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ABSTRACT
In a publish-subscribe system based on filtering of XML doc-
uments, subscribers specify their interests with profiles ex-
pressed in the XPath language. The system processes a
stream of XML documents and delivers to subscribers a no-
tification or content of documents that match the profiles.
For filtering with profiles expressed as linear XPath queries,
automaton-based approaches exist where the intractable size
growth of a preconstructed deterministic finite automaton is
avoided by using a nondeterministic automaton. In this arti-
cle we examine how these general approaches, which do not
assume the existence of any specific schema or document
type definition (DTD), might benefit from the knowledge
that all the XML documents to be filtered obey a given
DTD.

We present an algorithm that utilizes the DTD in the
preprocessing phase of the filtering automaton to prune out
descendant operators (//) and wildcards (∗) from the lin-
ear XPath filters. Experiments with data obtained from
the XML Data Repository of the Univ. of Washington indi-
cate that filter pruning can increase the throughput of the
nondeterministic YFilter automaton by Diao et al. by a fac-
tor of 2 to 20. We also present a new filtering algorithm
that is based on a backtracking deterministic finite automa-
ton derived from the classic Aho–Corasick pattern-matching
automaton. This automaton has a size linear in the sum of
the sizes of the filters. For our algorithm, we obtained a
throughput of 15 MB/sec for filters pruned from one million
original filters (with all wildcards and non-leading descen-
dant operators eliminated), representing an improvement by
a factor of 2 to 3 upon the throughput of YFilter.

1. INTRODUCTION
A publish-subscribe system consists of one or more pub-

lishers and many subscribers, where the publishers provide
a stream of documents and the subscribers specify their in-
terests with filters that match some of those documents [2].
Publish-subscribe systems have emerged in everyday use; ex-
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amples include Google alerts and stock-information delivery
by Yahoo.com.

In a publish-subscribe system based on XML filtering, the
profiles are usually specified by filters written in the XPath
language. The system processes the stream of XML docu-
ments and delivers to subscribers a notification or the con-
tent of those documents that match the filters. The number
of interested subscribers and their stored profiles can be very
large, thousands or even millions. In this case the scalability
of the system is critical.

The primary problem we address in this paper is defined
as the filtering problem for XML streams: given a set of
XPath expressions and a stream of XML documents, for
each document in the stream identify those expressions that
match the document. More specifically, we study the fil-
tering problem for linear XPath expressions, that is, XPath
expressions that do not have branches in their query trees.
Linear XPath expressions without predicates are described
by the following grammar:

path → / step | // step | path path
step → label | ∗

where label denotes an XML-element label.
Several approaches to XML filtering with XPath filters

use an automaton as a basis of the filtering algorithm [2,
4, 6, 7, 9]. Diao et al. [4] report an evaluation method
called YFilter that applies nondeterministic finite automata
(NFAs). YFilter is an improvement upon its predecessor,
called XFilter [2], which uses a separate NFA for each fil-
ter but executes them simultaneously in processing the in-
put document. YFilter uses a single NFA that combines
the effect of the individual NFAs and achieves considerable
improvements in performance by path-sharing, that is, by
merging states that correspond to common prefixes in dif-
ferent query paths, while still retaining the linear size of the
NFA with respect to the filter descriptions.

The algorithm of Green et al. [6] is based on a single de-
terministic finite automaton (DFA). The state explosion of
the DFA is tackled by constructing the DFA lazily. In other
words, the DFA is constructed runtime, on demand: if in
processing the stream of XML documents, no next state
is defined on the current input symbol, the corresponding
new state will be computed and the process is continued at
this new state. While exponential in the worst case, this
approach works extremely well in many cases, when the in-
coming XML documents obey a schema or document type
definition (DTD) that is nonrecursive or contains only sim-
ple cycles (a cycle is simple if its nodes do not occur in other
cycles).
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The filtering methods cited above are general in that the
input documents to be filtered are not required to comply
with any predefined schema or DTD; they are only expected
to obey the generic syntax of XML. However, in practice
the documents published by a specific site may very well be
restricted to a few number of different topics and described
by a specific XML schema. This raises the question whether
filtering speed or throughput could be improved by utilizing
knowledge about a DTD in building the filtering automaton.

Fernández and Suciu [5] have presented a technique called
“query pruning”for optimizing regular path expressions with
graph schemas. Inspired by their work, we have developed
a new optimization method, called filter pruning, that takes
as input a DTD and a set of linear XPath filters and pro-
duces a set of “pruned” linear XPath filters that contain as
few descendant operators “//” and wildcards “∗” as possible.
The set of pruned filters is equivalent to the set of original
filters in that each original filter is represented by the union
of a set of pruned filters that match the same set of XML
documents, provided that the documents obey the DTD.
Imposing some simple conditions stating when an operator
may be eliminated we can guarantee a polynomial bound on
the total size of the pruned filters.

Our experiments with two XML data sets obtained from
the XML Data Repository of the Univ. of Washington [12]
indicate that filter pruning can increase the throughput of
the nondeterministic YFilter automaton by Diao et al. [4] by
a factor of 1.3 to 22.8. The DTD of one of these data sets is
nonrecursive, allowing exhaustive elimination of all “∗” and
“//” operators, while the other DTD is slightly recursive, so
that 14–33 % of the “//” could not be eliminated. The fil-
ter workloads were generated by the XPath query generator
described by Diao et al. [4].

We have also designed a filtering algorithm that seems to
be especially amenable to filter pruning. The basis of our
algorithm is the classic Aho–Corasick [1] pattern-matching
automaton (PMA), turned from a language recognizer to a
filtering automaton with a backtracking facility. The filter-
pruning optimization is first applied to eliminate all wild-
cards “∗” and as many descendant operators “//” as possible
from the linear XPath filters. Then the PMA is constructed
for the set of keywords formed from the XML element strings
separated by the “//” operators that possibly remain in the
pruned filters. If all non-leading “//” operators can be elim-
inated from the filters, our basic algorithm is able to re-
port exact matches for all filters. To handle any remaining
non-leading “//” operators we have developed an extended
algorithm that can be used to match sequences of keywords.

Our filtering method shares with NFA-based methods such
as YFilter [4] the guarantee of a polynomial worst-case size
bound of the filtering automaton with respect to the orig-
inal filters, while gaining from the determinism offered by
a preconstructed DFA-like PMA. For our algorithm, we ob-
tained a throughput of 15 MB/sec for filters pruned from one
million original filters (with all wildcards and non-leading
descendant operators eliminated), representing an improve-
ment by a factor of 2 to 3 upon the throughput of YFilter.

The idea of using the Aho–Corasick PMA for XML docu-
ment filtering is presented by Soisalon-Soininen and Ylönen
[11]. Preliminary results of our pruning and filtering algo-
rithms were presented at the VLDB 2008 Ph.D. Workshop
[10].

Our paper is organized as follows. In Sec. 2 we present
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Figure 1: A nonrecursive DTD and its graph

schema.

our pruning algorithm, and in Sec. 3 we show how the Aho–
Corasick PMA can be turned to a filtering automaton for
tree-structured text such as XML. In Sec. 4 we present our
extended algorithm for filtering with sequences of keywords,
to be used when pruning cannot eliminate all non-leading
descendant operators from the filters. In Sec. 5 we report re-
sults from experiments with our algorithms, such as memory
consumption and filtering speed, as well as a limited bench-
marking with YFilter. In Sec. 6 we compare our method
with relevant previous work.

2. FILTER PRUNING
Assume an NFA-based filtering algorithm such as YFilter

[4] where a single NFA is constructed for a set of linear
XPath filters. To such an NFA, occurrences of wildcards “∗”
in the filters add transitions on a large set of symbols, and
occurrences of the descendant operator “//” add loops on a
large set of symbols. These transitions and loops cause a
lot of nondeterminism, and if the NFA is to be transformed
into a DFA, a state explosion may result, although only a
small subset of the states and transitions might be visited
in running the automaton on actual input documents.

