
Towards Integrated and Efficient Scientific Sensor Data
Processing: A Database Approach

Ji Wu
School of Computing

National University of Singapore
wuji@comp.nus.edu.sg

Yongluan Zhou
Dept. of Mathematics & Computer Science

University of Southern Denmark
zhou@imada.sdu.dk

Karl Aberer
School of Computer and Communication

Sciences
EPFL, Switzerland

karl.aberer@epfl.ch

Kian-Lee Tan
School of Computing

National University of Singapore
tankl@comp.nus.edu.sg

ABSTRACT
In this work, we focus on managing scientific environmental data,
which are measurement readings collected from wireless sensors.
In environmental science applications, raw sensor data often need
to be validated, interpolated, aligned and aggregated before be-
ing used to construct meaningful result sets. Due to the lack of
a system that integrates all the necessary processing steps, scien-
tists often resort to multiple tools to manage and process the data,
which can severely affect the efficiency of their work. In this pa-
per, we propose a new data processing framework, HyperGrid, to
address the problem. HyperGrid adopts a generic data model and a
generic query processing and optimization framework. It offers an
integrated environment to store, query, analyze and visualize scien-
tific datasets. The experiments on real query set and data set show
that the framework not only introduces little processing overhead,
but also provides abundant opportunities to optimize the processing
cost and thus significantly enhances the processing efficiency.

1. INTRODUCTION
Environmental monitoring data collected from wireless sensors

typically need to be further processed before being utilized for sci-
entific research. This is because raw sensor data are noisy and in-
complete, and hence need to be cleaned. More importantly, there is
a mismatch between what scientists desire from the data and what
raw sensor data can offer.

Unlike traditional DBMS where users ask for information that
can be directly looked up from the database tables, scientific queries
are more analytical. The raw input data have to be interpreted with
mathematical or geostatistical models provided by the users before
they can be used to compute the user queries. We refer to such a
step as “data preparation”. Note that such data preparation is not a
one time job. It is required to be adapted based on the requirements
of the user queries. Also, scientists would often try to interpret

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

data with different models to see how the query output would be
like. The traditional Clean-Store-Query paradigm cannot be ap-
plied here. Instead, it is desirable that the data preparation phase be
run at query time.

As there is a lack of a general framework to embrace all the
necessary data processing, scientists often use diverse customized
codes and various tools for different processing tasks. As such,
the whole processing procedure is usually conducted in a number
of separated steps. As we will see later, such an approach can-
not exploit the opportunities of optimizations across multiple steps
and hence prohibits efficient scientific query processing. Further-
more, the lack of a generic processing framework also prohibits
the application of generic optimization techniques. Only ad-hoc
optimizations written by customized codes are possible. Finally,
scientific data processing often involves visualization products and
progressive visualization is a desirable feature for many science
applications. However, the multi-step processing approach limits
the extent of progressive computation and visualization that can be
exploited.

As one of our efforts to address the problem, this paper presents
an integrated and easy-to-use data processing system for environ-
mental scientists to help their routine tasks of sensor data manipu-
lation. Our work is inspired by the success of the relational DBMS
technology which provides an integrated and efficient business data
management platform by a generic data model and a generic query
processing and optimization framework. Analogously, we propose
a new scientific data processing framework, called HyperGrid, which
comprises a new data model, a query processing framework as well
as several generic optimization techniques.

Our context for studying scientific data processing is the Sen-
sorScope project [2], a Wireless Sensor Network (WSN) which
produces spatial and temporal measures for ecological and environ-
mental monitoring. The system consists of multiple solar-powered
sensing stations that measure key environmental data such as air
temperature, humidity, solar radiation, wind speed and direction.
These sensing stations periodically sample their sensors and trans-
mit the readings through wireless channels to the central server.
Scientists can then retrieve the data through the central server in
real time. Because these data are still in the rudimentary form,
a series of transformations have to be performed before they are
ready for scientific research.

The HyperGrid system is designed and tailored to such scientific
applications. It offers an integrated environment for managing sci-
entific sensor data. The logical abstraction provided by HyperGrid

922

Original
Dataset

Clean data
(data preparation)

Interpolate data
(data preparation)

Align data
(data preparation)

Compute Average
(query processing)Output

Figure 1: Work flow of Example 2.1

significantly saves users’ efforts from handling low level data op-
erations such as array manipulations and coordinates transforma-
tions. Furthermore, we show that such an integrated framework
offers abundant opportunities for query optimization. Based on
the users’ requirements, we have implemented several optimization
techniques in HyperGrid. And our experimental study has demon-
strated the effectiveness of these techniques in boosting the perfor-
mance for scientific query processing.

Before embarking on the details of the system, we first give mo-
tivating examples in the next section which features two represen-
tative queries issued by scientists and explain why processing these
queries are poorly supported by the existing techniques.

2. MOTIVATING EXAMPLES
We show two concrete examples in this section. The first one

illustrates a routine query which computes some statistical infor-
mation about the dataset. The second example depicts a scenario
where information is queried for the purpose of data exploration.

2.1 Scenario one
Consider the following query that a scientist typically issues:

EXAMPLE 2.1. Return the average ambient temperature over
the period from 2007-10-01 00:00 to 2007-10-04 00:00 for the re-
gion [45◦52′1′′N, 45◦52′23′′N] in latitude and [7◦10′37′′E, 7◦10′59′′E]
in longitude on a 1′′× 1′′grid.

What the scientist has available is a data file with raw tempera-
ture readings collected from sensors. Before the data can be used
to answer the query, they need to go through several preprocessing
steps. Firstly, the original dataset needs to be cleaned. Corrupted
points are removed or replaced. Secondly, because sensor data are
not available at all the locations specified in the query, the original
data need to be interpolated over the geographical space. However,
in order to do this, data values have to be first aligned on all dimen-
sions except for those involved in the interpolation. In this exam-
ple, data need to be aligned over the time dimension before being
interpolated on the spatial dimensions (which means the set of data
points involved in the same interpolation computation must either
have the same temporal value or fall into the same interval). Meth-
ods to align the data include to randomly pick one representative
data reading (i.e. sampling) for each aligned interval or to take an
aggregation over the aligned interval. Once this is done, the spatial
interpolation can be performed with the granularity 1′′× 1′′for each
aligned time slice. Only at this stage is the curated dataset ready
to answer the query, which is a simple average aggregation over
time from 2007-10-01 00:00 to 2007-10-04 00:00 for the region
between [45◦52′1′′N, 45◦52′23′′N] and [7◦10′37′′E, 7◦10′59′′E].
A flowchart describing the steps of producing the output is given in
Figure 1.

It is interesting to note that most of the efforts are actually spent

on preparing the data rather than answering the query. This is in-
deed quite common in scientific data processing. In fact a com-
plete query specification should also include details on how the
data are prepared because scientists can have various ways to pre-
process the data and their choice of procedure directly influences
the query results. There is, however, no standard formula on how
the data should be prepared towards a given type of query. Parame-
ters such as the size of the interval in data alignment are determined
by knowledge experts and are subject to change. Unfortunately, re-
lational DBMS cannot directly support many data preparation op-
erations with configurable parameters. Although array database is
able to achieve this, the separation between array elements and their
spatio-temporal context makes the process tedious, especially when
operations involve external models. Take interpolation as an exam-
ple. Kriging as a popular geostatistical technique is often used for
interpolation. It requires a variogram model to describe the degree
of spatial dependence for a given region. Because the spatial co-
ordinates of the data points in an array database cannot be directly
obtained, such spatial dependence hence requires extra effort to de-
rive by stitching the data points with the variogram model. Other
operations involving external physical models also encounter the
similar problem. In short, a pure array-based implementation is
deemed inadequate for supporting such scientific queries.

