
Indexing Density Models for Incremental Learning
and Anytime Classification on Data Streams

Thomas Seidl1, Ira Assent2, Philipp Kranen1, Ralph Krieger1, Jennifer Herrmann1

1Data Management and Exploration Group, RWTH Aachen University, Germany
{seidl,kranen,krieger,herrmann}@cs.rwth-aachen.de

2Department of Computer Science, Aalborg University, Denmark, ira@cs.aau.dk

ABSTRACT
Classification of streaming data faces three basic challenges:
it has to deal with huge amounts of data, the varying time
between two stream data items must be used best possible
(anytime classification) and additional training data must
be incrementally learned (anytime learning) for applying the
classifier consistently to fast data streams. In this work, we
propose a novel index-based technique that can handle all
three of the above challenges using the established Bayes
classifier on effective kernel density estimators. Our novel
Bayes tree automatically generates (adapted efficiently to
the individual object to be classified) a hierarchy of mixture
densities that represent kernel density estimators at succes-
sively coarser levels. Our probability density queries to-
gether with novel classification improvement strategies pro-
vide the necessary information for very effective classifica-
tion at any point of interruption. Moreover, we propose
a novel evaluation method for anytime classification using
Poisson streams and demonstrate the anytime learning per-
formance of the Bayes tree.

1. INTRODUCTION
Anytime classification has gained importance with ubiq-

uitous streams in applications ranging from sensor data in
monitoring systems to speech recognition. In monitoring
systems, immediate reaction to specific events is necessary,
e.g. for emergency detection. Likewise, interactive voice re-
sponse implies direct recognition of incoming speech signals.

Applications of anytime classification have the following
characteristics in common: First, typically large volumes
of data need to be processed. Second, immediate reaction
is required at interruption, where in many applications the
time allowance is not known in advance, but depends on
varying stream volume or user interruption. To classify an
instance from a bursty stream, the time available for clas-
sification can vary from milliseconds to minutes as Ueno et
al. noted in [30]. In their recent work they classify insects
based on audio sensor monitoring using embedded comput-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

ers with very limited computational resources. The insects’
inter-arrival rate varies from tenths of seconds to tenths of
minutes. Another example stems from the robotics domain,
where shapes have to be classified for robot navigation. Ac-
tion is often required in less than the time necessary for exact
computation so that the available time before an interrupt
should be utilized as efficiently as possible. For classification
of objects that are placed on a moving conveyor, as in fruit
sorting and grading, the available time can vary by up to
three orders of magnitude [30].

In a recent project we worked on a health application to
remotely monitor medical patients via body sensor networks
[21]. The amount and frequency of data sent by the pa-
tients depends on their condition as preclassified locally on
the sensor controller. The receiving server has to classify
all incoming patient data as accurately as possible. With
many patients potentially sending aggregated or detailed
data, the amount of data and their arrival rate may vary
widely. Hence, to treat each patient in a global emergency
situation, e.g. an earthquake, classification for each individ-
ual observation must be performed quickly and be improved
as long as time permits.

These tasks thus call for classification under varying time
constraints. The streaming rate may vary widely yielding
possibly large differences in the amount of time available for
computation. The enormous amounts of data arriving in
streaming applications can neither be stored prior to classi-
fication nor can classification of one item take longer than
the time until the next item arrives.

Traditional classification aims at determining the class la-
bel of unknown objects based on training data. Different
classification approaches are discussed in the literature, in-
cluding Bayes classification [2, 12], neural networks [7, 27],
decision trees [24, 20], support vector machines [6] and near-
est neighbor techniques [25].

In contrast to anytime algorithms, so called budget or con-
tract algorithms [36, 8] use a fixed (budgeted) time limit for
their calculation. If the available time is less than the con-
tracted budget, they cannot guarantee to give a result at
all. Another severe limitation is their inability to improve
the result if more time is available, as their classification
model is simplified to the degree required to fulfill their con-
tract. Their only chance is to restart computation with a
more detailed model. This constitutes the major drawback,
since they cannot use the results they obtained so far, but
have to start computation from scratch.

Finally, when dealing with data streams, not only the
amount of data to be classified becomes very large but there
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is often also constantly new training data available. There
has been some research on exploiting this new training data
by incrementally training the classifier as the data stream
proceeds [10, 11, 33]. As applications one may think of mon-
itoring systems, where an expert sporadically inspects the
system and checks the current status manually to provide
new training data. Another example could be a production
site where only goods of a certain type or class arrive for
a period of time which can then be used for incremental
learning of the classifier.

So far, classifiers that focused on anytime learning built a
contract classifier [5, 29, 32], i.e. they are not able to per-
form anytime classification. Anytime classifiers [9, 13, 30] on
the other hand so far have not been able to profit from novel
training data unless they were given a large amount of time
to retrain their classifier. For a stream classification appli-
cation it is important to support both anytime learning and
anytime classification to allow consistent use on fast data
streams. To the best of our knowledge, no such classifier
exists so far.

1.1 Contribution
Our work enables anytime Bayes classification using non-

parameterized kernel density estimators. Consistent with
classifying fast data streams our technique is able to incre-
mentally learn from data streams at any time. We propose
our novel Bayes tree indexing structure that provides aggre-
gated model information about the kernels in all subtrees on
all hierarchy levels of the tree. In our new probability den-
sity query, descending the tree is based on strategies that
favor classification accuracy. As different granularities are
available and compact models are located at the top levels,
the probability density query can be interrupted early on
(starting with a unimodal model at root level) and refines
the model as long as time permits. Our novel anytime clas-
sifier does not only improve its result incrementally when
more time is granted, but also adapts the model refinement
individually to the object to be classfied.

The design goals of our anytime approach include

• Statistical foundation. Our classification uses the
established Bayes classifier based on kernel estimators.

• Adaptability. The model is adapted to the individual
query object, i.e. the mixture model is refined locally
with respect to the object to be classified.

• Anytime classification and anytime learning for
applying the Bayes tree consistently in applications on
fast data streams.

Our contributions on a technical level include

• Novel hierarchical organization of mixture mod-
els. Our novel index structure provides a hierarchy of
mixture density models and allows fast access to very
fine-grained and individually adapted models.