Assuming that the XML documents to be filtered all con-
form to a given document type definition (DTD), we can
expect improvements in filtering speed if we manage to re-
strict the transitions of the filtering automaton to those that
may actually be traversed when filtering an input document
that conforms to the DTD. Green et al. [6] showed that their
approach of constructing the DFA lazily results in a small
and fast filtering automaton when the input documents con-
form to a DTD that is nonrecursive or contains only simple
cycles.

In this section we show how to utilize the DTD to elim-
inate or “prune out” as many of the wildcards and (non-
leading) descendant operators as possible from the subscriber-
provided linear XPath filters. We call the process filter prun-
ing, in analog with “query pruning” presented by Fernández
and Suciu [5]. Our ultimate goal is a set of pruned filters in
which all wildcards and all non-leading descendant operators
have been eliminated, but this may not always be possible
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because of recursion in the DTD or because the pruning
may result in too many pruned filters or in too large pruned
filters.

Given a DTD or schema, let G be its graph schema [3],
that is, the directed graph whose set of nodes is the set
of XML elements in the DTD and that contains a directed
edge from node a to node b if and only if b is a child element
of a. There is a distinguished node, labeled with # and
representing the root element of an XML document, that
has no incoming edges. Fig. 1 shows a sample DTD and
its graph schema. This DTD is nonrecursive, and hence its
graph schema is acyclic.

We say that a linear XPath filter V is consistent with the
DTD, if it represents at least one path in the graph schema
G of the DTD; in other words, we can find XML elements
substituting for the occurrences of the wildcard“∗” in V , and
strings of XML elements separated by child operators “/”
substituting for the occurrences of the descendant operator
“//” in V , such that the resulting string (of XML elements
and child operators“/”), when stripped of all child operators,
is a path in G from the root element down to some element.

As with YFilter [4], we assume that each subscriber-defined
XPath filter is first rewritten into an equivalent form in
which (1) each occurrence of “//∗” is turned into “/∗//”, (2)
each maximal substring of multiple consecutive substrings
“/∗//” is turned into a single “/∗//”, and (3) “//” is removed
from “/∗//” occurring at the end of the filter.

Algorithm 1 Checking a linear XPath filter V for consis-
tency with a DTD.

S← V
Accessible← {#}
while Accessible is nonempty and S is nonempty do

if S is of the form /bS′ where b is an element then

if b ∈ children(Accessible) then

Accessible← {b}
else

Accessible← empty
end if

else if S is of the form /∗S′ then

Accessible← children(Accessible)
else if S is of the form //bS′ where b is an element
then

if b ∈ descendant(Accessible) then

Accessible← {b}
else

Accessible← empty
end if

end if

S← S′

end while

return(Accessible is nonempty and S is empty)

Algorithm 1 checks a filter V for consistency with a DTD,
using the graph schema of the DTD. For element set E, the
function children(E) returns the the set of all children of all
elements in E, and the function descendant(E) returns the
set of all descendants of all elements in E. The algorithm
processes filter V from left to right, extracting step by step
a prefix of V , and maintaining a set Accessible that contains
the set of elements accessible in the graph schema from the
root element upon reading the so-far-extracted prefix of V .
Filter V is consistent with the DTD if and only if the algo-

Original filter Pruned filter
/a//f /a/b/f ∪ /a/c/f ∪ /a/d/e/f
//c/f//k //c/f/i/k ∪ //c/f/j/k
/∗/b /a/b
/a/∗ /a/b ∪ /a/c ∪ /a/d
/a/∗/f /a/b/f ∪ /a/c/f
/∗/∗/∗/∗ /a/b/f/i ∪ /a/b/f/j ∪ /a/c/f/i

∪ /a/c/f/j ∪ /a/d/e/f

Table 1: Original XPath filters and corresponding

pruned filters obtained by pruning with the DTD of

Fig. 1. All wildcards “∗” and all non-leading descen-

dant operators “//” were eliminated.

rithm reaches the end of V with the set Accessible nonempty.
The variable S stores the non-yet-processed suffix of V .

Pruning a filter V with respect to a DTD is just finding
all combinations of substituting elements for as many occur-
rences of “∗” as possible, and all substituting element strings
for as many (non-leading) occurrences of “//” as possible,
such that the pruned filters V1, . . . , Vn obtained by those
substitutions are consistent with the DTD and that their
union, denoted by V1 ∪ . . .∪ Vn, is equivalent to the original
filter V , that is, any XML document that conforms to the
DTD matches with V if and only if it matches with one of
the filters Vi, i = 1, . . . , n.

Tab. 1 shows a set of filters and the result of pruning them
with respect to the nonrecursive DTD of Fig. 1 when all the
“∗” operators and all non-leading “//” operators are elimi-
nated. For example, in the case of the original filter /a//f ,
we find that the graph schema of the DTD contains three
paths from element a, the child of root element #, to element
f , namely abf, acf, and adef. Thus the element strings to be
substituted for the occurrence of “//” are /b, /c, and /d/e,
resulting in the pruned filter /a/b/f ∪ /a/c/f ∪ /a/d/e/f .

The ultimate goal of exhaustive elimination of “//” oper-
ators naturally cannot be achieved when the DTD is recur-
sive, that is, when the graph schema is cyclic, but exhaustive
elimination of “//” or “∗” may also be infeasible with non-
recursive DTDs. A simple example of a case in which ex-
haustive elimination results in an exponential increase in the
size of filters with respect to the combined size of the DTD
and the filters is the DTD having elements a1, . . . , ak, ak+1,
b1, . . . , bk, c1, . . . , ck, where bi and ci are children of ai, and
ai+1 is a child of both bi and ci, i = 1, . . . , k. Eliminat-
ing “//” from the filter /a1//ak+1 results in a union of 2k

pruned filters of size Θ(k), although the original filter is of
size O(1) and the DTD is of size O(k). The same union of
pruned filters is also the result of exhaustive elimination of
“∗” from the filter /a1/∗/a2/∗/ . . . /∗/ak+1, which is of size
O(k). Obviously, we must control the number and size of
pruned filters to be created.

For pruning a set of filters with respect to a DTD, we
precompute a two-dimensional array, substitutes, indexed by
pairs of elements in the DTD. For an element pair (a, b),
the entry substitutes[a, b] will contain the set of all strings
/c1/c2/ . . . /cn such that ac1c2 . . . cnb is a path in the graph
schema of the DTD, if the number of such strings is finite and
the sum of their lengths falls below a preset limit; otherwise,
the entry will be set empty.

The contents of the array substitutes only depend on the
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DTD and on the preset limits used to keep the size of the
array reasonable. Setting a constant limit on the size of all
entries of this array guarantees a worst-case size bound on
the array that is quadratic in the size of the DTD.

Different heuristics can be used to regulate cases when“∗”
and “//” may be eliminated and cases when they may not.
Algorithms 2 and 3 represent a recursive formulation of a
pruning algorithm in which all “∗” operators are eliminated
exhaustively, while the elimination of “//” operators is con-
trolled by the precomputed array substitutes. The algorithm
can be used to prune with recursive DTDs, but substrings
a//b are, naturally, left unpruned if the DTD contains cycles
on paths from element a to element b, or if there are simply
too many paths from a to b in the DTD so that the entry
substitutes[a, b] has been set empty.

