
It Takes Variety to Make a World:
Diversification in Recommender Systems

Cong Yu
Yahoo! Research New York

111 W 40th Street
New York, NY

congyu@yahoo-inc.com

Laks Lakshmanan
Dept. of Computer Science

Univ. of British Columbia
Vancouver, Canada
laks@cs.ubc.ca

Sihem Amer-Yahia
Yahoo! Research New York

111 W 40th Street
New York, NY

sihem@yahoo-inc.com

ABSTRACT
Recommendations in collaborative tagging sites such as del.icio.us
and Yahoo! Movies, are becoming increasingly important, due to
the proliferation ofgeneralqueries on those sites and the ineffec-
tiveness of the traditional search paradigm to address those queries.
Regardless of the underlying recommendation strategy, item-based
or user-based, one of the key concerns in producing recommen-
dations, isover-specialization, which results in returning items that
are too homogeneous. Traditional solutions rely on post-processing
returned items to identify those which differ in their attribute val-
ues (e.g., genre and actors for movies). Such approaches are not
always applicable when intrinsic attributes are not available (e.g.,
URLs in del.icio.us). In a recent paper [20], we introduced the
notion ofexplanation-based diversityand formalized the diversifi-
cation problem as a compromise between accuracy and diversity.
In this paper, we develop efficient diversification algorithms built
upon this notion. The algorithms explore compromises between
accuracy and diversity. We demonstrate their efficiency and effec-
tiveness in diversification on two real life data sets: del.icio.us and
Yahoo! Movies.

1. INTRODUCTION

Web 2.0 has brought us a number of collaborative tagging sites
such as Flickr and del.icio.us. The increasing popularity of those
sites has made them the ideal destinations for a user to share con-
tents (whether they are generated by the user herself as in Flickr, or
by other means as in del.icio.us), express opinions (in the form of
tagging and rating) on contents of interest to her, and build connec-
tions with other users (whether they are real-life friends or merely
people with similar interests). Finding relevant content on those
sites, however, has become increasingly difficult due to the enor-
mous amount of content available. There are three main paradigms
for locating content in those sites:browsing, searching, andrec-
ommendation. Recommendation, in particular, has been gaining
growing importance (e.g., see Amazon and Netflix). A recent anal-
ysis [3] of 10 million Yahoo! Travel queries shows that more than
90% of the queries are “generic” in nature: the users are not look-
ing for a few specific items (i.e., travel destinations) but for a large

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

group of items that fit a general description (e.g., “family trip”).
Because of this lack of specificity in the query keywords, recom-
mendation becomes the only effective way to differentiate among
those items. Furthermore, unlike the first two paradigms, recom-
mendations can be generated and presented to the user without re-
quiring explicit actions from the user. It is therefore not surprising
that many sites have begun to adopt recommendation as one of the
core mechanisms with which they present content to the users.

Generating good recommendations is a non-trivial task. On one
hand, users expect to receive content items that are related to their
interests. On the other hand, users get bored quickly if all the rec-
ommended items are too similar to each other. For example, dur-
ing the heat of the US 2008 Democratic Primary Election, the au-
thors visited the topic “election” on del.icio.us and were shown, on
the first page, URLs all about “Barack Obama”, and none about
“Hilary Clinton”. Such a homogeneous set of “recommendations”
could easily turn off the user and lower her interest in the site over
time [2]. Like the item-based strategy that del.icio.us employs,
most recommendation strategies focus on increasing the relevance
of recommended items, thereby increasing the likelihood of return-
ing homogeneous items.

The goal ofrecommendation diversificationis to identify a list of
items that are dissimilar with each other, but nonetheless relevant
to the user’s interests. To our knowledge, almost all of the tech-
niques proposed so far for recommendation diversification [13] are
attribute-based. In other words, the diversity of the recommended
list is defined by how much each item in the list differs from the oth-
ers in terms of their attribute values. For example, in Y! Movies,
recommended movies are post-processed based on the set of at-
tributes that are intrinsic to each movie (including genre, director,
etc.). Typically, a heuristic distance formula is defined on the set
of attributes in order to allow the system to quantify the distance
between a pair of items. In [21], diversity is measured based on
a specific attribute of the item which is defined by the taxonomy
in which the item is classified. This can also be considered as
attribute-based since the classification of each item is intrinsic to
that item.

1.1 Drawbacks of Using Attribute-Based
Diversification

While suitable for traditional recommender systems where the items
are well-described by their attributes (e.g., books in Amazon and
movies in Netflix), attribute-based diversification has two main draw-
backs.

368

First, there can be alack of attribute descriptions for items. Items
in social network sites oftenlack a comprehensive set of attributes,
unlike their counterparts in traditional recommender systems. For
example, URLs in del.icio.us are only described by the set of tags
associated with them, so are images in Flickr and videos in YouTube.
Tags are attached to the items by individual users and are funda-
mentally different from intrinsic descriptions of the items. An-
alyzing intrinsic properties of these items, on the other hand, is
extremely difficult or computationally prohibitive. For example,
to obtain intrinsic descriptions of each URL in del.icio.us, one is
required to crawl and analyze the webpage. This is very costly,
merely for the purpose of diversification of the recommendations
and certainly beyond the purpose and capability of del.icio.us. For
multimedia sites like Flickr and YouTube, while image processing
and video analysis techniques do exist, the effort required to extract
feature vectors for images and videos may be considered too high
a price to pay just for diversifying recommendations.

Second, there can besubstantial computational overhead due to
attribute retrieval for the purpose of diversification. A diversifi-
cation approach based on attributes often requires accessing item
attributes in order to perform the diversification: a step that can
become costly when the database is very large like in many of the
collaborative tagging sites, especially when the attributes are not
leveraged by the recommendation strategies (e.g., many collabora-
tive filtering strategies).

1.2 Our Approach

In this paper, we propose to formalize a notion of diversity which
relies onexplanations[2, 14]. For content-based strategies, we de-
fine the explanation for a recommended item as a set of similar
items that the user has highly rated in the past. The premise for
explanation-based diversification in this case is that for two dif-
ferent recommended itemsi and j, the closer their explanations
(i.e., the sets of items that are similar to the recommended items
and that are liked by the user), the more homogeneousi and j.
Similarly, for collaborative filtering strategies, an item explanation
is defined as a set of users who rated that item highly. The in-
tuition for diversification here is that the closer the explanations
(i.e., the users who rate the items highly and who are similar to the
user), the more homogeneous they are. We can therefore define
a distance function for measuring thediversity distancebetween
pairs of items based on explanations. It is important to note that
explanation-based diversity is a notion which is independent of the
presence of item attributes, which means it can be applied to sce-
narios where the attribute-based diversification does not apply. The
effectiveness of explanation-based diversity was established in our
recent study [20], where we showed that explanation-based diversi-
fication achieves similar levels of diversification as attribute-based
diversification on a real data set, Yahoo! Movies.

