
Anonymizing Moving Objects:
How to Hide a MOB in a Crowd?

Roman Yarovoy1 Francesco Bonchi2∗ Laks V. S. Lakshmanan1 Wendy Hui Wang3

1University of British Columbia 2Yahoo! Research 3Stevens Institute of Technology
Vancouver, BC, Canada Barcelona, Spain Hoboken, NJ, USA
{yra,laks}@cs.ubc.ca bonchi@yahooinc.com hwang@cs.stevens.edu

ABSTRACT

Moving object databases (MOD) have gained much interest
in recent years due to the advances in mobile communica-
tions and positioning technologies. Study of MOD can re-
veal useful information (e.g., traffic patterns and congestion
trends) that can be used in applications for the common ben-
efit. In order to mine and/or analyze the data, MOD must
be published, which can pose a threat to the location pri-
vacy of a user. Indeed, based on prior knowledge of a user’s
location at several time points, an attacker can potentially
associate that user to a specific moving object (MOB) in
the published database and learn her position information
at other time points.

In this paper, we study the problem of privacy-preserving
publishing of moving object database. Unlike in microdata,
we argue that in MOD, there does not exist a fixed set of
quasi-identifier (QID) attributes for all the MOBs. Conse-
quently the anonymization groups of MOBs (i.e., the sets
of other MOBs within which to hide) may not be disjoint.
Thus, there may exist MOBs that can be identified explicitly
by combining different anonymization groups. We illustrate
the pitfalls of simple adaptations of classical k-anonymity
and develop a notion which we prove is robust against pri-
vacy attacks. We propose two approaches, namely extreme-
union and symmetric anonymization, to build anonymiza-
tion groups that provably satisfy our proposed k-anonymity
requirement, as well as yield low information loss. We ran
an extensive set of experiments on large real-world and syn-
thetic datasets of vehicular traffic. Our results demonstrate
the effectiveness of our approach.

1. INTRODUCTION
Recent years have witnessed the popular use of location-

aware devices, e.g., GPS-enabled cell phones and PDAs, lo-
cation sensors and active RFID tags. This enables monitor-
ing of moving objects and real-time analysis of their motion
patterns, as well as the collection of the traces left by these
moving objects.

∗
This work started while he was still a researcher at C.N.R., Pisa,

Italy, supported by the EU project GeoPKDD (IST-6FP-014915).

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the ACM. To copy
otherwise, or to republish, to post on servers or to redistribute to lists,
requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 9781605584225/09/0003 ...$5.00

As an example, in the context of the GeoPKDD1 project,
we received a real-world and large dataset of trajectories
of cars equipped with GPS and moving in the city of Mi-
lan (Italy). Indeed, many citizens accept to equip their car
with GPS devices, because this way they obtain a substan-
tial discount on the mandatory car insurance. As another
example, a recent paper analyzes the case of a company in
Hong Kong called Octopus 2 that collects daily trajectory
data of Hong Kong residents who use Octopus smart RFID
card [21]. The data could be published for further analy-
sis of the movement and behavioral patterns of Hong Kong
residents. Although publishing trajectory data is useful for
obtaining knowledge in support of mobility-related decision
making processes, sustainable mobility and intelligent trans-
portation systems, it may represent a serious threat to the
individual privacy. For example, as [21] pointed out, when
a person, say Alice, uses her Octopus card to pay at differ-
ent convenience stores that belong to the same chain (e.g.,
7-Eleven), by collecting her transaction history in all these
stores, the company can construct a subset of her complete
trajectory. If this constructed trajectory uniquely identifies
Alice (we call it the quasi-identifier of Alice’s trajectory),
then by matching it with the published trajectory database,
even though the IDs of users may be removed, Alice still can
be re-identified, as can the other locations that she visited.

In practice, the quasi-identifier values of moving objects
can be obtained from diverse sources, e.g., from location
based services such as the Octopus RFID cards shown above,
or from the public knowledge (e.g., the travel schedule of
the President published in the newspaper). We argue that
unlike in relational microdata, where every tuple has the
same set of quasi-identifier attributes, in mobility data we
can not assume a set of particular locations, or a set of
particular timestamps, to be a quasi-identifier for all the
individuals. It is very likely that various moving objects
have different quasi-identifiers and this should be taken into
account in modeling adversarial knowledge.

Hence the concept of quasi-identifier must be modeled sub-
jectively, on an individual basis.

Figure 1(a) shows a moving object database. Each row
represents the trajectory of a moving object (MOB) and
shows the position of the MOB at different times, in a rect-
angular grid. The original identities (say I1, I2, I3) of the
individuals have been suppressed and have been replaced by
MOB ids O1, O2, O3. For the three individuals I1, I2 and I3,
a possible scenario is that an adversary knows the location

1http://www.geopkdd.eu
2http://www.octopuscards.com

72

of I1 at time point t1, and that of I2 and I3 at t2. In this pa-
per, we study the problem of privacy-preserving publishing
of a moving objects database. Our goal is to anonymize the
trajectories so that no MOB can be re-identified by match-
ing its quasi-identifier with the published dataset. We will
return to this example database of Figure 1(a) and discuss
the challenges in anonymizing it.

We borrow the concept of k-anonymity [19] for relational
microdata. In the classical k-anonymity framework the at-
tributes are partitioned into quasi-identifiers (i.e., a set of
attributes whose values can be linked to external informa-
tion to reidentify the individual), and sensitive attributes
(publicly unknown, which we want to keep private). In the
k-anonymity model, the values of the quasi-identifiers (QID
in the following) are generalized to be less specific so that
there are at least k individuals in the same group, which
we call the anonymization group, who have the same (gen-
eralized) quasi-identifer values. Although it has been shown
that the k-anonymity model presents some flaws and limi-
tations [11], and that finding an optimal k-anonymization is
NP-hard [2, 12], it remains a fundamental model of privacy
with practical relevance. Unfortunately, due to the peculiar
nature of the quasi-identifier values of mobility data, the ex-
isting k-anonymity framework of relational microdata is not
sufficient to protect the privacy of moving object database.

The main issue in anonymizing MOB data is that, due
to the fact that different objects may have different QIDs,
anonymization groups associated with different objects may
not be disjoint, as illustrated below.

Example 1. Consider the trajectories in Figure 1(a) and
illustrated in Figure 1(c). Let k = 2 and QID(O1) =
{t1}, QID(O2) = QID(O3) = {t2}. Intuitively the best
(w.r.t. information loss) anonymization group for O1 w.r.t.
its QID {t1} is AS(O1) = {O1, O2}. This is illustrated
in Figure 1(c) with a dark rectangle. This means in the
anonymized database we assign the region [(1, 2), (2, 3)] to
O1 and O2 at time t1. The best anonymization group for O2

as well as for O3 w.r.t. their QID {t2} is {O2, O3}. Thus, in
the anonymized database, O2 and O3 will both be assigned
to the common region [(2, 6), (3, 7)] (the second dark rect-
angle) at time t2. Clearly, the anonymization groups of O1

and O2 overlap.

Due to this fact providing a robust and sound definition
of k-anonymity in the case of MOD is challenging. The
most obvious way of defining k-anonymity is to say that a
given object must be indistinguishable from all the objects
in its own anonymization group for each timestamp in its
own QID. According to this definition the database in Fig-
ure 1(b) is 2-anonymous and thus “safe”. This obvious defi-
nition of k-anonymity still suffers privacy breaches. Indeed,
due the fact that anonymization groups may not be disjoint,
it is possible that by combining overlapping anonymization
groups, some moving objects may be uniquely identified, as
explained next. Recall the previous example. There, I1 and
I2 are in the same anonymization group (i.e., have the same
generalized location) at time point t1 (i.e., the QID of I1),
while I2 and I3 are in the same anonymization group at time
point t2 (i.e., the QID of I2 and I3). However, when the
adversary tries to map the three MOBs O1, O2, O3 to the
three individuals I1, I2, I3, with the adversary knowledge of
QID values of these three MOBs, he can infer that I1 must
be mapped to either O1 or O2, while I2 (and I3) should be

MOB t1 t2
O1 (1, 2) (5, 3)
O2 (2, 3) (2, 7)
O3 (6, 6) (3, 6)

(a)
MOB t1 t2

O1 [(1, 2), (2, 3)] (5, 3)
O2 [(1, 2), (2, 3)] [(2, 6), (3, 7)]
O3 (6, 6) [(2, 6), (3, 7)]

(b)
(c)

Figure 1: Example MOB Database (assuming
QID(O1) = {t1}, QID(O2) = QID(O3) = {t2}): (a)
original database; (b) a 2-anonymity scheme that is
not safe, and (c) its graphical representation.

mapped to either O2 or O3. If I1 is mapped to O2, we can-
not find a consistent assignment for I2, I3. As a result, the
adversary can conclude that O1 must map to I1. Thus, we
need a more sophisticated definition of k-anonymity to avoid
privacy breaches in the case of moving object databases.