A recursive call prune(S, a, P ) takes as arguments a suffix
S of the filter V to be pruned, the corresponding pruned
prefix P of V (pruned in ancestor calls), and the last element
a in P . The call extracts a prefix, /b, /∗, or //b, from S,
prunes it if needed and possible, and concatenates the result
to P , to be used as an argument to further recursive calls
of the procedure. A recursion path terminates when the
suffix S becomes empty; then the argument P represents a
complete pruned filter (i.e., one disjunct in the final union of
pruned filters) and is written to the output of the algorithm.
The pruning of filter V in the main program is started by the
call prune(V, #, ǫ), where # denotes the root element and
the empty string ǫ indicates a so-far-empty pruned prefix of
V .

Algorithm 2 Procedure prune(S, a,P )

if S is empty then

output P
else if S is of the form /bS′ where b is an element then

if b ∈ children(a) then

prune(S′, b, P/b)
end if

else if S is of the form /∗S′ then

for all b ∈ children(a) do

prune(S′, b, P/b)
end for

else if S is of the form //bS′ where b is an element then

if substitutes[a, b] is nonempty then

for all x ∈ substitutes[a, b] do

prune(S′, b, Px)
end for

else

prune(S′, b, P//b)
end if

end if

Algorithm 3 Pruning a linear XPath filter V .

Rewrite V
prune(V, #, ǫ)

Algorithm 2 is formulated so that it can also eliminate
leading occurrences of the descendant operator“//”, although
for the purposes of our filtering algorithms of Secs. 3 and 4
it is sufficient to eliminate only non-leading occurrences of
that operator. However, some filtering methods may also
gain from eliminating leading occurrences. To prevent lead-

ing occurrences of “//” from being eliminated, it is sufficient
to set entries substitutes[#, b] empty for all elements b.

In the worst case, Algorithm 2 is exponential in the com-
bined size of the DTD and the original subscriber-provided
filter, because the size of the output can be that large, even
if the DTD is nonrecursive, as we have seen. However, im-
posing further restrictions on cases in which operators may
be eliminated and making restrictive assumptions about the
DTD or the original filters we may derive conditions un-
der which the algorithm is guaranteed to run in polynomial
time.

First, if the graph schema G of the DTD happens to be a
tree, then all “∗” and “//” operators can be eliminated from
any linear XPath filter V in time O(|V | + |G|), where |V |
is the size of V and |G| is the size of G. In this case there
is no need to precompute the array substitutes (which is of
size O(|G|2)).

In fact many real DTDs are tree-like, composed of mostly
nonrecursive elements and having only few elements with
many incoming edges. These properties are exemplified by
the nonrecursive DTD for the protein-sequence database,
one of the DTDs from the XML Data Repository at the
University of Washington [12] that we have used in our ex-
periments (see the graph schema in Fig. 2).

A simple stringent way to guarantee that the size of the
result of pruning remains polynomial in the combined size
of the DTD and the original filters is to require that all
entries in the array substitutes be singleton sets and that in
Algorithm 2 a filter substring “/∗S′” may be pruned only
if the last element a of the already pruned prefix of the
filter is the only parent of all the child elements b to be
substituted for “∗”, unless those child elements b are all leaf
elements without outgoing edges (in which case pruning is
always allowed). This will guarantee the worst-case time
bound O(|V | · |G|2) for filter pruning.

It is possible to adjust Algorithm 2 for a specific DTD
so that it will produce a sufficiently pruned reasonable-sized
filters. We may adjust the entries of the array substitutes
so that for some specific elements a larger set of substitutes
are allowed, while for others pruning will be prevented even
for a smaller number of substitutes. The elimination of “∗”
operators could be controlled by allowing pruning for the
children of some specific elements, while disallowing it for
others.

To experiment with the pruning algorithm, we used the
XPath query generator described by Diao et al. [4] to gen-
erate workloads of consistent linear XPath filters for DTDs
obtained from the XML Data Repository [12]. The genera-
tion of filters was parameterized by the number and maxi-
mum nesting depth of filters and by the following parame-
ters: prob(//), the probability of “//” being the operator at
a location step, and prob(∗), the probability of “∗” occurring
at a location step. The filter workloads may contain du-
plicate filters, which is most likely the case with real-world
filters.

Two sets of workloads of 100 000 filters were generated
and pruned, one set for the nonrecursive 66-element, 83-
arc DTD of protein-sequence data (Figs. 2 and 3) and the
other set for a slightly recursive 61-element, 82-arc DTD of
NASA astronomical data [12]. The NASA DTD (created
from the data) has one cycle that makes the DTD recursive.
In pruning the protein-sequence workloads, both “∗” and
“//” operators were eliminated exhaustively, while in prun-
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ProteinDatabase

Database ProteinEntry

header

proteinorganismreference

comment

genetics

complex

function

classification keywords

feature

summary sequence

uid

accession created_date seq-rev_date txt-rev_date

name alt-namecontainssource commonformal variety

note

refinfo contents accinfo

authors citation volume month year pages title description xrefs

author anonymousgroup xref

db

statusmol-typeseq-spec exp-source

gene

map-positiongenome mobile-element gene-origin genetic-code start-codon introns intron-status other-productpathway

superfamily keyword

feature-type

lengthtype

Figure 2: The graph schema of a 66-element DTD for protein-sequence data.

/ProteinDatabase/ProteinEntry/summary/status

//uid

/*/ProteinEntry/feature/note

/ProteinDatabase/ProteinEntry/function/pathway

/*/ProteinEntry/*/accinfo//seq-spec

/ProteinDatabase//keyword

/ProteinDatabase/ProteinEntry//superfamily

/*/ProteinEntry/organism//formal

/ProteinDatabase/*/*/note

/ProteinDatabase/ProteinEntry/organism/variety

//ProteinDatabase/ProteinEntry/*/*

/*/*/*

Figure 3: Part of a filter workload generated for the

protein-sequence DTD with prob(//) = prob(∗) = 0.2.

ing the NASA workload, the wildcards “∗” were eliminated
exhaustively while not all descendant operators “//” could
be eliminated because of the recursion. For the NASA work-
loads, the pruning was regulated by setting substitutes[a, b]
empty for element pairs (a, b) involved in a recursion cycle.

We measured the number of pruned filters, that is, the
total number of pruned XPath expressions in the union fil-
ters produced for the 100 000 original filters. In the case of
the protein-sequence workloads, the number of pruned fil-
ters varied between 224 579 and 622 649 when prob(∗) var-
ied between 0.2 and 0.6 and prob(//) between 0.0 and 0.6.
Tab. 2 shows the number of pruned filters and the number
of remaining descendant operators for the NASA workloads.
Also leading occurrences of descendant operators were elim-
inated. The effect of pruning in the number of filters is
moderate: the number of pruned filters is not more than 2
to 6 times the number of original filters.

We have also included the size of the NFA used by YFilter
[4] in each case, both for the set of unpruned filters and for
the set of pruned filters. The size of the NFA was measured
by examining Java’s used heap space before and after the
construction of the NFA. The effect of pruning on the size
of the NFA seems to be insignificant.

Workloads generated with greater prob(∗) values tend to
result in greater numbers of pruned filters, while greater
prob(//) values seem not to have a similar effect. The tree-
like shape of the DTDs used in the experiments is the reason
for the fact that the number of pruned filters stays within
moderate limits even for high values of prob(∗). Experi-
mental results on the effect of pruning on filtering speed are
reported in Sec. 5.

3. SINGLE-KEYWORD-FILTER PMA
The classical Aho–Corasick pattern-matching automaton

(PMA) [1] for a finite set W of nonempty strings called key-
words over a finite alphabet Σ is a deterministic linear-time
finite-state recognizer of the regular language Σ∗WΣ∗. The
size of the PMA is O(|W |), where |W | denotes the sum of
the lengths of all keywords in W . In processing input string
x, the PMA makes at most 2|x| moves.