• Probability density queries. Novel access strate-
gies where traversal decisions are based on the prob-
ability density of the query object with respect to the
current mixture model.

• Poisson stream evaluation. We propose a novel
evaluation method for anytime classification on data
streams using Poisson processes.
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Figure 1: Prototypical anytime classification accu-
racy: accuracy increases over time.

2. PRELIMINARIES
In this section we first review properties of anytime clas-

sification and its related work. Next we decribe Bayes clas-
sification and density estimation and section 2.3 discusses
anytime learning and hierarchical indexing.

2.1 Anytime classification
Anytime classifiers are capable of dealing with the vary-

ing time constraints and high data volumes of stream ap-
plications. The advantages of anytime classifiers can be
summarized as flexibility (exploit all available time), in-
terruptibility (provide a decision at any time of interrup-
tion) and incremental improvement (continue classifica-
tion improvement without restart).

The usefulness of an anytime classifier depends on its qual-
ity, which can be determined with respect to accuracy and
accuracy increase. Accuracy refers to the quality of the
resulting class label assignment and is measured as the ratio
between correctly classified objects and the total number of
classified objects |{G(xi) = yi|xi ∈ TS}|/|TS|, where G is a
classifier, xi is an object in the test set TS and yi its correct
label. In each time step the accuracy for an anytime classi-
fier can be measured as the absolute classification accuracy
(as in traditional classifiers) or as the relative classification
accuracy with respect to unbound time classification.

Accuracy increase is the improvement of accuracy over
time. Ideally, even for little time, classification accuracy
is close to the best answer. With more time, classification
accuracy should soon reach the classification accuracy of the
infinite time classifier [36, 30]. This is illustrated in Figure 1.
Early on, the ideal anytime classifier provides high accuracy
with rapid increase.

In stream classification the available computation time
varies, therefore the accuracy of an anytime classifier is given
by the average classification accuracy with respect to the
inter-arrival rate (speed) of the data stream. The accuracy
increase also influences the stream specific anytime classi-
fication accuracy, since a steeper increase yields a better
accuracy even if marginally more time is available and thus
a higher average accuracy for the same inter-arrival rate.
Therefore we propose a novel stream specific anytime clas-
sification evaluation. Details are given in Section 4.

Anytime classification has been discussed for boosting tech-
niques [23], decision trees [13], SVMs [9], nearest neighbors
[30] and Bayesian networks [19, 22]. An anytime algorithm
on discrete-valued data is discussed in [34]. As stated above,
non of these classifiers allows for incremental learning. For
Bayes classifiers based on kernel densities no anytime classi-
fier exists to the best of our knowledge. We review anytime
density estimation in the following section.
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2.2 Bayes classification, mixture
densities and kernels

A classifier is a function G which maps an object x to
a label ci ∈ C. In our work, we focus on the Bayesian
classifier which uses the statistical Bayesian decision theory
for classifying objects [2, 12]. The fundamental theory of
the Bayesian classifier provides a broad range of theoretical
analyses ranging from asymptotic behavior to mean error
rates for many applications. The well studied properties of
Bayes classifiers make it a widely used approach for classifi-
cation.

The Bayesian classifier is based on probabilistic distri-
bution estimation of existing data. Based on a statistical
model of the class labels, the Bayes classifier chooses the
class with the highest posterior probability P (ci|x) for a
given query object x according to the Bayes rule P (ci|x) =
(P (ci) · p(x|ci))/p(x).

Definition 1. Bayes classification.

Given a set of class labels C = {c1, . . . , cm} and training
data D = {(x1, y1), . . . , (xn, yn)} with objects xi ∈ IRd and
class labels yj ∈ C assigned to each object, the Bayes classi-
fier GBayes estimates the a priori probability P (ci) and the
class-conditional density p(x|ci) based on the training data
D and assigns an object x to the class with the highest a
posteriori probability:

GBayes(x) = argmax
ci∈C

{P (ci|x)} = argmax
ci∈C

{P (ci) · p(x|ci)}

We also define Dci = {(xj , yj) ∈ D | ci = yj} as the set of
objects belonging to a specific class ci.

The a priori probability P (ci) can be easily estimated
from the training data as the relative frequency of each class

P (ci) =
|Dci

|
|D| . Note that p(x) is left out in the last term,

because it does not effect the argmax evaluation. Since x is
typically multidimensional, the task of estimating the class-
conditional density p(x|ci) is not trivial. The naive Bayes
classifier uses a straight forward model to estimate the data
distribution by assuming strong statistical independence of
the dimensions. Other models do not make this strong inde-
pendence assumption but estimate the density for each class
by taking the dependencies of the dimensions into account.
A simple method is to assume a certain distribution of the
data. Any model assumption (e.g. a single multivariate
normal distribution) may not reflect the true distribution.
Mixture densities relax this assumption that the data fol-
lows exactly one unimodal model by assuming that the data
follows a combination of probability density functions. In
our work we use Gaussian mixture densities.

Definition 2. Gaussian mixture densities.

A multivariate Gaussian mixture model M combines k
Gaussian probability density functions g(x, µ,Σ) of the form

g(x, µ,Σ) =
1

(2π)d/2 · det(Σ)1/2
e(−

1
2 (x−µ)T Σ−1(x−µ))

where Σ is a covariance matrix, Σ−1 its inverse and det(Σ)
the determinate of Σ. When combined, the functions are
weighted with a weight wj where

∑k
j=1 wj = 1. The class

conditional density probability for an object x and class ci ∈
C represented by k Gaussian components is then calculated

using a Gaussian mixture model M as follows:

pM(x|ci) =Mci(x) =

k∑
j=1

wj · g(x, µj ,Σj)

If only variances (σ1, . . . , σd) are considered and covariances
are neglected, the covariance matrix Σ is replaced by a di-
agonal matrix Σ′ and det(Σ′) =

∏d
i=1 σ

′
i.

Another approach to density estimation are kernel densi-
ties, which do not make any assumption about the under-
lying data distribution (thus often termed “model-free” or
“non-parameterized” density-estimation). Kernel estimators
can be seen as influence functions centered at each data ob-
ject. To smooth the kernel estimator a bandwidth or window-
width hi is used. Comparing Definition 2 with kernel densi-
ties, the bandwidth corresponds to the variance of a Gaus-
sian component.