2.2 Scenario two
The second example demonstrates a scenario that occurs fre-

quently during data exploration. In this case, scientists want to
study the factors that impact the solar radiation for some region.
They hypothesize that the rainfall rate may be the major influenc-
ing factor, which can be negatively correlated to the solar radiation
value. They want to verify their hypothesis through the following
query:

EXAMPLE 2.2. Compute the hourly average rainfall rate and
hourly average solar radiation over the period τ at some point A.
Display the results by plotting a diagram for each type of the mea-
surement.

To focus on the essence, we omit the details of the time and the
location in this query. The query itself is not much different from
the previous example except now the result needs to be displayed
for visualization. In a data exploration scenario like this, scientists
often do not need an accurate quantification as the answer, instead
they prefer the results to be plotted so that they can see intuitively
whether the outputs are as expected in general. A similar scenario
would also emerge when scientists want to study a new physical
model. In that case, a bunch of similar queries, differed only by the
values of the model parameters under investigation, are executed.
Scientists want to gain a quick understanding of how these para-
meters influence the behavior of the model. To achieve this, the
processing engine must facilitate results to be generated in a pro-
gressive way to cater for the interactive visual exploration. We will
return to this topic when optimization techniques are discussed in
Section 6.

3. DATA MODEL
One important characteristic of environmental monitoring data

is that they can be uniquely identified by the spatial and tempo-
ral attributes corresponding to where and when they are measured.
Spatial and temporal attributes are not only used for identification
purpose, more importantly, they are treated as the intrinsic proper-
ties of the associated measurements, through which scientists can
reason about the meaning of the measured data as well as the phys-
ical phenomena implied by them.

923

Conventionally, array is chosen as the basic data model to store
scientific measurement data. Structural regularity and concise rep-
resentation make array-based model suitable for managing data in-
volving complex computations. However, without external map-
ping spatio-temporal associations with the measurement data are
lost with the array representation. This severely hinders efficient
scientific sensor data manipulation. To this end, we extend logical
array data model and propose a new HyperGrid data model. Scien-
tists have been using grid (implemented mainly through array) to
model and organize their data. Experience shows that grids work
well for typical applications, provided input can be readily fit into
the grid points. Data abstracted from grids can be ordered, filtered
or aggregated according to the given criteria without much diffi-
culty. Our proposed HyperGrid model is based on grid structure
which can accommodate both rudimental sensor readings and high
level data abstraction under the same framework.

Essentially, a HyperGrid can be seen as a collection of overlay
grid structures built on top of a scientific dataset. Each overlay grid
is called a perspective. Conceptually, a perspective is analogous to
a view in traditional DBMS. However, we deliberately use a differ-
ent term here to distinguish it from a database view1. All perspec-
tives in a HyperGrid are derived from a single base perspective,
which is a special perspective that links raw data readings with a
grid construct. The base perspective, or simply base, has a prede-
termined data structure which sets the coordinates and dimensions
of the HyperGrid in a multidimensional space. The grid granular-
ity of a base is fixed in line with the resolutions of the measuring
devices for the corresponding spatial or temporal dimensions. This
implies any generated spatio-temporal coordinates can be precisely
captured in base, ensuring lossless mappings from sensor readings
to the corresponding grid points.

On top of the base, a set of perspectives can be defined by the
user or inferred by the system to reflect the user’s views over the
data. These perspectives typically have a coarser grid granularity
than the base. There is no limit on the number of perspectives in
a given HyperGrid. Users can create as many perspectives as they
want for their purposes.

Traditional grid structure only models objects in spatial domain.
In HyperGrid, each perspective also includes time as an additional
dimension in the grid space. From a data model point of view,
temporal dimension is treated no differently from a spatial dimen-
sion. However, scientific queries over temporal space are more
involved in query semantic especially for aggregations. We will
discuss these issues later in details.

Like traditional grid, each perspective is composed of two parts:
a grid topology and data values associated with it. The topology
refers to the layout of a grid. Essentially it defines how data are
grouped along each spatial and temporal dimension. The grid con-
sists of cells that are regularly placed according to the topology de-
finition. Each cell can be seen as an abstract object that represents
certain spatial and temporal span. It is important to note each cell is
identified by the spatial and temporal coordinate of its “lower-left”
corner (imagine cell as a rectangular or an orthotope in a multi-
dimensional space), rather than their relative position index as in
the array-based model. This is a significant distinction between ar-
ray and perspective. The coordinate not only uniquely identifies
each cell within a perspective, more importantly, it associates cells
among different perspectives through their spatio-temporal context.
As we shall see, this can play a very important role in scientific
computations.

A perspective is only instantiated when the grid topology is bound
1This is mainly because the role perspective plays in HyperGrid is
much more important than the role view plays in a DBMS.

with data. However, in what follows, we abuse the notation Pi to
denote both a perspective and its grid topology when there is no
ambiguity. Hence, the data value associated with a cell e ∈ Pi

can be represented by Pi[e]. There are various types of data val-
ues depending on different dimension aggregations they entail. As
an example, data values for hourly average temperatures at a given
point in a geographical space is a 1-D aggregation because it only
takes aggregation on one dimension (i.e. the time dimension). In-
tuitively, data values associated with an n-dimensional perspective
can be from 0-D aggregation up to n-D aggregation. The only ex-
ception is base, whose associated data must be 0-D as it only stores
data samples directly from the measuring devices. Our current im-
plementation allows each perspective to associate one type of data
value only. This makes transformations among perspectives neat
and easy to manipulate.

4. OPERATIONS
Following the approach of DBMS, we also try to propose a generic

data processing framework so that scientists could easily compose
their routine data processing tasks and, as will be seen later, some
generic optimization techniques could be applied to boost the process-
ing performance. However, unlike the operators in traditional DBMS,
operators’ customizability is crucial to the scientific applications.
This is actually one major reason why DBMS is not prevalent in
scientific applications. Therefore, we endeavor to design generic
but customizable operators, with which scientists could fill in their
customized functions to form the specific operator that they need.
By doing this, we can keep the benefits of having a generic process-
ing framework while providing the necessary customizability.

HyperGrid adopts a transformation based framework; scientific
data processing is modeled as transformations among different per-
spectives. Hence, the essence of HyperGrid is a sound and flexible
perspective construction so that common data operations can be
natively supported. In this section, we first describe the details of
building a perspective, followed by an example to illustrate how
common operations are supported by such construct.

4.1 Perspective construction
The construction of a new perspective (called target perspective)

Pt typically requires one2 reference perspective (called source per-
spective) Ps from which the new perspective is derived. To be clear,
we will use subscripts t and s to distinguish target and source per-
spectives respectively. Cells in target and source perspectives are
correspondingly referred to as target cells and source cells in the
rest of the paper. Occasionally, the target and source perspectives
are also called child and parent perspectives respectively when the
context deems appropriate.

At the very outset, the base is used as the reference to create the
first perspective. In addition to Ps, Pt may optionally require three
pieces of information: a topological definition Tt, a data function
Dt and an input selection function It. (i.e. Pt = 〈Ps, Tt, Dt, It〉)

As mentioned before, a topological definition Tt gives the inter-
nal layout of a grid. It determines the size and dimension of the
cells within a perspective. Depending on the type of associated
data values, grid layout can have different semantic meanings. For
example, when the associated data is 0-D aggregation, the layout
simply sets the grid granularity. On the other hand, when the as-
sociated data is k-D aggregation (k > 0), the layout also serves as
part of the query semantic that instructs how data are grouped and
aggregated. Notably, cell in a perspective inherits the character-

2The only exception is perspective that implements Merge opera-
tion, in which case multiple source perspectives are required.

924

istics of traditional grid cell that captures the structural regularity.
However, the former embodies a broader definition than the latter.
A cell in a perspective is generalized as a logical computation unit,
which may not be visualized as a single block or orthotope in a
multidimensional space. For example, a cell can refer to a set of
unconnected blocks or orthotopes that collectively form a logical
unit. Also neighboring cells need not be disjoint or adjacent as in
traditional grid. They are allowed to overlap or contain space be-
tween them (as in Example 8.1). We will see how this generalized
notion of cell benefits query construction, especially for aggrega-
tion queries later in Section 4.3.