In this section we show how the Aho–Corasick PMA can
be modified to filter XML documents with pruned linear
XPath filters. The PMA is constructed for the set of filters
obtained by pruning the subscriber-provided filters with re-
spect to a DTD, using the algorithm described in the previ-
ous section, assuming that all wildcards “∗” are eliminated.
Given an XML document that conforms to the DTD, the
PMA will determine the exact set of pruned filters that
match the document if all non-leading descendant operators
“//” have been eliminated, and a superset of pruned filters
that match the document otherwise.

To turn a PMA that recognizes linear text to a PMA that
filters tree-structured text such as XML, we must do the
following. First, a backtracking facility must be added in
order that after scanning a substring consisting of an entire
sub-element (subtree) of the input document the state at
which the PMA was just before scanning the start-element
tag of the sub-element can be restored, to make it possible
to continue the matching process with the next sibling sub-
element. Second, the output function of the PMA must be
modified to report exactly which filters match the input doc-
ument, instead of the simple yes/no answer telling whether
or not some keyword matches the input.

In filtering XML documents, the alphabet Σ contains the
set of elements occurring in the DTD plus the additional
symbol # denoting the root element of any XML document.
The set W of keywords is derived from the pruned filters,
such that each maximal nonempty substring not contain-
ing the descendant operator “//” gives rise to one keyword,
namely the substring stripped of all child operators “/”, and
that the first such substring is prefixed with “#” if the filter
begins with the child operator “/”. Thus, the pruned filter
“//a/b//c/d” gives rise to the keywords ab and cd, while the
pruned filter “/a/b//c/d” gives rise to the keywords #ab and
cd.

For each prefix y of some keyword in W , the Aho–Corasick
PMA has a unique state, denoted by state(y), different from
all state(y′) where y′ 6= y. The state state(ǫ), where ǫ is
the empty string, is the initial state of the PMA. Clearly,
the number of states in the PMA is at most |W | + 1. The
states are numbered with positive integers. Fig. 4 gives the
transition diagram of the PMA for a set of filters.

The goto function of the PMA is defined by the equation
goto(state(y), a) = state(ya), where ya is a prefix of some
keyword and a is a symbol in Σ. For any state q we denote
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Workload parameters Number of Number of “//” operators Size of YFilter’s NFA
prob(∗) prob(//) pruned filters unpruned leading pruned leading unpruned pruned

0.2 0.0 199529 0 0 0 0 5.52 MB 8.68 MB
0.2 0.2 228133 62528 15823 8895 1238 10.58 MB 9.89 MB
0.2 0.4 235729 98779 32013 13208 2426 11.18 MB 10.19 MB
0.2 0.6 233143 118775 47991 15863 3580 10.24 MB 10.13 MB
0.4 0.2 346684 51203 12078 10868 918 10.79 MB 14.96 MB
0.6 0.2 538364 37712 7966 12433 652 9.22 MB 22.89 MB

Table 2: Characteristics of pruned filters for workloads of 100 000 filters generated for the NASA DTD. The

maximum depth of the generated filters was set to 8, the maximum depth of the NASA data. The columns

titled “leading” give the numbers of leading “//” operators in unpruned and pruned filters, respectively.

...
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nonempty output sets are shown. For example,

output(state(anb)) = {(n, 2), (2n, 1)}, indicating recog-

nition of the 2nd keyword (anb) of the nth filter and

the 1st keyword (anb) of the 2nth filter.

by string(q) the unique string y with state(y) = q. Thus,
string(q) is the string upon which state q is reached from the
initial state via the goto function. We denote by depth(q) the
length of string(q). In our experiments, the goto function is
organized as an array indexed by state numbers. For state
q, the entry goto[q] is a hash table of pairs (a, q′) indexed
by symbols a in Σ. We use Java’s library implementation of
the hash table.

The fail function of the PMA is defined by the equation
fail(state(uv)) = state(v), where uv is a prefix of some key-
word and v is the longest proper suffix of uv such that v
is also a prefix of some keyword. For non-negative inte-
ger k, we denote by failk the fail function applied k times:
fail0(q) = q and failk+1(q) = fail(failk(q)). The fail function
is organized as an array indexed by state numbers.

The output function of our PMA is defined by setting for
each state q:

output(q) = {(i, j) | string(q) is the jth keyword in filter i}.

A pair (i, j) is called an output tuple; the tuple signals the
recognition of the jth keyword string(q) of filter i at state
q. For example, if the number of filter “/a/b//c/d” is i and
state(#ab) = q1 and state(cd) = q2, then (i, 1) ∈ output(q1)
and (i, 2) ∈ output(q2).

The size of the output function is at most O(|W |). Note
that the number of states is at most |W | + 1 and that the

total number of output-tuple instances in the output sets
is at most the total number of keyword instances in all the
filters, that is, the sum of the numbers of keywords in all
filters.

When the PMA reports the output tuples in output(q) at
state q then it must also report the output tuples in out-
put(failk(q)) for the states failk(q), k > 0, on the fail path
from q to the initial state. To avoid traversing the fail path
in output reporting, we could include in output(q) the out-
put tuples from all states failk(q) on the fail path. However,
doing so would in some cases make the size of the output
function quadratic in the size of |W |. This would happen for
example in the case of the filters of Fig. 4. The size of the
filter collection is O(n), as is the size of the PMA with its
goto, fail, and output functions, but copying the output of
state(b) to the output of all state(ajb), j = 1, . . . , n, would
make the output function of size Θ(n2).

The price paid for keeping the size of the output func-
tion linear in |W | is that the complete output for state q
must now be collected from the output sets on the fail path
from state q to the initial state. To avoid visiting states
with an empty output set, we define the function output fail
by setting for state q: output fail(q) = failk(q), if k is the
greatest integer less than or equal to depth(q) such that
output(failm(q)) is empty for all m = 1, . . . , k − 1. We call
the path from state q consisting of the output fail arcs the
output path of q.

The input stream for the PMA consists of tokens produced
by a SAX parser. When the SAX parser encounters a start-
element tag, the current state of the PMA is pushed onto a
stack, and the symbol corresponding to the element name is
consumed. The PMA changes its state according to the goto
and fail functions, and keeps track of the matching filters.
When the parser encounters an end-element tag, the current
state of the PMA is set to the state on top of the stack, and
the stack is popped.

The operating cycle of the PMA is given in Algorithm 4.
The output set for state q is scanned in the procedure call
report output(q) (see Algorithm 5). To avoid scanning the
same output set twice, a boolean array output scanned, in-
dexed by state numbers, is maintained. An array result, in-
dexed by filter numbers, is used to store information about
matched keywords in the filters. For filter number i, the
entry result[i] contains the set of indices j for which the jth
keyword in filter i has been matched. The contents of the
arrays output scanned and result are initialized by the pro-
cedure call initialize() (Algorithm 6).

When the input document has been processed, the result
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Algorithm 4 Operating cycle of the backtracking PMA.

scan next input token(token)
while token was found do

if token is a start-document tag then

initialize()
state ← initial state
stack.push(state)
sym ← #
state ← goto(state, sym)
report output(state)

else if token is an end-document tag then

print result()
else if token is the start-element tag of element E then

stack.push(state)
sym ← symbol table(E)
while goto(state, sym) = fail do

state ← fail(state)
end while

state ← goto(state, sym)
report output(state)

else if token is an end-element tag then

state ← stack.pop()
end if

scan next input token(token)
end while

of the filtering can be read from the array result. For filter
i that consists of a single keyword, a match has been found
if and only if 1 ∈ result[i]. For filter i that consists of m
keywords, a possible match has been found if j ∈ result[i]
for all j = 1, . . . , m. Such a possible match is not always an
exact match, because the matched keywords may not appear
on the same path, nor in the specified order.