Finally, another challenge arising from the fact that ano-
nymization groups may not be disjoint, is that overlapping
anonymization groups can force us to revisit earlier general-
izations, as we will shown in Section 5.

In this paper, we make the following contributions:

• We illustrate the challenges in simple adaptations of
k-anonymity for MOB databases and develop a notion
of k-anonymity to the setting of moving objects and
formally show that it does not lead to privacy breaches.

• We develop an efficient algorithm for finding good ano-
nymization group for a given MOB w.r.t. its QID.
Our algorithm makes a clever use of Hilbert indexes
and top-K algorithms.

• We develop two algorithms, namely extreme-union and
symmetric anonymization, for anonymizing MOB data-
bases and show that both of them satisfy our notion
of k-anonymity.

• Overlapping anonymization groups can cause previ-
ously computed generalizations to be revisited. We
develop an efficient algorithm for computing the gen-
eralization of every MOB at every timestamp in one
shot, without backtracking.

• We conducted an extensive set of experiments on large
real-world and synthetic datasets of vehicular traffic to
assess the effectiveness of our algorithms. Our results
show that symmetric anonymization is faster than ex-
treme union and leads to substantially less information
loss.

The rest of the paper is organized as follows. Section 2
summarizes the related work. Section 3 provides preliminary
notions while Section 4 formally defines the privacy preser-
vation problem. Section 5 introduces our anonymization
algorithms. Experimental results are shown in Section 6.
Finally, Section 7 concludes the paper. While some work
exists on anonymity of MOBs (see Section 2), to the best
of our knowledge, this is the first work tackling the chal-
lenges of anonymizing MOBs w.r.t. their QIDs by means
of space-generalization.

73

2. RELATED WORK
Existing work on anonymity of spatio-temporal moving

points has been mainly conducted in the context of location
based services (lbs). In this context a trusted server is usu-
ally in charge of handling users’ requests and passing them
on to the service providers, and the general goal is to provide
the service on-the-fly without threatening the anonymity
of the user requiring the service. The trusted server uses
spatial-cloaking (i.e., space generalization) to make the re-
quest sent from a user indistinguishable from k−1 other re-
quests [7]. Based on this idea a system that supports differ-
ent queries and various anonymization requirements was de-
veloped in [14, 13]. The approach introduced in [4] is geared
on the concept of location based quasi-identifier (lbqid), i.e.,
a spatio-temporal pattern that can uniquely identify one in-
dividual. The idea is that if a service provider can success-
fully track the requests of a user through all the elements
of a lbqid, then there would be at least k − 1 other users
whose personal history of locations is consistent with these
requests, and thus may have issued those requests. The
main difference with our context, is the fact that they con-
sider data points (requests) continuously arriving, and thus
they provide on-line anonymity : the anonymization group
is chosen once and for all, at the time this is needed. This
means that the k − 1 MOBs passing closer to the point of
the request are selected to form the anonymization group
regardless of what they will do later, as this information
is not yet available. In our context anonymity is off-line.
Our aim is that of anonymizing a static database of moving
objects, assuring that the quality of the data is kept high.
To this end, we must select anonymization groups consider-
ing the MOBs as we already know them. Thus the solution
proposed in [4] is not suitable for our purposes.

While there has been considerable work on anonymity in
lbs, to the best of our knowledge only two papers (both
published this year) tackle the problem of k-anonymity of
moving objects by a data publishing perspective.

Abul et al. [1] propose the concept of (k, δ)-anonymity
where δ represents the possible location imprecision. The
idea here is to exploit this inherent uncertainty to reduce
the amount of data distortion needed. A method for ob-
taining (k, δ)-anonymity is introduced and named NWA
(N ever Walk Alone). The method is based on trajectory
clustering and spatial translation (i.e., moving in space the
necessary points, in order to make a trajectory lie within
the anonymity cylinder). The main difference of this work
with our proposal is that it does not account for any notion
of quasi-identifiers: the trajectories are clustered together
considering their similarity all along their lifetime

Terrovitis and Mamoulis study the problem of protecting
privacy in the publication of trajectory databases in [21].
The basic assumption of this work is that different adver-
saries own different, disjoint parts of the trajectories, and
more importantly, the data publisher is aware of the ad-
versarial knowledge. The privacy that is required is that
any adversary can not learn anything more than what he
already knows from the data publication. Anonymization
is obtained only by means of suppression of the dangerous
observations from each trajectory. As generalization is not
used, it is not even needed to consider the spatial proximity
of the locations, and many of the challenges (e.g., overlap-
ping anonymity groups) that arise when using generaliza-
tion, are not an issue in this setting.

3. PRELIMINARIES
By a moving object database (MOD), we mean a collec-

tion of moving objects (MOBs) D = {O1, ..., On} that cor-
respond to n individuals, a set of m discrete time points
T = {t1, ..., tm}, and a function T : D × T →R2, that
specifies, for each object O and a time t, its position at
time t. In this paper, we use positive integers 1, 2, ... to
denote position coordinates. This corresponds to using a
grid to discretize space. The function T is called the tra-
jectory. Indeed, T (O) denotes the trajectory of object O,
i.e., its positions at times t ∈ T . For convenience, we also
write a MOD as D = {(O1, τ1), ..., (On, τn)} where Oi is a
MOB and τi = {(x1

i , y
1
i , t1), ..., (x

m
i , ym

i , tm)} is Oi’s trajec-
tory, with (xj

i , y
j
i) representing the position of Oi at time tj .

We represent a MOD as a table with rows corresponding to
trajectories of MOBs and columns corresponding to times.
An example of MOD is already given in Figure 1. We write
D(O, t) to denote the position of MOB O in the database D
at time t. For the database in Figure 1, D(O1, t1) = (1, 2).

In k-anonymization of microdata, which is basically rela-
tional, there is a fundamental notion of quasi-identifier at-
tributes, which correspond to the attributes that constitute
public knowledge and that may be used as key for a linking
attack leading to re-identification of the individuals. E.g.,
age, gender, zipcode are typical QID attributes. In the
case of a moving object database, where we think of times
as attributes with objects’ positions forming their values, we
cannot assume a fixed set of times forms the quasi-identifier
(QID) for every MOB. To capture this, we define the quasi-

identifier as a function: QID : {O1, ..., On}→ 2{t1,...,tn}.
That is, every MOB may potentially have a distinct QID.
Note that the timestamps in a QID need not be consecutive.
The QIDs may be provided directly by the users when they
subscribe to a service, or be part of the users’ personalized
settings (as it happens in many location based services), or
they may be found by means of data analysis. Discussing
how to obtain the users’ QIDs is beyond the scope of this
paper. In Section 6.2 we will describe how we generated
synthetic QIDs for experimental purposes.

Given a MOD D, a distorted version of D is any database
D∗ over the same time points {t1, ..., tn}, where D∗ con-
tains one row for every MOB O in D, and either D∗(O, t) =
D(O, t) or D(O, t) ⊑ D∗(O, t), where with ⊑ we denote
spatial containment among regions. A distorted version in-
tuitively makes it harder to determine the exact position of
an object at certain times. It never “lies” about the posi-
tion of an object. Our goal is to find a distorted version of
the MOD D, denoted by D∗, such that on the one hand,
when published, D∗ is still useful for analysis purposes, and
on the other, a suitable version of k-anonymity is satisfied.
The type of data distortion we allow is space generalization.
In the input MOD D, each position is an exact point. With
the application of a grid, we may regard each point as a
cell. Figure 1(c) illustrates this for our running example
database. We permit generalizations of points into rectan-
gles. The dark rectangles in Figure 1(c) illustrate the idea.
E.g., for O1, in the published database D∗, we would pub-
lish its position as the rectangle defined by the endpoints
(1, 2) and (2, 3). In future, we refer to rectangles as regions.
We represent a region as [(x, y), (x′, y′)] where (x, y) is its
bottom-left corner, and (x′, y′) is its top-right corner. The
region above is written as [(1, 2), (2, 3)]. By the area of a
region, we mean the number of cells in it. E.g., both the

74

regions corresponding to dark rectangles in Figure 1(c) have
four cells in them and have an area of 4.

As in traditional k-anonymization, generalization results
in information loss. We measure information loss as the
reduction in the probability with which we can accurately
determine the position of an object at a given time. For the
above rectangle, with probability 1/4 we can determine the
correct position of O1 at t1. Thus, the information loss for
O1 at this time is 1 − 1/4 since in D, we know the exact
position of O1.

Given a distorted version D∗ of a MOD D, we define the
information loss as follows (where area(D∗(Oi, tj)) denotes
the area of the region D∗(Oi, tj)):

IL(D, D∗) = Σn
i=1Σ

m
j=1(1 − 1/area(D∗(Oi, tj)).