Data function Dt is the other component for perspective con-
struction. It implements a scientific operation by dictating how
data are transformed from Ps to Pt. The input of Dt are values
associated with a set of source cells. The output of Dt is the com-
puted result for some target cell et. Various forms of data functions
for popular scientific operations are also discussed in detail in Sec-
tion 4.3.

The construction of a new perspective involves both topological
transformation and data transformation. These are two closely re-
lated processes. Topology conversion from Ts to Tt is implicitly
performed through the output to input mapping of the data function
Dt. Notice the output of Dt corresponds to the value of a cell con-
fining to the topology Tt. However, the input of Dt is from cells
confining to the topology Ts. Although it is not always the case, for
some operations an explicit user-defined input selection function It

is needed to instruct how cells under Ts should be selected to com-
pute a target cell under the topology Tt. The function It takes one
target cell et ∈ Pt as input and returns as output the set of source
cells {es|es ∈ Ps} that will contribute to computing the value for
the cell et.

As a final note, when a query is formulated as a series of per-
spective transformations, the last perspective in the series, called
surface perspective (or simply surface), defines the final query re-
sults. In addition to the parameters above, a surface has one more
optional parameter called clipping window, which defines a scope
in the spatial and temporal domains where only data points within
the defined window are returned.

4.2 Relationship between perspectives
Input selection function ensures data computation is carried out

on the correct data set. However, such function is often not neces-
sary for constructing a new perspective as long as the defined data
transformation is Location Consistent as defined below:

DEFINITION 4.1. Let V (e) denote the scope of a cell e defined
in the spatio-temporal domain. And let It be the input selection
function for some data function Dt. The corresponding data trans-
formation is said to be Location Consistent (LC) if the following
Location Equivalent condition holds:

V (et) =
[

es∈It(et)

V (es), (1)

All other transformations that violate the Location Equivalent con-
dition are categorized as Location Across (LA) transformations.

The input selection function can be omitted for LC transforma-
tion because target cell and its contributing source cells can be au-
tomatically paired through their Space-Time Identity. Hence, user-
defined input selection is only required for perspective computed
from LA transformations. Fortunately, as we shall see later, most of
the operations belong to LC transformations. Hence, by exploring
the important “location equivalent” relationship among perspec-
tives, operations can be defined in a more concise way. Moreover,

Target Perspective Parameter Default value or rule
Source Perspective Ps the base
Topology Definition Tt Ts

Data Function Dt n.a. (compulsory parameter)
Input Selection Function It LC rule

Table 1: Default settings for perspective parameters

the query executor can also take advantage of LC property to opti-
mize the query execution as discussed in Section 6.2.1.

4.3 Operators
HyperGrid provides users great freedom to create their own data

operations through customized perspectives. We have described
in the previous section that the definition of a perspective Pt is a
quadruple 〈Ps, Tt, Dt, It〉. As examples, we show in this section
how popular operations (convert, merge, interpolate and aggregate)
in scientific sensor data processing can be readily supported by this
construct. Although four parameters need to be supplied for the
standard definition, in practice some of the parameters (such as
It as described in the previous section) can be omitted by taking
their default actions. Table 1 lists the default settings when the
corresponding parameter is not specified. Table 2 summarizes the
characteristics of the perspectives implementing these popular op-
erations.

4.3.1 Convert
The convert operation converts data points in Ps to other values

in Pt. The operation can be used in different ways for different pur-
poses. One simple usage is to scale up or scale down values in the
grid dataset by introducing a scaling factor in the data transforma-
tion rule. As another example, in data preparation phase, Convert
can serve as a filter to clean corrupted sensor readings. This is
achieved by converting erroneous data in Ps to “NULL” or some
default values for the corresponding grid cell in Pt. A perspec-
tive that implements convert duplicates the topology of the source
perspective (i.e. the default setting) since convert does not involve
any structural change of the grid. Hence, other than Ps, the data
function Dt is the only parameter to be specified, which can be
formulated as follows:

DEFINITION 4.2. Given Ts = Tt, let C denote the conversion
function. The transformation rule Dt is:

Dt(e) = C(Ps[e]), ∀e ∈ Pt (2)

In the above definition, both Ps and Pt refer to the topologies
instead of the entire perspectives. Because source and target per-
spectives share the same topology (Ts = Tt), for each grid cell e in
the target perspective grid, we can find a corresponding data value
associated with that cell in the source perspective.

4.3.2 Merge
Merge is the only operator which takes multiple perspectives

as input. It is often used for producing a model that integrates
multiple types of measurements, each represented by one source
perspective. The operator enforces all source perspectives to have
the identical topology and produces one target perspective with the
same topology. Similar to Convert, the data transformation rule Dt

is the only parameter to be customized, which can be defined as
follows:

DEFINITION 4.3. Given N is the number of source perspec-
tives (N > 1), and Tt = Tsi ,∀i ∈ N . Let d(e) denote the set of

925

Operator # of Source Perspectives Topology Definition Data Function Input Selection Function (data transformation type)
Convert One Default User defined function Default (LC)
Merge Multiple Default User defined function Default (LC)

Interpolate One New definition User defined function User defined function (LA)
Aggregate One New definition User defined function Default (LC)

Table 2: Characteristics of perspectives for different operators

data values from {Psi [e]| i ∈ N}. The transformation function for
Merge is:

Dt(e) = Γ(d(e)),∀e ∈ Pt (3)

where Γ is a user defined function that merges the corresponding
cells from each of the source perspectives.

4.3.3 Interpolate
In managing scientific data, especially environmental data, in-

terpolation is such a popular yet expensive operation that deserves
particular attention. As input are measurement readings, which
are samples taken from continuously running physical processes
(such as solar radiation, wind speed), without temporal interpola-
tion it is very difficult to answer queries that ask for data at some
point in time when no measurements were taken. Analogously,
meteorologic phenomena monitored by WSN usually comes with
the “coverage-holes” problem owing to the sparsity of the network
or nodes failure. In the SensorScope project, to set up sufficient
number of sensing stations in order to provide exhaustive coverage
over a monitored region is infeasible due to prohibitive deployment
costs. Hence, scientists also resort to spatial interpolation to gener-
ate a comprehensive data map for research and analysis.

Interpolation is a typical example of LA transformation. A per-
spective that implements interpolation defines its own grid layout
Tt and data transformation rule Dt. Tt generates a set of new grid
cells whose associated data values are to be interpolated. Computa-
tion for the interpolated points are defined by Dt, which comprises
two steps. In the first step, a customized input selection function
It is used to select candidate grid cells from Ps that will contribute
to the computation for the grid cell in Pt. This is followed by ap-
plying a computation function to data values associated with the
candidate cells to produce the interpolated result for the target cell
in Pt.

DEFINITION 4.4. Let It denote the input selection function for
interpolation and C denote the corresponding computation func-
tion. The transformation rule for Interpolation is:

Dt(et) = C(et, Φ, {Ps[es]| es ∈ It(et)}),∀et ∈ Pt (4)

where Φ is a statistical model based on which the interpolated
value is calculated.

4.3.4 Aggregate
Scientific data processing involves extensive aggregation opera-

tions for two reasons. Firstly, aggregation is used to compress sheer
volume of data generated by the measuring devices to a manageable
level. Secondly, scientific observations or assertions are typically
supported by statistically significant data computed by certain ag-
gregation functions rather than individual data readings.

Here we focus on aggregations with “group-by” clause on tem-
poral or spatial attributes only since a predominant number of queries
belongs to this type. The HyperGrid model natively supports spatio-
temporal data aggregation because n-D data in a perspective es-
sentially represents the n-D volume of the corresponding spatio-
temporal span defined by its associated grid cell. This implies that

for an aggregation perspective, the target topology Tt constitutes an
important part of the aggregation semantic. Notably, each grid cell
is an abstracted spatio-temporal notion, which may not be neces-
sarily visualized as a single block or orthotope as in the traditional
grid. This generalizes the concept of grid cell and gives user great
flexibility to construct the “group-by” criteria. For example, user
may want to know the breakdown by each hour the average tem-
perature for a given region for the past 30 days, e.g. the average
temperature of the past 30 days between 00 : 00 and 00 : 59,
between 01 : 00 and 01 : 59 etc. Such queries are difficult to
model by traditional grid construct since each grid cell in the result
set refers to 30 segregated spatio-temporal blocks which are evenly
spaced by 24 hours in the time domain. HyperGrid model allows
multiple physically segregated blocks to form a single logical cell
because in HyperGrid each cell is characterized by its spatial and
temporal features, not just by a single cell boundary specification.