Definition 3. Kernel density estimation.

The class conditional probability density for an object x and
class ci based on a training set D = {(x1, y1), . . . , (xn, yn)}
and kernel K with bandwidth hi is given by:

pK(x|ci) =
1

|Dci | · hdi

∑
xj∈Dci

K

(
‖x− xj‖

hi

)

Thus, the class conditional probability density for any ob-
ject x is the weighted sum of kernel influences of all objects
xj of the respective class. In this paper, we use the Gaus-

sian kernel KGauss(x) = 1

(2·π)d/2 e
− x2

2hi along with Gaussian

mixture models in a consistent model hierarchy to support
mixing of models and kernels in the Bayes tree.

There has been some research on anytime density estima-
tion [35, 14]. It is however not described how to use these
approaches for anytime classification. As we will clearly see
in section 4, this is not a trivial task. Neither a naive so-
lution nor either of the straight forward solutions delivers
competitive results.

In terms of classification accuracy, Bayes classifiers using
kernel estimators have shown to perform well for traditional
classification tasks. Especially for huge training data sets
the estimation error using kernel densities is known to be
very low and even asymptotically optimal. In section 3 we
propose a novel indexing structure that enables kernel den-
sity estimation on huge data sets (e.g. as in stream applica-
tions) and incremental learning at any time.

2.3 Anytime learning using
hierarchical indexing

Typically, supervised classification is performed in two
steps: learning and classification. So far we discussed the
quality criteria for anytime classification. However, in stream
applications it is often essential to efficiently learn from new
labeled objects. As the time to learn from new objects is
typically limited, classifiers are required which can be inter-
rupted at any time during learning. The classification model
which has been learned up to this point in time is then used
for all further classification tasks. We call a classifier which
can learn from new objects at any time an anytime learning
algorithm (also called incremental learning).

An important quality criterion for anytime learning algo-
rithms is the runtime complexity of updating the learned
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model. While using lazy learning (e.g. nearest neighbor)
allows for updating the decision set in constant time, the
lack of a concise model of the data stops this approach from
being effective in the anytime classification context. An any-
time classifier based on the nearest neighbor approach has
been proposed in [30]. However, to perform anytime clas-
sification, [30] uses an non-lazy learning method that has a
superlinear complexity for new objects.

We propose a hierarchy of models for Bayes classification
that allows incremental refinement to meet the requirements
of anytime classification and anytime learning. Our novel
Bayes tree indexes density models for fast access. Using
multidimensional indexing techniques enables our Bayes tree
to learn from new objects in logarithmic time.

Multidimensional indexing structures like the R-tree [15]
have been shown to provide substantial efficiency gains in
similarity search. The basic idea is to organize the data
efficiently on disk pages such that only relevant parts of
the database have to be accessed. This is based on the as-
sumption that in similarity search, query processing requires
only a small portion of the data. This assumption does not
hold in Bayes kernel classification. As the entire model po-
tentially contributes to the class label decision, the entire
database has to be accessed in order to perform Bayes clas-
sification without loss of accuracy (see Section 3 for details).
Consequently, simply storing objects for kernel estimation in
multidimensional indexes does not suffice for anytime classi-
fication. The Gauss-tree [4] builds on the R*-tree structure
[3] to processes unimodal probabilistic similarity queries. As
the application focus is on similarity search, it does neither
allow for anytime classification, nor for management of mul-
timodal density estimators. For anytime classification, we
therefore propose a hierarchical indexing of mixture densi-
ties. It includes kernel densities as the most detailed level
and allows for interruption at any level of the hierarchy,
using as much detail as was processed until the point of in-
terruption.

3. THE BAYES TREE
Having introduced anytime algorithms and Bayes classi-

fication using kernel density estimation, we are now ready
to propose our novel anytime approach. Our overall goal
is a classification algorithm that can be interrupted at any
given point in time and that produces a meaningful classifi-
cation result that improves with additional time allowances.
The Bayes classifier on kernel densities can not provide a
meaningful class conditional density p(x|ci) at an arbitrary
(early) point in time, since the entire model may potentially
contribute to the class label decision (cf. Section 2.3). In
the next section we give an overview of our technique for
estimating the class conditional density before giving the
technical details in the following sections. Finally, we de-
scribe how the classification decision is made and improved
using our novel index structure.

3.1 Outline
As discussed in Section 1, any anytime classifier has to

provide an efficient way to improve its results with addi-
tional time. Indexing provides means for efficiency in sim-
ilarity search and retrieval. By grouping similar data on
hard disk and providing directory information on disk page
entries, only the relevant parts of the data are accessed dur-
ing query processing. Similarity search queries are usually
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Range query Pruned data Bayes tree solution

MBR MBR MBR
g q y

Necessary
information
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Pruned data y

MBR MBR MBR(q, ε)‐range
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D D D D D DD

Probability density queryProbability density query

? ?

?
How to realize

anytime without
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K K K K K K K K K K K K K KK K K K
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q‐probability
density query

g
enable classification without
reading the entire leaf level.

Figure 2: Pruning as in similarity search is not pos-
sible for probability density queries, since all kernels
have to be accessed to answer a q-probability density
query.

specified via a query object and a similarity tolerance given
by a threshold range ε. Using this ε range, irrelevant parts of
the data are pruned based on directory information during
query processing. Thus the amount of data that has to be
accessed is reduced, which in turn greatly reduces runtimes.
This is illustrated in Figure 2 (top left). The query and the
ε range allow for straightfoward pruning of database objects
whose directory entries are at more than ε distance (with
respect to Euclidean distance). This scenario also applies
for k nearest neighbor queries [26].

In the Bayes tree, the data objects are stored at leaf level
as in similarity search applications. As classification requires
reading all kernel estimators of the entire model, accuracy
would be lost if a subset of all kernel densities was ignored.
Consequently, there is no irrelevant data, and hence the
pruning as in similarity search is infeasible when dealing
with density estimation. As for the accuracy increase, ac-
cessing the entire kernel density model is not only inefficient
but also not interruptible. Moreover, kernel densities pro-
vide only a single model of the data, i.e. no incremental
improvement of classification is possible as required for any-
time classification.