Example 2. For the running example MOD, consider
the generalized MOD D∗ as in Figure 1(b). The information
loss associated with D∗ is 2×(1−1/4)+2×(1−1/4) = 3.

When seeking a distorted version of a database for pub-
lishing, we want to minimize the information loss. At the
same time, we want k-anonymity to be satisfied, where k is
a user-supplied parameter. In the introduction, we showed
that a direct application of the classical notion of k-anonymity
does not work for MOB data. In the next section, we fur-
ther illustrate the challenges in devising a suitable notion of
k-anonymity for MOB data.

4. MOB ANONYMITY
A basic building block for devising any notion of anonymity

is a notion of indistinguishability. Let D∗ be a distorted
version of a MOD D. We say that two MOBs O, O′ are
indistinguishable in D∗ at time t provided that D∗(O, t) =
D∗(O′, t), i.e., both are assigned to the same region in D∗.
The most obvious way of defining k-anonymity is the fol-
lowing: a distorted version D∗ of a MOD D satisfies k-
anonymity provided: for every MOB O in D, ∃k − 1 other
distinct MOBs O1, ..., Ok−1 in D∗: ∀t ∈ QID(O), O is in-
distinguishable from each of O1, ..., Ok−1 at time t. Revisit
Example 1 in the introduction. It is easy to see that the
distorted database D∗ in Figure 1(b) satisfies this notion.
Yet, we saw that privacy can be breached in this case. We
next formalize the attack model employed by the adversary
and use it to show how privacy is breached. The first notion
we introduce is an attack graph.

Definition 1 (Attack Graph). An attack graph as-
sociated with a MOD D and its distorted version D∗ is a
bipartite graph G consisting of nodes for every individual I
in D (called I-nodes) and nodes for every MOB id O (called
O-nodes) in the published database D∗. G contains an edge
(I, O) iff D(O, t) ⊑ D∗(O, t),∀t ∈ QID(I).

An assignment of individuals to MOBs is consistent pro-
vided there exists a perfect matching in the bipartite graph
G. In our running example, consider the distorted database
shown in Figure 1(b): the corresponding attack graph is
shown in Figure 2(a). It is obvious that the edge (I1, O1)
must be a part of every perfect matching. Thus, by con-
structing the attack graph an attacker may easily conclude
that MOB O1 can be re-identified as I1.

One of the key shortcomings in the straightforward def-
inition of k-anonymity given above is that while it ensures

O3

I1

I2

I3

O1

O2

O5

I1

I2

I3

I4

I5

O1

O2

O3

O4

(a) (b)

Figure 2: Attack graphs for different anonymization
schemes: (a) for D∗ in Figure 1(b); (b) for a hypo-
thetical database D∗ satisfying modified definition of
k-anonymity.

every I-node corresponding to an individual has at least k
neighbors, it does not have any restriction on the degree
of the O-nodes. What if we required that in addition, ev-
ery O-node must have degree at least k? Suppose we say
that a distorted database is k-anonymous provided in the
corresponding attack graph, every I-node as well as every
O-node has degree ≥ k. Figure 2(b) shows a possible at-
tack graph that satisfies this condition. In this graph, every
I-node and every O-node has degree 2 or more. Yet, O5

can be successfully re-identified as I5 as follows. Suppose
O5 is instead assigned to I2, to which it is adjacent as well.
Then it is easy to see that no I-node can be assigned to one
of O1, O2. Thus, the edge (I2, O5) cannot be a part of any
perfect matching. Thus, this edge can be pruned, leaving I5

as the only I-node to which O5 can be assigned.
This example is subtler than the previous example and

clearly shows the challenges involved in devising a notion of
k-anonymity that does not admit privacy breaches. We next
propose just such a notion. Before we do that, we formally
specify the attack model.

Definition 2 (Attack Model). The attacker first
constructs an attack graph associated with the published
distorted version of D and the known QIDs as described in
Definition 1. Then, he repeats the following operation until
there is no change to the graph:

1. Identify an edge e that cannot be part of any perfect
matching.

2. Prune the edge e.

Next, he/she identifies every node O with degree 1. He
concludes the (only) edge incident on every such node must
be part of every perfect matching. There is a privacy breach
if the attacker succeeds in identifying at least one edge that
must be part of every perfect matching.

We already saw that both graphs in Figure 2 (and their
underlying distorted databases) admit privacy breach. Next,
we propose a notation of k-anonymity, which guarantees
there exists a perfect matching for any arbitrary node in
the attack graph.

Definition 3 (k-anonymity). Let D be a MOD and
D∗ its distorted version. Let G be the attack graph w.r.t.
D, D∗, given a set of QIDs for the MOBs in D. Then D∗

satisfies the k-anonymity condition provided: (i) every I-
node in G has degree k or more; and (ii) G is symmetric,
i.e., whenever G contains an edge (Ii, Oj), it also contains
the edge (Ij , Oi).

75

An immediate observation is that in an attack graph that
satisfies the above conditions, every O-node will have de-
gree k or more as well. We call a distorted database D∗

k-anonymous if it satisfies Definition 3.

Theorem 1 (Correctness). Let D∗ be a k-anonymous
version of a MOD D satisfying Definition 3. Then it does not
admit any privacy breach w.r.t. the attack model defined in
Definition 2.

Proof: Consider any edge (Ii, Oj) in the attack graph G.
We will show that there is a perfect matching involving this
edge. This shows that no edge can be eliminated. Since for
every I-node there are at least k destinations and none of
them can be pruned, the theorem follows from this. Notice
that for every Ip, G necessarily contains the edge (Ip, Op),
where Op is the counterpart, i.e., the anonymized version,
of Ip. The trivial case is j = i, i.e., Oj = Oi is indeed the
anonymized version of Ii. In this case, the perfect match-
ing can assign every Ip to the corresponding MOB Op. So
suppose j 6= i. Let Ij (resp., Oi) be the counterpart of Oj

(resp., Ii). In this case, we can assign Ii to Oj . By sym-
metry, the edge (Ij , Oi) must exist and so we can assign Ij

to Oi. For every other node Ip, p 6= i, j, we can assign Ip to
Op. This assignment is a perfect matching. This was to be
shown.

5. ALGORITHMS
The essence of computing the anonymization D∗ is to de-

termine anonymization groups, and then to generalize groups
to common regions according to the QIDs. The quality
of the grouping is decided by the information loss caused
by generalization. The less the information loss, the bet-
ter the grouping. For classical relational microdata, a k-
anonymization also corresponds to a disjoint partition of
the input relation. The QID attributes are fixed for the
entire relation and tuples in each partition are generalized
on these QID attributes. After generalization every tuple
must be indistinguishable from at least k − 1 others on the
QID. We refer to the set of objects with which an object
O is to be made indistinguishable (after generalization) on
the QID as the anonymization group AG(O).

We have already seen that when QIDs of objects are dis-
tinct, the anonymization groups need not be disjoint, and
that this represents one of the main differences between
anonymization in microdata and in MODs. Another chal-
lenge is that overlapping anonymization groups can force us
to revisit earlier generalizations, as illustrated by the next
example.

Example 3. Consider a MOD D = {O1, O2, O3} with
QID(O1) = {t1, t2} and QID(O2) = QID(O3) = {t2, t3}.
Let k = 2. Suppose the trajectories are such that the
best anonymization group we can find for O1 is AG(O1) =
{O1, O2}, w.r.t. QID(O1). Now, we construct the best
anonymization group for O2 (and O3). Suppose it is AG(O2)
= AG(O3) = {O2, O3}, w.r.t. QID(O2) and QID(O3).
Suppose according to the anonymization groups, we decide
to generalize O1 together with O2 at times t1 and t2 first
and then generalize O2 and O3 together at times t2 and t3.
But then at time t2, O2 has already been generalized with
O1. So, we then have to revisit the previous generalization
and then adjust it to make sure that at time t2, objects
O1, O2, O3 are all assigned the same region.

This example shows that after we find the best anonymiza-
tion groups for objects, if we start generalizing objects (w.r.t.
their QIDs) along with all objects in their anonymization
group, we may sometimes have to revisit previous general-
izations and possibly re-generalize them with other objects.
This happens precisely because some anonymization groups
overlap both in objects and in QIDs. This phenomenon
causes computational difficulties. The challenge is whether
we can find a schedule for generalizing objects along with a
set of objects (w.r.t. their QIDs) so that we don’t have to
revisit previously computed generalizations.

The next challenge is finding anonymization groups for
MOBs in such a way that the attack graph induced by them
satisfies the condition of k-anonymity. We organize the rest
of this section as follows. In the next section, we focus on
finding anonymization groups. In Section 5.2, we propose an
approach for computing generalizations of object trajecto-
ries given possibly overlapping anonymization groups. Our
algorithm avoids backtracking and computes the generalized
position of every object at every timestamp in one shot.