Our focus in this paper is the exploration of efficient algorithms for
explanation-based diversification. In summary, we make the fol-
lowing main contributions. First, we formally define the notion of
item explanation for content and collaborative filtering-based rec-
ommendation strategies and define the notion of explanation-based
diversity for a set of recommended items. It is worth noting that
these notions were first formalized by us recently in [20]. Sec-
ond, we develop efficient algorithms for computing recommenda-
tions and explanations on large data sets, an important step towards
generating diversified recommendations. Third, we develop effi-
cient diversification algorithms which explore a different balance

between relevance and diversity. Finally, we conduct a comprehen-
sive set of experiments on real data sets for testing the scalability
and effectiveness of our algorithms.

The rest of the paper is organized as follows. Section 2 reviews
existing memory-based recommendation strategies and formalizes
the problem of diversifying recommendations in collaborative tag-
ging/rating sites. Section 3 contains our algorithms for efficient
generation of recommendations and explanations for large-scale
social tagging/rating sites. Section 4 presents efficient recommen-
dation diversification algorithms. Our experiments are described
in Section 5. The related work is reviewed in Section 6. Finally,
Section 7 concludes the paper.

2. PRELIMINARIES AND PROBLEM
STUDIED

In this section, we provide an overview of existing recommenda-
tion strategies and describe the problem studied in this paper. We
aim to model collaborative rating sites where users express their
endorsements of items1 and establish ties with other users through
explicit links (e.g., friendship network) or implicit ones (e.g., sim-
ilar ratings of similar movies). We assume we are given a set of
usersU and a set of itemsI.

2.1 Recommendation Strategies Overview

Given a user, the goal of a recommendation strategy is to estimate
the user’s ratings of unrated items, based on which recommenda-
tions are generated. We explore the two most popular families of
recommendation strategies and briefly review them below. These
strategies are also referred to asrating-basedsince they predict rat-
ings as opposed topreference-basedwhich aim to predict the rela-
tive ordering of items. Rating-based strategies rely on finding items
similar to the user’s previously highly rated items (content-based),
or on finding items liked by people who share the user’s interests
(user-based or collaborative filtering) [2].

2.1.1 Item Based Strategies
These are the oldest recommendation strategies. They aim to rec-
ommend items similar to the ones the end-user preferred in the past.
The rating of an itemi ∈ I by a current useru ∈ U is estimated as
follows:

relevance(u, i) = Σi′∈IItemSim(i, i
′) × rating(u, i′)

Here,ItemSim(i, i′) returns a measure of similarity between two
itemsi andi′, andrating(u, i′) indicates the rating of itemi′ by
useru (it is 0 if u has not ratedi′). Item based strategies are very
effective when the given user has a long history of tagging/rating
activities. However, it does have two drawbacks. First, items rec-
ommended by item based strategies are often very similar to what
the user already knows [13] and therefore other interesting items
that the user might like have little chance of being recommended.
Second, item based strategy does not work well when a user first
joins the system. To partially address those drawbacks, collabora-
tive filtering strategies have been proposed.

1For tagging sites like del.icio.us, we consider a tagging action as
a positive rating without doing detailed tag sentiment analysis.

369

2.1.2 Collaborative Filtering Strategies
These strategies aim to recommend to an end-user items which are
highly rated by users who share similar interests with or have de-
clared relationships with her. The rating of an itemi by the end-user
u is estimated as follows:

relevance(u, i) = Σu′∈UUserSim(u, u′) × rating(u′, i)

Here,UserSim(u, u′) returns a measure of similarity or connectiv-
ity between two usersu andu′ (it is 0 if u andu′ are not connected).
Collaborative filtering strategies broaden the scope of items being
recommended to the user and have become increasingly popular.
Note that in both strategies, we userelevance(u, i) to denote the
estimated rating ofi by u. In the rest of the paper, the term rele-
vance refers to this estimated rating.

We note that there are also so-called fusion strategies which com-
bine ideas from item based and collaborative filtering strategies.
While we do not consider them in this paper, it should be straight-
forward to extend our methods for diversification for those strate-
gies. Another set of recommendation strategies are so-called model
based [2], where machine learning techniques are employed. How
to provide explanation and diversification for those strategies is an
interesting future topic of study, but beyond the scope of this paper.

2.2 Diversity Problem Definition

We first described the notion of explanation-based diversity and
the problem of explanation-based diversification in our preliminary
study [20]. We briefly describe those concepts here. To begin with,
we denote byRecItems(u), the set of candidate recommended
items generated by one of the recommendation strategies described
above. The size of this set is typically larger than the final desired
number of recommendations.

An explanation for a recommended item depends on the underlying
recommendation strategy used. If an itemi is recommended to user
u by a content-based strategy, then anexplanationfor recommen-
dationi is defined as:

Expl(u, i) = {i′ ∈ I | ItemSim(i, i′) > 0 & i′ ∈ Items(u)}

i.e., the set of items similar to items (i′) that useru has rated in the
past. The explanation may contain more information such as the
similarity weightItemSim(i, i′) × rating(u, i′). If an item i is
recommended to useru by a collaborative filtering strategy, then
anexplanationfor a recommendationi is:

Expl(u, i) = {u′ ∈ U | UserSim(u, u′) > 0 & i ∈ Items(u′)}

i.e., the set of users similar tou who have rated itemi. Sim-
ilarly, we can augment each useru′ with the similarity weight
UserSim(u, u′) × rating(u′, i).

Note that in all cases, the explanation of a recommendation is either
a set of items or a set of users. Based on this, we can define diversity
of recommendations as follows. Leti, i′ be a pair of items (recom-
mended to useru) with associated explanation setsExpl(u, i) and
Expl(u, i′). Then thediversity distancebetweeni, i′ for useru
can be defined as a similarity measure based on standard metrics
such as Jaccard similarity coefficient or cosine similarity. E.g., the
Jaccard diversity distancebetween recommendationsi andi′ is:

DDJ
u (i, i′) = 1 − |Expl(u,i)∩Expl(u,i′)|

|Expl(u,i)∪Expl(u,i′)|
.

Note that this is defined as the complement of the standard Jaccard
coefficient, since we want to use this as a distance measure. Intu-
itively, in the case of collaborative filtering, the distance between
items depends on the ratio between the number of users who rec-
ommend both items and the total number of users who recommend
these items.

When weights are incorporated, thecosine diversity distancebe-
tween recommendationsi andi′ is defined by treating the explana-
tionsExpl(u, i) andExpl(u, i′) as vectors in a multi-dimensional
space and definingDDC

u (i, i′) as1 minus standard cosine similar-
ity between the vectors. We refer the readers to the Vector Space
Model [1] for more details. In the case of collaborative filtering,
the weighted diversity distance depends on the ratio between the
number of similar users who recommend both items and the total
number of users who recommend these items. When we want to be
neutral with respect to the type of diversity distance measure used
and opt for the notationDDu(i, i′). Depending on the context, it
shall be interpreted asDDJ

u (i, i′) or asDDC
u (i, i′).

For a set of itemsS ⊆ RecItems(u), we define:

DDu(S) = avg{DDu(i, i′) | i, i′ ∈ S}

i.e., DDu(S) is the average diversity distance between pairs of
items in the setS. In this paper, we consider the following problem:

Given a useru, find a subsetS ⊆ RecItems(u) such that|S| = k

and the choice ofS strikes a good balance between relevance and
diversity.