Like interpolation, the data transformation for an aggregation
perspective is also a two-step approach. However, for the input
selection step, user defined function is no longer required since ag-
gregation belongs to LC data transformation. For the computation
step, it simply applies an aggregation algebra (SUM, AVG etc.) to
the candidate cells that transforms the k-D data in Ps to (k + m)-
D data in the corresponding cell in Tt, where m is the number of
dimensions whose associated values are aggregated.

DEFINITION 4.5. Let ILE(et) denote the function that returns
the set of source cells that collectively define the location equivalent
scope as that of et in the spatio-temporal domain. And let C be the
function that implements the aggregation algebra. Then the data
function Dt can be formulated as:

Dt(et) = C({Ps[es]| es ∈ ILE(et)}),∀et ∈ Pt (5)

4.3.5 Other operations
The perspective construction is a generalized notion to capture

the transformation-based operations over grid data. In fact, the
model is flexible enough to express more sophisticated operations
other than the standard operations. In essence, any grid-based oper-
ations that can be characterized as topological change, data change,
or both are supported by the construct.

4.4 Illustrative example
We refer the readers back to our motivating example 2.1. Given

the above definitions, we can organize the required operations into
a query tree, which consists of a series of data transformations from
the base all the way to the surface (i.e. the output) as shown on the
left of Figure 2. Each box in the graph represents a perspective that
implements one scientific operation. Arrows pointing from source
perspective to target perspective represent the data flow. Inside each
box, there are three parameters separated by comma. They repre-
sent, from left to right, topology definition, data function and input
selection function. If a default is taken, the parameter is replaced
by a “*” in the corresponding position. A graphical illustration of
the query execution is shown on the right of Figure 2.

926

Tt, Dt, *

Tbase, *, *

*, Dt, *

Tt, Dt, It

Tt, Dt, *

Location
Consistent

Location
Consistent

Location
Consistent

Location
Across

Convert
(clean data)

Aggregate
(align data along
time dimension)

Interpolate

Aggregate
by average

Q1

The surface

Invalid readings,
convert to a
default value

The base

Figure 2: Illustration of the query execution in Example 2.1

5. QUERY EXECUTION STRATEGIES
There are two basic execution strategies: “top-down” and “bottom-

up”. The “top-down” strategy initiates the computation at the base
perspective. The executor follows the data flow and materializes
each of the perspectives one by one along the query tree. As an
example, for the query plan in Figure 2, the executor first material-
izes the child perspective of the base (i.e. the Convert perspective),
then uses the obtained results as the source to compute the next
level perspective and so on until the surface is reached. However,
a big drawback of this strategy is that the “top-down” computation
leads to blocking execution: No output will be produced until the
final surface perspective starts to get materialized.

On the contrary, in “bottom-up” strategy, the computation be-
gins at the surface and carries out upward in a pipelined manner:
For each target cell in the surface, the contributing source cells in
its parent perspective need to be computed first. Then for each of
these source cells, it in turn has to call the cells in its parent per-
spective to get itself computed. This continues until the base is
reached with the actual values getting returned. The whole process
essentially resembles the iterator model [16] in traditional DBMS.
Different from “top-down” approach, “bottom-up” strategy does
not require any intermediate perspective to be materialized and it
produces results in a progressive way (like online query process-
ing). This is desirable because it allows scientists to terminate the
processing prematurely once they are unsatisfied with the partially
produced answer.

However, “bottom-up” strategy is not a very efficient approach
(which will be explained in Section 6.2). Therefore, what Hy-
perGrid actually adopts is a hybrid strategy which combines the
“bottom-up” with the “top-down”. We call it hybrid-k, which means
for a query plan with N perspectives, the top k perspectives in the
query tree are computed first in a “top-down” manner while the
lower (N − k) perspectives are then computed using “bottom-up”
method. In fact, the pure “top-down” and “bottom-up” approach
can be seen as the special cases of the hybrid-k strategy, where
“top-down” corresponds to hybrid-N and “bottom-up” corresponds
to hybrid-0 respectively. In section 6.2, we will explain in detail
why hybrid-k strategy is superior and how to determine the opti-

mal k value for a given query plan.

6. OPTIMIZATION TECHNIQUES
As scientific queries usually take as input enormous amount of

data and process them with expensive user-defined functions, how
efficiently these queries can be executed becomes a critical issue.
In this section we explore opportunities to optimize scientific query
executions under the generic HyperGrid model.

6.1 Preprocessing and query rewrite
By preprocessing the original query plan, a series of perspective

transformations can be rewritten in a succinct fashion. The goal of
query rewrite is to produce a more economic plan that leads to re-
duced runtime costs without compromising the output quality. One
effective approach is to coalesce adjacent perspectives in a query
plan. The benefit of perspective coalescence is evident. Firstly,
with fewer perspectives, the number of function invocations are re-
duced. Because the number of function invocations for each per-
spective computation is proportional to the number of cells in that
perspective, minimizing total number of perspectives leads to con-
siderable savings in terms of function call overheads. Secondly, the
amount of buffered intermediate results are also reduced with fewer
number of perspectives. Scientific computations may generate in-
termediate data that are too huge to be buffered in the memory.
Hence the reduction of intermediate results may directly amount to
the reduction in disk I/O.

Of course, it is not always possible to coalese any pair of adja-
cent perspectives in a query plan. At least one of the perspectives
has to be coalesce-amenable in order to ensure query results are
not compromised therefrom. A perspective is said to be coalesce-
amenable if it uses default topology definition and LC transforma-
tion. For example, any perspective that implements the convert
is coalesce-amenable. A coalesce-amenable perspective is free to
choose to combine either with its parent perspective or with its
child perspective. The coalescence process involves two steps:
1) map the topology of the parent perspective to the topology of
its child; 2) merge data transformation functions through function
composition. For example, given a coalesce-amenable perspective
Pk = 〈Pj , ”default”, Dk, ”default”〉 and its parent perspective
Pj = 〈Pi, Tj , Dj , Ij〉, they can be combined to form a new per-
spective Pm = 〈Pi, Tj , Dm, Ij〉, where Dm = Dj ◦ Dk (◦ de-
notes function composition). Similarly, if Pl = 〈Pk, Tl, Dl, Tl〉 is
the child perspective of Pk, it is also possible to coalesce Pk with
Pl to produce Pn = 〈Pj , Tl, Dn, Il〉, where Dn = Dk ◦ Dl. If
the resultant perspective is still coalesce-amenable, it can continue
to coalesce with its adjacent perspective. A query rewriter scans
through a query plan and performs perspective coalescence until
there is no more coalesce-amenable perspective existing in the plan
or the plan is left with only one perspective.

For the query in Example 2.1, the query rewriter will coalesce
the convert and align operators after the preprocessing.

6.2 Optimizing query execution
Section 5 has introduced two basic query execution strategies.

The “bottom-up” approach is generally preferred over the “top-
down” approach because the former allows query results to be pro-
duced in a progressive way. However, in practice, we find the
“bottom-up” strategy may not be very efficient for two reasons.
Firstly, it may lead to significant redundant computations. Sec-
ondly, a “bottom-up” execution may involve some “dull” computa-
tions which are useless to the query result. We explain these two
issues and propose optimization techniques to tackle them in the
following two subsections.