Before we proceed presenting the algorithms for finding
anonymization groups, we recall from [12, 10] that for clas-
sical relational microdata, finding optimal k-anonymization
is NP-hard. It is not difficult to show that this hardness
carries over to the problem of finding k-anonymizations with
minimum information loss for MOBs. Given this, we focus
on efficient heuristics.

5.1 Computing anonymization groups
One of the key steps in finding a k-anonymization of a

MOD is finding the so-called anonymization group: given a
MOB O, find the (k − 1) best other MOBs {Oi, ..., Ok−1}
such that when O is generalized together with Oi, ..., Ok−1

on all time stamps t ∈ QID(O), the resulting generalization
will have minimum information loss. In the following, when
we speak of computing the anonymization group of a MOB
O, we will refer to O as the subject and speak of distances
of other MOBs from the subject at a given time.

Finding anonymization groups is beset with two chal-
lenges: (i) computing the distance from a MOB to other
MOBs is expensive, and (ii) finding the best candidates for
the anonymization group, i.e., those MOBs whose aggregate
distance from the subject over all its QID time points is
minimum, is expensive independently of the previous step.
Intuitively, we could pick the k−1 MOBs which are nearest
neighbors to the subject. However, MOBs which are close
to the subject at one time, may be far from it at another.
Figure 3 illustrates this point: Ignore the numbers inside the
cells for now. They will be explained shortly. Figure 3(a)
(resp., (b)) shows the positions of three MOBs at time t1
(resp., time t2).

What we seek is a set of k − 1 MOBs which have the
minimum aggregate distance from the subject O over the
entire set of times in QID(O).

We could create any data structure for fast retrieval of
nearest neighbors at every time point. There is vast litera-
ture on data structures and efficient algorithms for kNN of
moving objects [15, 22, 20]. We make use of space filling
curves for this purpose. Specifically, we use the Hilbert in-
dex of spatial objects for efficient indexing of MOBs at each
time point. The Hilbert curve [9] is a continuous fractal
space-filling curve that naturally maps a multi-dimensional
space to one dimension. The Hilbert index of a list of points

76

2 3

4 5 6

78

9 10

13

15

16

1

1718

1920

21

2223

2425

2627

28

30

31323334

3536

64

(a) (b)

38394243

37404144

61

6263

4645

4748

54535249

565750

5857

5960

Figure 3: Illustration of MOB positions and their
Hilbert indexes: (a) time t1; (b) time t2.

is assigned following the order in which the Hilbert curve vis-
its these points in an n-dimensional space. It is well known
that the Hilbert index preserves locality, i.e., points close
in the multi-dimensional space remain close in the linear
Hilbert ordering. Figure 3 illustrates how Hilbert index is
assigned to object positions corresponding to various cells
in a two-dimensional grid. It is easy to see that it preserves
locality. We make use of this property. Specifically, at each
time point t, we construct the Hilbert index of all MOBs ac-
cording to their locations at t. Hamilton and Rau-Chaplin
[8] have devised an efficient algorithm for computing the
Hilbert index of objects in multiple dimensions. We make
use of their algorithm (see Algorithm 2 in [8]) to compute
the Hilbert index of MOBs at any given time. In our im-
plementation, we insert MOB id’s into a list in sorted order
of their Hilbert index. Given a MOB O, denote its Hilbert
index at time t as Ht(O). We refer to the list of MOBs and
their Hilbert index at time t as the Hilbert list of MOBs at
time t and denote it as Lt. Each entry in Lt is of the form
(O, Ht(O)), containing a MOB id and its Hilbert index.

By the deviation at time t between two MOBs O, O′, we
mean the absolute difference |Ht(O) − Ht(O

′)|. A key ad-
vantage of Hilbert lists is that given a subject O, the MOBs
which are closest to O at t can be approximated by MOBs
with the least deviation from O at t, which in turn can be
efficiently found from the list Lt. Our goal though, is to
find those MOBs whose aggregate distance from a subject
O over a set of time points is the least possible. Any aggre-
gate function such as avg, sum etc. can be used. We use
sum in our exposition. We can reduce this problem to that
of finding the top-K MOBs as follows.

Given a subject O, define the local score of a MOB O′

in Lt to be the deviation scoret(O
′) = |Ht(O) − Ht(O

′)|.
The overall score of O′ is score(O′) = Σt∈QID(O)scoret(O

′).
The problem of finding MOBs with the closest aggregate
distance from O thus reduces to finding the top-K MOBs
with the lowest overall score, where K = k − 1. Efficient
answering of top-K queries where scores are computed by
aggregation of local scores has been studied extensively in
recent years. In particular, a family of algorithms were de-
veloped and analyzed by Fagin et al. [16, 17] and improved
by other researchers subsequently (e.g., see [18]). The key
insight is that by storing the lists containing objects with lo-
cal scores in descending order of scores and by maintaining
a threshold score based on objects examined so far, one can
stop the processing early. One of the landmark algorithms is
the so-called Threshold Algorithm (TA) [16, 17]. We adopt
the recent improvement of TA, which was developed in [18]
and referred to as Best Position Algorithm (or BPA2). We
cannot use this algorithm directly as the subject MOB is not
fixed. Thus, we cannot order the lists Lt in order of scores,
since the scores are not fixed! However, we can solve this by

subject =

11

12

14

29

55

12

19

33

41

62

(a) (b)

bestAbove

bestAbove

bestBelow

bestBelow

Figure 4: Illustration of Hilbert Lists: (a) time t1;
(b) time t2.

simply storing the lists Lt in increasing order of the Hilbert
index. Given a subject MOB O, other MOBs which are clos-
est to O according to their Hilbert index, and hence have
the smallest scoret(), are adjacent to O in the list Lt, but on
both sides of O. Thus, while in standard top-K algorithms
such as TA, we walk down the score lists, ordered in decreas-
ing order of scores, with Hilbert lists, we need to identify the
position of the subject on each list, and move away from it
on either side of the subject. E.g., in Figure 4(b), the Hilbert
index of the subject is 33 and the score (i.e., deviation) of
the MOBs increases as we move away from the subject: the
score of the triangle is |33 − 19| = 14, that of the rectangle
is |33 − 41| = 8, etc.

We next describe our adaptation of Algorithm BPA2 from
[18]. We perform two kinds of accesses to each list – sorted
and random. Random access probes the list given the MOB
id. Sorted access, on the other hand, advances the cursor
from the last seen MOB (under both sorted and random ac-
cess) to the next adjacent MOB. Since we need to move both
“above” and “below” the subject, for each list, we main-
tain a pair of cursors – bestAbove and bestBelow. Here,
bestAbove (resp., bestBelow) refers to the smallest (resp.,
largest) position above (below) the subject position, that
has been examined so far (see Figure 4). By the position
of an entry in a Hilbert list, we mean its position from the
top. E.g., in Figure 4(a), the position of the subject MOB
is 2. Section 5.1.1 describes the algorithm. Given a Hilbert
list Lt and a position i, we use Lt[i].MOB (resp., Lt[i].ind)
to denote the MOB (resp., Hilbert index) component of the
entry at position i. E.g., in Figure 4(a), Lt1 [3].MOB is the
triangle and Lt1 [3].ind = 14.

5.1.1 Algorithm GenAG

First, for every time point t, we compute the Hilbert index
Ht(O) of every MOB O and insert the entries (O, Ht(O))
into a list Lt in increasing order of Ht(O). We will use these
lists repeatedly for computing the anonymization group of
different subjects.

Algorithm GenAG as presented above, considers all MOBs
in the lists as candidates for AG(Oi). Sometimes, we may
want to exclude certain MOBs from consideration. This
is easily achieved by ignoring list entries corresponding to
those MOBs that are supposed to be excluded.

It was shown in [17] that Algorithm TA has the instance
optimality property (see [17] for details). This property is
inherited by BPA2 and also by GenAG. Intuitively, instance
optimality guarantees that any algorithm, which does not
make any wild guesses, cannot compute the answer to the
top-K query (i.e., compute AG(Oi)) in fewer accesses than
GenAG algorithm by more than a constant factor, on any
input database.

77

Algorithm 1 GenAG

Input: Subject MOB Oi and anonymity threshold k;
Output: anonymization group AG(Oi).
1: Let QID(Oi) = {t1, ..., tp} be the QID of Oi. Let K = k−1.
2: Do a sorted access to each of the lists Lt1 , ..., Ltp in par-

allel, say in a round robin manner. First, locate the entry
(Oi, Ht(Oi)) containing the subject. Let cPos be the position
of this entry in Lt. Whenever a MOB O is seen under sorted
access in a list Lt, set its local score to |Ht(Oi) − Ht(O)|.
Obtain its local score in other lists by a random access and
compute its overall score as the sum of local scores. Keep
track of all seen positions (sorted or random) in all lists as
well as the corresponding local scores. Maintain a top-K heap
containing the K MOBs with the best overall scores seen so
far as well as the scores.