As illustrated in Figure 2 (bottom left), the upper levels
of an index that supports anytime classification need to pro-
vide information that can be used for assigning class labels
even before the leaf level containing the kernels is reached.
The Bayes tree solves this problem by storing aggregated
statistical information in its inner nodes (Figure 2 right).

Our approach is therefore a hierarchy of mixture models
built on top of kernel densities. Each hierarchy level pre-
serves as detailed information on the underlying observa-
tions as the node capacity permits, while allowing interrup-
tion and adaptive query-based refinement as long as more
time is available.

Thus, our Bayes tree approach comprises:

• Hierarchical indexing of mixture densities that en-
ables fast access for refinement of the current model

• Adaptive refinement of the most relevant parts of
the model depending on the individual query

• Kernel densities for Bayes classification at the
finest level of the hierarchy
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Figure 3: Nodes and entries in the Bayes tree
(here: above the kernel level). Entries es store min-
imum bounding rectangles (MBRs) and child point-
ers (ptrs) and additionally information to compute
mean and variance, i.e. number of objects (ns), lin-
ear sum (

∑
ts,i), quadratic sum (

∑
t2s,i). Kernel po-

sitions are depicted as dots, the higher level mixture
density is represented as density curves.

3.2 Structure of the Bayes tree
In this section we describe the Bayes tree structure for a

single class ci. Section 3.3 details the processing of proba-
bility density queries.

The general idea of the Bayes tree is a hierarchy of mixture
densities stored in a multidimensional index. Each level of
the tree stores at a different granularity a complete model
of the entire data. To this end, a balanced structure as in
R-trees [15, 3] is used to store the kernels at leaf level. The
hierarchy on top is built in a bottom-up fashion, providing
a hierarchy of node entries, each of which is a Gaussian that
represents the entire subtree below it. The index is dynamic
and easily adapts to novel data as not the actual parameters
of the Gaussian, its mean and its variance, are stored, but
easily maintainable information for their computation.

Multidimensional indexing structures like R-trees summa-
rize data recursively in minimum bounding regions (MBRs).
Leaves store the actual data objects and the subsequently
higher levels provide directory information via the MBRs.
For kernel densities or mixture densities, MBR information
is not sufficient for describing the probability density dis-
tribution of subtrees. Consequently, we propose storing the
necessary information to compute parameters of the mixture
densities at any given level of the hierarchy.

Recall that the parameters of mixture densities are the
mean and variance of Gaussians (µi and σi, respectively).
Storing this information directly would require accessing the
actual objects on the leaf level to generate any higher dimen-
sional model representation. For example, assume we have
two mixture densities. Building a coarser mixture density
that represents both is not possible without additional in-
formation, since mean and variance are not distributive, i.e.
from two means alone we cannot infer the overall mean. In-
stead, the number of instances is required to weight the two
means accordingly. Mean and variance are thus algebraic
measures that require the number of instances, their linear
sum and quadratic sum for incremental computation, which
is exactly what Bayes tree entries store:

Definition 4. Bayes tree node entry.

A subtree Ts of a d-dimensional Bayes tree is associated
with the set of objects stored in the leaves of the subtree:

Ts = {t(s,1), . . . , t(s,ns)}. An entry es then stores the fol-
lowing information about the subtree Ts:

• The minimum bounding rectangle enclosing the objects
stored in the subtree Ts as MBRs = ((l1, u1), . . . , (ld, ud))

• A pointer ptrs to the subtree Ts

• The number ns of objects in Ts

• The linear sum
ns∑
j=1

(
t(s,j)

)
of all objects in Ts

• The quadratic sum
ns∑
j=1

(
t(s,j)

2
)

of all objects in Ts

Please note that all objects stored in the leaves of the
Bayes tree are d-dimensional kernels. Figure 3 illustrates the
structure of a Bayes tree node entry. From the information
stored in each entry according to Definition 4, mean and
variance are computed as follows [17]:

Lemma 1. Computing mean and variance.

The mean µs and the variance vector σ2
s for a subtree Ts

can be computed from the stored values of the respective node
entry es as

µs =
1

ns

ns∑
j=1

(
t(s,j)

)
σ2
s =

1

ns

ns∑
j=1

(
t(s,j)

2)−( 1

ns

ns∑
j=1

(
t(s,j)

))2

Our Bayes tree extends the R*-tree to store model specific
information in the following manner:

Definition 5. Bayes tree.

A Bayes tree with fanout parameters m,M and leaf node
capacity parameters l,L is a balanced multidimensional in-
dexing structure with the following properties:

• Each inner node nodes contains between m and M
entries (see Def. 4). The root has at least a single
entry.

• Each inner node with νs entries has exactly νs child
nodes

• Leaf nodes store between l and L observations
(d-dimensional kernels).

• A path from the root to any leaf node has always the
same length (balanced).

This structure has some very nice and intuitive benefits:
since the number of objects, their linear sum as well as their
quadratic sum are all distributive measures, they can effi-
ciently be computed bottom up. More precisely, we simply
use the build procedure of any standard R*-tree to create
our hierarchy of mixture densities. Additionally, using an
index structure from the R-tree family automatically allows
both processing of huge amounts of data and incremental
learning at any time.

Recall that R*-trees, or any other tree from the B-tree
or R-tree family, grow in a bottom-up fashion. Whenever
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there are more entries assigned to any node than allowed by
the fanout parameters M, which in turn reflects the page
size on hard disk, an overflow occurs. This overflow leads
to a node split, i.e. the entries of this overfull node are
separated onto two new nodes. Their ancestor node then
stores aggregate information on these two nodes. In the
R*-tree case, this was simply the MBR of the two nodes,
for the Bayes tree additionally the overall number, linear
and quadratic sum have to be computed and stored in the
ancestor node. This way, in a very straightforward manner,
coarser mixture density models are created.

Consequently, building Bayes trees is a simple procedure
that starts from the original kernel density estimators that
are stored in a leaf node until a split is necessary. This first
split leads to creation of a second level in the tree, with
a coarser mixture density model derived through R*-tree-
style split [3]. Successive splitting of nodes (as more kernel
densities are inserted) leads to further growth of the tree,
eventually yielding a hierarchy of mixture density models as
coarser representations of the kernel densities.