The following theorem states that our algorithm runs in
time linear in the sum of the size of the filter collection and
the length of the input document:

Theorem 1. When the size of the alphabet Σ (or the
number of distinct XML elements in the filters) is considered
a constant, the time complexity of our filtering algorithm is
O(|W | + |x|), where |W | denotes the sum of the lengths of
all keyword instances appearing in the set of filters and |x|
is the length of input document x. 2

To find out which possible matches of multi-keyword fil-
ters are true matches, the input document must be filtered
through some more general filtering algorithm, such as the
algorithm to be presented in the next section.

Algorithm 5 Procedure report output(state).

q ← state
while not output scanned [q] do

output scanned [q] ← true
for each (i, j) ∈ output(q) do

insert j into result [i]
end for

q ← output fail(q)
end while

4. MULTI-KEYWORD-FILTER PMA
In this section we extend the algorithm of the previous

section so as to find exact matches for multi-keyword fil-

Algorithm 6 Procedure initialize().

for i = 1 to number of states do

output scanned [i] ← false
end for

for i = 1 to number of filters do

result [i]← empty
end for

ters, that is, for filters that still contain one or more non-
leading occurrences of the descendant operator “//” after
being pruned by the algorithm of Sec. 2. This extended
algorithm uses a PMA constructed for keywords appearing
in all the pruned filters (whether single-keyword or multi-
keyword) if a single-pass filtering process is used, or only for
keywords appearing in multi-keyword pruned filters if a two-
pass filtering process is used. In the latter case, the PMA is
initialized to record matches of only those filters for which
possible matches were found in the first pass.

To arrange that the keywords of each filter are matched
against the same root-to-leaf path of the input document
and in the order in which they appear in the filter, and to
keep track of which keyword of each filter is currently being
considered for matching, we maintain a vector frontier that
records for each filter i the number j of the keyword cur-
rently being considered for matching with filter i. Initially,
frontier[i] = 1 for all filters i (see Algorithm 7). When the
PMA is at state q, the output path of q is traversed and
for each state q′ in the path the output of q′ is scanned; for
each output tuple (i, j) in output(q′) where j = frontier[i],
a match of the jth keyword of filter i is signalled and the
frontier is advanced by setting frontier[i] ← j + 1 (see Al-
gorithm 8). A match for the entire filter i is found when a
match is recorded for (i, j) where j has reached the number
of keywords in filter i.

Since the set of keywords being considered for matching
changes each time the frontier is advanced and only a subset
of the output tuples of each visited state is reported at a
time, we can no longer avoid repeated scanning of output
sets. Thus the optimization that was possible for single-
keyword filters cannot be used here; instead, each procedure
call report output(q) must traverse the output path of state
q to find if some keyword matches are found for the current
frontier (see Algorithm 9).

To avoid doing too much work in repeated scannings of
the output sets, we make the output set of each state change
dynamically whenever the frontier of some filter is advanced,
so that the output set, now called the current output set, of
each state contains only those output tuples (i, j) from the
static output set output(q) for which j = frontier[i]. Thus,
whenever the frontier of filter i is advanced from j to j + 1,
the tuple (i, j) must be deleted from the current output of
all states, and the tuple (i, j + 1) must be inserted into the
current output of all states whose static output contains
(i, j + 1).

To make the updating of the current output sets efficient,
we store each set current output(q) as a doubly linked list
of triples (i, j, q). When the frontier of filter i is advanced
from j to j + 1, triples (i, j, q) are deleted from all lists that
contain (i, j, q) for some state q. This is accomplished by
additionally maintaining for each pair (i, j) a circular list
of triples (i, j, q). Thus, when a match of the jth keyword
of filter i is found at state q, the circular list is traversed
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Algorithm 7 Procedure initialize().

for all states q do

current output[q]← empty
end for

for all filters i do

if filter i is considered for matching then

match[i]← false
frontier [i]← 0
update frontier(i)

else

frontier [i]← 1 + the number of keywords in filter i
end if

end for

Algorithm 8 Procedure update frontier(i, j).

for all states q with (i, j) ∈ current output(q) do

delete (i, j) from current output(q)
end for

if j is the number of keywords in filter i then

match[i]← true
end if

if (i, j + 1) needs a counter then

create a counter for filter i with initial value 0
end if

frontier[i]← j + 1
for all states q with (i, j + 1) ∈ output(q) do

insert (i, j + 1) into current output(q)
end for

starting from (i, j, q), and (i, j, q′) is deleted from all sets
current output(q′), that is, from doubly linked lists contain-
ing (i, j, q′). This is done in time linear in the number of
triples (i, j, q′). As each such triple is touched in the dele-
tion at most once, the total time taken by all the deletions is
linear in the number of all keyword instances in the filters.

In addition to deleting triples (i, j, q), triples (i, j + 1, q′)
for all q′ such that the static output set of q′ contains (i, j+1)
must be inserted into the doubly linked list implementing the
current output set of q′. These triples must also be added
into the corresponding circular list of triples having i as the
first component and j + 1 as the second. As in the case
of deletions, it is easy to see that the total time taken by
inserting elements into current output sets is linear in the
number of all keyword instances in the filters.

As such, this algorithm does not however always record
correctly matches of filters in which a nonempty suffix of
some keyword happens to be a prefix of the previous key-
word, or if some keyword happens to include the previous
keyword, in the filter. For example, with the input docu-
ment 〈doc〉〈a〉〈b〉〈c〉〈/c〉〈/b〉〈/a〉〈/doc〉 a match for the filter
//a/b//b/c is incorrectly recorded because when a match
of the first keyword (ab) is found at state(ab), the frontier
of the filter is advanced from 1 to 2, and then, at state
state(abc), a match of the second keyword (bc) is incorrectly
recorded. Similarly, a match for the filter //b//a/b/c would
be incorrectly recorded at state(abc).

To solve the problem we maintain a counter for each filter
i if frontier[i] = j > 1 and if either a nonempty suffix of the
(j− 1)th keyword of filter i is a prefix of the jth keyword of
filter i or the (j−1)th keyword of filter i is a substring of the
jth keyword of filter i. The counter for i records the number

Algorithm 9 Procedure report output(state).

q ← state
while q is not initial state do

for all (i, j) ∈ current output(q) do

if frontier[i] = j then

if there is an active counter of filter i then

if the value of the counter ≥ depth(q) then

drop the counter
update frontier(i, j)

end if

else

update frontier(i, j)
end if

end if

end for

q ← output fail(q)
end while

of input symbols read since frontier[i] was advanced from
j−1 to j. When checking an output tuple (i, j) in output(q)
at state q, if frontier[i] = j and the value of the counter for
i is greater than or equal to depth(q), we can safely record a
match of the jth keyword of filter i (see Algorithm 9).

To avoid doing too much work in incrementing the coun-
ters, we take care that each counter is active, that is, in exis-
tence only for the time it is absolutely needed. We store the
active counters in a doubly linked list that allows a counter
to be created, retrieved and dropped in constant time and
all the active counters to be incremented in time linear in
the number of those counters. All active counters are incre-
mented whenever a symbol is consumed by the PMA. The
total time taken by the maintenance of the active counters,
that is, creating, dropping, and increasing counters, in the
processing of any input document is only linear in the num-
ber of all keyword instances.

The main program for the filtering PMA needs to be
changed from Algorithm 4 as follows. First, a call for the
incrementation of the counters is added just after the assign-
ments of the variable sym. Second, besides the current state
also the frontier advancements and counter droppings must
be saved in the stack when the PMA encounters a start-
element tag, and changed frontiers, current output sets of
filters with changed frontiers, and the values of active coun-
ters must be restored using the information stored in the
stack when the PMA encounters an end-element tag and is
about to backtrack to the state popped from the stack.