3: For each list Lt, let Above (resp., Below) denote the set of
all positions above (resp., below) that of the subject Oi (at
position cPos) that have been seen (sorted or random). Let
bestAbove (resp., bestBelow) be the smallest (largest) posi-
tion in Above (Below) such that every position at or below
(at or above) it, and above (below) the subject, has been
seen. Let the pointer best point to whichever of bestAbove
or bestBelow has been seen last. Set the “worst” (i.e., the
smallest) local score for list Lt as |Lt[best].ind−Lt[cPos].ind|.
The threshold is the sum of worst local scores for all times
t ∈ QID(Oi). If the highest score in the top-K heap is less
than or equal to the threshold, return the MOBs in the heap
as the anonymization group AG(Oi, k).

4: Compare the local scores at bestAbove−1 and at bestBelow+
1 and choose the entry with the smaller local score. Advance
the appropriate pointer (bestAbove or bestBelow).

5.1.2 Extreme Union

Algorithm GenAG produces the top-k candidates for form-
ing the anonymization group of a given object. As we have
seen in the initial sections, simply generalizing an object O
with the MOBs in the set AG(O) may not lead to an attack
graph that satisfies the condition of k-anonymity. Thus, a
key question is how to expand the anonymity groups pro-
duced by GenAG in order to ensure k-anonymity. In this
section, we discuss one such algorithm for doing so.

For each MOB O, we compute its hiding set AG(O) using
Algorithm GenAG. Then we take the union of the QIDs of
all MOBs in AG(O) and generalize all of them w.r.t. every
time point in this union. Algorithm 2 shows the pseudocode.

Algorithm 2 Extreme Union

Input: D, QID(Oi), Oi ∈ D, and anonymity threshold k;
Output: D∗, a k-anonymization of D.

// Collect moving obects that have defined QIDs
1: QO = {Oi | QID(Oi) 6= ∅, Oi ∈ D};
2: for all Oi ∈ QO do

3: AG(Oi) ← anonymization group of Oi w.r.t. QID(Oi); //
Using Algorithm GenAG.

4: for all Oj ∈ AG(Oi) do

5: TimeStampUnion ←
⋃

Oj∈AG(Oi)
QID(Oj);

6: generalize all objects in AG(Oi) together w.r.t. every times-
tamp in TimeStampUnion. // Using Algorithm 4.

The last step in Algorithm 2 involves computing the gen-
eralized positions (i.e., regions) for MOBs at various times-
tamps. Given that the anonymization groups are overlap-
ping, this must be done with care in order to avoid back-
tracking and revisiting of previously computed generaliza-
tions. We deal with this issue in Section 5.2 and Algo-
rithm 4. Next, we show that the anonymization produced
by Algorithm 2 is indeed k-anonymous.

Theorem 2 (Correctness of Extreme Union).
The generalized database produced by Algorithm 2 is k-
anonymous.

Proof: Let AG(O) be the anonymization group com-
puted for any MOB O. According to the algorithm, all
the MOBs in AG(O) are generalized w.r.t. all times in the
union of QID sets of all objects in AG(O). Let AG(O) =
{O1, ..., Ok}. Notice that by Algorithm 1, this set will con-
tain exactly k objects. From construction, it follows that
the induced attack graph will contain a complete bipartite
subgraph between nodes {I1, ..., Ik} and nodes {O1, ..., Ok}.
These remarks hold for any object O in the input database.
Thus, it follows that the attack graph satisfies the conditions
in Definition 3.

As an illustration of the extreme union approach, in our
running example, AG(O1), computed w.r.t. QID(O1) =
{t1}, is {O1, O2}. Since QID(O2) = {t2}, the extreme union
approach will generalize O1 and O2 together w.r.t. both t1
and t2. Similarly, it will generalize O2 and O3 together w.r.t.
t2.

While Algorithm 2 does produce generalizations that are
k-anonymous, it can result in considerable information loss.
The reason is that when AG(O) is computed, we may pick
the k−1 objects that (heuristically) minimize the area of the
generalized region w.r.t. those timestamps in QID(O). But
then at the end, objects in AG(O) are generalized w.r.t. not
just QID(O) but timestamps that are in the QID in any ob-
ject in AG(O). For timestamps outside QID(O), objects in
AG(O) may be arbitrarily far away from O. E.g., in our run-
ning example, D(O1, t2) = (5, 3), while D(O2, t2) = (2, 7),
and generalizing these together leads to a large region. To
address this concern, in the next section, we ask the ques-
tion whether we can generalize objects less aggressively than
extreme union and still meet the k-anonymity condition.

5.1.3 Symmetric Anonymization

A key condition in the definition of k-anonymity is that
the induced attack graph must be symmetric. Extreme
union achieves this at the expense of generalizing all objects
in an anonymization group w.r.t. the QIDs of all MOBs in
the group. Thus, it keeps the set of objects being general-
ized together fixed, and equal to the original anonymization
group computed. An alternative approach is to keep the
timestamps w.r.t. which a set of MOBs is generalized to-
gether, fixed and equal to QID(Oi). We must then control
the composition of the anonymization groups in order to en-
sure symmetry. Since the anonymization groups computed
by this algorithm may not exactly correspond to those com-
puted using Algorithm 1, we use a different term, hiding
sets (denoted HS), to describe them, for the sake of clar-
ity. Hiding sets serve the same purpose as anonymization
groups, to drive the generalization step. Algorithm 3 gives
the pesudocode. As with Algorithm 2, we appeal to Algo-
rithm 4 (to be given in Section 5.2) for actually computing
the generalization.

For our running example, suppose the MOBs are visited
in the order O1, O2, O3. Assume we consider 2-anonymity.
HS(O1) is initially set to {O1}. Then HS(O1) is set to
{O1, O2}. To enforce symmetry, we set HS(O2) = {O2, O1}.
Since the slack associated with O2 now is 0, we move on
to O3, and compute HS(O3) = {O3, O2}. Again, to en-
force symmetry, we go back and add O3 to HS(O2), so
HS(O2) = {O1, O2, O3}. At this point, the HS sets are

78

User MOB QID AG(O) TimeStampUnion
A O1 t1, t2 O1, O2 t1, t2, t3
B O2 t3 O2, O4 t3, t4
C O3 t2, t4 O3, O4 t2, t4
D O4 t4 O4, O2 t3, t4
E O5 t1, t3, t4 O5, O1 t1, t2, t3, t4

(a)
MOB QID HS(O)
O1 t1, t2 O1, O2, O5

O2 t3 O2, O1

O3 t2, t4 O3, O4

O4 t4 O4, O3

O5 t1, t3, t4 O5, O1

(b)

Figure 5: Difference between: (a) Extreme Union
and (b) Symmetric Anonymization.

all symmetric and all the slack values are 0. Algorithm 4
is invoked and it generalizes O1, O2 at timestamp t1 and
O1, O2, O3 at timestamp t2. In this example, the final result
of symmetric anonymization coincides with that of extreme
union, even though the mechanics of the two algorithms are
different. The following example illustrates the difference
between these two approaches.

Algorithm 3 Symmetric Anonymization

Input: D, QID(Oi), ∀Oi ∈ D, and anonymity threshold k;
Output: D∗, a k-anonymization of D.
1: QO = {Oi | QID(Oi) 6= ∅, Oi ∈ D}; // Collect moving

objects that have defined QIDs
2: for all Oi ∈ QO do

3: HS(Oi) ← {Oi};
4: slack(Oi) ←− k − 1;
5: for all Oi ∈ QO do

6: if slack(Oi) > 0 then

7: HS(Oi)←HS(Oi) ∪ {top-slack(Oi) MOBs
computed using Algorithm GenAG }

8: for all Oj ∈ HS(Oi), j 6= i do

9: HS(Oj) ← HS(Oj) ∪ {Oi}
10: slack(Oj) ← k− | HS(Oj) |;
11: for all Oi ∈ QO do

12: generalize all MOBs in HS(Oi) together w.r.t. QID(Oi)
// using Algorithm 4.

Example 4. Let there be five individuals A (Alice), B
(Bob), C (Chloe), D (Dave), and E (Erika), who are pseudo-
anonymized into the respective MOB ids O1, ..., O5. Sup-
pose k = 2. Figure 5(a) shows the QIDs associated with
the MOBs as well as the evolution of the computation us-
ing extreme union. The AG sets are computed using Al-
gorithm 1, which finds the approximate nearest MOBs to a
given MOB, w.r.t. the subject’s QID. For each AG set, we
take the union of the QID sets of all MOBs in the set. E.g.,
for AG(O1), this gives QID(O1) ∪ QID(O2) = {t1, t2, t3}.
Finally, using Algorithm 4, the generalized database is com-
puted, meeting the specifications of anonymization groups
and timestamps in Figure 5(a). We will return to this in
the next section. Figure 5(b) shows the evolution of the
computation using symmetric anonymization. Initially, all
HS(O) sets are set to contain only the MOB O. The slack
for every MOB at this point is 2−1 = 1. Next, compute the
approximate nearest neighbor for O1 w.r.t. the timestamps
t1, t2. This is O2. In addition to adding O2 to HS(O1), we
add O1 to HS(O2) (symmetry), making the slack of O2 zero.