3.3 Query processing
Answering a probability density query requires a complete

model as stored at each level of the tree. Besides these
full models, local refinement of the model (to adapt flexi-
bly to the query) provides models composed of coarser and
finer representations. This is illustrated in Figure 4. In
any model, each component corresponds to an entry that
represents its subtree. This entry may be replaced by the
entries in its child node yielding a finer representation of its
subtree. This idea leads to query-based refinement in our
anytime algorithm. Each mixed granularity model corre-
sponds to a frontier in the tree, i.e. a set of entries in the
tree, such that each kernel estimator is represented exactly
once. Taking a complete subtree of all nodes starting from
the root, the frontier describes a non-redundant model that
combines mixture densities at different levels of granularity.

Recall that an entry es represents all objects in its cor-
responding subtree by storing the necessary information to
calculate its mean and variance. Hence, a set E = {ei}
of entries defines a Gaussian mixture modelM according to
Definition 2, which can then be used to answer a probability
density query.

Definition 6. Probability density query pdq.

Let E = {ei} be a set of entries, ME the corresponding
Gaussian mixture model and n =

∑
i nei the total number

of objects represented by E. A probability density query pdq
returns the density for an object x with respect to ME by

pdq(x, E) =
∑
es∈E

nes

n
· g(x, µes , σes)

where µes and σes are calculated according to Lemma 1.

For a leaf entry a kernel estimator as discussed in Section
2.2 is used and obviously µes is the object itself.

Figure 4 b) shows the resulting mixture density for the
example frontier from part a). The leftmost Gaussian stems
from the entry e1 which is located at root level. The right-
most Gaussian and the one in the back correspond to entries
e23 and e21 respectively, the remaining represent kernel den-
sities at leaf level. Part c) of the image depicts the underly-
ing R*-tree MBRs and the kernels as dots. The bigger blue

1
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21 23

K K K
K
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K K K KK K K KK K K
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Figure 4: Tree frontier: In a) an exemplary fron-
tier in a Bayes tree that corresponds to a model
with mixed levels of granularity is depicted: nodes
2 (root level) and 22 (inner level) are refined, yield-
ing 1 (root level), 21 (inner level), 221, 222, 223 (all
leaf level), 23 (inner level). The resulting mixture
density model is depicted in b), the actual kernel
positions and the hierarchy are depicted in c).

dot and the vertical line represent the query object from
which the above frontier originated.

A frontier is thus a model representation that consists of
node entries such that each kernel estimator contributes and
such that no kernel estimator is represented redundantly. To
formalize the notion of a frontier, we need a clear definition
for the enumeration of nodes and entries.

Definition 7. Enumeration of nodes and entries.

To refer to each entry stored in the Bayes tree we use a label
s with the following properties:

• The initial starting point is labeled e∅ with T∅ being
the complete set of objects stored in the Bayes tree.

• The child node of an entry es has the same label s as its
parent entry, i.e. the child of es is nodes. Ts denotes
the set of objects stored in the respective subtree of es.

• The νs entries stored in nodes are labeled {es◦1 . . . es◦νs},
i.e. the label s of the predecessor concatenated with the
entry’s number in the node. (recall Figure 3: nodes
has two entries es◦1 and es◦2 with their child nodes
nodes◦1 and nodes◦2).

Using the above enumeration a frontier can be derived
from any prefix-closed set of nodes.

Definition 8. Prefix-closed subset and frontier.

A set of nodes N is prefix-closed iff:

• node∅ ∈ N (the root is always contained in a prefix-
closed subset)

• nodes◦i ∈ N ⇒ nodes ∈ N (if a node is contained in
N , its parent is also contained in N )
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Let E(N ) be the set of entries stored in the nodes contained
in a prefix-closed node set N : E(N ) =

⋃
node∈N

(e ∈ node).

The frontier F(N ) ⊆ E(N ) contains all entries e ∈ E(N )
that satisfy

• es◦i ∈ F(N )⇒ es /∈ F(N ): no predecessors of a fron-
tier entry is in F(N ) (predecessor-free)

• es ∈ F(N ) ⇒6 ∃i ∈ IN with es◦i ∈ E(N ): a frontier
entry has no successors in E(N ) (successor-free)

Figure 4 a) illustrates both a prefix-closed subset of nodes
and the corresponding frontier. The subset, separated by the
curved red line, contains the root, node2 and node23, hence
it is prefix-closed. Its corresponding frontier (highlighted in
white) contains the entries e1, e21, e23, e221, e222 and e223

where the last three represent kernels. Note that the frontier
is both predecessor-free and successor-free.

Using the above definitions we now define the processing
of a probability density query on the Bayes tree.

Let T∅ be the set of objects stored in a Bayes tree con-
taining tmax nodes. Anytime pdq processing for an object x
processes a prefix-closed subset Nt in each time step t with
N0 = {node∅}, i.e. the processing starts with the root node,
and |Nt+1| = |Nt|+1, i.e. in each time step one more node is
read. The probability density for the query object x at time
step t is then calculated using the mixture model correspond-
ing to the frontier F(Nt) of the current prefix-closed subset
Nt as in Definition 6, that is pdq(x,F(Nt)). Thereby all
objects of the tree are accounted for:

∑
es∈F(Nt) nes = |T∅|.

Definition 9. Anytime pdq processing.

From time step t to t + 1, Nt becomes Nt+1 by adding the
child node nodes of one frontier entry es ∈ F(Nt). If nodes
has νs entries, then the frontier F(Nt) changes to F(Nt+1)
by

F(Nt+1) = (F(Nt) \ {es}) ∪ {es◦1, . . . , es◦νs}

i.e. es is replaced by its children. The probability density for
x in time step t+ 1 is then calculated by

pdq(x,F(Nt+1)) = pdq(x,F(Nt))

− ns
|T∅|
· g(x, µes , σes)

+

νs∑
i=1

ns◦i
|T∅|

· g(x, µes◦i , σes◦i)

Following the above equation, the probability density for x
in time step t+1 is calculated taking the probability density
for x in time step t (row 1), subtracting the contribution of
the refined entry’s Gaussian (row 2) and adding the contri-
butions of its children’s Gaussians (row 3). Hence, the cost
for calculating the new probability density for x after read-
ing one additional node is very low due to the information
stored for mean and variance.