We deliberately leave the term balance undefined and avoid the
simplistic treatment of combining relevance and diversity using a
weighted sum. Our intention is to explore the relevance/diversity
space on real data sets and design efficient diversification algo-
rithms that can intuitively achieve a good balance between the two.
In our experiments (Section 5), we use aggregate relevance and
aggregate diversity distance ofS to gauge the level of balance
achieved by our algorithms.

3. EFFICIENT RECOMMENDATION
GENERATION WITH EXPLANATION

In this section, we describe the adaptation of content-based and
collaborative filtering strategies [2] for efficient recommendation
generation in large scale social tagging/rating sites. Furthermore,
we describe how to generate explanations efficiently. For simplic-
ity, we mainly discuss collaborative filtering throughout the rest of
the paper: the techniques described equally apply to item-based
strategies.

For the sites we consider, which have millions of users, identifying
networks of similar users for the purpose of collaborative filtering
is a computationally extensive task which merits some attention.
We dedicate the next section to it.

3.1 Preliminaries

In this section, we describe how to efficiently generateimplicit net-
worksin large scale collaborative rating sites, which is an essential

370

step for the efficient generation of recommendations and explana-
tions. We also describe thestorage modeladopted in this study.

3.1.1 Implicit Network Generation
Collaborative filtering strategies (see Section 2.1) estimate the rat-
ing of an item for a given user based on the network of the user
and how people in her network rate the item. There are two kinds
of user networks,explicit networkandimplicit network. An exam-
ple of the former is the del.icio.us friendship network, where users
become friends by explicit declaration. However, unlike pure so-
cial networking sites (e.g., facebook), such explicit connections are
rare in collaborative rating sites where the primary function is to
help users organize contents. For example, a recent snapshot of
del.icio.us shows that only about 10% of the users have at least one
explicit friend and about 1% of the users have at least five explicit
friends. This means that if the recommendations are based solely
on friendship networks, 90% of the users will not be recommended
any result [16].

Implicit networks, on the other hand, can be generated using vari-
ous mechanisms, one of which is to leverage past behaviors of the
users as identified by the items they rated before. Implicit networks
provide a nice complement to explicit ones and can often signif-
icantly increase the coverage of the users [16]. For example, in
del.icio.us, by creating a link between two users who have shared
common URLs, we are able to establish an implicit similarity net-
work where 40% of the users have at least one similar user and
25% of the users have at least five similar users. Combined with
friendship networks, 45% of the users can now benefit from the
recommender system. Another mechanism for generating implicit
networks involves using profile information (e.g., age and income)
about users. This information is not always available and as a re-
sult, shared-item is often the most common mechanism for implicit
network generation.

When the number of users is extremely large, generating an implicit
network is non-trivial. For example, each month, there are millions
of unique users of del.icio.us who have tagged at least one URL.
Even at a lower-end estimate of half a million users, a naive algo-
rithm, which does a comparison between all pairs of users, needs
160 billion comparisons. At the rate of10 micro-seconds per com-
parison, it will take the algorithm18 days to finish, which is unre-
alistic for a web site that is fast evolving.

Most of the comparisons are wasted, however, because an aver-
age user shares common URLs with only a small number of users
among all the users. In other words, the resulting user-user similar-
ity matrix is often very sparse. Based on this observation, we pro-
poseAlgorithm Item-based Similarity Computation(Algorithm 1)
for the generation of implicit shared-item user networks. It achieves
efficiency by organizing items based on how many users have tagged
them and only does a comparison between two users if the compar-
ison is likely to create a similarity link.

The algorithm starts by constructing the buckets for items (line 1-
4), where items are put in the bucket corresponding to the number
of users associated with them. We can eliminate a large number
of items right away because items associated with only one user
are no longer useful. They will not contribute to any link between
any pair of users. During the similarity computation, the algorithm
starts at the top-most bucket and iterates through all the items in
each bucket. For each item, the algorithm iterates through its set
of users. And for each user (u), the algorithm identifies all the

Algorithm 1 Item-based Similarity Computation
Require: B[K];{B[K] is an array of item lists - eachB[i], i < K con-

tains a list of items associated withi users andB[K] contains a list of
items associated withK or more users.}

1: for each itemi in the systemdo
2: x = the number of users associated withi;
3: B[x].add(i);
4: end for
5: for x from K to 2 do
6: for each itemi in B[x] do
7: U = the set of users associated withi;
8: for each useru in U do
9: S = ∅; {S maintains the set of candidate users to be com-

pared withu, it also tracks occurrences of each candidate
user}

10: for each itemi′ associated withu do
11: S = S

⋃
the set of users associated withi′;

12: removeu from the list of users associated withi′;
13: y = number of users associated withi′;
14: B[y].remove(i′); B[y − 1].add(i′);
15: end for
16: order users inS according to their occurrences;
17: for each useru′ in S do
18: sim = compare(u, u′); {S is ordered according to #

shared items, we can prune this list of users easily when
this number is no longer large enough.}

19: output: (u, u′, sim);
20: end for
21: end for
22: end for
23: end for

users (S) associated with the set of items thatu is associated with—
those are the candidate users to be compared withu. Since the
number of items shared betweenu and each user inS is obtained
in the process for free, similarity threshold-based pruning can be
easily applied here. For example, for Jaccard similarity, there is
one simple and yet effective pruning method that we adopt. The
number of shared items divided by the number of items ofu gives
us an upper bound on the actual similarity. If this upper bound is
smaller than the threshold, we know that we can simply throw that
pair away. Furthermore,u can now be thrown away from the user
lists of all the items, which allow the items to be moved down the
buckets (lines 12-14).

3.1.2 Storage Model
With the generation of the implicit network, we now have all the
pieces needed for recommendations. Here, we briefly describe how
the system stores and manages its data. There are two main pieces
of information: thenetworkand theactions. The network keeps
information about the similarity between two users (or items in the
case of item based recommendation). It can be given directly from
the underlying system (e.g., del.icio.us) or it can be created as we
just described. The actions are the rating histories of all the users.
Those are always given by the underlying system and are always in
the order of when the action happened. Both can be easily modeled
as database tables (see Table 1 for the schemas). Personal attributes
of users and descriptive attributes of items are often maintained as
well when they are available.

Network Action
src: int user: int

dest: int item: int
similarity: float rating: float

Table 1: Database Schemas.

371

While a native storage system is possible, we decided to be com-
patible with the underlying system and adopt a database (MySQL
5) as the back-end and only go to our own storage when necessary.
As a result, most of the accesses that we will be describing in this
section are implemented in the form of SQL queries.