Similarly, O4 is determined to be the approximate nearest
neighbor of O3 and added to HS(O3). Then O3 is added
to HS(O4) for symmetry. Finally, O1 is added to HS(O5),
which by symmetry, forces O5 to be added to HS(O1). At
this point, the algorithm invokes Algorithm 4 in order to
compute the generalized database.

While we will discuss the details of the generalization in
the next section, a quick inspection of Figure 5(a)-(b) should
reveal the differences in the final output expected from ex-
treme union and symmetric anonymization.

Theorem 3 (Correctness of Algorithm 3).
The generalized database produced by Algorithm 3 is k-
anonymous.

Proof: Definition 3 has two requirements: symmetry of
the attack graph, and degree no less than k. Symmetry is
explicitly enforced by Algorithm 3. Moreover, every hiding
set that is produced has size k or more.

Before we leave this section, extreme union and symmet-
ric anonymization ensure k-anonymity by different means:
by expanding the set of timestamps or by controlling the
composition of anonymization groups/hiding sets. In Sec-
tion 6, we compare their relative performance both w.r.t.
speed and information loss.

5.2 Computing Generalizations
The problem we tackle in this section is the following.

Given a set of possibly overlapping anonymity (or hiding)
sets for a set of MOBs, and associated sets of timestamps,
how can we compute the generalized database efficiently?
This problem arises regardless of whether we use extreme
union or symmetric anonymization for generating the sets.
More formally, let D be an input database containing MOBs
O1, ..., On. Let {S(Oi) | S(Oi) ⊆ {O1, ..., On}, 1 ≤ i ≤ n}
be a collection of sets of MOBs, and let {T (Oi) | 1 ≤ i ≤ n}
be a set of sets of timestamps. Then we wish to compute
the generalization D∗ of the input database D such that
∀Oi : ∀t ∈ T (Oi) : ∀Oj ∈ S(Oi) : D∗(Oi, t) = D∗(Oj , t).

Algorithm 4 Generalize

Input: D, QID(Oi)(∀Oi ∈ D), threshold k, and the set of
MOB sets A,

Output: D∗, a k-anonymous version of D.
1: For all Oi ∈ D, let S(Oi) be the anonymity (or hiding) set

computed using extreme union (symmetric anonymization)
and let T (Oi) be the set of timestamps associated with S(Oi)
under either approach;

2: Let QIT be the union of all timestamp sets T (Oi), Oi ∈ D.
3: for all t ∈ QIT do

4: ECt = GenEquivClass(A,t); // Using Algorithm 5
5: for all C ∈ ECt do

6: for all O ∈ C do

7: D∗(O, t) ← lub(C);

Let A be the set of anonymity/hiding sets of MOBs in D,
computed using extreme union or symmetric anonymization
(Sections 5.1.2 and 5.1.3). For the sake of neutrality, we will
henceforth refer to the sets in A as MOB sets. Depend-
ing on the context, MOB sets can mean either anonymiza-
tion groups or hiding sets. As we have seen before, these
sets need not be disjoint. Suppose there is a MOB set
S(Oj) ∈ A such that Oi ∈ S(Oj). Then by the definition of
S(Oj), Oi and Oj should be indistinguishable at every time

79

t ∈ QID(Oj), in any k-anonymized database D∗ that uses
this anonymization groups. Indistinguishability is clearly an
equivalence relation, which motivates the following.

Definition 4 (Equivalence Class).
Given two MOBs Oi, Oj , we say Oi and Oj are equivalent
at time t, Oi ≡t Oj , iff: (1) t ∈ QID(Oj) and Oi ∈ S(Oj),
or (2) t ∈ QID(Oi) and Oj ∈ S(Oi) (i.e., the symmetric
variant of (1)), or (3) there exists a MOB Ok 6= Oi, Oj s.t.
Oi ≡t Ok and Ok ≡t Oj .

If we can compute the equivalence classes for every time
t ∈ QIT efficiently, then a k-anonymization D∗ of D can be
obtained as follows. For each time t ∈ QIT , for each equiv-
alence class C w.r.t. time t, generalize the position of every
MOB O ∈ C to lub(C), i.e., the least upper bound of the po-
sitions of objects in C w.r.t. the lattice of rectangles. This
corresponds to the smallest axis-parallel rectangle contain-
ing the positions of all MOBs in C at time t. E.g., for S =
{O1, O2} in our running example, lubt1(S) = [(1, 2), (2, 3)]
(see Figure 1(c)). This explains Steps 5-7 in Algorithm 4.

Algorithm 5 captures the details of Step 4. It computes
the equivalence classes w.r.t. time t by running through
every MOB Oi with t ∈ QID(Oi) and then adding S(Oi) to
the collection ECt. We maintain the collection ECt using
the well-known UNION/FIND data structure for disjoint
sets, with path compression [6]. When a new S(Oi) enters
ECt, we check for overlap with an existing set in ECt by
issuing a FIND query against ECt w.r.t. every MOB in
S(Oi) (Step 7). If it returns null, i.e., no overlapping set is
found, we make a new set (Step 9). Otherwise, we merge
the object with the existing set (Step 11 - 13). To illustrate,
suppose S(Oi) = {O1, O2, O3}. When we query for O1,
suppose we find C1 ∈ ECt. Now, we query for O2. If we
find another set C2 ∈ ECt, then we union (i.e., merge) C1

and C2 using the tree merge and path compression. Finally,
if we find C3 ∈ ECt when we query for O3, we merge C3

with the merge of C1 and C2.

Algorithm 5 GenEquivClass

Input: The set of MOB sets A, a timestamp t;
Output: ECt, the set of all equivalence classes at time t.
1: ECt ← ∅;
2: for all S(O) ∈ A do

3: Newset ← {};
4: MergeSet ← {};
5: for all Oi ∈ AG(O) do

6: if t ∈ QID(Oi) then

7: root ← Find(Qi, ECt).
8: if root == NULL then

9: Insert root into Newset;
10: else

11: Insert root into Mergeset;
12: S ← MakeSet(NewSet);
13: S ← Union(S, Mergeset);
14: Add S to ECt;
15: Return ECt;

Example 5. We illustrate Algorithm 4 on the database
of Figure 5. First, consider extreme union, for which the
MOB sets are given in Figure 5(a). For the timestamp t1,
the algorithm will first add the set {O1, O2} to ECt1 . The
only other MOB whose QID contains t1 is O5. We find that
its MOB set {O5, O1} overlaps the only class in ECt1 so we

t ECt ECt

t1 {O1, O2, O5} {O1, O2, O5}
t2 {O1, O2, O5}, {O3, O4} {O1, O2, O5}, {O3, O4}
t3 {O1, O2, O4, O5} {O1, O2, O5}
t4 {O1, O5}, {O2, O3, O4} {O1, O5}, {O3, O4}

(a) (b)

Figure 6: Equivalence classes produced by Algo-
rithm 5 when applied to: (a) the anonymization
groups produced by Extreme Union (reported in
Figure 5(a)), and (b) the hiding sets produced by
Symmetric Anonymization (in Figure 5(b)).

expand that class to {O1, O2, O5}. On the other hand, for
t2, we start with O1 again and the set {O1, O2} is added
to ECt2 . The next MOB containing t2 in its QID set is
O3. When we query ECt2 with the contents of the MOB set
S(O3) = {O3, O4}, we find no result, so we start a new class
{O3, O4}. Eventually, when we process O5, we find that its
MOB set S(O5) = {O5, O1} overlaps an existing class so
we expand that class to {O1, O2, O5}. The complete set of
equivalence classes is shown in Figure 6(a).

When the same algorithm is run on the input MOB sets
produced by symmetric anonymization, shown in Figure 5(b),
it results in the equivalence classes shown in Figure 6(b).

In this example, it turns out that the equivalence classes
produced from the output of symmetric anonymization are
smaller than those produced from extreme union. Intu-
itively, the smaller the classes, the less general the regions.
However, this is not always true and depends on the rela-
tive positions of the objects. In general, theoretically ex-
treme union and symmetric anonymization are incompara-
ble in terms of the information loss they result in. Extreme
union, by taking the union of QIDs of the objects in each
of the anonymization sets, may lead to coarse equivalence
classes. On the other hand, symmetric anonymization does
not change QID sets. However, it may result in hiding sets
whose size is > k, since some of the membership is forced
by symmetry. E.g., in the above example, O5 is added to
HS(O1) because of symmetry, making |HS(O1)| = 3. Fur-
thermore, when an object O′ is added to a hiding set HS(O)
in order to enforce symmetry, it is possible O′ is far away
from O w.r.t. QID(O). Thus, analytically, we cannot show
that either of the algorithms – extreme union or symmet-
ric anonymization – dominates the other. We conduct a
detailed comparison between these algorithms in Section 6,
where we compare them w.r.t. speed and information loss.