The fact that backtracking now involves output-set up-
dating and the fact that output paths must be traversed
repeatedly introduce two new factors in the time complex-
ity of our algorithm:

Theorem 2. When the size of the alphabet Σ (the num-
ber of distinct elements) is considered a constant, our fil-
tering algorithm determines in time O(px|W | + kW |x|) the
subset of filters in W that match a given input document
x. Here |W | denotes the sum of the lengths of all keyword
instances appearing in the filters, px is the number of root-
to-leaf paths in x, |x| is the length of x, and kW is the
maximum, over all keywords w in the filters, of the number
of suffixes of w that are also keywords (i.e., kW is the length
of the longest possible output path). 2

While the idea of making the output sets change dynami-
cally when the frontier is advanced allows us to amortize the
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complexity of scanning the output sets by |W |, so that the
work done on output-set scanning is made independent of
the length of the input document, the updating of the cur-
rent output sets adds a significant overhead on the filtering,
as compared with the algorithm of Sec. 3. Therefore we have
also implemented a version of the algorithm in which output
sets are not updated. Our experiments show that this sim-
pler algorithm is in practice as efficient as (and sometimes
even somewhat more efficient than) the more complicated
algorithm that uses output-set updating.

5. EXPERIMENTAL RESULTS
We have implemented our algorithms in various versions

and tested them on the protein-sequence and NASA data
sets obtained from the Database Research Group of the Uni-
versity of Washington [12]. Workloads of linear XPath filters
without predicates were generated using the XPath query
generator described by Diao et al. [4], parameterized with
the maximum depth of XPath queries and with the prob-
abilities prob(//) and prob(∗) (see Sec. 2). The speed and
throughput of filtering were measured using as input docu-
ments the entire 24 MB NASA data set and a 24 MB extract
from the protein-sequence data set. The maximum nesting
depth of the protein-sequence data is 7 and that of the NASA
data is 8. More than 90 % of the filters matched the input
document, when the filters had no predicates. When filters
with value-based predicates are generated, the number of
matching filters is smaller.

The tests were run on a Dell PowerEdge SC430 server
with 2.8 GHz Pentium 4 processor, 3 GB of main memory,
and 1 MB of on-chip-cache. The computer was running the
Debian Linux 2.6.18 operating system with the Sun Java
virtual machine 1.6.0 03 installed. In the tests the input
document was read from the disk, but the overhead of the
disk operations should be fairly small. The disk-read speed
of the test hardware is more than 50 MB/sec. The through-
put of the Java JAXP SAX parser (run in non-validating
mode) on the two input documents was 25–28 MB/sec. For
each measurement, the results are averages of five indepen-
dent test runs.

Fig. 5 shows the effect of pruning on the filtering speed of
YFilter [4]. The workloads of 10 000 to 100 000 XPath filters
without predicates were generated with prob(∗) = prob(//)
= 0.2. Pruning with the protein-sequence DTD eliminated
exhaustively all “∗” and “//” operators, while pruning with
the slightly recursive NASA DTD eliminated all “∗” opera-
tors and about 86 % of the “//” operators from the original
filters. With the protein-sequence data set and with 10 000
filters, filter pruning increased the speed of YFilter by a fac-
tor of 3.5, and with 100 000 filters by a factor of 6.9. As
seen from Fig. 5, with the NASA data set the speed-up was
even more impressive: with 10 000 filters by a factor of 7.3,
and with 100 000 filters by a factor of 22.8.

When filters may contain value-based predicates, the speed-
up is not so impressive, because much of the total filtering
time is spent on evaluating the predicates. However, our ex-
periments with workloads of 10 000 filters having one pred-
icate per filter (generated with prob(∗) = prob(//) = 0.2)
show that the performance gain from filter pruning is still
evident: the speed-up of YFilter was 1.3 protein-sequence
data set and 2.0 for the NASA data set.

Tab. 3 gives times spent on pruning filters and on con-
structing the PMAs used by our two filtering algorithms.

protein NASA
# XPath filters 1000 10000 1000 10000
Pruning time (sec) 0.415 1.485 0.452 1.551
PMA build time (sec) 0.074 0.198 0.092 0.261
# states in the PMA 92 92 141 145
Size of the PMA (MB) 0.49 1.75 0.68 2.12

Table 3: Times spent on pruning filters generated

with prob(∗) = prob(//) = 0.2, and on constructing

the single-keyword-filter PMA (for pruned protein-

sequence filters) and the multi-keyword-filter PMA

(for pruned NASA filters).

These are preprocessing tasks that are done only at system
startup, when new filters are added into the publish/sub-
scribe system or when new types of documents are intro-
duced into the stream. These filter workloads contain only
distinct filters; no duplicates are included. For the filter
workloads generated and pruned using the nonrecursive pro-
tein-sequence DTD the single-keyword-filter PMA of Sec. 3
was built, and for the recursive NASA DTD the multi-
keyword-filter PMA of Sec. 4 was built.

To keep the output sets of the PMAs as small as possible,
all instances of a pruned filter resulting from pruning differ-
ent original filters are given the same filter number if their
XPath expressions are equal. The mapping from pruned fil-
ters to original filters must thus be maintained by an array
original filters, where an entry original filters[i], for pruned
filter number i, contains the numbers of original filters from
which filter i was pruned. This optimization is important
because the same XPath expressions are shared by many
filters.

The size of the PMA for the single-keyword-filter algo-
rithm of Sec. 3 for pruned filters remained linear even with
respect to the original unpruned filters: for a workload of
1000n filters generated with prob(//) = prob(∗) = 0.2 from
the protein-sequence DTD, the size of the PMA was about
0.15n MB, for n = 100, 200, . . . , 1000. The size of the PMA
increases with prob(∗): for workloads of 100 000 filters with
prob(//) = 0.2, the size of the PMA increased from 10 MB
to 65 MB when prob(∗) was increased from 0 to 0.8. The
obvious reason for this is that the filter-pruning algorithm
produces growing numbers of possible paths (and keywords
for the PMA) when there are more wildcards in the XPath
filters [10].

The size of the PMA is not so sensitive to prob(//): for
workloads of 100 000 pruned filters for the protein-sequence
data generated with prob(∗) = 0.2, the size of the PMA
decreased from 15.7 MB to 13.2 MB when prob(//) was in-
creased from 0.2 to 0.8, and for corresponding workloads for
the NASA data, the size of the PMA varied between 16.9 MB
and 17.7 MB when prob(//) varied between 0.2 and 0.8. The
number of distinct keywords resulting from pruning a mil-
lion filters generated with prob(//) = prob(∗) = 0.2 from
the protein-sequence DTD is 90 and the number of states
in the PMA is 92. Since leading occurrences of descendant
operators were also eliminated in the pruning, the maximum
number of distinct keywords for the PMA is the number of
different paths starting from the root element of the nonre-
cursive DTD. (When the DTD is recursive, the maximum
number of distinct keywords is the number of different paths

978



 5

 10

 15

 20

 25

 30

 35

 40

 10  20  30  40  50  60  70  80  90  100

W
al

l-c
lo

ck
 ti

m
e 

[s
ec

]

Filter count  [1k XPath expressions]

YFilter
YFilter pruned

 0

 20

 40

 60

 80

 100

 120

 10  20  30  40  50  60  70  80  90  100

W
al

l-c
lo

ck
 ti

m
e 

[s
ec

]

Filter count  [1k XPath expressions]

YFilter
YFilter pruned

(a) Protein-sequence data (b) NASA data

Figure 5: Filtering time of a 24 MB XML document extracted from (a) the protein-sequence data set and (b)

the NASA data set, using YFilter with original unpruned filters (“YFilter”) and with pruned filters (“YFilter

pruned”). The XPath filters without predicates were generated with prob(∗) = prob(//) = 0.2.

without cycles in the DTD.) Due to the fact that keywords
are shared by many pruned filters, the PMA has not very
many states even for a large number of filters. The most
memory is consumed by the data structure used to store the
output sets of states.