3.2 Generating Recommendations

We recall the collaborative filtering recommendation formula in
Section 2.1:

relevance(u, i) = Σu′∈UUserSim(u, u′) × rating(u′, i)

Given a userdu, for whom a list of recommendations are to be
generated, the goal is to generate a list of items with the top-k esti-
mated ratings. In a straightforward way, this process can be realized
through the following three SQL queries:

Q1: obtaining user network:

Udu = select C.dest, C.similarity
from Network C

where C.src =du and C.similarity> th1

Q2: obtaining candidate items:

I = select A.item, A.user, A.rating,Udu.sim
from Action A, Udu

where A.user in Udu.dest and A.rating> th2

Q3: generating recommendations:

R = select I.item, SUM(I.rating * I.sim) as score
from I

group by I.item
order by score
limit k

In the actual implementation, the three queries can be nested into a
single SQL call to reduce the overhead of remote access. Thresh-
oldsth1, th2, andk are predefined thresholds that the system adopts.

3.3 Generating Explanations

In this section, we describe efficient approaches for explanation
generation for collaborative filtering recommendation strategies. The
approaches we describe here can equally apply to item based rec-
ommendation strategies with straightforward adaptation.

Recall that the explanation of a recommended itemdi, for a given
userdu, is defined as the set of users (calledcontributors) who
contributed to the score of the item. For each contributorc, her
contribution is: UserSim(du, c) × Rating(c, di). In the simple
version, we treat each contributor equally and the explanation for
(du, di) is the set of contributors. In the advanced version, we asso-
ciate each contributor with their contributions and the explanation
for (du, di) is the set of weighted contributors.

3.3.1 Post-Processing Approach
A naive approach to computing explanations is to obtain the list of
recommended items as described in Section 3.2, and then issue the
following query to retrieve the set of contributors and their contri-
butions:

Q4: generating explanations:

E = select A.item, A.user as contributor,
(A.rating * C.similarity) as contribution

from Action A, Network C, R
where C.src =du and A.item in R.item

and A.user = C.destand A.rating> 0.0

The system then collects the results and assembles all the contrib-
utors of a single item into a weighted list. This post-processing ap-
proach is not efficient since it does the aggregation of items twice,
once in the recommendation generation, another time in the expla-
nation generation, when it performs list aggregation. Another ap-
proach is to issue a single query for each item being recommended
thus avoiding the second (list) aggregation. But the overhead of
issuing numerous database queries quickly offsets all the gains ob-
tained by avoiding the extra aggregation and therefore we don’t
consider this further.

3.3.2 Integrated approach
A more efficient approach avoids the double aggregations by main-
taining a view over theAction table where all the actions belong-
ing to the same user are stored together as a single list on the disk,
and within each list, the actions are sorted on ratings. Specifically,
consider generating candidate recommendations for userdu. From
the Network table, we obtain users who are similar todu and
the similarities. From those user lists, we obtain ratings assigned
by those users on various items in descending order of their score.
We can now apply an algorithm such as the NRA Algorithm [8] to
compute the candidate recommended items efficiently. More inter-
estingly, since each user has a different similarity todu, we can use
this similarity to adjust the rate at which we move down each list.
As each candidate itemi is being generated, we get for free, the set
of users similar todu who ratedi and their contributions.

4. DIVERSIFICATION ALGORITHMS

Given a set of candidate items,RecItems(u), and a given thresh-
old K, the optimal scenario of recommendation is finding a set of
items, which has the highest diversity distance (See Section 2.2)
and the highest aggregated relevance. In general, however, such an
optimal top-K answer set does not exist: maximizing diversity does
not always correlate with the most relevant answers being chosen.
As a result, we need to explore a balance between relevance and
diversity. In this section, we present four alternative algorithms for
identifying a subset ofK items out of the set ofN (> K) candi-
date items with different levels of tradeoff between relevance and
diversity. Two of those are optimal algorithms:Algorithm MaxRel
maximizes the relevance of theK items returned whileAlgorithm
MaxDivmaximizes the diversity distance of theK items. Since the
primary purpose of a recommender system is to recommend rele-
vant results, we propose to preserve the high scoring itemsas much
as possible, leading to the design of the other two algorithms,Al-
gorithm SwapandAlgorithm (Binary/Iterative) Greedy. Both are
heuristic algorithms where we try to maximize the diversity under
relevance constraints.

Algorithm 2 Algorithm MaxRel
Require: u,K;
1: SortedRecItems = SortRecItems(u) on score;
2: RetList = topKItems(SortedRecItems,K);
3: return RetList

Intuitively, Algorithm MaxRel (Algorithm 2) simply extracts the
top-K highest scoring items from the pool of items to be recom-

372

mended. While achieving the highest relevance, the diversity of
the result set may suffer.

Algorithm 3 Algorithm MaxDiv
Require: u,K;
1: RecItems = RecItems(u);
2: d = 0.0; {d is the current maximum diversity}
3: RetList = ∅;
4: for each item setS of sizeK in RecItems do
5: if Diversity(S) > d then
6: d = Diversity(S);
7: RetList = S;
8: end if
9: end for

10: return RetList

Algorithm MaxDiv (Algorithm 3) on the other hand, iterates through
all possible combinations ofK items and identifies the one with
the highest diversity to maximize the diversity of the result. There
are two clear drawbacks of this algorithm. First, it maximizes the
diversity without considering relevance at all and as a result can
produce result sets that have very low relevance. Second, iterating
through all possible item sets of sizeK out ofN items is extremely
expensive:O(NK) whenN >> K.

The two algorithms above represent two extremes in the two dimen-
sional (relevance and diversity) space. We next design two heuristic
algorithms that balance the relevance and diversity of the resulting
item set.

4.1 Algorithm Swap

The basic idea behind Algorithm Swap (Algorithm 4) is to start
with the K highest scoring items, and swap the item which con-
tributes the least to the diversity of the entire set with the next high-
est scoring item among the remaining items. At each iteration, a
candidate item with a lower relevance is swapped into the top-k set
if and only if it increases the overall diversity of the resulting set.
To prevent a sudden drop of the overall relevance of the resulting
set, an optional pre-defined upper-boundUB (on how much drop in
relevance is tolerated) can be used to stop the swapping when the
lowest relevance of the remaining items is no longer high enough
to justify the swap. The selection of the item to be swapped is ac-
complished by searching over all items in the current top-K setS
and picking itemi with the minimum diversity. More precisely,
let Di

S =
∑

j∈S,j 6=j
DDu(i, j) (whereDDu is described in Sec-

tion 2.2), we pick the itemi ∈ S with the minimumDi
S as the

candidate for swap.

Intuitively, Algorithm 4 pays the price of a relevance drop for the
benefit of increasing diversity. Thus, the case where the topK

items are retrieved (Algorithm 2) is a special case of Algorithm 4
whereUB is set to zero. The initial swap candidate selection takes
O(K2) and each subsequent selection (up toN -K iterations, where
N is the size ofRecItems(u)) costsO(KlgK) to select the next
candidate if a swap is needed2. Therefore, Algorithm 4 has an over-
all worse case complexity ofO(NKlgK).

4.2 Algorithm Greedy
2This is possible because we only compare the candidate item to
the entire current set of results, which we empirically found to work
well. Otherwise, the complexity isO(K2).