927

6.2.1 Iterator with buffering
The first problem with the “bottom-up” strategy is redundant

computations. When a target cell in the child perspective requests
the value for some cell in the parent perspective, the system would
not know whether the same value has been computed before be-
cause nothing is saved or materialized in a “bottom-up” execution.
Every data request will be computed from scratch following the
iterator model. However, we show in this section that deliberate
buffering strategy and intelligent choice of order in producing the
cells of the surface perspective can effectively minimize such re-
dundant computations.

Before delving into the details of the optimization techniques,
let us first look at a strategy alternative to the basic iterator model.
We attach a buffer for each intermediate perspective in the query
tree. During the iteration, whenever a NextCell() function (analo-
gous to the Next() function in an iterator) is returned, the results
are stored in the attached buffer of the corresponding perspective.
If, at a later time, the value of the same cell is requested again, the
system can obtain the result directly from the buffer without recur-
sively invoking the next level NextCell() function for the second
time. Obviously, the buffering strategy avoids expensive redun-
dant computations and hence reduces the query latency provided
there are sufficient memory space to hold the intermediate results.
Therefore, the crux of this approach is an efficient buffer strategy
with low memory overheads and high hit ratio.

When a query only involves LC transformations, such buffer
strategy is relatively easy to design, thanks to the topological reg-
ularity and cell’s spatio-temporal identity that effectively correlate
the perspectives in a query tree3. The spatio-temporal identity al-
lows the system to identify cells in ancestor perspectives that con-
tribute to the target cells to be computed. The topological regular-
ity makes it possible to produce ordered output with respect to any
spatial or temporal dimensions.

To ease exposition, we define what we call Candidates Win-
dow (CW) here. A CW defines a dynamic subspace of a perspec-
tive where cells subsumed by this space may potentially contribute
to the future output. Notably, if all transformations are location
consistent (LC), then perspectives along the query path will all
share the same CW. In the beginning when the computation has
not started, the CW is essentially the clipping window (refer to sec-
tion 4.1) defined in the surface and buffers attached to each in-
termediate perspective are empty. The buffers begin to be filled
with intermediate results when the computation starts. For CW, it
starts to shrink as more output cells have been generated. Eventu-
ally, the size of CW reduces to zero when computation completes.
Because buffers attached to each perspective only need to cache
results for cells contained in the current CW, the buffer manager
regularly expires cells in the buffer whose location (identified by
its spatio-temporal coordinate) has fallen out of the latest CW. This
strikes a dynamic balance such that the buffer size remains stable.
Obviously, the space efficiency of the above buffering scheme de-
pends on how fast CW shrinks with respect to the growing inter-
mediate results during runtime, which in turn is determined by the
order of the output sequence. For example, if output cells are gen-
erated in time ascending order, then CW will shrink steadily along
time dimension from the lower end of the clipping window to the
higher end during the query execution. Noticeably, buffer manage-

3It is worth noting that this buffer strategy is only meaningful
when cells in the output perspective are overlapping. Otherwise,
no buffer is needed because intermediate results will not be shared
among output cells that are disjoint. A query executor can easily
determine whether cells in the output perspective overlap and de-
cide the necessity of enabling the buffer strategy.

ment using CW ensures optimized hit ratio because data discarded
by the buffer is guaranteed not to be requested again by the sub-
sequent computations. Also fine-grained buffer control is possible
to improve space efficiency by taking multiple space-time dimen-
sions as the sorting keys. Furthermore, the choice of dimension as
the primary sorting key may directly impact the total buffer size
needed for the query execution. Due to space constraints, we omit
these details here.

When a query plan includes perspectives with LA transforma-
tions, however, optimal hit ratio can hardly be guaranteed for buffers
corresponding to perspectives ascendant to the LA transformation
perspective. That is because an LA transformation runs user-defined
input selection function, which can choose any cells from its source
perspective. This renders CW-based buffer strategy useless because
the location equivalent property no longer holds. Nevertheless, we
observe that most user-defined input selection criteria are not com-
pletely arbitrary. In fact, almost all of them exhibit certain locality
property. This inspires us to use a lookahead heuristic to replace
the CW-based buffer strategy for LA transformations. The idea is
to run the input selection function in advance of the actual data
computation for the target cells. By looking ahead the set of source
cells that will be used to compute the next few target cells, the
buffer manager can make intelligent decisions by only caching the
results for the top k most referenced source cells (provided their
results have already been computed previously). Owing to locality
property, target cells in the vicinity are likely to share a big portion
of source cells. This makes the lookahead approach practically ef-
fective in many cases.

6.2.2 The hybrid-k strategy
We also find the “bottom-up” strategy could sometimes involve

“dull” computations which are useless to the query result. The rea-
son for this has to do with the underlying structure for data storage.
When a defined perspective contains a lot of holes (i.e. when the
valid data point density of a perspective is low), for space efficiency
the system will choose sparse array to represent that perspective, in-
stead of an ordinary array. Note that an important characteristic of
a typical HyperGrid query is that the density of valid data points
of perspectives along a query path is often in non-decreasing order
from the base to the surface. (Particularly, if a query involves inter-
polation, all descendent perspectives will have data point density
of 100% since there will be no holes in the perspective after in-
terpolating the space.) Hence, a typical scenario is that the system
switches from sparse array implementation to ordinary array imple-
mentation for some perspective along the query path and continues
to use ordinary array up to the surface.

Now consider the “bottom-up” strategy which iterates the com-
putation from the surface to some perspective with very low data
point density. It is very likely that the requested cell is a hole, which
does not associate a valid data. However, under the “bottom-up”
strategy the system would not know this, and the iteration therefore
continues until the base is reached. As a result, some NULL val-
ues are returned and resources are wasted on computing something
with NULL as input. In comparison, the “top-down” approach
does not have this problem. This is because in “top-down” exe-
cution, perspectives are materialized as a whole one by one from
the base downward. Computing a new perspective from a materi-
alized sparse array only involves computations on those valid data
points. One concern here, however, is that by using “top-down”, it
violates our initial requirement of generating the results in a pro-
gressive way since “top-down” execution is a blocking process.
Therefore, the hybrid-k strategy comes into the picture. Because
perspectives near the top of a query tree can have very low data

928

point density (typically less than 0.05), materializing them may not
sacrifice much in terms of query responsiveness. The objective here
is to strike a balance between “top-down” and “bottom-up” strat-
egy (i.e. to find an optimal k value) so that the query’s average
response time is minimized (the metric we use to measure user’s
satisfaction). We first formally define the average response time
for a given query as follows:

DEFINITION 6.1. Let R(e) denote the latency from the time
when computation for a query’s surface perspective starts to the
time when one of its output cell e is produced, the average response
time for that query is defined as:P

R(e)

nsf
,∀e ∈ Psf (6)

where Psf denotes the surface perspective and nsf is the total num-
ber of output cells in Psf

In the “bottom-up” strategy, we have the following recurrence
relationship:

�
R(e1) = r(e1)
R(em) = R(em−1) + r(em)

∀em ∈ Psf , m > 1 (7)

where r(em) is the latency from the request to compute the cell em

is generated at the surface until the result is returned. Intuitively,
r(em) =

PN
i=1 ri(em) where ri(em) is the time taken to com-

pute em at perspective i and N is the total number of perspectives.
Assume the buffering strategy described in the previous section is
enabled. Also for simplicity, assume ri(em) to be equal for all
em ∈ Psf (say, it is µi). Then the average response time using the
“bottom-up” strategy can be estimated as:

(nsf + 1)
PN

i=1 µi

2
, N is the total number of perspectives (8)

On the other hand, if we choose to compute the first top k per-
spectives from the base in a “top-down” manner and the rest N −k
perspectives still using the “bottom-up” approach, we get the fol-
lowing average response time:

kX
j=1

ρjnjµj +
(nsf + 1)

PN
i=k+1 µi

2
(9)

Given ρu ≤ ρv, 1 ≤ u < v ≤ N

In the above equation, ρj is the data point density of perspective
j. It is a value between 0 and 1. nj is the total number of cells
in perspective j. As can be seen, whether a perspective should be
computed “top-down” or “bottom-up” really depends on the value
ρ. That is the density of the array for the corresponding perspective.
Using equation 9, the optimizer can determine the optimal k value
so that the average response time is minimized.