5.2.1 Discussion of Complexity

Our approach to computing the generalization of a MOD
makes use of Algorithms 1-5. As already discussed, Algo-
rithm 1 inherits the instance optimality of TA and BPA2
algorithms from [17, 18], w.r.t. the number of sorted and
random access it makes on any input database instance,
where the database instance here refers to the set of Hilbert
lists. Algorithm 5 makes use of the disjoint sets union/find
data structure with path compression and can be shown to
take O(nkα(nk)) time. Algorithm 4 invokes Algorithm 5 m
times, where m is the number of time points in the MOD
D. Generalization (steps 6-7 of Algorithm 4) adds an ad-
ditional complexity of O(mn), so the overall complexity is
O(mnkα(nk)).

80

6. EXPERIMENTAL EVALUATION
In this section we report the empirical evaluation we con-

ducted in order to assess the performance of our algorithms.

6.1 Experimental Data
We experimented on both a real-world trajectory dataset,

and a synthetic one. The first one is a dataset used in the
GeoPKDD project3: after pre-processing, it contains more
than 45k trajectories and a total of approximately 500k
spatio-temporal points. These trajectories are obtained by
GPS-equipped cars moving in the city of Milan (Italy) start-
ing from January 2007. During the pre-processing we en-
forced a constant sampling rate of one point every 5 min-
utes. We did not use interpolation to reconstruct the missing
points: when a point is missing the object is assumed to stay
still in the last position observed. We also cut trajectories
when two consecutive observations where too far in time or
in space. Moreover, we cut trajectories everyday at 3 a.m.,
to focus on a single day. At the end the dataset contains
2009 different timestamps. Finally we removed completely
noisy trajectories such as trajectories with too small tem-
poral or spatial extension. The second dataset is synthetic
and it has been generated using Brinkhoff’s network-based
generator of moving objects [5]: it contains 150, 000 trajec-
tories with 400 distinct timestamps over the road-network
of the city of Oldenburg (Germany). The former dataset is
referred to as Milan, and the latter as Oldenburg hence-
forth. In Table 1 we report the characteristics of the two
datasets.

6.2 Experiments settings
Our algorithms were implemented using Java 6.0. The

experiments were run on an Intel Pentium 4, 3.00GHz, Linux
machine equipped with 2Gb main memory.

To measure the effects of QIDs on the performance of our
methods, for both Milan and Oldenburg datasets we gen-
erated QIDs under various different configurations. E.g.,
QIDs randomly chosen, all QIDs are disjoint, all QIDs
form a single chain, i.e., every two adjacent QIDs share at
least one timestamp, and all QIDs form multiple disjoint
chains, forest of trees, etc. For each configuration of QIDs,
we constructed a set of QID instances of different size. We
varied the number of timestamps in each QID as well as
the number of timestamps shared by multiple QIDs. For
lack of space we omit the analysis of the effects of shape
and size of QIDs on the overall performance. We plan to
present a detailed analysis on an extended version of this
paper. For the experiments reported in the rest of this sec-
tion we used the same configuration for both Milan and
Oldenburg, i.e., QIDs formed following a random graph
approach. In this approach a random graph is generated
where each node represents a QID and there is an edge
between two nodes whenever they have an overlap on at
least one timestamp: e.g., let QID(O1) = {t1, t2, t3} and
QID(O2) = {t3, t4, t5}, then there is an edge between nodes
QID(O1) and QID(O2).

3http://www.geopkdd.eu

D |D| x-range y-range t-range

Milan 45639 [45370K, 45560K] [9050K, 9280K] [7776K, 8380K]
Olden. 150000 [281, 23854] [3935, 30851] [0,399]

Table 1: Datasets used in the experiments.

6.3 Measures of quality
We next compare algorithms extreme union and sym-

metric anonymization both in terms of efficiency (run time
and memory peak), and efficacy (quality of the resulting
anonymized MOD). Since in our setting in general we can
not produce a partition of objects as result of the k-anonymi-
zation, we can not adopt the usual measures adopted to
evaluate the quality, such as for instance discernibility [3].
In the following we discuss the measure that we adopt.

Information loss. We measure directly the information
loss introduced by our k-anonymization as defined in Sec-
tion 3. In particular we report the average information loss.
Given a distorted version D∗ of a MOD D, we measure:

avg(IL(D, D∗)) =
Σn

i=1Σ
m
j=1(1 − 1/area(D∗(Oi, tj))

n × m

where n is the number of MOBs and m the number of times-
tamps in D.

Coverage of equivalence classes. In microdata anonymi-
zation, an equivalence class larger than 2k − 1 is mean-
ingless: intuitively if the equivalence class population is at
least of size 2k, then it can further divided into at least two
sub-classes still satisfying the k anonymity requirement and
yielding less distortion. This consideration obviously does
not hold in our MOD context for all the challenges that we
discussed in this paper. In our context equivalence classes
of size larger than 2k may be forced. Nevertheless, it is
interesting to measure what proportion of the equivalence
classes produced have a size under a given threshold. It is
interesting to use 2k − 1 as such a threshold. More pre-
cisely, we would be interested in measuring the percentage
of the equivalence classes produced that have their size in
the range [k, 2k − 1].

Therefore, we define the coverage of equivalence classes as
the ratio of the number of equivalence classes whose size is
in the interval [k, 2k − 1], over the total number of distinct
equivalence classes. Obviously, the closer the coverage is to
the value of 1, the better.

Range query distortion. Since the purpose of releas-
ing data is usually to query or to analyze it, a very natu-
ral way of measuring utility is to compare the results be-
tween queries evaluated on the original dataset D and its
anonymized version D∗. For this purpose we adopt range
query distortion as a measure of the quality of the anonymiza-
tion. In particular, given a region R and a timestamp t we
consider two different kinds of queries:

• Possibly Inside: returning the number of MOBs whose
position (possibly generalized) at time t overlaps with R;

• Definitely Inside: returning the number of MOBs whose
position (possibly generalized) at time t is completely
contained in R.

We denote such queries pi(R, t, D) and di(R, t, D) respec-
tively. In our experimentation we report the measures:

• |pi(R, t, D) − pi(R, t, D∗)|/pi(R, t, D∗), and

• |di(R, t, D) − di(R, t, D∗)|/di(R, t, D).

The two measures of distortion are always computed for
100 randomly chosen timestamps, and 100 randomly chosen
regions, thus they are always averaged over 10.000 runs.

81

(a) (b) (c) (d) (e)

Figure 7: Algorithms comparison on dataset Oldenburg with k = 16, maximal QID size of 40, and varying size
of the input database. In (a) we report run time, in (b) memory peak, in (c) average information loss, in (d)
“possibly inside” and (e) “definitely inside” query distortion. Please note that the extreme union approach
was not able to conclude for an input of 150.000 trajectories due to excessive memory requirement.

avg Run time Memory Number Median of Coverage of Possibly In. Definitely In.
k (IL(D, D∗)) (minutes) peak (Mb) of Eq.Cl. Eq.Cl. size Eq.Cl. Distortion Distortion
2 0.1359 621 1581.93 5014704 2 0.8969 0.1831 0.0829
4 0.2394 883 1645.67 2690394 5 0.7276 0.3771 0.2138
8 0.3795 1068 1743.94 495108 11 0.6614 0.5344 0.3752
16 0.5281 1337 1909.42 27549 20 0.6991 0.5786 0.5210
32 0.6396 1348 1994.50 2961 273 0.3637 0.5930 0.6218

(a)

Maximum avg Run time Memory Number Median of Coverage of Possibly In. Definitely In.
QID size (IL(D, D∗)) (minutes) peak (Mb) of Eq.Cl. Eq.Cl. size Eq.Cl. Distortion Distortion

20 0.0611 43 1025.16 1325 18 0.7969 0.0920 0.0713
40 0.1145 97 1052.29 5200 17 0.7878 0.1974 0.1485
100 0.3011 447 1233.42 16328 19 0.7443 0.3431 0.2700
200 0.5281 1337 1909.42 27549 20 0.6991 0.5786 0.5210

(b)

Figure 8: Effects of (a) the anonymity threshold k and (b) the QID size. All the experiments are on the
Milan dataset, with the Symmetric Anonymization approach. In (a) the maximal QID size is set to 200,
while in (b) the anonymization threshold is fixed as k = 16.