Note that after reading all tmax nodes pdq(x,F(Ntmax))
is a full kernel density estimation taking all kernels at leaf
level into account.

Each possible frontier represents a possible model for our
anytime algorithm. The number of possible models in any
Bayes tree depends on the actual status of the tree, i.e. the
degree to which it is filled and the height of the tree. For
example, there are four possible models for a Bayes tree of

height two and fanout two (root, leaves, and two mixed mod-
els). For realistic trees, with increasing height and fanout,
the number of possible models is exponential in the height
and in the fanout.

Choosing among all these models is crucial for anytime
algorithms, where the time available (typically unknown a
priori) should be spent such that the most promising model
information is used first. For tree traversal we propose three
basic descent strategies to answer probability density queries
on a Bayes tree. Descent in a breadth first (bft) fashion
refines each model level completely before descending down
to the next level. Alternatively, we could descent the tree in
a depth first (dft) manner, refining a single subtree entirely
down to the actual kernel estimators before refining the next
subtree below the root. The choice of the subtree to refine is
made according to a priority measure. The third approach,
which we call global best first (glo), orders nodes globally
with respect to a priority measure and refines nodes in this
ordering.

The priority measure in R-Trees, which we denote as geo-
metric, gives highest priority to the node with the smallest
(Euclidean) distance based on its minimum bounding rect-
angle.

In the Bayes tree, the focus is not on distances, but on
density estimation. We therefore propose a probabilistic pri-
ority measure. It awards priority with respect to the actual
density value for the current query object based on the sta-
tistical information stored in each node. More specifically,
at time step t, having read the prefix-closed set of nodes Nt,
the probabilistic approach descends at the next time step
t+ 1 into the subtree Tŝ belonging to the entry eŝ with

eŝ = argmax
es∈F(Nt)

{
g(x, µes , σes) · ns

n

}
where x is the current query object and g is a Gaussian
probability density function as in Definition 2.

In our experiments we evaluate all combinations between
the three descent strategies and the two priority measures,
where in the breadth first approach the priority measure
determines the order of nodes per level.

So far, we described descent strategies in a single Bayes
tree, i.e. refining mixture models for just one class. Now, we
discuss refinement with respect to several classes {c1, . . . , cm}.
The time for classification is divided between several Bayes
trees, one per class (cf. Section 3.2). The question is, having
read l nodes so far, i.e. being at time step tl, which of the
m trees should be granted the right to read the next node
in the following time step tl + 1?

Initially, we evaluate the coarsest model for each class ci,
i.e. the model consisting of only one Gaussian probability
density function representing all objects of ci.

A naive improvement strategy chooses the classes in an
arbitrary order C = (c1, . . . , cm). First, the class c1 is refined
according to one of the above strategies. In the next step,
c2 is refined and so on. After m time steps all classes have
been refined and the Bayes tree of the first class is processed
again. As the classes are not sorted in any predefined way,
we refer to this method as unsorted.

Intuitively, it is very likely that for an object x the true
class ci shows a high posterior probability independent of the
time tci spent decending its corresponding tree: P (ci|x) =
pdq(x,F(Ntci

)) · P (ci)/p(x).
Consequently, we suggest a second strategy for improv-
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ing classification which only chooses the k classes having
the highest a posteriori probability. This technique stores
these k classes in a priority queue (queue best k). Assume
the sorted priority queue contains the classes (ci1 , . . . , cik ).
The next node is read in the Bayes tree of class ci1 and the
probability model is updated accordingly. If more time is
permitted class ci2 is refined and so on. After k steps all
k classes have been improved and the queue is filled again
using the new a posteriori probabilities. We evaluate the
influence of the parameter k in the experiment section. Set-
ting k = 1, always the model of the most probable class is
refined. For k = m (the number of classes) all classes are
refined in the order of their probability before the queue is
refilled. We refer to these approaches as qb1, qbm, respec-
tively, and qbk in general.

One observation which is also known from hierarchical
indexing is that the root node often only contains a few
entries. We use this free space for storing the entries from
different classes on the same page if it does not exceed the
page size. We call these new root pages the compressed root.
The total size of the compessed root varies since the number
of root entries in a single Bayes tree varies as in all index
structures. Clearly, the total size also grows linearly in the
number of dimensions and the number of classes.

4. EXPERIMENTS
We ran experiments on real world and synthetic data to

evaluate our Bayes tree for both anytime classification and
anytime learning. Table 1 summarizes the data sets and
their characteristics. The synthetic data sets were gener-
ated using a random Gaussian mixture model as in [17].
We created one small data set containing 4 dimensions, 2
classes and eleven thousand objects and one large data set
containing 5 dimensions, 3 classes and one million objects.
Furthermore we use real world data of various characteris-
tics which were taken from different sources such as the UCI
KDD archive [18].

In all experiments we use a 4 fold cross validation. To
evaluate anytime accuracy we report the accuracy (aver-
aged over the four folds) of our classifiers after each node
(corresponding to one page) that is read. The first accuracy
value corresponds to the classification accuracy of the uni-
modal Bayes classifier that we use as an initialization before
reading the compressed root (cf. Section 4.1). Experiments
were run using 2KB page sizes (except 4KB for Verbmobil
and 8KB for the USPS data set) on Pentium 4 machines with
2.4 Ghz and 1 GB main memory. To set the bandwidth for

name size classes features ref.

Synthetic (11K) 11,000 2 4

Synthetic (1M) 1,000,000 3 5

Vowel 990 11 10 [18]

USPS 8,772 10 39 [16]

Pendigits 10,992 10 16 [18]

Letter 20,000 26 16 [18]

Gender 189,961 2 9 [1]

Covtype 581,012 7 10 [18]

Verbmobil 647,585 5 32 [31]

Table 1: Data sets used in our experiments.