6.3 Optimization for visualization
The previous sections introduce several optimization techniques

to reduce the query execution costs or average response time. How-
ever, these are not the only goals for an optimizer. Scientific re-
search often involves tasks such as to discover unusual trend or
pattern from a dataset or to collect evidence for supporting new
hypothesis etc. For these purposes, scientists need to filter useful
information from abundant test cases by running a large number of
exploratory queries or "what-if" queries. A pure cost-based opti-
mizer is deemed inappropriate for such scenario especially under

interactive mode where user is sitting in front of the monitor wait-
ing for the results to be visualized. This is because in cost-based op-
timization, output cells have to be produced in an order by space or
time dimension. This leads to results generated in a raster manner.
A big disadvantage of this is user will not be able to get a rough idea
of how the results look like until the majority of the cells have been
computed. Probably the following comment well describes what is
actually desired for a visualization output: “Overview first, zoom
and filter, then details on demand” [18]. In our case, an overview
means to provide the insight instead of the the accurate answer for
each output cell. This implies the computation should prioritize
“interesting” regions in the surface perspective that would help re-
veal global trend or unusual patterns etc. The definition of “inter-
esting” here is context-dependent. But often, it refers to portions
in the result set where data values have greater variations. An ideal
executor should focus on these portions and progressively refine the
answers if the user continues to be interested.

Algorithm 1 A directed random walk algorithm for visualization

Notations:
Pi: vector representation of the location of cell i
vi: value of cell i
s: default stride for one step of walk

1: Randomly select a cell P1 with s distance away from the start-
ing cell P0.

2: i := 1
3: loop
4: if IsComputed(Pi) == false then
5: vi := ComputeCell(Pi)
6: else
7: vi := OutputBuffer(Pi) /* directly retrieve the re-

sults from output buffer without recomputing */
8: if f(vi, vi−1) > threshold then
9: U := Normalize(Pi−1−Pi) /* unit vector with direc-

tion from cell i to cell (i− 1) */
10: else
11: U := Normalize(Pi − Pi−1)
12: Pi+1 := Pi + Rand(0, 1) × s × RandGauss(U, g(vi −

vi−1)) /* random walk */
13: if num_of_computed_cells ≥ c· total_num_of_cells

then
14: break
15: i := i + 1

While a plethora of optimization techniques have been proposed
for scientific visualization (see [19] for an excellent overview on
the state-of-the-art techniques), we choose to propose a simple but
effective algorithm for our application. The purpose is to show
HyperGrid can facilitate efficient scientific visualization. More so-
phisticated visualization techniques may be included in the future
when need arises. The algorithm we proposed, called directed ran-
dom walk, is summarized as follows: The executor first randomly
selects k cells that are uniformly distributed in the surface perspec-
tive. Then starting from each of the k cells, a directed random
walk is performed to pick the next cell to compute. The details
are sketched in Algorithm 1. Whenever a step is taken, a new cell
(Pi) is selected and its value (vi) gets computed (lines 4-7). The
value (vi), together with the value of the cell where the random
step is taken from (i.e. vi−1), are fed into a function to evaluate
the interestingness of the region. If the returned value is greater
than the threshold (line 8), it means more cells between the two

929

(Pi−1 and Pi) need to be visited. The direction of the next step of
the random walk is therefore set to have a mean U facing towards
the previous cell (line 9). Otherwise, the mean direction will be a
reversed one (line 11). The actual direction for the next step is de-
termined by function RandGauss() which returns a random unit
vector following Gaussian distribution with mean U and variance
a function of the difference between vi and vi−1 (line 12). The
query executor runs k random walks in an interleaving fashion and
terminates when user interrupts or a certain percentage (typically
less than 50%) of the total output cells have been produced (lines
13-14). At this stage, the users should already get a very good
overview of the query results. If the execution has not been termi-
nated, it means a complete and accurate result is needed. In that
case, the executor reverts to the strategy described in Section 6.2 to
compute the remaining output cells.

7. EXPERIMENTAL SETUP
In this section we describe our prototype system as well as the

query and dataset used to experimentally evaluate the HyperGrid
model.

7.1 Implementation
As an application specifically designed for processing scientific

environmental data, we choose to build the system using Mathe-
matica [13], rather than a general-purpose programming tool such
as C or Java. There are three main reasons for this choice: Firstly,
Mathematica, as an excellent tool for mathematical computations,
has the built-in capability to optimize numerical computations, which
makes it particularly suitable for processing computationally in-
tensive scientific operations. With Mathematica, we can save ef-
forts from finding the best algorithms for solving particular math-
ematical problems and focus on the query processing aspect of the
system. Secondly, an important feature of Mathematica, which
general-purpose programming tools do not provide directly, is the
powerful support for symbolic computation. It allows physical
models to be manipulated precisely throughout the computation.
Finally, we choose Mathematica because it is the tool many scien-
tists often use and hence are already familiar with. So it would be
easier for them to maintain and extend the system when necessary
in the future.

The system consists of three main components: a query engine,
an optimizer and a user interface. The query engine is the core of
the system. It executes a query plan according to the given exe-
cution strategy. For each operation in the plan, the engine com-
piles the topology and data specifications given in the source and
target perspectives, and performs the data transformations accord-
ingly when the operation is invoked. The optimizer does a few
things: rewrites the query, computes the optimal execution strat-
egy, interacts with the engine to implement the buffering strategy
and schedules the output sequence as discussed in Section 6. Lastly,
a user interface is provided to allow user to specify perspectives, in-
cluding customized user-defined data and input selection functions.
So far, all user-defined functions need to be written in mathemat-
ica code. However, with MathLink [14], a generalized application
interface provided by Mathematica, we do not see big obstacles
to incorporate the current system with user-defined functions in C,
Java or other languages.

To evaluate the performance of the HyperGrid system, we also
implemented a pure array-based approach using Mathematica for
comparison. The array-based approach represents the traditional
way in which scientific data is processed to answer a query. There
is no integrated query engine which automates the step-by-step data
transformations to reach the final answer. Instead, the program of-

fers functions to perform each individual data transformation op-
eration, such as convert, merge and interpolate. Hence, user needs
to manually organize the query plan tree. In addition, because an
array-based approach only performs computations between arrays
without the spatial and temporal context, an external function is
required to translate the spatio-temporal points to the correspond-
ing array representation for each data transformation as well as any
physical model involved.

7.2 Dataset
The data we use for our experiments were collected from a Sen-

sorScope network which was deployed at the Grand-St-Bernard
pass in Western Alps at 2400 m in September and October 2007
to monitor the ecological condition of the region. There are totally
nine types of meteorologic measurements, namely ambient temper-
ature, surface temperature, humidity, solar radiation, soil moisture,
watermark, rain meter, wind speed and direction. Each type of
measurements consists of over 588, 000 data points. And each data
point can be identified by the time and the location where it was
measured.

7.3 Query set
We use two categories of queries for our experiments. The first

category consists of the query in Example 2.1 and its variants (de-
tails are described in Table 3). They represent routine queries which
scientists use frequently to compute statistical information about
the data. Typical steps of routine queries include data cleaning
(through convert), alignment (through aggregate), interpolation (through
interpolate) as well as other query-specific operations. The second
category simulates the scenario where user wants to explore the
data through visualization. We use the query in Example 2.2 for
our experiment.

8. PERFORMANCE EVALUATION
The performance evaluation has two objectives. Firstly, we would

like to assess the usability of HyperGrid as a tool to manage sci-
entific environmental data, and compare it against the traditional
array-based method. Secondly, we want to evaluate the effective-
ness of our proposed optimization strategies in improving the users’
experience when they use the system.

All the experiments were conducted on a 2.33 GHz Intel dual
core machine with 4 GBs of memory running windows XP.