6.4 Algorithms analysis
As discussed in Section 5, theoretically extreme union and

symmetric anonymization are incomparable in terms of the
information loss they result in. But the experiments we con-
ducted clearly show that the extreme union approach per-
forms much more poorly than the symmetric anonymization,
both in terms of efficiency and efficacy. Extreme union is al-
ways slower (Fig. 7(a)) and it has always larger memory re-
quirements, becoming infeasible for large datasets (Fig. 7(b)).
The difference of performance in the two algorithms is main-
tained in the quality tests were symmetric anonymization
performs better both in terms of information loss (Fig. 7(c))
and range query distortion (Fig. 7(d)(e)). Since symmet-
ric anonymization so evidently dominates extreme union in
terms of both efficiency and efficacy, in the rest of this sec-
tion we will focus mainly on the best approach.

We experimentally discovered that for symmetric anonymi-
zation, the quality of the data maintained after anonymiza-
tion does not necessarily degrade with larger datasets (see
the non monotonicity of the line in Fig. 7(c),(d), and(e)). On
the contrary, the symmetric anonymization approach ben-
efits from the larger variety of MOBs available. In fact,
in larger data set, an object Oi has more candidate ob-
jects to hide with. So it is more likely that anonymiza-
tion groups will not overlap among them, and consequently,
symmetric anonymization will create small-sized equivalence
classes. As an example, in the same set of experiments re-
ported in Figure 7, in the dataset anonymized by symmetric

anonymization, the median of equivalence classes size distri-
bution is 29 when the input MOD consists of 50k trajecto-
ries, while it falls to 18 (just slightly above the anonymity
threshold k = 16) for an input database of 150k MOBs. It is
worth noting that even with such a drastic drop in the size
of equivalence classes, the quality of the anonymized data
does not improve accordingly. This is due to the way sym-
metric anonymization enforces complete symmetry: suppose
that QID(O1) = {t1} and QID(O2) = {t200}, and suppose
that the top-k algorithm finds that AG(O1) = {O1, O2}.
Then AG(O2) = {O1, O2} by symmetry. But, O1 may be
arbitrarily far from O2 at time t200.

A deeper analysis of the symmetric anonymization ap-
proach on the real-world database is reported in Figure 8,
where the effects of (a) the anonymity threshold k and (b)
the QID size are studied. The first observation is that
the median of the distribution of equivalence classes size
increases quickly with k, while it seems not to be influenced
by the size of the largest QID. Secondly the information
loss grows with larger k and larger QIDs: this was certainly
expected as larger k and larger QIDs clearly make for a
more difficult anonymization task. Range query distortion
measures, and coverage of equivalence classes confirm these
trends. This observation is also reflected in run-time and
memory consumption. However we can observe that the
maximal size of the QIDs has a larger impact on the perfor-
mances. While run-time grows sub-linearly with k it grows
super-linearly with the maximal size of the QIDs.

82

7. CONCLUSIONS AND FUTURE WORK
We motivated the problem of k-anonymization of mov-

ing object databases for the purpose of their publication
in a privacy-preserving way. In particular we focused on
providing a form of k-anonymity based on spatial general-
ization. We showed the challenges in adapting the concept
of k-anonymity to the case of moving object databases.

The main challenge in finding k-anonymization of a mov-
ing object database is that unlike in relational microdata,
every MOB may have distinct QIDs, which may lead to
overlapping anonymity sets.

We developed a notion of k-anonymity for MOD and we
formally showed that it does not lead to privacy breaches.
Based on this notion we devised two different anonymization
approaches, namely Extreme Union and Symmetric Anony-
mization. We showed with extensive experiments on both
real and synthetic data sets that the symmetric anonymiza-
tion outperforms extreme union both in efficiency and qual-
ity of the anonymized data. To the best of our knowledge,
this is the first work tackling the challenges of anonymizing
MOD by means of space-generalization.

In future work, we intend to conduct tests on more data
sets and w.r.t. different configurations of QIDs and an ex-
haustive range of values for the sizes of QIDs. An open
problem is how to obtain real-world QIDs or, at least, how
to produce QIDs which are as realistic as possible. From
this perspective, an interesting line of research is how to ef-
fectively discover the QIDs: this may be tackled as a data
mining problem, by identifying the sub-trajectories that uni-
quely identify the moving objects.

Another line of research that we intend to follow is how
to devise anonymization methods that support database up-
dates. Developing k-anonymity models for MOD based on
stronger attack models is another interesting research topic.

Finally, we plan to investigate how to introduce outlier
detection and suppression in our method. In fact, we believe
that by removing a few outliers we may significantly enhance
the overall data quality.

Acknowledgments: The authors wish to acknowledge
the GeoPKDD project which supported part of this research.
The work of the first and third authors was supported by
a grant from NSERC (Canada). Thanks are also to the
anonymous reviewers for numerous helpful comments which
helped improve the paper.

8. REFERENCES

[1] Abul, O., Bonchi, F., and Nanni, M. N ever Walk
Alone: Uncertainty for anonymity in moving objects
databases. In Proc. of the 24th IEEE Int. Conf. on
Data Engineering (ICDE’08).

[2] Aggarwal, G., Feder, T., Kenthapadi, K.,
Motwani, R., Panigrahy, R., Thomas, D., and
Zhu, A. Anonymizing tables. In Proc. of the 10th Int.
Conf. on Database Theory (ICDT’05).

[3] Bayardo, R., and Agrawal, R. Data privacy
through optimal k-anonymity. In Proc. of the 21st
IEEE Int. Conf. on Data Engineering (ICDE’05).

[4] Bettini, C., Wang, X. S., and Jajodia, S.
Protecting Privacy Against Location-Based Personal
Identification. In Proc. of the Second VLDB Workshop
on Secure Data Management (SDM’05).

[5] Brinkhoff, T. Generating traffic data. IEEE Data
Eng. Bull. 26, 2 (2003), 19–25.

[6] Galil, Z., and Italiano, G. F. Data structures and
algorithms for disjoint set union problems. ACM
Comput. Surv. 23, 3 (1991), 319–344.

[7] Gruteser, M., and Grunwald, D. Anonymous
Usage of Location-Based Services Through Spatial
and Temporal Cloaking. In Proc. of the First Int.
Conf. on Mobile Systems, Applications, and Services
(MobiSys 2003).

[8] Hamilton, C. Compact Hilbert Indices. Tech. Rep.
CS-2006-07, Dalhousie University, July 2006.

[9] Hilbert, D. Über die stetige abbildung einer linie auf
ein flächenstück. Math. Ann. 38 (1891), 459–460.

[10] LeFevre, K., DeWitt, D. J., and Ramakrishnan,
R. Mondrian multidimensional k-anonymity. In Proc.
of the 22nd IEEE Int. Conf. on Data Engineering
(ICDE’06).

[11] Machanavajjhala, A., Gehrke, J., Kifer, D.,
and Venkitasubramaniam, M. l-diversity: privacy
beyond k-anonymity. In Proc. of the 22nd IEEE Int.
Conf. on Data Engineering (ICDE’06).

[12] Meyerson, A., and Willliams, R. On the
complexity of optimal k-anonymity. In Proc. of the
23rd ACM Symp. on Principles of Database Systems
(PODS’04).

[13] Mokbel, M. F., Chow, C.-Y., and Aref, W. G.
The new casper: A privacy-aware location-based
database server. In Proc. of the 23rd IEEE Int. Conf.
on Data Engineering (ICDE’07).

[14] Mokbel, M. F., Chow, C.-Y., and Aref, W. G.
The new casper: Query processing for location
services without compromising privacy. In Proc. of the
32nd Int. Conf. on Very Large Databases (VLDB’06).

[15] N. Roussopoulos, S. Kelley, F. V. Nearest
neighbor queries. In Proc. of the 1995 ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD’95).

[16] R. Fagin, A. L., and Naor, M. Optimal aggregation
algorithms for middleware. In Proc. of the 20th ACM
Symp. on Principles of Database Systems (PODS’01).

[17] R. Fagin, A. L., and Naor, M. Optimal aggregation
algorithms for middleware. Journal of Computer and
System Sciences 66, 1 (2003), 614–656.

[18] Reza Akbarinia, Esther Pacitti, P. V. Best
Position Algorithms for Top-k Queries. In Proc. of the
32nd Int. Conf. on Very Large Databases (VLDB’07).

[19] Samarati, P., and Sweeney, L. Generalizing data
to provide anonymity when disclosing information
(abstract). In Proc. of the 17th ACM Symp. on
Principles of Database Systems (PODS’98).

[20] S.Saltenis, C.S., J. S. T. L. M. Indexing the
positions of continuously moving objects. In Proc. of
the 2000 ACM SIGMOD Int. Conf. on Management
of Data (SIGMOD’00).

[21] Terrovitis, M., and Mamoulis, N. Privacy
preservation in the publication of trajectories. In Proc.
of the 9th Int. Conf. on Mobile Data Management
(MDM’08).

[22] Xiaohui Yu, Ken Q. Pu, N. K. Monitoring k-nearest
neighbor queries over moving objects. In Proc. of the
21st IEEE Int. Conf. on Data Engineering (ICDE’05).

83