1

Synthetic 11K, descent strategies

0 9

0,95

y

prob_glo_unsorted

0,85

0,9

cc
ur
ac
y

prob_bft_unsorted

prob_dft_unsorted

l t d

0,75

0,8ac geom_glo_unsorted

geom_bft_unsorted

geom_dft_unsorted

0,7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

g _ _

pages0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pages

0,6

0,7

0,8

0,9

cc
ur
ac
y

Synthetic 1M, descent strategies

prob_glo_unsorted

prob_bft_unsorted

prob_dft_unsorted

eom lo nsorted

0,3

0,4

0,5

0 5 10 15 20 25 30 35 40 45

ac geom_glo_unsorted

geom_bft_unsorted

geom_dft_unsorted

pages

Figure 5: Comparing descent strategies along with
priority measures on synthetic data.

our kernel estimators we use a common data independent
method according to [28].

In the following we first evaluate the descent strategies
along with the priority measures introduced in Section 3.3.
In Section 4.2 we analyze various improvement strategies
to find that none of the three simple approaches leads to
competitive results. After that we introduce our novel eval-
uation method for anytime classifiers on Poisson streams in
Section 4.3. Finally we demonstrate the anytime learning
performance of the Bayes tree for both anytime accuracy
and stream accuracy.

4.1 Descent strategies
For tree traversal we evaluate depth first (dft), breadth

first (bft) and global best first (glo) strategies. Combined
with both the geometric (geom) and probabilistic (prob) pri-
ority measure we compare six approaches for model refine-
ment in a Bayes tree. Figure 5 shows the results for all six
approaches on the small and on the large synthetic data set
using the unsorted improvement strategy. After 5 pages on
the small synthetic data set the locality assumption of the
depth first approach fails to identify the most relevant re-
finements for both geometric and probabilistic priority. For
the large synthetic data set the accuracy even decreases af-
ter 17 pages. The processing strategy of the breadth first
approach causes the classification accuracy to only increase
if a next level of the tree is reached.

We found that the performance of the different descent
strategies is independent of the employed improvement strat-
egy (i.e. unsorted or qbk). As an example for the indepen-
dence of the improvement strategy Figure 6 shows the per-
formance on the Gender data set using qbm. The glo descent
strategy with probabilistic priority measure shows the over-
all best anytime classification accuracy for all data sets. We
therefore use global best first descent and the probabilistic
priority measure in all further experiments.
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4.2 Improvement strategies
We evaluated the improvement strategies unsorted, qb1

and qbm on all seven real world data sets from Table 1. Be-
sides that we used qb3 for a first evaluation, i.e. we set k to
3 (2 for Gender) as it follows our intuition of ”some relevant
candidates”. (A thorough evaluation of various values for k
follows later in this section.)

We picked the results from Pendigits and Covtype as they
represent the two sorts of outcome we found when we ana-
lyzed the results (cf. Figures 7 and 8). The naive approach,
i.e. the unsorted improvement strategy, does not provide a
competitive solution (third rank on Pendigits and last rank
on Covtype). However, after reading the entire compressed
root this approach has read the same information as qbm.
This can best be seen on the results for Covtype. After four
page accesses the compressed root is read and both strate-
gies deliver the same classification accuracy. From then on,
their accuracy is the same after every seven steps, i.e. 11,
18, 25, . . . since Covtype has seven classes. The graph for
Pendigits does not show this behavior in such a clear fash-
ion. This is due to the averaging over the four folds. The
compressed root needs between seven and eight pages within
each fold. Therefore the accuracy for unsorted and qbm is
similar after seven to eight steps, yet not equal. This sim-
ilarity occurs every ten steps from then on, since Pendigits
has ten classes.

Regarding the other improvement strategies, one could
expect that qb1, i.e. refining only the most probable class,
delivers the best results, because it either strengthens the
current decision by increasing the probability for the correct
class or corrects the decision by decreasing the probability
in case a false class has currently the highest density. On
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Figure 8: Comparing improvement strategies on
Covtype.

Covtype qb1 outperforms the qbm and unsorted strategies,
but on Pendigits it performs way worse then both of them.
Opposite success and failure would befall those in favor for
qbm.

The results on Verbmobil and Gender were similar to
those on Pendigits, i.e. qb1 performed way worse than all
other strategies. On the other hand, similar to the Cov-
type results, qb1 performed better than qbm and unsorted
on Letter and USPS. On all datasets all of the three strate-
gies discussed above were clearly outperformed by the qb3
approach.

These results prove that anytime density estimation does
not extend in a naive or straight forward way to anytime
classification with competitive results. Moreover, the results
pose the question, how the choice of k influences the anytime
classification performance. Figure 9 shows the comparison
of qb1, qbm and qbk for k ∈ {2, 4, 6, 8, 10} on the Letter data
set. As stated above, qb1 performs better than qbm on this
data set.

The accuracy of the qbm strategy in Figure 9 initially in-
creases steeply in the first three to four steps. It is clearly
visible that the compressed root needs on average 19 pages
for the 26 classes (recall the 4 fold cross validation). After
the compressed root is read, the accuracy of the qbm strat-
egy again steeply increases for the next four to five steps.
A similar increase can be observed 26 steps later when all
classes have been refined once more. Opposed to those three
strong improvements are the rest of the steps, during which
the accuracy hardly changes at all. For this data set we de-
rive from Figure 9 that for an object that has to be classified
there are on average five classes that are worth considering,
the other 21 classes can be precluded.

The qb10 strategy needs seven to eight pages to read the
root information for the top ten classes from the compressed
root. These steps show the same accuracy as the qbm ap-
proach, since the ordering according to the priority measure
is equal. After that a similar pattern can be observed each
ten steps, i.e. after reordering according to the novel density
values.

Continuing with the qb8 variant, the ”ramps” (steep im-
provements) move even closer together and begin earlier.
Similar improvement gains are shown by qb6 and qb4. An
even smaller k (k = 2 in Figure 9) does no longer improve
the overall anytime accuracy and qb1 shows an even worse
performance than qb10.

For an easier comparison of the qbk performance when
varying k, we calculate the area under the anytime curve for
each k and hence receive a single number for each value of k.
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Figure 10: The area under the corresponding any-
time curves in Figure 9.

The area fits the intuition of a best improvement, since qbk
curves mostly ascend monotonically. Figure 10 shows the
area values corresponding to the anytime curves in Figure
9. As in the above analysis qb4 turns out to perform best
according to this measure.