8.1 Routine query execution
Figure 3 reports the overall runtime performance of the native

HyperGrid (using “bottom-up” strategy without any optimization)
implementation and the array-based implementation for four dif-
ferent routine queries. Q2, Q3 and Q4 are variants of Q1 that
vary the workload by either changing the measurement type or the
spatio-temporal scope of the surface. In all the cases, the queries go
through four data transformations (convert, align, interpolate and
aggregate). From the figure, it is evident that interpolate always
takes up the majority of the run time. This is because interpolation
often comes with expensive user-defined data and input selection
functions. In our experiments, we adopt the kriging model for in-
terpolation. It uses an adapted k-nearest neighbor (k-NN) algorithm
as the input selection function and a variogram model to estimate
the degree of dependence between data points. Typically, some 15
to 22 neighbors are selected and used in the variogram for each tar-
get cell to be interpolated. Comparatively, other operations use ei-
ther the built-in data functions or user-defined functions with much
lower complexity, hence they consume significantly less CPU.

930

Query ID Query detail
Q1 Illustrated in Example 2.1
Q2 Same as Q1 except the measurement type changes from “ambient temperature” to “watermark”
Q3 Same as Q1 except the clipping window along the time dimension is increased by 100%
Q4 Same as Q1 except the clipping window along latitude and longitude dimensions are increased by (

√
2− 1) respectively

Q5 Illustrated in Example 8.1

Table 3: Query set description

0

1000

2000

3000

4000

5000

6000

7000

HG AR HG AR HG AR HG AR

(Sec)

Q1 Q2

Q3 Q4

Figure 3: HyperGrid (HG) Vs. Array (AR)

0

1000

2000

3000

4000

5000

6000

7000

 HG HGRW HG HGRW HG HGRW HG HGRW

(Sec)

Q1 Q2

Q3 Q4

Figure 4: Effect of query rewrite

0

1000

2000

3000

4000

5000

6000

7000

8000

Q1 Q5

HG without buffer

HG with buffer

Array

(Sec)

Figure 5: Effect of buffer strategy

0

500

1000

1500

2000

2500

3000

hybrid-0
(bottom-up)

hybrid-1 hybrid-2 hybrid-3 hybrid-4
(top-down)

(Sec)

Figure 6: Optimizing execution strategy
(total runtime)

0

500

1000

1500

2000

2500

hybrid-0
(bottom-up)

hybrid-1 hybrid-2 hybrid-3 hybrid-4
(top-down)

(Sec)

Figure 7: Optimizing execution strategy
(average response time)

0

200

400

600

800

1000

1200

1400

1600

1800

Rain rate Solar radiation

compute 15%

compute 100%

(random walk approach)

(cost-based approach)

(Sec)

Figure 8: Run time cost for visualization

8.2 HyperGrid Vs. array-based implementa-
tion

The plot corresponding to array-based implementation (referred
as “AR”) in Figure 3 assumes the ideal scenario that human efforts
for writing external functions (for each data transformations in the
query plan) to translate spatial and temporal coordinates to the ar-
ray elements are assumed to be zero. However, in practice this is of-
ten a tedious and time-consuming task, which cannot be quantified
and reflected in the figure. Even with this unrealistic assumption
(by ignoring all hidden costs incurred in array-based processing),
HyperGrid (referred as “HG”) only takes slightly longer time (less
than 8%) than array-based implementation for all the test cases.
This indicates that the HyperGrid model indeed incurs little over-
heads to the system. More importantly, by unifying all operations
in a standard way and automating the entire query process, Hyper-
Grid can explore optimization opportunities and further boost the
runtime performance as illustrated in the next few sections.

8.3 Query rewrite
Figure 4 compares the runtime performance between HyperGrid

query plans with and without query rewrite. We can see for all the
test queries, the convert and the align perspectives are coalesced
after the rewrite. And the rewritten plan (denoted by “HGRW”)
clearly runs faster than the original one for all the cases. However,
the improvement is not very impressive. This is because the execu-
tion cost to compute the convert and the align perspectives does not

constitute a significant portion of the total cost. If we break down
the total runtime cost, for example Q1, we can see that the time
taken to compute convert and the align in total is dropped from
341 sec to 245 sec. The saving is actually quite substantial.

8.4 Buffering strategy
Next, we evaluate the performance of the buffering strategy pro-

posed in Section 6.2.1. The left part of Figure 5 depicts the runtime
comparison between HyperGrid with buffering and two other ap-
proaches (native HyperGrid and array-based approach) for query
Q1. It shows the buffered HyperGrid strategy does not improve the
total runtime cost. This is expected because in Q1, all cells in the
surface do not overlap in the spatio-temporal domain. It means the
buffering strategy proposed in Section 6.2.1 would not be beneficial
here because no previously computed results are reused. In order
to evaluate the proposed buffer strategy for the case where output
cells are overlapping in the spatio-temporal domain. We consider a
new query variant as follows:

EXAMPLE 8.1. Return the ambient temperature averaged over
15-minute interval for the period from 2007-10-01 00:00 to 2007-
10-04 00:00 and for the region [45◦52′1′′N, 45◦52′23′′N] in lati-
tude and [7◦10′37′′E, 7◦10′59′′E] in longitude on a 1′′ × 1′′ grid.
The result should be updated every 5 minutes.

The fundamental difference between Q1 and the above query
(Q5) is that Q5 averages the data points over 15-minute interval

931

0

200

400

600

800

Solar Radiation
[W/m 2]

H
o

ur

Day

H
o

u
r

0

2

4

6

8

Rain Rate
[mm/h]

Rainfall events

20 27 Oct

20 27 7Oct 14

7 14
0

5

10

20

15

24

0

5

10

20

15

24

E1 E2 E3

Figure 9: Plot with 15% result computed (using directed random
walk algorithm)

0

200

400

600

800

Solar Radiation
[W/m 2]

H
o

u
r

Day

H
o

u
r

0

2

4

6

8

Rain Rate
[mm/h]

20 27 Oct

20 27 7Oct 14

7 14
0

5

10

20

15

24

0

5

10

20

15

24

Rainfall events

E1 E2 E3

Figure 10: Plot with 100% result computed

instead of the entire three days. And a new result is generated
for every 5-minute advancement along the time dimension. The
output of Q5 essentially corresponds to results from a sliding win-
dow over time dimension with window size of “15-minute” and
sliding step of “5-minute”. This means each pair of the adjacent
cells in the surface overlaps by “10-minute” on the temporal space.
Experimental results of running Q5 is shown on the right of Fig-
ure 5. As expected, buffered HyperGrid strategy achieves signifi-
cant runtime reduction this time owing to the effective buffer strat-
egy that avoids doing the redundant computations. On the other
hand, the native HyperGrid approach and the array-based method
require much more time to process the query due to their inability
to recognize and reuse previously computed intermediate results.

8.5 Optimizing execution strategy
Figures 6 and 7 depict the performance of all possible execu-

tion strategies for Q1 in terms of total runtime cost and average
response time respectively. No other optimization technique, such
as query rewrite, is enabled for this test case. So there will be
4 perspectives in the query plan and hence 5 possible execution
strategies (from hybrid-0 to hybrid-4). Hybrid-0 is essentially the
“bottom-up” strategy and hybrid-4 is the “top-down” strategy. In
terms of the total runtime cost (Figure 6), hybrid-0 gives the worst
performance due to the two reasons explained in section 6.2. The
total run time gets reduced as more perspectives are computed in a
“top-down” manner. It is no surprise that hybrid-4 gives the short-
est total runtime. However, in terms of the average response time
(which we think is the critical metric), hybrid-4 performs the worst.
This is because no output cells are produced until the last perspec-
tive (i.e. the surface) starts to be computed. We can see from the
figure that based on the cost model given in Section 6.2.2, the opti-
mizer successfully finds the optimal execution strategy (in this case,
hybrid-2) for the given query.

