complete
1-CQ6= EXPTIME-complete NP-complete
k-CQ6=, k ≥ 2 CONEXPTIME-complete Πp

2-complete
CQ6= CONEXPTIME-complete Πp

2-complete

Table 1: Combined complexity of computing certain answers.

THEOREM 6.4. For everyk ≥ 2, CERTAIN-ANSWERS(GLAV , k-
CQ6=) is CONEXPTIME-complete.

As we mentioned in the previous section, if data exchange settings
are not considered to be fixed, then one has to deal with canoni-
cal universal solutions of exponential size when computing certain
answers. A natural way to avoid this problem is by restricting the
class of data exchange settings to be LAV settings. For the case of
DATALOGC(6=) programs, this restriction does not help in reducing
the complexity of computing certain answers. However, the eval-
uation of CQ6= queries is not inherently exponential and, thus, we
are able to considerably reduce the complexity by considering LAV

settings, as we show in the following proposition.

PROPOSITION 6.5. CERTAIN-ANSWERS(LAV , 1-CQ6=) is NP-
complete, andCERTAIN-ANSWERS(LAV , k-CQ6=) isΠp

2-complete
for everyk ≥ 2.

A natural question at this point is what happens with the complex-
ity of the certain answers problem if one considers the entire class
CQ6=. In the following theorem, we show that the same complex-
ity bounds as in Theorem 6.4 and Proposition 6.5 hold in this case.
Notice that the lower bounds in the following theorem follow from
the lower bounds in these results.

THEOREM 6.6. CERTAIN-ANSWERS(GLAV ,CQ6=) is
CONEXPTIME-complete andCERTAIN-ANSWERS(LAV ,CQ6=) is
Πp

2-complete.

We conclude this section with two remarks. First, notice that fixing
data exchange settings has the same effect than restricting to LAV

settings. In fact, the lower bounds in Proposition 6.5 remains the
same for fixed LAV settings. Second, all the complexity bounds
presented in this section remain the same if we allow unions of
conjunctive queries with inequalities; ifk-UCQ6= is the class of
unions ofk-CQ6= queries, then

PROPOSITION 6.7.

(1) CERTAIN-ANSWERS(GLAV , 1-UCQ6=) is EXPTIME-
complete, CERTAIN-ANSWERS(LAV , 1-UCQ6=) is NP-
complete.

(2) CERTAIN-ANSWERS(GLAV , k-UCQ6=) is CONEXPTIME-
complete, andCERTAIN-ANSWERS(LAV , k-UCQ6=) is Πp

2-
complete for everyk ≥ 2.

(3) CERTAIN-ANSWERS(GLAV ,UCQ6=) is CONEXPTIME-
complete, and CERTAIN-ANSWERS(LAV ,UCQ6=) is
Πp

2-complete.

7. CONCLUDING REMARKS
In this paper, we proposed the language DATALOGC(6=) that ex-
tends DATALOG with a restricted form of negation, and studied
some of its fundamental properties. In particular, we showed that
the certain answers to a DATALOGC(6=) program can be computed
in polynomial time (in terms of data complexity), and we used
this property to find tractable fragments of the class of unions
of conjunctive queries with inequalities. In the paper, we also
studied the combined complexity of computing certain answers to
DATALOGC(6=) programs and other related query languages.

Many problems related to DATALOGC(6=) programs remain open.
In particular, it would be interesting to know if it is decidable
whether the certain answers to a queryQ in UCQ6= can be com-
puted as the certain answers to a DATALOGC(6=) programΠQ, and
whether there exist a settingM and a queryQ in UCQ6= such that
the problem CERTAIN-ANSWERS(M, Q) is in PTIME, but the cer-
tain answers toQ cannot be computed as the certain answers to a
DATALOGC(6=) programΠQ.

Acknowledgments
We are very grateful to Jorge Pérez for many helpful discus-
sions, and to the anonymous referees for their comments. The
authors were supported by: Arenas and Reutter - FONDECYT
grant 1070732; Barceló - FONDECYT grant 11080011; Arenas
and Barceló - grant P04-067-F from the Millennium Nucleus Cen-
tre for Web Research.

8. REFERENCES
[1] S. Abiteboul, and O. Duschka. Answering queries using

materialized views. Gemo report 383.
[2] S. Abiteboul, R. Hull, and V. Vianu.Foundations of

databases. Addison-Wesley, 1995.
[3] F. N. Afrati, C, Li, and V. Pavlaki. Data exchange in the

presence of arithmetic comparisons. InEDBT, pages
487-498, 2008.

[4] M. Arenas, P. Barceló, R. Fagin, and L. Libkin. Locally
consistent transformations and query answering in data
exchange. InPODS, pages 229–240, 2004.

[5] C. Beeri, and M. Y. Vardi. A proof procedure for data
dependencies.Journal of the ACM, 31(4):718–741, 1984.

[6] A. Deutsch, A. Nash, and J. B. Remmel. The chase revisited.
In PODS, pages 149-158, 2008.

[7] R. Fagin, P. Kolaitis, L. Popa, W. C. Tan. Composing schema
mappings: Second-order dependencies to the rescue. In
PODS, pages 83–94, 2004.

[8] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa. Data exchange:
semantics and query answering.Theoretical Computer
Science, 336(1):89–124, 2005.

[9] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting
to the core.ACM Transactions on Database Systems,
30(1):174–210, 2005.

82

[10] G. Gottlob, C. Papadimitriou. On the complexity of
single-rule datalog queries.Information and Computation,
183(1):104–122, 2003.

[11] P. Kolaitis. Schema mappings, data exchange, and metadata
management. InPODS, pages 61–75, 2005.

[12] P. Kolaitis, J. Panttaja, and W.-C. Tan. The complexity of
data exchange. InPODS, pages 30–39, 2006.

[13] T. Imielinski, W. Lipski. Incomplete information in relational
databases.Journal of the ACM31, 761–791, 1984.

[14] M. Lenzerini. Data integration: A theoretical perspective. In
PODS, pages 233–246, 2002.

[15] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[16] L. Libkin. Data exchange and incomplete information. In

PODS, pages 60–69, 2006.
[17] L. Libkin, C. Sirangelo. Data exchange and schema

mappings in open and closed worlds. InPODS, pages
139–148, 2008.

[18] A. Ma̧dry. Data exchange: On the complexity of answering
queries with inequalities.Information Processing Letters,
94(6):253–257, 2005.

[19] M. Y. Vardi. The complexity of relational query languages.
In STOC, pages 137–146, 1982.

83