We evaluated qbk for k ∈ {1 . . .m} on all data sets and
found the same characteristic results. Figure 11 displays the
results for Vowel and Covtype. We found that the maximum
value was always between k = 2 and k = 4 on our data
sets. Moreover, with an increasing number of classes, the
k value for the best performance also increased, yet only
slightly. An exception is the Gender data set, where k =
m = 2 showed the best performance. This is due to the bad
performance of qb1, therefore we set k to be at least 2. To
develop a heuristic for the value of k we evaluated different
data sets having different number of classes. It turned out
that a good choice for k is logarithmic in the number of
classes, i.e. k = blog2(m)c. Using this heuristic met the
maximal performance for all our evaluations. Yet we set the
minimum value for k to 2 as mentioned above. We use this
improvement strategy along with the best descent strategy
from Section 4.1 in all further experiments.

4.3 Evaluating anytime classification
using Poisson streams

So far we determined the best strategy for descending a
Bayes tree to refine the density model and evaluated the pro-
posed improvement strategies. Next we propose a novel eval-
uation method for anytime classifiers using Poisson streams
before we demonstrate the anytime learning performance of
our technique on various data streams.
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Figure 11: Area values for k ∈ {1 . . .m} for Vowel
(top) and Covtype (bottom).

To evaluate anytime classification under variable stream
scenarios, we recapitulate a stochastic model that is widely
used to model random arrivals [12]. A Poisson process de-
scribes streams where the inter-arrival times are indepen-
dently exponentially distributed. Poisson processes are pa-
rameterized by an arrival rate parameter λ:

Definition 10. Poisson stream.

A probability density function for the inter-arrival time of a
Poisson process is exponentially distributed with parameter
λ by p(t) = λ · e−λt.The expected inter-arrival time of an
exponentially distributed random variable with parameter λ
is E[t] = 1

λ
.

We use a Poisson process to model random stream ar-
rivals for each fold of the cross validation. We randomly
generate exponentially distributed inter-arrival times for dif-
ferent values of λ. If a new object arrives (the time between
two objects has passed) we interrupt the anytime classifier
and measure its accuracy. We repeat this experiment using
different expected inter-arrival times 1

λ
, where a unit corre-

sponds to a page as in all previous experiments. We assume
that any object arrives at the earliest after the initializa-
tion phase of the previous object, i.e. after evaluating the
unimodal Bayes.

Figure 12 shows the results for the stream classification ac-
curacy as described above for different values of λ on Pendig-
its, USPS, Covtype, Verbmobil and the large synthetic data
set. All data sets show an improvement of accuracy as the
expected inter-arrival time 1/λ increases and arrival times
are distributed following a Poisson process. This is an excel-
lent feature that contrasts anytime classifiers from budget or
contract classifiers. Budget classifiers would have to use a
time budget that is small enough to guarantee the process-
ing of all arriving objects which would clearly result in worse
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Figure 12: Stream classification accuracy using Pois-
son processes for data set Pendigits and USPS (top)
and Synthetic 1M, Covtype and Verbmobil.

performance. Moreover, evaluating anytime classifiers using
Poisson processes yields a single accuracy value for each λ
making it very easy to compare performance on different
underlying stream.

4.4 Incremental learning
Incremental learning in stream classification applications

originates from labeled objects that newly arrive in the data
stream. If we started learning/inserting a new object, we
always finish the insertion for that object, i.e. no roll back
will be performed. However, if the average inter-arrival time
between two object is larger than the time necessary for
learning an additional object, the classifier cannot process
all labeled objects online. Hence, the resulting classifier is
based on a varying amount of training data depending on
the stream speed, i.e. λ as in Definition 10. To evaluate
the incremental learning performance of the Bayes tree we
varied λ such that the classifier was only able to process
a certain percentage of the training data. We report the
results for 50%, 75% and 100%. We first report the anytime
classification accuracy for the three classifiers. To be able
to compare the results, the classifiers had to classify each
the same stream of test objects . As above we averaged the
results over 4 folds.

Figure 13 shows the results of the three incremental learn-
ing classifiers through their anytime accuracy on the Gender
data set. Even the classifier trained on the fastest stream
(train 50%) shows a good performance. On slower streams,
the Bayes tree can exploit its incremental learning property
and learn more objects before the training phase is over. The
resulting anytime accuracy (train 75%) lies constantly above
train 50% from page three onwards. The Bayes tree that was
trained on the slowest stream (train 100%) performs consis-
tently better then both the others, again highlighting the
benefit of the incremental learning property.
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Figure 13: Incremental learning on Gender.

Finally we have evaluated the results of the incrementally
trained Bayes trees on Poisson streams for various λ. Fig-
ures 14 and 15 show the resulting stream accuracy values for
Vowel and Covtype respectively. Again we used the same
underlying stream models during classification to be able
to compare the results. The anytime learning performance
can be seen within each of the groups of three bars, where
immediate comparison of the classifiers is possible through
our Poisson stream evaluation. For all of the evaluated λ
values and data set the classifiers trained on slower streams
perform better. Moreover, with smaller λ values during clas-
sification, the stream accuracy of each individual Bayes tree
improves.

The evaluation shows that our novel Bayes tree efficiently
supports incremental learning as well as anytime classifica-
tion. Moreover, the underlying index structure ensures the
ability to handle very large data sets as in the case of stream-
ing data.

5. CONCLUSION AND FUTURE WORK
In this work we proposed a novel index-based classifier

called Bayes tree. It supports anytime learning and anytime
classification and can handle huge amounts of data, which
makes it a consistent solution for classification on fast data
streams. The Bayes tree automatically generates (adapted
efficiently to the individual object to be classified) a hierar-
chy of mixture densities that represent kernel density estima-
tors at successively coarser levels. Our probability density
queries together with the evaluated improvement strategies
provide the necessary information for very effective classifi-
cation at any point of interruption. Moreover, we proposed
a novel evaluation method for anytime classification using
Poisson streams and demonstrated the anytime learning per-
formance of our novel approach. In our future work we plan
to expand our technology for handling concept drift in data
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Figure 14: Incremental learning on Vowel.
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Figure 15: Incremental learning on Covtype.

streams. Other possible extensions include classification of
multi-labeled data and semi-supervised learning.
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