We measured the times spent by our filtering algorithms
on various workloads with unpruned and pruned filters and
compared the times with those spent by YFilter [4]. With
sets of 100 000 unpruned filters generated from the NASA
DTD with prob(∗) = 0 (i.e., no wildcards) and prob(//)
= 0.2, 0,4 and 0.6, our multi-keyword-filter algorithm of
Sec. 4 exhibited a performance comparable to that of YFilter
when the maximum depth of the generated filters was set to
that of the input document. With the nonrecursive protein-
sequence data our algorithm performed better than YFilter,
but with the highly recursive Treebank data [12] YFilter
performed better than our algorithm. For these tests, our
PMA was built using the optimization that for each different
XPath expression only one filter number is maintained in the
output sets; these filter numbers are mapped to correspond-
ing numbers of original filters using the table original filters
(see above).

With pruned filters our algorithm exhibits a better per-
formance than YFilter. Tab. 4 shows filtering times of the
24 MB input document extracted from the protein-sequence
database when filtered with pruned filters using our single-
keyword-filter algorithm of Sec. 3 and YFilter. Workloads of
10 000 and 100 000 filters were generated from the nonrecur-
sive protein-sequence DTD with different values of prob(∗)
and prob(//), and the filters were pruned eliminating all
wildcards “∗” and all descendant operators “//”. The figures
show that the filtering speed of our algorithm is 2 to 3 times
that of YFilter. Curiously enough, for both algorithms, the
filtering speed is in some cases slightly better with 100 000
filters than with 10 000 filters. Experiments done by Green
et al. [6] show a similar behavior. They report that the filter-
ing speed of YFilter on the protein-sequence data is higher
with 10 000 filters than with 1 000 filters for filters generated
with prob(∗) = prob(//) = 0.

Tab. 5 shows filtering times of the NASA 24 MB input
document when filtered with pruned filters using our multi-
keyword-filter algorithm of Sec. 4 and YFilter. Workloads
of 10 000 and 100 000 filters were generated from the re-
cursive NASA DTD with the same values of prob(∗) and
prob(//) as with the protein-sequence data. In this case the
filters were pruned eliminating all wildcards“∗”, but because
of recursion some descendant operators “//” were left in the
filters. The figures show that our algorithm and YFilter have
more or less the same performance on this data. For greater
prob(∗) values our algorithm is slightly better than YFilter
while for greater prob(//) values YFilter is slightly better
than our algorithm. For our algorithm, greater prob(∗) val-
ues mean more pruning (since all wildcards are eliminated)
while greater prob(//) values mean that more descendant
operators remain in the pruned filters (cf. Tab. 2).

As both our filtering algorithms allow leading occurrences
of the descendant operator to remain in the filters, we also
ran tests on pruned workloads in which the elimination of
descendant operators was restricted to non-leading occur-
rences. With 100 000 filters for the NASA data, the perfor-
mance gain from eliminating also leading descendant oper-
ators was 37 % for YFilter and 30 % for our multi-keyword-
filter algorithm. Eliminating also leading descendant oper-
ators decreased the number of distinct keywords from 707
to 143, and the number of states in the PMA from 729 to
145. Tests with the protein-sequence data showed that for
our single-keyword-filter algorithm the effect of elimination
of leading descendant operators is insignificant.

When the maximum depth of the generated XPath filters
was set to a much higher value than the actual depth of the
data, the performance of our filtering algorithm decreased.
An obvious reason for this is that the number of match-
ing filters decreases when the workload contains such “too
deep” filters; such filters cause the frontier and output sets
to be updated back and forth. The performance of YFil-
ter somewhat increased when the workload contained “too
deep” filters.

We also measured the throughput of filtering using the en-
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our PMA YFilter
prob(∗) prob(//) 10 000 100 000 10 000 100 000

0.2 0.2 2.026 2.062 5.610 5.473
0.2 0.4 2.039 2.076 5.556 5.593
0.2 0.6 2.063 2.046 5.609 5.562
0.4 0.2 2.023 2.105 5.536 5.616
0.6 0.2 2.069 1.882 5.555 5.618

Table 4: Filtering time (in seconds) of an 24 MB

input document with 10 000 and 100 000 pruned

XPath filters generated from the nonrecursive

protein-sequence DTD, for the single-keyword-filter

algorithm of Sec. 3 and for YFilter.

our PMA YFilter
prob(∗) prob(//) 10 000 100 000 10 000 100 000
0.2 0.2 3.390 5.694 5.099 5.107
0.2 0.4 4.647 6.625 5.765 5.063
0.2 0.6 4.927 7.170 5.142 5.023
0.4 0.2 3.730 5.286 5.038 5.063
0.6 0.2 4.465 4.719 5.040 5.100

Table 5: Filtering time (in seconds) of an 24 MB

input document with 10 000 and 100 000 pruned

XPath filters generated from the recursive NASA

DTD, for the multi-keyword-filter algorithm of

Sec. 4 and for YFilter.

tire protein-sequence database of 683 MB as the input doc-
ument. In this case the parser throughput was 27 MB/sec
and the filtering throughput (with single-keyword filters)
was 15.7 MB/sec for one million filters. The throughput
is better for bigger input documents, because the reporting
of the matched filters, the initialization of the PMA (Algo-
rithm 6) and the warm-up phase of the SAX parser are then
amortized by the length of the input document.

Green et al. [6] have compared the filtering speed of their
lazy DFA algorithm with that of YFilter on the protein-
sequence database. They also generated the filter workload
with YFilter’s generator with prob(∗) = prob(//) = 0.1.
With these settings and 100 000 unpruned filters the lazy
DFA was 8.3 times faster than YFilter. Our preliminary ex-
periments with the lazy DFA indicate that also this method
can gain from filter pruning.

6. RELATED WORK
This work was inspired by recent automata-based meth-

ods for XPath query evaluation [4, 6, 9], and by the query-
pruning technique of Fernández and Suciu [5] who used graph
schemas to optimize regular path expressions. The idea of
query pruning is that the selectivity of the schema is embed-
ded into the queries. The technique of Fernández and Suciu
[5] takes a user-provided query (a path expression) and a
graph schema as input and constructs the product automa-
ton of two NFAs: one that accepts the paths denoted by
the query and another that accepts the paths denoted by
the graph schema; from this product NFA, a pruned query
is constructed by taking into account only those paths in
the NFA that lead from the initial state to one of the final

states. Lee et al. [8] present a very similar idea for prun-
ing XPath filters with a DTD: they construct the product
automaton of an automaton representing the XPath filters
and an automaton representing the DTD.

The pruning techniques of Fernández and Suciu [5] and
Lee et al. [8] thus use the graph schema to add selectiv-
ity to the filters while in all cases keeping the size of the
pruned filters polynomial in the sum of the sizes of the orig-
inal filters and the graph schema. Our approach to pruning
XPath filters is different (Sec. 2). Our goal is use the DTD
to eliminate certain operators altogether (“∗”) and to reduce
the number of certain operators to the extent possible (non-
leading “//”). In this way it may be possible to use a more
efficient filtering algorithm such as the single-keyword-filter
algorithm of Sec. 3 (possible when no non-leading “//” oper-
ators remain) and to speed up a general filtering algorithm
such as the multi-keyword-filter algorithm of Sec. 4 (which
gains even from partial elimination of “//” operators).

The elimination of all descendant operators “//” is only
possible for nonrecursive DTDs, and eliminating all wild-
cards“∗”may lead to pruned filters of size exponential in the
sum of the sizes of the original filters and the DTD, even for
nonrecursive DTDs. However, several heuristics can be used
to restrict operator elimination in our pruning algorithm to
keep the size of the pruned filters polynomial. On the other
hand, in our experiments thus far the PMA representation
of pruned filters has remained moderate even if all wildcards
are eliminated.