8.6 Visualization optimization
Lastly, we evaluate the optimization strategy for visualization

proposed in Section 6.3. We use the scenario in Example 2.2 for

this experiment. Basically the user needs to visualize the output
of the hourly average rainfall rate together with the hourly average
solar radiation values to discover whether the two are correlated.
Figure 9 shows the results produced by the directed random walk
approach which only computes 15% of the total output cells. The
remaining 85% of the cells in the figure are obtained by apply-
ing a simple smoothing function. For comparison, the actual accu-
rate output (with 100% output cells computed from the dataset) is
shown in Figure 10. In both figures, the graph on the top indicates
the hourly average rainfall rate for a period of 28 days (from Sep
20 to Oct 17 as indicated in the horizontal axis). Hour of a day is
indicated in the vertical axis. The graph below is the corresponding
solar radiation values during this period. As we can see, three rain-
fall events (E1, E2, E3) are identified from the rainfall rate graph.
Each event is highlighted by a pair of white vertical bars that run
across both graphs. In the solar radiation graph (either the one in
Figure 9 or Figure 10), we can see that the values during the period
of the rainfall events (especially E1 and E3) are lower (darker color)
than other days for the same hour. This hints that rainfall and solar
radiation are very likely to be correlated for this region. By com-
paring Figure 9 and Figure 10, we can see that most of the trends or
patterns exhibited in Figure 10 can also be found in Figure 9. This
clearly indicates that the directed random walk algorithm does a
very good job in simulating the actual results by processing only
a small fraction (15% in this example) of the output cells. Fig-
ure 8 reports the runtime costs for generating the two figures. For
both the rainfall and solar radiation datasets, the time required by
the directed random walk algorithm to simulate the results is less
than 1/5 of the time needed by the cost-based optimization algo-
rithm to compute the full results. This shows the directed random
walk algorithm can greatly improve the data exploration efficiency
in many instances.

9. RELATED WORK
A traditional way to model regular gridded data is to use array,

which is often regarded as the basic data type to store multidimen-
sional data [17]. The database community has proposed quite a

932

few data models and languages to support array-based data man-
agement. AQL [10] is a calculus-based language for supporting
low level array operations. Similarly, AML [12] also proposes a
few operations for array manipulations. These operations, includ-
ing those proposed in [3, 4] focus on aspects such as index patterns
or sub-sampling of the array elements. Although these operations
are important in image processing applications, they are not so use-
ful for managing scientific environmental data. There are other
forms of grid-based model proposed [9, 15]. However, those mod-
els are designed for other purposes. The feature of the work in [9]
is an algebra of manipulating irregular grids, while [15] focuses on
indexing technique for grided data. Moreover, although most of
the scientific data, particularly monitoring data collected from sen-
sors, carries important spatio-temporal identity, to the best of our
knowledge, none of the existing array-based techniques takes that
into account during operations. In MauveDB [8], the author pro-
posed a model-based view approach to manage measurement data.
While our notion of perspective shares the same flavor as the view
in MauveDB, the two are in fact quite different. MauveDB focuses
more on view maintenance issue to provide a consistent view to the
user. Our approach, on the other hand, focuses primarily on query
processing and using perspectives to implement and optimize sci-
entific operations.

Scientific queries are often analytical. Hence, they typically in-
volve data grouping or aggregation. Literatures on multi-dimensional
OLAP have offered abundant techniques to speed up the perfor-
mance for these queries such as [1, 7, 11]. In general, these tech-
niques are difficult to be applied in our context. The reason is
OLAP optimization techniques typically rely on the fact that the
attributes for grouping by are known or at least deterministic be-
fore the query is issued. However, in our case, scientists can freely
organize the data in the continuous spatio-temporal domain to form
a query. Moreover, external physical model may be introduced to
interpret or reorganize the data. These make the optimizer diffi-
cult to perform any pre-computation to improve the query response
time. Data used in aggregation can also be modeled as volume [5,
6, 20], where spatial and temporal dimensions are treated indeed as
continuum. The related techniques may be useful as a supplemen-
tary approach to support arbitrary grid granularity for HyperGrid in
our future work.

10. CONCLUDING REMARKS AND
FUTURE PLAN

We have presented the framework of HyperGrid in this paper.
The primary objective of this work is to demonstrate that scien-
tific data management can benefit from database technology that
enables the integration of scientific workflows, which was largely
segregated traditionally. With a uniform data model and database-
style processing paradigm, scientific computations can be carried
out in a more systematic way. An integrated architecture also re-
veals opportunities for query optimization. Based on scientists re-
quirements, we have implemented several techniques to optimize
query execution in the first version of our prototype system. Next,
we plan to let the scientists test it, and enhance our design and tech-
niques based on their feedbacks. In the future, we also intend to
embrace more features into HyperGrid. One promising direction is
data lineage tracing. Again, because of the integrated framework,
we believe HyperGrid would be in a better position to support lin-
eage tracing compared to other solutions.

11. ACKNOWLEDGMENTS
We would like to express our gratitude to Marc Parlange, Olivier

Couach, Hendrik Huwald, Vincent Luyet, Daniel Nadeau and other
members from the Laboratory of Environmental Fluid Mechanics
and Hydrology at EPFL for their invaluable advice and suggestions
given during the design stage of this work.

12. REFERENCES
[1] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling

multidimensional databases. In ICDE, pages 232–243, 1997.
[2] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli,

O. Couach, and M. Parlange. Sensorscope: Out-of-the-box
environmental monitoring. In IPSN, pages 332–343, 2008.

[3] P. Baumann. Management of multidimensional discrete data.
VLDB J., 3(4):401–444, 1994.

[4] P. Baumann, P. Furtado, R. Ritsch, and N. Widmann.
Geo/environmental and medical data management in the
rasdaman system. In VLDB, pages 548–552, 1997.

[5] M. Chen, R. H. Clayton, A. V. Holden, and J. V. Tucker.
Visualising cardiac anatomy using constructive volume
geometry. In FIMH, pages 30–38, 2003.

[6] M. Chen, A. S. Winter, D. Rodgman, and S. Treuvett.
Enriching volume modelling with scalar fields. In Data
Visualization: The State of the Art, pages 345–362, 2003.

[7] Z. Chen and V. R. Narasayya. Efficient computation of
multiple group by queries. In SIGMOD Conference, pages
263–274, 2005.

[8] A. Deshpande and S. Madden. Mauvedb: supporting
model-based user views in database systems. In SIGMOD
Conference, pages 73–84, 2006.

[9] B. Howe and D. Maier. Algebraic manipulation of scientific
datasets. In VLDB, pages 924–935, 2004.

[10] L. Libkin, R. Machlin, and L. Wong. A query language for
multidimensional arrays: Design, implementation, and
optimization techniques. In SIGMOD Conference, pages
228–239, 1996.

[11] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W.
Cheung. Olap on sequence data. In SIGMOD Conference,
pages 649–660, 2008.

[12] A. P. Marathe and K. Salem. Query processing techniques
for arrays. VLDB J., 11(1):68–91, 2002.

[13] The wolfram mathematica homepage.
http://www.wolfram.com/, 2008.

[14] The mathematica mathlink.
http://www.wolfram.com/solutions/mathlink/mathlink.html,
2008.

[15] S. Papadomanolakis, A. Ailamaki, J. C. López, T. Tu, D. R.
O’Hallaron, and G. Heber. Efficient query processing on
unstructured tetrahedral meshes. In SIGMOD Conference,
pages 551–562, 2006.

[16] J. E. Richardson and M. J. Carey. Programming constructs
for database system implementation in exodus. In SIGMOD
Conference, pages 208–219, 1987.

[17] H. Samet. Foundations of Multidimensional and Metric Data
Structures. Morgan-Kaufmann, San Francisco, CA, 2006.

[18] B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In VL, pages
336–343, 1996.

[19] B. Shneiderman. Extreme visualization: squeezing a billion
records into a million pixels. In SIGMOD Conference, pages
3–12, 2008.

[20] T. Wang, S. Santini, and A. Gupta. An interpolated volume
model for databases. In ER, pages 335–348, 2003.

933