Algorithm 4 Algorithm Swap
Require: u,K,UB; {UB is an optional score upper-bound used as a stoping

condition;}
1: SortedRecItems = SortRecItems(u) on score;
2: RetList = topKItems(SortedRecItems,K);
3: pos = K+1;
4: for each itemi in RetList do
5: M .add(i); {M is a Heap maintaining each itemi in RetList in

increasing order of theirDi
RetList .}

6: end for
7: i = M .remove();
8: while i.score − SortedRecItems[pos].score ≤ UB do

9: if Di
RetList < D

SortedRecItems [pos]
RetList then

10: RetList.remove(i);
11: RetList.add(SortedRecItems[pos]);
12: for each itemj in M do
13: updateDj

RetList ;
14: end for
15: M .add(i);
16: i = M .remove();

{ i is a new candidate for swapping}
17: end if
18: pos + +;
19: if there is no more item left inSortedRecItems then
20: break;
21: end if
22: end while
23: return RetList

Another heuristic approach is to start with the most relevant item,
greedily add the next most relevant item if and only if that item is
far enough away (compared with a distance bound) from existing
items in the set, and stop when there areK items. The drawback,
however, is that the distance bound is often hard to obtain and can
vary from user to user.

To address this problem,Algorithm Greedy(Algorithm 5) relies on
iteratively refining two diversity thresholds: an upper-boundUB,
initially set to 1, and a lower-bound,LB, initially set to 0. The algo-
rithm first iterates through the set of candidate items in the order of
their relevances and generates two lists:DivList, andSimList.
TheDivList contains items that are all maximally distant from
each other, while theSimList contains items that have zero dis-
tance to some items inDivList. Because items are accessed in
the order of their relevance,SimiList essentially contains items
that we no longer consider. IfDivList already contains enough
items, we pickK most relevant items from it can return. If not,
we adjustUB andLB and reiterate through the candidate items. At
each iteration, theKeepList tracks items that will definitely be
in the result set while theDiscardList tracks items that should
be eliminated from consideration. These two lists are merged with
DivList andSimList, respectively, at the end of each itera-
tion. The algorithm stops whenK are found inDivList or the
difference betweenUB andLB drops below a threshold.

At each pass, the worst case complexity isO(NK), the number
of passes is limited since the bounds are limited between 0 and 1
and the algorithm stops when the difference betweenLB andUB is
smaller than0.01 (up to 9 passes). We also note here that, while the
complexity for Algorithm Greedy is lower than that of Algorithm
Swap, in practice, Algorithm Greedy often takes longer time to run
because of the multiple passes it needs to make3.

3i.e., Algorithm Greedy has a bigger constant.

373

Algorithm 5 Algorithm (Binary/Iterative) Greedy
Require: u,K;
1: SortedRecItems = SortRecItems(u) on score;
2: UB = 1, LB = 0;
3: DivList = SortedRecItems[0];
4: SimList = ∅;
5: for i = 1; SortedRecItems[i] 6= NULL; i++ do

6: if D
SortedRecItems [i]
DivList ≥ UB then

7: DivList.add(SortedRecItems[i]);
8: end if
9: if D

SortedRecItems [i]
DivList ≤ LB then

10: SimList.add(SortedRecItems[i]);
11: end if
12: end for
13: if |DivList| ≥ K then
14: return K highest scoring items inDivList;
15: end if
16: RemainList = SortedRecItems − SimList

17: if |RemainList| < K then
18: return RemainList

⋃
{K−|RemainList| highest scoring items

in SimList};
19: end if
20: while |UB - LB| > 0.01 do
21: Bound = (UB+LB)/2;
22: KeepList = ∅
23: DiscardList = ∅
24: for i = 1; SortedRecItems[i] 6= NULL; i + + do
25: item = SortedRecItems[i];
26: if DivList.has(item)

∨
SimList.has(item) then

27: continue; {This item is either in already or should be discard
always.}

28: end if
29: if Ditem

DivList
⋃

KeepList
≤ Bound then

30: KeepList.add(item);
{To improve performance, we can break out the for loop here
if |KeepList

⋃
DivList| > K and there are many remain-

ing items.}
31: else
32: DiscardList.remove(item);
33: end if
34: end for
35: if |KeepList

⋃
DivList| < K then

36: DivList = DivList
⋃

KeepList;
37: UB = Bound;
38: else if|KeepList

⋃
DivList| > K then

39: SimList = SimList
⋃

DiscardList;
40: LB = Bound;
41: else
42: DivList = DivList

⋃
KeepList;

43: break;
44: end if
45: end while
46: if |DivList| 6= K then
47: addK − |DivList| highest scoring discarded items toDivList;
48: end if
49: return DivList;

del.icio.us Y! Movies
distinct active users 413K4 3.3M

distinct items 3.7M 52K
total actions 6.5M 21M

avg. # items per user 15.7 6.4
avg. # users per item 1.8 403

Table 2: Summary of Data Sets

5. EXPERIMENTAL EVALUATION

We implemented our algorithms with JDK 5.0 on an Intel machine
with dual-core 3.2GHz CPUs, 4GB Memory, and 500GB HDD,
running Red Hat Enterprise Linux 5. The Java Virtual Memory
size is set to 1GB. All performance numbers are obtained as the
average of three runs. We ran our tests on two real life data sets:
del.icio.us and Y! Movies. We start by briefly describing them.

del.icio.us (http://del.icio.us/) is a popular online social tagging
site, where users can tag and share their bookmarks. A single action
within del.icio.us is modeled as a 5-tuple:<user, URL, tags, time,
private>, wheretagsis a bag of words the user chooses to associate
with the URL,time records the last time this action was modified,
andprivate indicates whether the tagging action is to be kept pri-
vate. We map actions in del.icio.us to our data model by appending
each action with a rating of1.0 and ignore the tags themselves. For
the purpose of this study, we randomly extracted a subset of recent
public tagging actions from the del.icio.us site over one month.

Y! Movies (http://movies.yahoo.com/) is an online movie rating
and reviewing site, where users can rate movies on a scale of0 to
100, and provide detailed movie reviews. A single action within
Y! Movies is modeled as a 5-tuple:<user, movie, rating, review,
time>, which can be mapped to our data model in a straightforward
way by converting the rating into the range of[0.0, 1.0] and ignore
the reviews. For the purpose of this study, we examined a snapshot
of the site dated at 2005.

The summary statistics of both data sets are shown in Table 24. The
major distinction between them are the number of unique items
within the system. This is not surprising since there are many more
interesting and unique URLs in the world than there are movies.

5.1 Implicit Network Generation

We first evaluate the performance ofAlgorithm Item-based Similar-
ity Computation(Algorithm 1), which is used to generate implicit
user-user similarity networks that are based on shared items (e.g.,
URLs and movies) between two users. For del.icio.us, the similar-
ity is computed as the Jaccard similarity:

sim(u1, u2) = |u1.URLs
⋂

u2.URLs|
|u1.URLs

⋃
u2.URLs|

.
For Y! Movies, it is computed as the adjusted Jaccard similarity:

sim(u1, u2) = |u1.movies Θ u2.movies|
|u1.movies

⋃
u2.movies|

,
where a movie rated by bothu1 andu2 satisfies theΘ condition if
and only if the ratings given by both are within30 of each other (on
a0-100 scale).