We have shown that, besides our filtering algorithms, also
the NFA-based YFilter algorithm of Diao et al. [4] can gain
significantly from filter pruning. When all wildcards and all
non-leading descendant operators can be eliminated from
the filters, the path-sharing principle used in the construc-
tion makes YFilter’s NFA come close to our PMA. However,
a marked difference between YFilter’s NFA and our PMA is
that our PMA is always deterministic, no matter how many
descendant operators remain in the pruned filters. On the
other hand, YFilter allows wildcards to remain in pruned
filters, while our algorithms do not.

In the DFA-based filtering algorithm of Green et al. [6],
the goal is to circumvent the exponential growth of the DFA
by constructing it lazily. They have shown that the size
of the DFA is guaranteed to remain within tractable limits
if the DTD is nonrecursive or contains only simple cycles.
However, in the case of a more complex DTD the algorithm
may still run out of memory. To improve the memory usage
of DFA-based algorithms, Onizuka [9] suggests partitioning
the set of XPath filters into clusters and constructing a DFA
for each cluster.

Our filtering algorithms are derived from the classical Aho–
Corasick PMA [1], with added facilities for reporting match-
ing filters, backtracking for matching paths in tree-structured
input, and for matching sequences of keywords in paths. In
all cases, our PMA is of size linear in |W |, the sum of the
sizes of the (pruned) filters. Moreover, our single-keyword-
filter algorithm (which can be used when all non-leading
descendant operators are eliminated) runs in time linear in
|W | + |x|, and even our multi-keyword-filter algorithm has
a worst-case time bound that is below O(|W | · |x|), the time
spent on simulating an NFA of size |W | on an input string
of length |x|.

Our method can be considered to somehow fall in be-
tween the lazy-DFA method and the path-sharing NFA-
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based YFilter. Our algorithms are partly independent of the
number of filters, because the number of steps performed by
the PMA only depends on the length of the input string, but
our algorithms depend on the number of filters in reporting
the matched filters. Thus the basic automaton-based struc-
tural analysis is as by a DFA, but in our multi-keyword-filter
algorithm the output sets change dynamically over time.

Diao et al. [4] show how value-based filtering can be ef-
ficiently combined with the structural analysis of YFilter.
As yet, our filtering algorithms accept only linear XPath
filters without predicates; we are currently experimenting
with different ways to include the evaluation of value-based
predicates in our algorithms [10]. YFilter can also process
branching XPath filters (twig filters), by decomposing them
into linear filters. These linear filters are then matched by
using the NFA, and matching twig filters are identified at a
post-processing phase. In this case it is not sufficient to only
search for first occurrences of the linear component filters,
because a match of a twig filter may only be found with a
combination of other than first occurrences of the compo-
nent filters. Onizuka [9] presents a DFA-based algorithm for
filtering with twig filters. Filter-pruning algorithms such as
ours can readily be applied to twig filters, because the linear
filters decomposed from a twig filter can always be pruned
independently.

7. CONCLUSIONS
We have presented DTD-conscious algorithms for the fil-

tering problem of XML documents in publish/subscribe sys-
tems where subscribers specify their interests with linear
XPath expressions. Our filter-pruning algorithm (Sec. 2)
can be used as a preprocessing task of any XML filtering
algorithm to eliminate wildcards “∗” and descendant opera-
tors “//” from the original subscriber-provided XPath filters
when the XML documents are known to conform to a DTD.
The algorithm allows for different heuristics to be used to
regulate the elimination of “∗” and “//” operators when ex-
haustive elimination is impossible (for “//”) or would result
in a set of pruned filters whose total size is too large. Our
experiments conducted with YFilter [4] on XML data sets
obtained from the XML Data Repository of the Univ. of
Washington [12] indicate that filter pruning can significantly
speed up the filtering process. The effect of pruning on the
number of filters remained moderate, so that the number of
pruned filters was not more than 2 to 6 times the number of
original filters. The effect of pruning on the size of YFilter’s
NFA remained insignificant.

Our filtering algorithm (Secs. 3 and 4) uses a determinis-
tic automaton derived from the Aho–Corasick PMA [1] by
adding a facility for reporting matching filters and a back-
tracking facility for recognizing tree-structured input. The
algorithm comes in two versions, one of which finds exact
matches for pruned filters in which all wildcards and non-
leading descendant operators are eliminated (Sec. 3), while
the other can find exact matches for pruned filters in which
non-leading descendant operators cannot all be eliminated
(Sec. 4). In both cases the PMA is of size linear in the sum
of the sizes of the pruned filters, and stringent polynomial
upper bounds hold on the time of filtering; the time bound
for the single-keyword-filter algorithm of Sec. 3 is linear in
the size of the collection of pruned filters plus the length
of the input document (Theorem 1), and the time bound
for the multi-keyword-filter algorithm of Sec. 4 is well be-

low the bound for simulation of nondeterministic automata
(Theorem 2). Our filtering method is especially amenable
to filter pruning. Although with unpruned filters our al-
gorithm does not exhibit a performance distinctly superior
to YFilter, with pruned filters in which all wildcards and
all non-leading descendant operators have been eliminated
our algorithm can outperform YFilter by a factor of two or
three. Our algorithm also competes with YFilter in cases in
which some non-leading descendant operators remain in the
pruned filters.

8. ACKNOWLEDGEMENTS
The work of Eljas Soisalon-Soininen was supported by the

Academy of Finland.

9. REFERENCES
[1] A. V. Aho and M. J. Corasick. Efficient string

matching: an aid to bibliographic search.
Communcations of the ACM, 18(6):333–340, 1975.

[2] M. Altinel and M. J. Franklin. Efficient filtering of
XML documents for selective dissemination of
information. In VLDB 2000, Proc. of 26th Internat.
Conf. on Very Large Data Bases, pages 53–64, 2000.

[3] P. Buneman, S. B. Davidson, M. F. Fernández, and
D. Suciu. Adding structure to unstructured data. In
ICDT’97, Proc. of the 6th Internat. Conf. on Database
Theory, pages 336–350, 1997.

[4] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. M. Fischer. Path sharing and predicate evaluation
for high-performance XML filtering. ACM Trans.
Database Syst., 28(4):467–516, 2003.

[5] M. F. Fernández and D. Suciu. Optimizing regular
path expressions using graph schemas. In Proc. of the
14th IEEE Internat. Conf. on Data Engineering,
pages 14–23, 1998.

[6] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and
D. Suciu. Processing XML streams with deterministic
automata and stream indexes. ACM Trans. Database
Syst., 29(4):752–788, 2004.

[7] A. K. Gupta and D. Suciu. Stream processing of
XPath queries with predicates. In Proc. of the 2003
ACM SIGMOD Internat. Conf. on Management of
Data, pages 419–430, 2003.

[8] D. Lee, H. Shin, J. Kwon, W. Yang, and S. Lee.
SFilter: schema based filtering system for XML
streams. In MUE 2007, Internat. Conf. on Multimedia
and Ubiquitous Engineering, Seoul, Korea, pages
266–271, 2007.

[9] M. Onizuka. Light-weight XPath processing of XML
stream with deterministic automata. In Proc. of the
2003 ACM CIKM Internat. Conf. on Information and
Knowledge Management, pages 342–349, 2003.

[10] P. Silvasti, S. Sippu, and E. Soisalon-Soininen.
XML-document-filtering automaton. Proc. of the
VLDB Endowment, 1(1):1666—1671, 2008.

[11] E. Soisalon-Soininen and T. Ylönen. On classification
of strings. In String Processing and Information
Retrieval, 11th Internat. Conf., SPIRE 2004,
Proceedings, pages 321–330, 2004.

[12] D. Suciu. XML data repository. The Database
Research Group, University of Washington, 2006.
www.cs.washington.edu/research/xmldatasets/.

981