Intuitively, the naive approach compares each user against each
other user in the system. Our item-based algorithm takes advantage
of the fact that the user-user similarity matrix is often very sparse,

4The number of distinct active users for del.icio.us is a random
subset during the study period only and does not account for private
tagging actions, the number for the entire site is much higher.

374

Implicit Network Generation - Similarity Computation

100

150

200

250

300

350

400

0.9 0.7 0.5 0.3 0.1 0.05

Similarity Threshold

T
im

e
(s

)

del.icio.us Naïve (1% data) del.icio.us Item-based
Y! Movies Naïve (0.1% data) Y! Movies Item-based

Figure 1: Performance comparison between naive and item-based
similarity computation algorithms: the naive algorithm can not finish
on the full data sets for either del.icio.us or Y! Movies, and we randomly
sample 1% and 0.1% of the data, respectively.

SI/th=0.9 SI/th=0.5 SI/th=0.1 Friends
del.icio.us

links 88K 262K 6.2M 131K
user cov. 3.1% 6.9% 39.5% 7.5%

Y! Movies
links 5.3M 8.3M 17.9M N/A

user cov. 4.6% 5.9% 8.3% N/A

Table 3: Summary of explicit (Friends) and implicit user networks (SI
for shared interests) under various similarity thresholds (th) over the
study period.

and a comparison is necessary only when the two users shared at
least a certain number of items. As shown in Figure 1 and Ta-
ble 3, the item-based algorithm significantly outperforms the naive
algorithm. On both del.icio.us and Y! Movies, the item-based algo-
rithm is able to finish processing the entire dataset in a few minutes
even when the similarity threshold is set to0.05 (see the discussion
below for an important remark on Y! Movies). In comparison, the
naive algorithm failed to finish processing the full dataset within 24
hours: the numbers in Figure 1 for the naive algorithm are based
on running the algorithm on random subsets of the full datasets. In
Table 3,# links are the number of user-user links in the network
anduser cov.are calculated as the percentage of distinct users with
at least one friend over the total number of active users. For the rest
of the experimental evaluation, we choose similarity threshold0.1.

As expected, the naive algorithm is not affected by the similarity
threshold since it always compares all possible pairs of users. The
item-based algorithm, on the other hand, becomes more expensive
as the similarity threshold goes down and more links are created
between the users. However, as long as the resulting graph remains
sparse (i.e., linear in the number of users), the algorithm is able to
perform well. For the item-based algorithm, Y! Movies presents a
unique challenge: there are about1000 movies (2% of all movies)
that are extremely popular that we callheavy-hitter items. Given
any5 heavy-hitter movies, the number of users that rated them all
can be in the range of hundreds of thousands. In other words, the
sub-network involving heavy-hitters is extremely dense. As a re-
sult, the pruning power of item-based algorithm no longer applies:
pair-wise comparison of hundreds of thousands of users will re-
quire 10B comparisons and that’s just for5 heavy-hitters! For now,
we use the heuristic that if a user has rated a heavy-hitter movie, we
assume she will have a base similarity to all other users who have
rated heavy-hitter movies, and the similarity is proportional to the

Low Medium High
del.icio.us friendship

users 121 110 118
avg. network size 1.0 1.5 12

del.icio.us shared-url
users 334 319 330

avg. network size 1.0 7.2 155
Y! Movies shared-movie

users 540 545 494
avg. network size 3.9 38.4 192.2

Table 4: Statistics of sample groups.

number of heavy-hitter movies she has, regardless of which heavy-
hitter movies are rated. The statistics in Table 3 do not include those
heuristic similarities, hence the low user coverage for Y! Movies.
When we do consider those similarities, the coverage for the case
of th=0.1 reaches 90%. How to improve the accuracy of similarity
estimation in an efficient way for datasets like Y! Movies with such
heavy-hitter characteristics is the subject of a future study.

5.2 Evaluation of Explanation Generation

Explanations do not come for free. Next, we analyze the additional
cost associated with the generation of explanations during the rec-
ommendation process. Formally, the overhead of explanation gen-
eration is defined asthe extra processing time incurred to retrieve
explanations compared to the processing required for only retriev-
ing the recommendations. The easy way to evaluate that would be
to randomly sample the active users and record the average costs
for producing the recommendation-only results, and for producing
recommendations with explanations, for all users in the sample.

However, the cost for generating recommendations and retrieving
explanations often varies considerably from user to user. In collab-
orative filtering recommendation, one highly indicative factor of
those costs is the number of people in the user’s network. Given a
user for whom the recommendations are to be generated, the larger
her network is, the larger the number of potentially relevant items
the recommendation system will have to go through, and therefore
the higher the cost for generating recommendations.

Considering the effect of network size, we take the following more
fine-grained and more informative sampling approach: First, we
order the active users according to the number of users in their net-
works. Second, we evenly divide the list into five buckets, where
the first bucket contains users with the highest number of users in
their network and the fifth bucket contains users with the lowest
number of users in their network. Third, we discard the second
and fourth buckets and keep the first bucket (high bucket), third
bucket (medium bucket), and fifth bucket (low bucket). Finally,
for all three buckets that we keep, a1% random sample is drawn
and the resulting groups of users are calledhigh, medium, andlow
groups, respectively. All subsequent experiments are carried out on
all three sample groups. Table 4 illustrates the characteristics of
all the sample user groups that we use in our experiments. Clearly,
users in the high sample group for both shared item (shared URLs
in del.icio.us and shared movies in Y! Movies) networks have a
significantly higher number of users in their network.

As described in Section 3.3, recommendation explanations can be
generated using either the post-processing approach or the inte-
grated approach. In the post-processing approach, the recommen-
dations for the given user are produced first and then for all the
items being recommended, we query the database to retrieve the
contributors to the recommendations. In the integrated approach,

375

Low Medium High
del.icio.us friendship

avg. rec./user 2.2 8.7 9.8
avg. explantion/rec. 1 1.2 6.6

del.icio.us shared-url
avg. rec./user 4.89 9.41 9.93

avg. explantion/rec. 1 1.71 18.3
Y! Movies shared-movie

avg. rec./user 5.61 9.72 9.95
avg. explanation/rec. 1.56 3.74 7.11

Table 5: Statistics of recommendations and explanations with number
of recommendations capped at10.

del.icio.us shared-url

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0

low medium high

User Groups

T
im

e
(m

s)

Recommendation Only
Explanation: Post-Processing
Explanation: Integrated

Y! Movies shared-movie

0

2

4

6

8

10

12

14

low medium high

User Groups

T
im

e
(m

s)

Recommendation Only
Explanation: Post-Processing
Explanation: Integrated

Figure 2: Average costs for generating recommendations and expla-
nations.

we retrieve the set of users (potential contributors) in the network of
the given user, and for each such user, the list of items she has rated
in the descending order of the ratings. We then run our differential-
speed NRA algorithm to generate the recommendation and expla-
nations simultaneously.

Table 5 illustrates the recommendation results on all three different
networks and for users in the three sample groups. As expected,
the numbers of recommendations for users in the low group (i.e.,
users with few numbers of other users in their networks) are low
compared with the other two groups. In particular, for del.icio.us
recommendations using the friendship network, some users in the
low group may not even have recommendations produced for them
because their friends may not have tagged anything over the study
period. For the other two groups, the number of recommendations
approaches the pre-defined upper limit. Similarly, the number of
explanations for each recommendation grows with the increasing
network size.

As shown in Figure 2, the integrated approach for explanation gen-
eration significantly outperforms the post-processing approach: it
reduces the overhead to less than 5% for users in the low and medium
groups, and just a bit over 50% for users in the high group. The
cost savings are mostly due to the fact that in the post-processing
approach, the aggregation on items is effectively performed twice:
once in the retrieval of the recommendation results (done inside the
underlying database) and another time in the retrieval of explana-
tions (done outside of the database). In the integrated approach,
aggregation is done only once and not all items are fully analyzed.
Often the user lists are already in memory during the process of
previous recommendations, further speeding up the process.

It is somewhat surprising at the beginning that the average cost for
producing a list of recommendations is higher for users in high
groups of del.icio.us than those of Y! Movies, because Y! Movies
users actually have more people in their network (192) than del.icio.us
users (155) (Table 4). After some analysis, we realize that this is
due to the fact that there are more items per user for del.icio.us users
(15.7) than for Y! Movies users (6.4) (Table 2). In other words, to
generate a recommendation for a del.icio.us user, the system will
examine twice the number of items it examines when generating a
recommendation for a Y! Movies user.

Finally, we note here that the results on the friendship network
based recommendation for del.icio.us is similar and is therefore
omitted for simplicity.

5.3 Evaluation of Diversification Algorithms

Next, we evaluate the effectiveness and efficiency of our explanation-
based diversification algorithms described in Section 4 on medium
and high group users. We ignore the low group since the size of the
recommendation list is often smaller than the limit and therefore
there is no need for diversification.

We demonstrated in our recent work [20] that explanation-based di-
versification (using both Algorithm Swap and Algorithm Greedy)
can achieve similar diversification results as compared with attribute-
based diversification (using the same two algorithms) on the Ya-
hoo! Movies data set. Furthermore, when a collaborative filtering
recommendation strategy is adopted, explanation-based diversifi-
cation performs faster due to the fact that it does not have to re-
trieve attributes for the purpose of diversification. Here, we further
perform two more experiments. The first is to evaluate the perfor-
mance of each algorithm and understand the feasibility of adopting
recommendation diversification for real systems. The second is to
evaluate the quality of each algorithm in terms of the relevance and
the diversity they achieve.

5.3.1 Performance
The performance numbers for high group users are shown in Fig-
ure 35. Algorithm MaxRelis omitted: it takes no additional time
since in most cases it simply returns the top-k result directly from
the recommendations.Algorithm MaxDivis much more costly than
all three other algorithms, often runs in minutes, even when the
number of candidate results are limited to the top 25 for a top-10
recommendation (if Algorithm MaxDiv is left to run on all can-
didate results, it does not finish in hours in most cases.) The two
heuristic algorithms,Algorithm SwapandAlgorithm Greedy, run in
reasonable time, with the former a bit faster than the latter. This is

5Numbers for medium group user are similar.

376

0.0

0.5

1.0

1.5

2.0

2.5

3.0

del.icio.us shared url Y! Movies shared movie

T
im

e
(m

s)

Algorithm-MaxDiv Algorithm-Swap Algorithm-Greedy

Figure 3: Average costs for recommendation diversification for users
in high group.

high group MaxRel MaxDiv Swap Greedy
del.icio.us shared-url
aggregate relevance 3.07 1.23 2.31 2.45

diversity 0.90 0.98 0.98 0.98
Y! Movies shared-movie

aggregate relevance 9.05 5.46 8.77 8.74
diversity 0.81 0.93 0.91 0.95

medium group MaxRel MaxDiv Swap Greedy
del.icio.us shared-url
aggregate relevance 0.32 0.16 0.20 0.24

diversity 0.90 1.00 0.97 0.96
Y! Movies shared-movie

aggregate relevance 1.87 0.57 1.05 1.63
diversity 0.77 1.00 0.98 0.96

Table 6: Relevance and diversity of recommendation results from var-
ious diversification algorithms.

because the former runs through the candidate list once while the
latter may have to go through the list multiple times.

5.3.2 Quality
The quality of each algorithm is shown in Table 6. Not surpris-
ingly, Algorithm MaxRel achieves the best relevance in all cases,
but relatively low diversity. We observe that the diversities are in
general very high even when we are optimizing for relevance, and
especially higher for recommendations lists for users in the high
group than those in medium groups because the former group of
users have more people in their networks. In general, Algorithm
MaxDiv should be able to find a recommendation list with diver-
sity at1.0 (i.e., all items being recommended have a different set of
explanations). It often does achieve that. However, due to its high
computational complexity, we have to limit the number of candi-
date results for it to consider under25, which reduces its capability
to find the best recommendation list in terms of the diversity. As
expected, the two heuristic algorithms, Algorithm Swap and Al-
gorithm Greedy, increase the diversity at the expense of relevance,
compared with results of Algorithm MaxRel. In some cases, the
relevance drop can be significant. This is especially notable in Al-
gorithm Swap, because it is very susceptible to characteristics of
the top results in the recommendation set. E.g., suppose the top re-
sult happens to have a much higher relevance than every other item,
but at the same time is very close to other items (diversity-wise). It
is now a candidate for swapping and we are faced with a dilemma.
Either we allow the swap to happen by removing the maximum
relevance drop threshold imposed and getting a huge reduction in
relevance, or we do not swap and get the same result as we would
have obtained from Algorithm MaxRel. We have chosen the for-
mer approach because we would like to explore the characteristics
of the algorithm more.

In summary, Algorithms Swap and Greedy are able to strike a good
balance between relevance and diversity efficiently. In general, the
former should be chosen when performance is more important and
the latter should be chosen when losing the top scoring items is too
much of a risk.

5.4 Discussion

It is worth pointing out that the standard precision/recall metrics
have been known to not able to measure the benefits of the non-
traditional properties (e.g., diversity) of recommendation results [13].
As a result, the ultimate measure of the benefits of explanation and
explanation-based diversification is to let the users provide us with
feedback in the form of a user study or to carry out live testing on-
line and examine users’ click through data. There are several stud-
ies that have been done before to this effect and interested read-
ers are referred to those studies [17, 21] to learn more about the
benefits of explanation and diversification for recommendations.
We are also in the process of initiating online bucket testing with
del.icio.us.

6. RELATED WORK

The notion of diversity has been studied in many different contexts.
We discuss those studies in the context of recommender systems,
Web search and database queries.

6.1 Recommender Systems

Most recommender systems, with the exception of [21], focus on
increasing the relevance of recommended items and neglect diver-
sity. More recently, there has been a push toward going beyond
improving relevance of recommendations [13, 10]. In [21], the au-
thors introduce an order-independent intra-list similarity metric to
assess thetopical diversityof recommendation lists and a topic di-
versification approach for decreasing the intra-list similarity. Sim-
ilarity is computed by mapping items to taxonomies to determine
topics or using item features such as author and genre. The method
is based on an exhaustive post-processing algorithm which operates
on a top-N list to compute the top-K results (N > K).

The need for explaining recommendations is discussed in [14] and
[17]. Particularly in [17], the authors analyze the importance of per-
sonalizing explanations to users, the source of recommendations,
user mood, etc. The study concludes that explanations need to be
tailored to the user and the context and that explanation sources
matter. This work constitutes a good motivation for considering
explanation-based diversification. Herlocker et. al. [9] studied ex-
planation interfaces and found that, out of twenty-one explanation
interfaces for a movie recommender system, participants were most
likely to see a movie if they saw a histogram of how similar users
had rated the item, with the “good” and “bad” ratings clustered sep-
arately. Using another dataset, Bilgic and Mooney [5] have shown
that histogram-based explanations can be more persuasive than in-
tended, causing items to be over-estimated.

6.2 Web Search

To the exception of [4] and [15], most Web search engines often en-
force diversity over (unstructured) data results as a post-processing
step [6, 19]. In [15], the authors develop a query reformulation
method used to re-rank the top-N search results such that docu-
ments likely to be preferred by the user are presented higher. They

377

observe how large numbers of users modify their search queries
in order to detect the kinds of results which tend to be missing
from the top of search results from the user’s perspective. Different
query reformulations are selected based on pre-determined user in-
terests. The effectiveness of the approach is evaluated for different
user interests. The method developed in [4] relies on sampling Web
search results in order to reduce homogeneity. It is based on associ-
ating results with taxonomies and invoking a basic sample-next(p)
call that samples term postings with probability p. The authors also
show how to construct sample-next(p) methods for Boolean oper-
ators from primitive methods. The approach described in [12] is
based on clustering Web search results into groups of related top-
ics. Clusters reflect different user interests.

6.3 Database Queries

Chen and Li [7] propose a notion of diversity over structured re-
sults which are post-processed and organized in a decision tree to
help users navigate them. In [11], the authors define the Précis of
a query as a generalization of traditional query results. For exam-
ple, if the query is “Jim Gray”, its précis would be not just tuples
containing the terms, but also additional information such as pub-
lications, and colleagues. The précis is diverse enough to represent
all information related to the query terms.

In [18], the authors study the problem of efficiently computing di-
verse query results in online shopping applications, where users
specify queries through a form interface that allows a mix of struc-
tured and content-based selection conditions. They introduce a
hierarchical notion of diversity in databases. For example, when
querying a database of cars, diversity can be enforced onMake
first, and then onModel. They develop efficient top-k process-
ing algorithms. Our formal definition of diversity can be viewed
as more general given that it allows a flexible combination of rele-
vance scores and of diversity.

7. CONCLUSIONS

One of the popular means for content delivery used by collabora-
tive tagging and rating sites is recommendation. Traditional rec-
ommender systems focus on bringing forth recommendations that
maximize their estimated rating by the user. This can come at the
expense of diversity. As pointed out in [13], recommendations
lacking diversity can fail to engage the user, as the recommenda-
tions tend to be too homogeneous to be exciting. To mitigate this,
we study the problem of generating diversified recommendations in
a principled manner. Previous work has mainly relied on objective
attributes of items to achieve diversity. We identify the limitations
of such attribute-based approaches: attributes may not always be
available and it is often difficult to balance the notion of diversity
among multiple attributes. We propose a formal notion of expla-
nation for recommendations, based on which we propose an ap-
proach for recommendation diversification using distance between
pairs of items in terms of their explanations. We also develop ef-
ficient algorithms for generating recommendations, which achieve
a good balance between relevance and diversity. With a detailed
set of experiments, we show that our algorithms achieve very good
diversity levels while imposing a small overhead on top of the tra-
ditional recommendation generation. Furthermore, we empirically
demonstrate the levels of balance between relevance and diversity
achieved by our algorithms.

8. REFERENCES
[1] http://en.wikipedia.org/wiki/vector_space_model.
[2] G. Adomavicius and A. Tuzhilin. Toward the next generation

of recommender systems: A survey of the state-of-the-art
and possible extensions.IEEE Trans. Knowl. Data Eng.,
17(6), 2005.

[3] S. Amer-Yahia, L. Lakshmanan, and C. Yu. SocialScope:
Enabling information discovery on social content sites. In
CIDR, 2009.

[4] A. Anagnostopoulos, A. Z. Broder, and D. Carmel. Sampling
Search-Engine Results. InWWW, 2006.

[5] M. Bilgic and R. Mooney. Explaining recommendations:
Satisfaction vs. promotion. Beyond Personalization
Workshop. InIUI , 2005.

[6] J. Carbonell and J. Goldstein. The use of MMR,
diversity-based reranking for reordering documents and
producing summaries. InSIGIR, 1998.

[7] Z. Chen and T. Li. Addressing Diverse User Preferences in
SQL-Query-Result Navigation. InSIGMOD, 2007.

[8] R. Fagin and et. al. Optimal Aggregation Algorithms for
Middleware. InPODS, 2001.

[9] J. Herlocker, J. Konstan, and J. Riedl. Explaining
collaborative filtering recommendations. InCSCW, 2000.

[10] J. A. Konstan. Introduction to recommender systems. In
SIGIR, 2007.

[11] G. Koutrika, A. Simitsis, and Y. Ioannidis. Précis: The
Essence of a Query Answer. InICDE, 2006.

[12] K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and
R. Krishnapuram. A Hierarchical Monothetic Document
Clustering Algorithm for Summarization and Browsing
Search Results. InWWW, 2004.

[13] S. McNee, J. Riedl, and J. A. Konstan. Being Accurate Is
Not Enough: How Accuracy Metrics Have Hurt
Recommender Systems. InCHI, 2006.

[14] P. Pu and L. Chen. Trust Building with Explanation
Interfaces. InIUI , 2006.

[15] F. Radlinski and S. T. Dumais. Improving Personalized Web
Search using Result Diversification. InSIGIR, 2006.

[16] J. Stoyanovich, S. Amer-Yahia, C. Marlow, and C. Yu. A
Study of the Benefit of Leveraging Tagging Behavior to
Model UsersÍnterests in del.icio.us. InAAAI Spring
Symposium on Social Information Processing, 2008.

[17] N. Tintarev and J. Masthoff. Effective Explanations of
Recommendations: User-Centered Design. InRecSys. ACM
SIGCHI, 2007.

[18] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and
S. Amer-Yahia. Efficient Online Computation of Diverse
Query Results. InICDE, 2008.

[19] D. Xin, H. Cheng, X. Yan, and J. Han. Extracting
Redundancy-Aware Top-k Patterns. InSIGKDD 2006, 2006.

[20] C. Yu, L. Lakshmanan, and S. Amer-Yahia.
Recommendation diversification using explanations. In
ICDE, 2009.

[21] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. InWWW, 2005.

378

